

1 **Environmental factors regulating winter CO₂ flux in**
2 **snow-covered boreal forest soil, interior Alaska**

3 **Yongwon Kim^{1*} and Yuji Kodama²**

4 [1]{International Arctic Research Center, University of Alaska Fairbanks, AK 99775-7335,
5 USA}

6 [2]{Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan}

7 Correspondence to: Y. Kim (kimyw@iarc.uaf.edu)

8 Key words: Winter CO₂ flux, Pressure, Temperature, Snow depth, Black spruce forest

9 Running head: Environmental factors regulating winter CO₂ flux

10

1 Abstract

2 Winter CO₂ flux is an important element to assess when estimating the annual carbon budget on
3 regional and global scales. However, winter observation frequency is limited due to the extreme
4 cold weather in sub-Arctic and Arctic ecosystems. In this study, the continuous monitoring of
5 winter CO₂ flux in black spruce forest soil of interior Alaska **upon permafrost regime** was
6 performed using NDIR CO₂ sensors at 10, 20, and 30 cm above the soil surface during the
7 snow-covered period (DOY 357 to 466) of 2006/7. The atmospheric pressure was divided into
8 four phases: >1000 hPa (HP: high pressure); 985<P<1000 (IP: intermediate pressure); <986 hPa
9 (LP: low pressure); and a snow-melting period (MP); for the quantification of the effect of the
10 environmental factors determining winter CO₂ flux. The winter CO₂ fluxes were 0.22±0.02,
11 0.23±0.02, 0.25±0.03, and 0.17±0.02 gCO₂-C/m²/d for the HP, IP, LP, and MP phases,
12 respectively. Wintertime CO₂ emission represents 20% of the annual CO₂ emissions in this boreal
13 black spruce forest soil. **Atmospheric temperature and soil temperature explained 56% and 31%**
14 **of winter CO₂ flux, respectively, during the snow-covered period of 2006/7, when snow depth**
15 **experienced one of its lowest totals of the past 80 years.** Atmospheric temperature and soil
16 temperature at 5 cm depth, modulated by atmospheric pressure, were found to be significant
17 factors in determining winter CO₂ emission and fluctuation in snowpack. Regional/global
18 process-based carbon cycle models should be reassessed to account for the effect of winter CO₂
19 emissions, regulated by temperature and soil latent-heat flux, in the snow-covered soils of Arctic
20 and sub-Arctic terrestrial ecosystems of the Northern Hemisphere.

21

1 1 Introduction

2 While winter CO₂ flux is an important carbon source in snow-covered sub-Arctic and Arctic
3 ecosystems for the estimation of the annual carbon budget (Zimov et al., 1993, 1996; Oechel et
4 al., 1997; Winston et al., 1997; Fahnstock et al., 1998; Kim et al., 2007; Björkman et al., 2010),
5 there are few reports on continuous winter CO₂-flux measurements in high latitudinal regions.
6 Most studies, rather, have intermittently measured winter CO₂ flux with a static chamber built on
7 the snow surface. These flux measurements are limited due to the extreme cold weather from
8 December to February and issues with static and/or continuous chamber operation at identical
9 sampling points, made difficult by newly accumulated snow in high latitudes. Winter CO₂
10 emissions, though, correspond to 10-30% of the annual soil respiration rate in alpine, sub-Arctic,
11 and Arctic regions during the long (>200-day) snow-covered period (Sommerfeld et al., 1993;
12 Zimov et al., 1993, 1996; Brooks et al., 1996; Oechel et al., 1997; Mast et al., 1998; Wickland et
13 al., 2001; Kim et al., 2007; Liptzin et al., 2009; Seok et al., 2009), suggesting that the winter
14 carbon contribution should not be overlooked when evaluating the annual carbon budget on
15 regional and global scales. In this study, the monitoring of continuous winter CO₂-flux
16 measurements was conducted using non-destructive infrared (NDIR) CO₂ sensors, installed
17 before snowfall in black spruce forest soils during the seasonally snow-covered period of 2006/7.
18 These sensors have been used in temperate forests during winter before (Hirano, 2005; Takagi et
19 al., 2005); however, this study is the first to use these sensors to report on continuous winter
20 CO₂-flux measurement in the boreal black forest of interior Alaska, under an environment of
21 extreme cold.

22 The environmental factors influencing winter CO₂ flux are atmospheric pressure and wind speed
23 (Massman et al., 1997; Takagi et al., 2005; Massman and Frank, 2006; Bowling et al., 2009;
24 Seok et al., 2009), atmospheric temperature (Takagi et al., 2005), soil temperature (Zimov et al.,
25 1993, 1996; Oechel et al., 1997; Winston et al., 1997; Hirano, 2005; Monson et al., 2006), soil
26 moisture (Hirano, 2005; Liptzin et al., 2009), and snow depth (Fahnstock et al., 1998; Takagi et
27 al., 2005). Liptzin et al., (2009) demonstrated the conceptual model of the seasonal pattern of
28 CO₂ flux within four distinct zones, divided by changes in environmental factors (e.g.,

1 freeze-thaw cycles, soil temperature, soil moisture, and carbon availability) based on variability
2 in snow coverage in subalpine forest. Moreover, atmospheric pressure affects wind speed and
3 atmospheric temperature, subsequent wind speed influences CO₂ fluctuation within the snowpack,
4 and the ambient temperature modulates snow/soil temperatures. The soil temperature, depending
5 on snow depth and atmospheric temperature, also governs the strength of microbial activity that
6 terminally establishes the magnitude of CO₂ production in soils. We investigated each of these
7 environmental factors affecting continuous winter CO₂-flux measurement through the snowpack
8 in this study.

9 Several process-based ecosystem carbon models (e.g., Biome-BGC, TEM, and Sim-CYCLE)
10 have used atmospheric temperature data as one of the key parameters for the assessment of the
11 cycle and budget of terrestrial carbon on regional and global scales (e.g., Running and Coughlan,
12 1988; Kimball et al., 1997; McGuire et al., 2000; Ito and Oikawa, 2002; Lagergren et al., 2006).
13 However, the implication of winter carbon emissions in the snow-covered Arctic and sub-Arctic
14 terrain of the Northern Hemisphere upon the regional/global carbon budget is poorly accounted
15 for in these models. Because vegetative photosynthesis and respiration does not occur in
16 environments of extreme cold, soil-originated CO₂ emission through the snowpack represents the
17 only ecosystem respiration during the winter. Recently, Björkman et al. (2010) suggested that the
18 estimation of winter carbon emission may be varied more as a result of the method used than as a
19 result of the actual variation in soil CO₂ production or release. This is major concern, especially
20 when winter CO₂ flux data are used in ecosystem carbon models or in carbon budget calculations
21 (Björkman et al., 2010). Therefore, continuous winter CO₂ emission, dependent on environmental
22 factors, is a significant key in the winter carbon contribution to process-based terrestrial
23 ecosystem carbon models, as well as to the assessment of the terrestrial carbon cycle/budget on
24 regional and global scales.

25 **2 Materials and Methods**

26 **2.1 Sampling Locations and Methods**

27 The study site is a typical boreal forest in Fairbanks, in the Alaska interior (64°52'N, 147°51'W;
28 155 masl). The average monthly temperature in Fairbanks between 1971 and 2005 was lowest in

1 January at -23.2°C, and highest in July at 16.9°C, with an annual average of -2.9°C (Shulski and
2 Wendler, 2007). The average annual precipitation was 263 mm, of which approximately 37% fell
3 as snow, and the rest as rain. The minimum temperatures at 80 cm above the soil surface and in
4 soil 5 cm below the surface were -45.4°C (DOY 418 to 421) and -11.2°C (DOY 425 to 430),
5 respectively, during the winter of 2006/7. The average snow depth during the winter of 2006/7
6 was 25 cm; this average was the third lowest since 1929 (Alaska Climate Research Center,
7 2008).

8 Black spruce (*Picea mariana*) is the dominant overstory tree species, with ages from 45 to 120
9 years (Vogel et al., 2005). The black spruce canopy is sparse. The average canopy height is about
10 3.5 m, but there are taller trees of up to 6 m, sporadically. Understory vegetation includes typical
11 boreal forest shrubs, such as *Rhododendron groenlandicum*, *Vaccinium uliginosum*, *Vaccinium*
12 *vitis-idaea*, and *Betula glandulosa*, as well as some *Carex* species. The forest floor is almost
13 completely covered by mosses, such as *Sphagnum capillifolium*, *Sphagnum magellanicum*,
14 *Sphagnum riparium*, *Calliergon stramineum*, *Aulacomnium palustre*, and patchy lichen, such as
15 *Cladonia* species. Discontinuous permafrost is widely distributed 40 cm below the surface, and a
16 thin, silty clay layer exists on the upper-most permafrost (Kim et al., 2007).

17 The sensor system was built on sphagnum and feather moss layers and was in operation from
18 October 6, 2006 (DOY 280) to April 30, 2007 (DOY 485) for the monitoring of continuous CO₂
19 concentration in snowpack during the winter of 2006/7 (Figure 1). The non-dispersive infrared
20 sensor (NDIR; Vaisala GMD 20; Helsinki, Finland) was set on a length of wooden stick (3 cm
21 diameter, 100 cm long) at four directional levels (10, 20, 30, and 50 cm above the moss surface)
22 for prevention of disturbance (Figure 1). This sensor is the same type used for prior winter
23 CO₂-flux measurements (Hirano et al., 2003; Takagi et al., 2005). The installed sensor was
24 covered with a PVC pipe (48 mm OD; 40 mm ID; 170 mm long), open on one end, for water and
25 sensor-window protection. The *in-situ* sensor head (155 mm long and 15 mm in diameter) has an
26 NDIR source, optical filter, and detector, and a 50-mm long and 4-mm wide slit on the head to
27 allow CO₂ from the soil to diffuse through membranes into the small sample cell (ca. 2.6 cm³), as
28 used by Hirano et al. (2003) and Takagi et al. (2005). The sensor detects CO₂ concentration by
29 molecular diffusion from the soil to the snowpack, assuming that soil-originated CO₂ emission

1 within the diameter of the sensor (e.g., 20 cm) is constant. The cable from each sensor was
2 connected to a datalogger (CR 1000, Campbell Scientific Inc., USA) within an ice cooler for the
3 storage of CO₂ data averaged 30-min at each sensor. A commercial heating pad was used for
4 operation of the logger during winter. CO₂ concentration measured at the 50 cm level above the
5 surface is not discussed here due to unexpected failure of the sensor in the extremely cold
6 weather.

7 The calibration of each sensor was conducted using certified EPA protocol for a CO₂ standard
8 cylinder (1000.0 ppm; Airgas Inc., USA) and zero gas (pure N₂ cylinder; Airgas Inc., USA),
9 before and after the monitoring of CO₂ concentration in the laboratory. The sensor responded to
10 the standard cylinder within 10 seconds, and repeatedly measured standard CO₂ concentration for
11 60 minutes. The precision of each sensor was determined using zero gas and 1000.0 ppm
12 standard cylinders, ranging from 978 ± 6 ppm (0.61%) to 1020 ± 47 ppm (4.30%) before the
13 observation and from 967 ± 7 ppm (0.72%) to 1031 ± 47 ppm (4.57%) after the observation for
14 the calibration of 1000.0 ppm standard CO₂ cylinder over an hour. The precision on each sensor
15 ranged from 0.6 to 4.6%, and the CO₂ concentration of each sensor was corrected. The CO₂
16 concentration in the snowpack was calculated at 30-min intervals for each corrected sensor.

17 Temperatures in snow and soil were measured at 10, 20, 30, 40, 50, and 80 cm above, and at 5,
18 10, 15, 20, 30, 40, and 50 cm below the soil surface, and were monitored at a 1.5-h interval, with
19 sensors (TMC6-HC, Onset Computer Corporation, USA) and 4 external channel-loggers (U-12
20 HOBO, Onset Computer Corporation, USA). Soil moisture was monitored at 5 and 20 cm below
21 the surface at a 1.5-h interval using sensors (ML2x, Dynamax Inc, USA) and a 2-channel logger
22 (THLOG-2, Dynamax Inc, USA). The monitoring of temperature and soil moisture was
23 conducted from September 12, 2006 to September 6, 2007. Atmospheric pressure was recorded
24 by barometer (CS100, Campbell Scientific Inc., USA) every 30 min at 8 m at the
25 eddy-covariance tower site. The daily snow-depth data was taken from the Alaska Climate
26 Research Center of the Geophysical Institute (GI) at the University of Alaska Fairbanks (UAF)
27 during the winter of 2006/7 (Alaska Climate Research Center, 2008: Figure 2). Because the snow
28 depth was much lower than in normal years, winter CO₂ flux was estimated between DOY 357

1 (December 23, 2006) to 466 (April 11, 2007), when the snow depth was higher than 25 cm.
2 While the snow depth was less than 20 cm before DOY 257, the winter flux could not be
3 estimated. The accumulated snowpack began to melt on DOY 446 (March 21, 2007). The snow
4 survey was also conducted at a two-week interval. Two to five snow samples were collected
5 using a snow density sampler (4 cm H × 5 cm W × 5 cm D) and a snow cutter for the estimation
6 of snow porosity (Kim et al., 2007).

7 **2.2 Estimation of Winter CO₂ Flux**

8 The winter CO₂ flux through snowpack to the atmosphere was obtained by applying the
9 following equation under a steady-state condition: $F_{CO_2} = D \cdot (\partial C / \partial z) \cdot \tau \cdot \theta$ (Kim et al., 2007),
10 where D is CO₂ diffusivity corrected only for the in-situ temperature within the snowpack
11 measured in cm²/sec (Sommerfeld et al., 1993; Fahnestock et al, 1999); $\partial C / \partial z$ is the vertical CO₂
12 concentration gradient observed within the snowpack in ppmv/cm; τ is tortuosity; and θ is the
13 snow porosity. The CO₂ concentration gradients from 10 to 20 cm and from 20 to 30 cm were
14 similar, indicating that the gradient is almost linear; the gradient ratios for the 10-20 cm and
15 20-30 cm ranges varied from 0.87 to 1.22 under no difference, with 95% confidence level.
16 Porosity was calculated from the density of ice ($\rho_{ice}=0.91$) and the water contents of the
17 snowpack over the gradient interval. Tortuosity is difficult to measure and is usually described as
18 a function of porosity, with values ranging from $\theta^{1/3}$ to $\theta^{2/3}$ (Striegl, 1993). In this study, the
19 tortuosity of the snowpack was estimated by the theoretical relation $\tau = \theta^{1/3}$ (Millington, 1959),
20 which yielded values ranging from 0.74 after snow-melting period to 0.92 before snow-melting
21 period. These values are similar to the range of 0.70 to 0.91 for the whole observation period for
22 boreal forest snowpack in interior Alaska. Sommerfeld et al. (1993), Mast et al. (1998), and Kim
23 et al. (2007) reported similar data (0.68 to 0.90) in subalpine snowpack in Wyoming and
24 Colorado, and in boreal forest snowpack in Alaska. The snowpack at the high-latitude boreal
25 black spruce forest site has always been in dry conditions except for the snow-melting period.
26 The diffusion rate at a density of 150 kg/m³ was 79% faster than at a density of 300 kg/m³,
27 assuming all other variables were unchanged, indicating that errors in the estimate of CO₂ flux
28 through the snowpack caused by incorrect measurements of density varied as density changed

1 (Seok et al., 2009). In our case, the measured snow density and snow depth were much smaller
 2 than Seock et al. (2009)'s values. Nevertheless, we used the sensitivity of calculated CO₂ fluxes
 3 to estimate snow density as suggested by Seok et al. (2009) (see Figure S1). These researchers
 4 demonstrated that the propagated errors from porosity and tortuosity estimation resulting in snow
 5 density uncertainties estimates of ±10, 20, and 30% were shown as a function of the absolute
 6 snow density value. For example, a 10% error in the measurement of snow density resulted in an
 7 error in the estimated CO₂ flux on the order of 3% and 5% for a snow density of 150 and 300
 8 kg/m³, respectively. We estimated that the error in calculating CO₂ flux ranged from 1 to 11%,
 9 compared with 2-9% errors evaluated by Seok et al. (2009). Crust was formed by the
 10 sublimation; however, we did not consider the effect on the ice layer when estimating CO₂ flux
 11 because freeze-thaw events did not occur under the cold environment before the onset of snow
 12 thaw.

13 2.3 Analysis of Soil Heat Flux

14 We correlated winter CO₂ flux with the non-conductive heat flux component of the active layer.
 15 The non-conductive heat component, r_h , is expressed in terms of volumetric heat production in
 16 W/m² and is estimated by considering one-dimensional energy conservation as formulated:

$$17 \quad r_h = c_h \frac{\partial T}{\partial t} - k_h \frac{\partial^2 T}{\partial z^2} \quad (1)$$

18 where c_h is the volumetric bulk heat capacity, k_h is bulk thermal conductivity, T is
 19 temperature, t is time, and z is depth. Neglecting energy exchange below the lowest
 20 measurement, the total amount of non-conductive heat components, R_h , is the result of r_h
 21 multiplied by the thickness of the soil layer, d :

$$22 \quad R_h = \sum_i r_h^i d^i \quad (2)$$

23 where the subscript i represents the i -th layer from surface to bottom. We set the mid-depth of the
 24 i -th layer to be at the i -th measurement depth from the surface. Accordingly, the soil column was

1 divided into three layers, the thicknesses of which were 5, 7.5, and 10 cm from the surface to
2 bottom (25 cm). Finite element formulations to solve equations (1) and (2) are described in
3 Ishikawa et al. (2006).

4 We assumed k_h to range from 5.5×10^{-7} to 8.0×10^{-7} J/kg/K, referring to the thermal diffusivity
5 for frozen silty clay shown by Yershov (1998; $d_h = 5.5 \times 10^{-7}$ – 8×10^{-7} m²/s) and to its heat
6 capacity shown by Roth and Boike (2001; $c_h = 2.2 \pm 0.2 \times 10^6$ J/m/K). These calculations
7 neglected the contribution of soil air because of its very low mass density.

8 3. Results and Discussion

9 During the winter, wind speed and direction have been important factors affecting winter
10 CO₂ fluxes in temperate and subalpine regions (Massman et al., 1997; Takagi et al., 2005;
11 Massman and Frank, 2006; [Bowling et al., 2009](#); Liptzin et al., 2009; Seok et al., 2009). The
12 wind speed at 2 m from the eddy covariance tower was less than 2 m/s in the black spruce forest
13 of interior Alaska during the observed winter period, compared with 0 to 6 m/s measured in
14 subalpine region (Massman et al., 1997; Filippa et al., 2009; Liptzin et al., 2009; Seok et al.,
15 2009), and 0 to 3 m/s in temperate-climate region (Takagi et al., 2005), measurements affected
16 by wind-pumping when estimating CO₂ flux through the snowpack. Relationships between air
17 pressure and wind speed at 2 m, and between CO₂ concentration gradient and wind speed at 2 m,
18 had much lower relations, indicating that the correlation coefficients were 0.017 and 0.069,
19 respectively. This suggests that wind speed in the black spruce forest of interior Alaska during
20 the winter may not play a significant role in estimating CO₂ flux in response to changes in wind
21 speed, contrary to subalpine and temperate regions. However, most (>96%) wind speed at 2 m
22 during winter at our location was less than 1.0 m/sec. In order to validate the effect of wind
23 pumping upon variability in CO₂ concentration at each level, we used the 2nd order polynomial fit
24 ($y = cx^2 + bx + a$) as estimated by Seok et al. (2009), illustrating the relationship between CO₂
25 concentration at each level and wind speed at 2 m. This finding is quite different than Seok et al.
26 (2009)'s result. The c in this study, characterizing the curvature of the best fit equation, tends to
27 decrease with increased depth, indicating little sensitivity toward wind speed under shallow
28 snowpack and much weaker wind speed environment, contrary to the findings of Seok et al.

1 (2009) under deeper snowpack and strong wind speed during the winter. The trend in b is similar
2 to c. The regression term a, denoting zero-wind speed snowpack CO₂ concentration at each
3 height, linearly increases going from the bottom of the snowpack, indicating that the CO₂ source
4 is from the soil. When the wind speed is zero in this study, the average CO₂ concentrations at
5 each height during the whole winter are 627, 532, and 474 ppm at 10, 20, and 30 cm in the
6 snowpack, respectively, suggesting most wind speeds are much weaker at this study site. This
7 demonstrates that there is no wind-pumping effect on black spruce forest soil of interior Alaska
8 during the seasonal snow-covered period of 2006/7. Thus, contrary to temperate (Takagi et al.,
9 2005) and subalpine (Seok et al., 2009) regions, winter CO₂ flux as an effect of wind pumping
10 was not considered in our study and was estimated with the application of Fick's law. We used
11 6-h averages of CO₂ concentration, winter CO₂ flux, atmospheric pressure, temperatures in air
12 and soil, and soil moisture, during the snow-covered period of 2006/7.

13 3.1. Environment Factors and CO₂ Concentration

14 Soil moisture and the temperatures at 80 cm above the soil surface and at 5 cm below the surface
15 were monitored from DOY 255 to 614 (Figure 3). Atmospheric temperature showed a higher
16 daily variation, and the temporal fluctuation of soil temperature was lower. Soil moisture at 5 cm
17 below the surface was affected by low (<0°C) atmospheric temperature and soil freezing, and the
18 freezing rate from 5 to 20 cm was 0.75 cm/d, suggesting that the time it took the freezing front to
19 reach 20 cm was 20 days. Kim et al. (2007) reported a freezing rate of 4 cm/d for 10 to 30 cm
20 below the surface during the winter of 2004/5 in the same observation area. In our study, the
21 frozen soils began to thaw at 5 cm by DOY 489 (May 4, 2007), and at 20 cm by DOY 508 (May
22 22, 2007); the melting rate over these 19 days was 0.78 cm/d, similar to the freezing rate in early
23 winter.

24 Ambient pressure and temperature ranged from 943 to 1020 hPa and from -45 to 17°C,
25 respectively, during the period of DOY 350 to 466. The temporal variation in pressure showed an
26 inverse tendency to the change in temperature. Thus, in order to quantify the effects of pressure
27 and temperature for winter CO₂ flux, the magnitude of pressure during the snow-covered period
28 was divided into four phases: high pressure (HP: >1000 hPa); intermediate pressure (IP: 985 hPa

1 < P < 1000 hPa); low pressure (LP: <985 hPa); and a snow-melting period (MP, after DOY 466);
2 all shown in Figure 2. Atmospheric temperature was $-31.9 \pm 11.0^{\circ}\text{C}$ (Coefficient of Variance
3 [CV]: 35%) for HP; $-22.1 \pm 8.6^{\circ}\text{C}$ (CV: 39%) for IP; $-21.5 \pm 6.8^{\circ}\text{C}$ for LP; and $-8.4 \pm 12.4^{\circ}\text{C}$ (CV:
4 146%) for MP. These air pressure phases, then, correspond to the magnitude of air temperature.

5 Figure 4 shows the relationship between ambient temperature and temperatures in snow (10, 20,
6 and 40 cm above the soil surface), and soil (5 cm below), in order to demonstrate additional
7 influence on ambient temperature. The ambient temperature indicates correlation coefficients
8 (R^2) of 0.995, 0.99, and 0.79 for snow at 40, 20, and 10 cm above the surface, respectively, and
9 0.08 for soil 5 cm beneath the surface, suggesting that the extent of atmospheric temperature
10 influence reached to 20 cm within the snowpack when the snow depth was less than 40 cm.

11 CO₂ concentrations at 10, 20, and 30 cm above the soil surface are shown with temporal
12 variations in pressure in Figure 5. The 6-h average CO₂ concentrations in the snowpack were
13 627 ± 19 ppm (CV: 3.0%) for 10 cm, 532 ± 18 ppm (CV: 3.3%) for 20 cm, and 473 ± 32 ppm (CV:
14 6.7%) for 30 cm. The concentration range of 365 to 692 ppm in sphagnum/feather moss regimes
15 is comparable to the 400 to 740 ppm measured in tussock tundra/sphagnum moss regimes of
16 boreal forest soils (Kim et al., 2007), during which tussock tundra was also found to be one of the
17 carbon sources in boreal forest and Arctic terrestrial ecosystems of the Northern Hemisphere
18 (Oechel et al., 1997; Kim et al., 2007). The temporal variations in CO₂ concentration showed a
19 similar trend at 10, 20, and 30 cm levels, and may be affected by ambient pressure, as is the case
20 in the relationship between pressure and ambient temperature.

21 **3.2 Estimation of Winter CO₂ Flux**

22 Winter CO₂ flux varied from 0.19 to 0.26 gCO₂-C/m²/d for the HP phase (>1000 hPa), from 0.19
23 to 0.27 gCO₂-C/m²/d for IP (985 < P < 1000), from 0.20 to 0.32 gCO₂-C/m²/d for LP (<985 hPa),
24 and from 0.14 to 0.24 gCO₂-C/m²/d for MP. The average winter CO₂ flux and atmospheric
25 temperature for the four pressure phases are shown in Table 1. Average winter CO₂ flux among
26 the three pressure phases, excluding the snow-melting period, was not significantly different
27 based on a one-way ANOVA with a 95% confidence level. During the snow-covered period of

1 109 days, the average CO₂ flux was 0.22±0.02 gCO₂-C/m²/d (CV: 10%), indicating a value
2 corresponding to those measured by concentration profile (0.21±0.06 gCO₂-C/m²/d) and chamber
3 (0.26±0.06 gCO₂-C/m²/d) methods during the winter of 2004/5 in the same black spruce forest
4 soils of interior Alaska (Kim et al., 2007). Furthermore, the snow depth in the winter of 2004/5
5 was much deeper (>20 cm) than 2006/7. Although the snow depth was greater, the minimum soil
6 temperature at 5 cm below the surface was -17°C, due to an extremely cold ambient temperature
7 of -55°C (January 12, 2005). This suggests that the greater snow depth (68 cm) plays little role in
8 insulating the soil below -50°C. The accumulative snow depth obtained in this study has a much
9 lower relationship to winter CO₂ fluxes, indicating the equations $y=0.0004x + 0.21$ ($R^2=0.004$;
10 $p=0.029$) under HP, LP, and IP, and $y=0.0029x + 0.29$ ($R^2=0.80$; $p=0.869$) under MP,
11 respectively, based on a one-way ANOVA with a 95% confidence level. Winter CO₂ emission is
12 constrained by snow-melting water during MP, indicating that the snow-melting water has filled
13 the soil pore space. On the other hand, winter CO₂ emission shows much weaker relation to the
14 change in snow depth before the snow-thawing, suggesting winter CO₂ emission is not related to
15 the snow depth. In the temperate forests and grassland soils of northern Japan, greater snow
16 depth (>80 cm) has kept soil at 5 cm beneath the surface warmer than zero (Takagi et al., 2005),
17 and an increase in snow depth (35 to 70 cm) caused a temperature jump from -0.42 to 0.15°C at a
18 5-cm soil depth (Kim and Tanaka, 2002). This kind of change in soil temperature modulates the
19 magnitude of soil CO₂ production by affecting soil microbial activity in tundra soils during the
20 winter (Oechel et al., 1997; Panikov et al., 2006).

21 Temporal variations in pressure and ambient temperature for winter CO₂ flux are shown in Figure
22 6. The temporal variation of winter CO₂ flux shows a tendency that is qualitatively inverse to that
23 of pressure (Figure 6a) but is similar to that of ambient temperature (Figure 6b). The winter CO₂
24 flux abruptly decreased from 0.28 to 0.17 gCO₂-C/m²/d by DOY 446 (March 21, 2007), which
25 was the first day of snow melting—when ambient temperature increased to above zero, as shown
26 in Figure 3. Also, the temperature dropped from 1.23 to -13.8°C, and the pressure increased from
27 959 to 980 hPa. Therefore, the atmospheric temperature, modulated by the pressure, is a
28 significant factor in determining winter CO₂ flux in the seasonally snow-covered boreal forest
29 soil of interior Alaska.

1 3.3 Environmental Factors Regulating Winter CO₂ Flux

2 Winter CO₂ flux has a direct relationship to atmospheric pressure for HP (>1000 hPa), LP (<985
3 hPa), and MP (snow-melting) days of the snow-covered period (Figure 7a), indicating an inverse
4 correlation for each pressure phase. The data for the IP (985<P<1000) phase is virtually excluded
5 in Figure 7a—the temperatures in air and soil during IP are discussed below. The correlation
6 coefficients (R^2) were 0.25 for HP, 0.31 for LP, and 0.18 for MP. Ambient pressure has a lesser
7 effect in determining winter CO₂ flux through the snowpack to the atmosphere during the winter
8 season.

9 Winter CO₂ flux shows a strong exponential relationship to ambient temperature, though, for
10 three pressure phases: the correlation coefficients were 0.80 at low temperature for HP, 0.26 at
11 high temperature for LP, and 0.58 for MP (Figure 7b). The regression curves in Figure 7b are Y
12 = $0.27e^{(0.069T)}$ for HP, $Y = 0.29e^{(0.007T)}$ for LP, and $Y = 0.18e^{(0.065T)}$ for MP. Figure 7c shows the
13 relationship between CO₂ flux and ambient temperature for IP (985<P<1000), which also has
14 strong correlation, suggesting that the air temperature accounted for 58% of the variability of
15 winter CO₂ emission during IP, with a regression curve of $Y = 0.27e^{(0.064T)}$. During the LP phase,
16 the coefficient was less than half the coefficient in either HP, MP, or IP. Winter CO₂ flux during
17 the early days of the snow-covered period was much higher than during the remainder of this
18 period. This may be due to a higher concentration difference between the 10- and 20-cm levels
19 before DOY 368, when the snow depth was less than 27 cm. As a result, we calculated the 6-h
20 average CO₂ concentration gradient before and after DOY 368; the difference in CO₂ flux is
21 likely due in part to warm soil temperature before DOY 368. The soil temperature is dependent
22 on the snow depth and affects the soil microbial physiology and the community composition
23 (Brooks et al., 1996; Oechel et al., 1997; Kim and Tanaka, 2002; Takagi et al., 2005; Monson et
24 al., 2006).

25 The Q_{10} is the temperature coefficient of the reaction and is defined as the ratio of reaction rate at
26 an interval of 10°C. Our Q_{10} values were 1.22 for HP, 1.25 for LP, 1.26 for MP, and 1.37 for IP.
27 These values are much lower than those of previous studies during the winter (Oechel et al.,
28 1997; Monson et al., 2006). Monson et al. (2005) reported the R_T (a first-order exponential

1 coefficient analogous to the Q₁₀ coefficient used in biochemical studies) was 105 near trees and
2 1.25x10⁶ in the open space of the LTER Niwot Ridge Ameriflux site. These values are several
3 orders of magnitude higher than the range of Q₁₀ values found in previous studies of terrestrial
4 ecosystem soils, demonstrating that higher temperature sensitivity invokes a physical limitation
5 to substrate diffusion—as liquid water disappears below zero (between 0 and -1°C). Panikov et al.
6 (2006) proved that soil CO₂ production occurred even under the extremely cold soil temperature
7 of -39°C, with soil core samples (0-30 cm) from Barrow, Siberia, and Sweden; their Q₁₀ values
8 ranged from 2.1 to 8.5.

9 Estimated soil non-conductive heat flux evolved negatively through the period from DOY 357 to
10 460, for both upper and lower d_h and c_h (Figure 8a). Assuming that this heat arises from a single
11 phase transition of water, we compared soil moisture observed, using R_h divided by the enthalpy
12 of the transition from phases α to β , $L^{\alpha\beta}$ ($\{L^{sl}, L^{lv}\} = \{0.333, 2.45\}$ MJ/kg, where the superscript s ,
13 l and v represent solid, liquid, and vapor, respectively), and found that this heat was mostly from
14 vaporization. As shown in Figure 8a, winter CO₂ flux showed a decreasing trend until the end of
15 the snow-covered period, while latent heat flux showed an increasing trend. Also, both fluxes
16 showed significant correlations ($R^2 = 0.49$ and 0.52, with $p < 0.001$ in both) before the onset of
17 snow melting (Figure 9). These findings suggest that the higher upward vapor movement in the
18 soil column occurred in accordance with the smaller, soil-originated CO₂ flux. We postulate that
19 winter soil-originated CO₂ is hampered by the reduction of snow pores linked to the
20 atmosphere—due to compaction of the snowpack, vapor condensation in the snow column, and
21 subsequent snow metamorphism. This consideration is supported by the comparison between
22 CO₂ flux and the snow temperature gradient (Figure 8b). Winter CO₂ flux was occasionally
23 greater when the snow temperature profile approached the isotherm and the condensation rate
24 was reduced (e.g., DOY 364, 368, 392-399, 406, 411, 423, 434; Figure 8a and b). The
25 temperature gradient governed the vapor pressure gradient through the snow and soil column,
26 modulating evaporation, condensation, and vapor movements. This modified the passage of
27 winter CO₂.

1 Figure 10 shows the percentage (%) of the correlation coefficient among atmospheric pressure,
2 atmospheric temperature, soil temperature, and winter CO₂ flux under each pressure phase.
3 During HP, IP, and MP, the strongest environmental factors determining winter CO₂ flux were
4 atmospheric temperature, soil temperature, and atmospheric pressure, respectively. Takagi et al.
5 (2005) implied that winter CO₂ flux responded directly to ambient temperature, and not to soil
6 temperature, even beneath a 1-m snowpack of temperate forest soils in Japan. They inferred that
7 the atmospheric temperature affected the root activity of trees through their trunks and that the
8 variation in root respiration strongly affected fluctuation in CO₂ concentration in soil under the
9 snowpack. Vogel et al. (2005) suggested that the contribution of root respiration in mature black
10 spruce forest soils varied from 81-85% of total soil respiration during the winter. Moreover,
11 because their site is similar to the study site here, Kim et al. (2007) demonstrated that the $\delta^{13}\text{CO}_2$
12 of -22.5‰ originated from root respiration rather than heterotrophic respiration in black spruce
13 forest soils of interior Alaska during the winter. Atmospheric temperature and soil temperature at
14 5 cm, depending on ambient pressure, therefore, play significant and key factors in regulating
15 winter CO₂ emission through the snowpack in these forest soils during the snow-covered period.

16 **3.4 Implication for Regional Winter Carbon Budget**

17 Average wintertime CO₂ emission was $24.3 \pm 1.3 \text{ gCO}_2\text{-C/m}^2\text{/season}$ (CV: 5%) during the
18 **experimental period** of 109 days. For our four pressure phases, average emissions are shown in
19 Table 2. The cumulative snow depth in 2006/7 was one of the lowest years in Fairbanks over the
20 past 80 years—the snow depth during the 212-day winter period of 2006/7 corresponds to merely
21 half of a normal season. However, winter CO₂ emission has always occurred before DOY 357
22 and after DOY 466. **Thus, winter CO₂ emission was reevaluated as a half of the average flux**
23 **($0.23 \pm 0.02 \text{ gCO}_2\text{-C/m}^2\text{/d}$) measured before DOY 357 (December 23, 2006), and as a half of the**
24 **flux ($0.17 \pm 0.02 \text{ gCO}_2\text{-C/m}^2\text{/d}$) measured after DOY 466 (March 21, 2007), based on additional**
25 **CO₂ flux-measurement ($0.07 \pm 0.03 \text{ gCO}_2\text{-C/m}^2\text{/d}$; n=24) with the dynamic chamber on melting**
26 **snow surface during the snow-melting period (DOY 100) of 2007/8.** The wintertime CO₂
27 emission was $36 \pm 1.7 \text{ gCO}_2\text{-C/m}^2\text{/season}$ (CV: 5%) during the winter of 2006/7. This emission
28 corresponds to 20% of the annual CO₂ emitted from boreal black forest soils in interior Alaska;

1 the CO₂ emission was 142±57 gCO₂-C/m²/season (CV: 40%) in the same study site during the
2 growing period of 2006. Kim et al. (2007) reported that the wintertime CO₂ emission was 49±13
3 gCO₂-C/m²/season in the same boreal forest during the winter of 2004/5, a difference due to a
4 longer snow-covered period and greater snow depth than in this study. Also in the boreal forest
5 of interior Alaska, Vogel et al. (2005) measured a winter respiration of 36-54 gCO₂-C/m²/season
6 in three different tree ages (75, 110, and 120 years) of black spruce forests of Bonanza Creek,
7 interior Alaska, representing 8-18% of the annual CO₂ emission. Further, the winter respiration
8 was 40-55 gCO₂-C/m²/season in black spruce and jack pine forests of the BOREAS study area
9 (Winston et al., 1997) and later 25-35 gCO₂-C/m²/season in the black spruce forest of the
10 BOREAS area (Wang et al., 2003), in which the winter carbon contributions accounted for
11 5-19% of the annual respiration. The BOREAS study area contained one south-facing and one
12 north-facing vegetation distribution, resulting in a difference of soil drainage that greatly affects
13 the species composition and functions of the boreal forest ecosystem (Wang et al., 2003). The
14 magnitude of soil drainage regulates the decomposition rate of soil organic carbon and the
15 vegetation biophysical conditions.

16 In snow-covered Arctic tundra ecosystems of the North Slope of Alaska, the winter CO₂
17 emissions from moist tussock tundra and coastal wet sedge were 70 and 20 gCO₂-C/m²/season,
18 respectively (Oechel et al., 1997). That is the main share of the total annual net carbon emission
19 in Arctic tundra ecosystems. In the same Arctic tundra ecosystems, winter CO₂ emission ranged
20 from 1.3 to 11 gCO₂-C/m²/season (Fahnestock et al., 1998), depending on the vegetation
21 community types, flux that represents up to 17% of the annual carbon flux of Arctic tundra
22 ecosystems.

23 Considering all the snow-covered tussock and moss regimes in the Northern Hemisphere (6.5 x
24 10¹² m²; Whalen and Reeburgh, 1998), winter carbon emission should not be overlooked when
25 estimating regional and global carbon budgets. Furthermore, regional/global process-based CO₂
26 cycle models should be sufficiently discussed and modified to include winter CO₂ contribution,
27 considering atmospheric temperature as a key regulating factor and depending on atmospheric

1 pressure, in snow-covered soils of Arctic and sub-Arctic terrestrial ecosystems in the Northern
2 Hemisphere.

3 **4 Conclusions**

4 The continuous monitoring of winter CO₂ flux in snowpack was conducted in sphagnum and
5 feather moss regimes of black spruce forest soils of interior Alaska during the winter of 2006/7.
6 Measurements were taken of key environmental factors that regulate winter CO₂ flux, such as
7 atmospheric pressure and temperatures in air and soil, during the snow-covered period from
8 DOY 357 (December 23, 2006) to 466 (March 11, 2007). Atmospheric pressure was divided into
9 four phases: >1000 hPa (HP: high pressure), <986 hPa (LP: low pressure), 985<P<1000 (IP:
10 intermediate pressure), and the snow-melting period (MP), for the quantification of the effect of
11 atmospheric pressure on temperature-modulated winter CO₂ flux. Winter flux greatly depends on
12 atmospheric temperature, which is governed by these four pressure phases. Pressure is an
13 important factor in indirectly and directly influencing atmospheric temperature and winter CO₂
14 flux. The transport of CO₂ emissions through soil and snow columns is modified by snow
15 compaction and metamorphism and is modulated by evaporation, condensation, and vapor
16 movements through the columns. Moreover, atmospheric temperature and soil temperature play
17 significant roles in determining winter CO₂ flux, demonstrated by the fact that atmospheric
18 temperature accounted for an average of 56% of the variability of winter CO₂ emission during the
19 snow-covered period. Because snow-covered tussock and moss regimes are widely distributed in
20 Northern Hemisphere, wintertime carbon emission is of considerable significance when
21 estimating seasonal, regional and global carbon budgets, as this emission represented 20% of the
22 annual soil carbon emissions in black spruce forest soils in interior Alaska during the cold winter
23 of 2006/7. In order to evaluate the effect of wind pumping when estimating CO₂ flux, we need
24 additional study on the wind-pumping effect using installation of pressure sensors and build-up
25 of NDIR in the snowpack in the relatively sparse black spruce forest of interior Alaska.
26 Regional/global process-based carbon cycle models should be reassessed to consider the effect
27 that atmospheric temperature and soil latent-heat flux have in regulating winter CO₂ emissions in

1 the snow-covered soils of the Arctic and sub-Arctic terrestrial ecosystems in the Northern
2 Hemisphere.
3

1 Acknowledgments

2 This study was jointly funded by the Japan Agency for Marine-Earth Science and Technology
3 (JAMSTEC), the Japan Aerospace Expedition Agency (JAXA) as an IARC-JAXA Information
4 System (IJIS) project, and partly supported by the Korea Ministry of Environment as “The
5 Eco-technopia 21 project (PI: Changsup Shim)”. We thank Drs. Y. Harazono and M. Ueyama of
6 the International Arctic Research Center (IARC) at the University of Alaska Fairbanks for
7 providing air pressure data; Mr. S. Nakatsubo of the Institute of Low Temperature Science
8 (ILTS) and Dr. M. Ishikawa of the Graduate School of Environmental Earth Science, Hokkaido
9 University, Japan for the management of instruments and analysis of soil heat flux; and Dr. L.
10 Hinzman of IARC for his funding support and encouragement on this study. We thank two
11 anonymous reviewers for their valuable comments.

12

1 References

2 Alaska Climate Research Center: <http://climate.gi.alaska.edu/>, 2008.

3 Björkman, M.P., Morgner, E., Cooper, E.J., Elberling, B., Klemedtsson, L., and Björk, R.G.:
4 Winter carbon dioxide effluxes from Arctic ecosystem: An overview and comparison of
5 methodologies, Global Biogeochem. Cycles, 24, GB3010, doi:10.1029/2009GB003667, 2010.

6 Bowling, D.R., Massman, W.J., Schaeffer, S.M., Burns, S.P., Monson, R.K., and Williams,
7 M.W.: Biological and physical influences on the carbon isotope content of CO₂ in a subalpine
8 forest snowpack Niwot Ridge, Colorado, Biogeochemistry, 95, 27-59, 2009.

9 Brooks, P.D., Williams, M.W., and Schmid, S.K.: Microbial activity under alpine snowpacks,
10 Niwot Ridge, Colorado, Biogeochemistry, 32, 93-113, 1996.

11 Fahnestock, J.T., Jones, M.H., Brooks, P.D., Walker, D.A., and Welker, J.M.: Winter and early
12 spring CO₂ efflux from tundra communities of northern Alaska, J. Geophys., Res., 103, D22,
13 29023-29027, 1998.

14 Fahnestock, J.T., Jones, M.H., and Welker, J.M.: Wintertime CO₂ efflux from Arctic soils:
15 Implications for annual carbon budgets, Global Biogeochem. Cycles, 13, 3, 775-779, 1999.

16 Hirano, T.: Seasonal and diurnal variations in topsoil and subsoil respiration under snowpack in a
17 temperate deciduous forest, Global Biogeochem. Cycles, 19, GB2011,
18 doi:10.1029/2004GB002259, 2005.

19 Ishikawa, M., Zhang, Y., Kadota, T., and Ohata, T.: Hydrothermal regimes of the dry active layer,
20 Water Resour. Res., 42, W04401, doi:10.1029/2005ER004200, 2006.

21 Ito, A., and Oikawa, T.: A simulated model of the carbon cycle in land ecosystems
22 (Sim-CYCLE): A description based on dry matter theory and plot-scale validation, Ecol. Model.,
23 151, 143-176, 2002.

1 Kim, Y., and Tanaka, N.: Winter N₂O emission rate and its production rate in soil underlying the
2 snowpack in a subboreal region, Japan, *J. Geophys. Res.*, 107, D19, 4406,
3 doi:10.1029/2001JD000833, 2002.

4 Kim, Y., Ueyama, M., Nakagawa, F., Tsunogai, U., Tanaka, N. and Harazono, Y.: Assessment of
5 winter fluxes of CO₂ and CH₄ in boreal forest soils of central Alaska estimated by the profile
6 method and the chamber method: A diagnosis of methane emission and implications for the
7 regional carbon budget, *Tellus*, 59B, 223-233, 2007.

8 Kimball, J. S., Thornton, P.E., White, M.A., and Running, S.W.: Simulating forest productivity
9 and surface-atmosphere carbon exchange in the BOREAS study region, *Tree Physiol.*, 17,
10 589-599, 1997.

11 Lagergren, F., Grelle, A., Lankreijer, H., Mölder, M., and Lindroth, A.: Current carbon balance
12 of the forested area in Sweden and its sensitivity to global carbon change as simulated by
13 Biome-BGC, *Ecosystems*, 9, 894-908, 2006.

14 Liptzin, D., Williams, M.W., Helmig, D., Seok, B., Filippa, G., Chowanski, K., and Hueber, J.:
15 Process-level controls on CO₂ fluxes from a seasonally snow-covered subalpine meadow soil,
16 Niwot Ridge, Colorado, *Biogeochemistry*, 95, 151-166, 2009.

17 Massman, W.J., Sommerfeld, R.A., Mosier, A.R., Zeller, K.F., Hehn, T.J., and Rochelle, S.G.: A
18 model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of
19 CO₂, N₂O, and CH₄ through layered snowpack, *J. Geophys. Res.*, 102, 18851-18863, 1997.

20 Massman, W.J. and Frank, J.M.: Advective transport of CO₂ in permeable media induced by
21 atmospheric pressure fluctuations: 2. Observational evidence under snowpacks, *J. Geophys. Res.*,
22 111, G03005, doi:10.1029/2006JG000164, 2006.

23 Mast, M.A., Wickland, K.P., Striegl, R.T., and Clow, D.W.: Winter fluxes of CO₂ and CH₄ from
24 subalpine soils in Rocky Mountain National Park, Colorado, *Global Biogeochem. Cy.*, 12,
25 607-620, 1998.

1 McGuire, A.D., Clein, J.S., Melillo, J.M., Kicklighter, D.W., Meier, R.A., Vorosmarty, C.J., and
2 Serreze, M.C.: Modelling carbon responses of tundra ecosystems to historical and projected
3 climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate,
4 Glob. Change Biol., 6, 141-159, 2000.

5 Millington, R.J.: Gas diffusion in porous media, Science, 130, 100-102, 1959.

6 Monson, R.K., Lipsom, D.L., Burns, S.P., Turpseed, A.A., Delany, A.C., Williams, M.W., and
7 Schmidy, S.K.: Winter forest soil respiration controlled by climate and microbial community
8 composition, Nature, 439, 9, doi:10.1038/nature04555, 711-714, 2006.

9 Oechel, W.C., Vourlitis, G., and Hastings, J.: Cold season CO₂ emission from Arctic soils,
10 Global Biogeochem. Cy., 11, 163-172, 1997.

11 Panikov, N.S., Flanagan, P.W., Oechel, W.C., Mastepanov, M.A., and Christensen, T.R.:
12 Microbial activity in soils frozen to below -39°C, Soil Biol. Biochem., 38, 785-794, 2006.

13 Roth, K., and Boike, J.: Quantifying thermal dynamics of a permafrost site near Ny-Ålesund,
14 Svalbard, Water Resour. Res., 37, 2901-2914, 2001.

15 Running, S.W., and Coughlan, J.C.: A general model of forest ecosystem processes for regional
16 applications I. Hydrologic balance, canopy gas exchange and primary production processes, Ecol.
17 Model., 42, 125-154, 1988.

18 Seok, B., Helmig, D., Williams, M.W., Liptzin, D., Chowanski, K., and Hueber, J.: An
19 automated system for continuous measurements of trace gas fluxes through snow: an evaluation
20 of the gas diffusion method at a subalpine forest site, Niwot Ridge, Colorado, Biogeochemistry,
21 95, 95-113, 2009.

22 Solomon, D.K. and Cerling, T.E.: The annual carbon dioxide in a montane soil: Observations,
23 modeling, and implications for weathering, Water Resour. Res., 23, 2257-2265, 1987.

1 Sommerfeld, R.A., Mosier, A.R., and Musselman, R.C.: CO₂, CH₄ and N₂O flux through a
2 Wyoming snowpack and implications for global budgets, *Nature*, 361, 140-142, 1993.

3 Striegl, R.G.: Diffusional limits to the consumption of atmospheric methane by soils,
4 *Chemosphere*, 26, 715-720, 1993.

5 Shulski, M. and Wendler, G.: The climate of Alaska, University of Alaska Fairbanks Press,
6 Fairbanks, p. 216, 2007.

7 Takagi, K., Nomura, M., Ashiya, D., Takahashi, H., Sasa, K., Fujinuma, Y., Shibata, H.,
8 Akibayashi, Y., and Koike, T.: Dynamic carbon dioxide exchange through snowpack by
9 wind-driven mass transfer in a conifer-broadleaf mixed forest in northernmost Japan, *Global*
10 *Biogeochem. Cycles*, 19, GB2012, doi:10.1029/2004GB002272, 2005.

11 Vogel, J.G., Valentine, D.W., and Ruess, R.W.: Soil and root respiration in mature Alaska black
12 spruce forests that vary in soil organic matter decomposition rates, *Can. J. For. Res.*, 35, 161-174,
13 2005.

14 Wang, C., Bond-Lamberty, B., and Gower, S.T.: Soil surface CO₂ flux in a boreal black spruce
15 fire chronosequence, *J. Geophys. Res.*, 108, D3, 8224, doi:10.1029/2001JD000861, 2003.

16 Wickland, K.P., Strigel, R.G., Mast, M.A., and Clow, D.W.: Carbon gas exchange at a southern
17 Rocky Mountain wetland, 1996-1998, *Global Biogeochem. Cycles*, 15, 321-335, 2001.

18 Winston, G.C., Sundquist, E.T., Stephens, B.B., and Trumbore, S.E.: Winter CO₂ fluxes in a
19 boreal forest, *J. Geophys. Res.*, 102, 28795-28804, 1997.

20 Yershow, E.D.: *General Geocryology*, Cambridge Univ. Press, New York, p. 580, 1998.

21 Zimov, S.A., Zimova, G.M., Daviodov, S.P., Daviodova, A.I., Voropaev, Y.V., Voropaeva, Z.V.,
22 Prosiannikov, S.F., Prosiannikova, O.V., Semiletova, I.V., and Semiletov,I.P.: Winter biotic
23 activity and production of CO₂ in Siberian soils: A factor in the greenhouse effect, *J. Geophys.*
24 *Res.*, 98, 5017-5023, 1993.

1 Zimov, S. A., Daviodov, S.P., Voropaev, Y.V., Prosiannikov, S.F., Semiletov, I.P., Chapin, M.C.,
2 and Chapin, F.S.: Siberian CO₂ efflux in winter as a CO₂ source and cause of seasonalty in
3 atmospheric CO₂, Climate Change, 33, 111-120, 1996.

1 Figure Legends

2 Figure 1. Sampling scheme of observation system in sphagnum and feather moss regimes of
3 black spruce forest, interior Alaska during the winter of 2006/7.

4 Figure 2. Daily snowfall (black line) and cumulative snowpack (grey line) during the
5 snow-covered period of DOY 357 (December 23, 2006) to 466 (April 11, 2007). Winter CO₂ flux
6 is estimated when the snow depth is over 30 cm, due to the sensor levels.

7 Figure 3. Seasonal variations of 6-h average temperatures at air 80 cm above (grey line) and 5 cm
8 below (black line) soil surface, and soil moistures at 5 cm (grey circles) and 20 cm (black circles)
9 below surface from August 12, 2006 (DOY 254) to September 10, 2007 (DOY 618).

10 Figure 4. Relationship between ambient temperature and temperatures of soil (5 cm below
11 surface) and snow (10, 20, and 40 cm above surface) from DOY 254 to 618. When the snow
12 depth was over 20 cm, the snow temperatures at 20 and 40 cm above the soil surface depend on
13 the ambient temperature. The symbols indicate solid circles for soil at 5 cm below the surface,
14 open grey circles for snow at 10 cm above, grey squares for snow at 20 cm above, and crossed
15 squares for snow at 40 cm above, respectively. The dotted line is a 1:1 line.

16 Figure 5. Time series of CO₂ concentrations at 10, 20, and 30 cm above the soil surface within
17 the snowpack, with seasonal change in atmospheric pressure. The concentration data was
18 comparable with measurements from 392 to 742 ppm during the winter of 2004/5 (Kim et al.,
19 2007).

20 Figure 6. Temporal variations of winter CO₂ flux along with 6a) atmospheric pressure and 6b)
21 ambient temperature. Atmospheric pressure affects temperature, which regulates the magnitude
22 of winter CO₂ flux. Thus, the pressure is divided into four phases: high pressure (HP: >1000 hPa),
23 low pressure (LP: <985 hPa), intermediate pressure (IP: 985<P<1000), and a snow-melting
24 period (MP: since DOY 446), all shown in Table 1. The temperature was much higher for LP
25 than for HP—a difference of over 10°C on average.

1 Figure 7. Relationships between winter CO₂ flux and: 7a) atmospheric pressure during HP, LP,
2 and MP; 7b) ambient temperature during HP, LP, and MP; 7c) ambient temperature during IP.
3 The empty area for IP in 7a and 7b denotes exclusion between 985 and 1000 hPa. Winter CO₂
4 fluxes show good exponential relations with ambient temperature for four pressure phases. The
5 symbols are open circles for HP, stars for LP, solid circles for MP, and solid triangles for IP.

6 Figure 8. 8a) Temporal variations in winter CO₂ flux (g CO₂-C/m²/d) and soil non-conductive
7 heat flux, R_h (W/m²), estimated from equation (1), as written in the text. Both fluxes were
8 averaged on a daily basis. CO₂ flux is represented by a solid grey line. R_h was estimated for
9 upper bounds (solid black line, {d_h, c_h} = {8.0 × 10⁻⁷ m²/s and 2.4 × 10⁶ J/m/K}) and lower
10 bounds (dashed black line, {d_h, c_h} = {5.5 × 10⁻⁷ m²/s, 2.0 × 10⁶ J/m/K}). 8b) Snow temperature
11 gradients between the soil surface and 10 cm above, from DOY 357 to 460. Ts (0 cm) and Ts (10
12 cm) denote temperatures at soil surface and at 10 cm above the surface.

13 Figure 9. Correlations between non-conductive heat and winter CO₂ flux until DOY 445. Solid
14 and grey circles are maximum and minimum soil heat flux, respectively, as described in Figure
15 10. Solid and dashed lines show the relationships between winter CO₂ flux and soil
16 non-conductive heat fluxes at maximum and minimum, respectively.

17 Figure 10. The percentage (%) correlation, measured using the correlation coefficient (R²),
18 between environmental factors and winter CO₂ flux during 10a) HP, 10b) IP, 10c) LP, and 10d)
19 MP. The numbers on the lines are the percentages of correlation between both parameters. The
20 dotted, thin solid, and thick solid lines denote R²<0.20, 0.20<R²<0.40, and R²>0.40, respectively.