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The authors would like to thank the Reviewer for the very helpful comments and sug-
gestions. The comments have been taken into consideration in the revised manuscript.
We answer them individually in the following.

Kuppel and colleagues advance from previous approaches to optimize process-
oriented terrestrial ecosystem models (TEMs) against eddy covariance data by
calibrating sets of common parameters simultaneously for several sites. Most
TEMs rely on the plant functional type (PFT) classes to prescribe parameter vec-
tors (x) that control functional responses of carbon and water fluxes to environ-
mental drivers. However, once multiple sites of the same PFT are used indepen-
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dently to estimate x it is common that these are often different. By performing
multi-site (MS) optimizations, the current study circumvents the need to aggre-
gate x or to regionalize x according to any factors other than PFT classifica-
tions and shows that the model performance does not decrement significantly
to single-site (SS) optimizations. In some cases it even improves. It is then an
approach that has significant advantages regarding practical applications in pa-
rameter regionalization and parametric uncertainty propagation. It also holds
promise for deeper analysis of the PFT concept in TEMs as the most important
parameter vector ’covariate’.

The current manuscript is a robust piece of work that in my view only fails in
clarifying and corroborating certain methodological options:

– By defining a set of common parameters the authors implicitly assert them as
linked to the plant functional type. Since these range between vegetation to soil
and energy balance parameters, the authors should clarify if this was purely a
practical decision (because in TEMs parameters are prescribed per PFT). If so,
discuss limitations given some soil water availability parameters would also vary
between sites or the soil decomposition parameters could be widely considered
constant.

The choice of keeping the largest common set of parameters follows from the philoso-
phy of a global ecosystem model, with common parameters for a given Plant Functional
Type: the so-called ’practical decision’ by the reviewer. Note that 12 PFTs are used to
describe all ecosystems. Our overall objective is to improve the global model perfor-
mances using the information from scarce in situ measurements. We thus choose to
keep most parameters as generic and common to all sites, except the one that scales
the initial soil carbon pool sizes. Such parameter directly reflects the history of land
cover changes at each site which are very different between the selected sites, and
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thus need to be optimized independently. We acknowledge that these assumptions
are strong when using small-scale in situ observation, especially for soil water avail-
ability parameters (Dpucste and Humcste), as they strongly vary across ecosystems
and soil conditions. However, we kept the main ’global philosophy’ in order to assess
the potential of such approach for global simulation. In the next version of the model,
we will reconsider this choice and render the soil water holding capacity as a function
of soil type and soil classifications. The text in section 2.4 has been revised in that
spirit:

’The initial state of the model is optimized with the only parameter chosen as site-
specific: a multiplier of the different soil carbon pool contents, which are closely related
to the local land-use history (Carvalhais et al., 2008). The rest of the parameters are
considered as generic across sites in this study. We acknowledge that this assumption
brings some limitations given the potential inter-site variability of some parameters (e.g.
soil water availability), which will be kept in mind in the results analysis.’

– The ’performed optimizations’ are more than just MS vs SS, since the authors
also explore the role of individual data streams (LE and NEE jointly and sep-
arately) and do heterotrophic respiration experiments – which are seen ïňĄrst
only here. Some introduction/motivation should be also given previously about
these experiments.

The title of this section is indeed somewhat misleading. We changed it to ’Performed
optimizations: single-site and multi-site’ and a full presentation of the different experi-
ment has been integrated in the text in section 2.4:

’Besides, two other data assimilation experiments are conducted for the purpose of
this study. First, a series of multi-site optimizations are performed in order to evaluate
the individual impact of the parameters related to heterotrophic respiration, notably
regarding the initial soil carbon content (see section 3.2.1.). Second, we use the multi-
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site procedure to separately assimilate each one of the data stream (NEE and LE), so
as to evaluate their respective information content. In the case of LE, non-sensitive
parameters were left out the optimization.

In the end, we performed the following optimizations, including sensitivity tests:

• 12 reference SS optimizations (21 parameters for each)

• 1 reference MS optimization (20 generic parameters, 12 site-specific)

• 6 MS optimizations with different parameters related to heterotrophic respiration
left out

• 1 MS optimization with only NEE data (20 generic parameters, 12 site-specific)

• 1 MS optimization with only LE data (14 generic parameters)’

Regarding the evaluation of the different optimization exercises:

– A table on model performance for the different optimizations (MS versus SS)
would be very helpful in synthesizing the current results. In this regard the cur-
rent exercise is solely based on the RMS metric to evaluate the model perfor-
mance at site level. Other metrics like correlation or model efïňĄciency which
translate changes in model behavior could also help understand if the improve-
ments would also be paralleled by changes in model sensitivities, especially
since for some sites the parameter differences between SS and MS is very sig-
niïňĄcant.

Before focusing on the RMS, we have tested several types of metrics in order to evalu-
ate our optimizations. Among these, we think that the correlation did not add much to
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the message, as we found that the results support what can be said using the RMS in
terms of improvement from the prior and similarities/differences between SS and MS
optimizations. Also, we preferred to emphasize the analysis of the model performance
by separating the different time scales, while discussing the model efficiency would
have lengthened the text without adding significantly new elements to the analysis.

– Given the importance of KsoilC in the MS and SS optimizations it could be
relevant to compare modeled estimates of soil C pools against site level obser-
vations at the sites [e.g. Schrumpf et al., 2011] as an independent data source
that would corroborate the different approaches and the heterotrophic respira-
tion experiments.

This independent comparison would be indeed very useful. Unfortunately the data
was not available at all the sites for a systematic comparison. Such in-depth analysis,
although highly relevant, would require a substantial lengthening of the paper and is
clearly beyond the scope of the current paper objectives. As mentioned in the conclu-
sion we would like to achieve it in subsequent studies.

– Since MODIS products also include LAI and FPAR products, along with NDVI
and EVI, it would be good to justify why no direct comparisons between the same
quantities (LAI or FPAR) were performed.

LAI and FPAR products require an intermediate model, usually an empirical algorithm
or an inverse radiative transfer scheme, to be derived from surface reflectances. While
this intermediate step potentially adds uncertainties, it has been reported that sig-
nificant divergences remain between LAI (and consequently FPAR) products coming
from different instruments and reference ground-based measurements (Garrigues et
al., 2008). The NDVI product, on the other hand, is directly calculated from the sur-
face reflectances and would then remain truer to the measured signal. Moreover the
LAI product is usually more subject to saturation problem for high values that NDVI.
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Overall, we choose to compare only the seasonal variations of the satellite and model
signal, using the correlation coefficient as a metric, and not to compare the raw fAPAR
values. We added one sentence in the revised version to justify our choice :

’Note that NDVI was preferred to other satellite products (such as LAI or FAPAR) as it is
directly calculated from the surface reflectances, contrary to LAI and FAPAR which re-
quire intermediate models to be generate, thus possibly adding significant uncertainty
to the retrieved data (Garrigues et al., 2008).’

Particular comments:

P3319, L14-17: Liu and Gupta [2007] refer the initial states as another source of
uncertainties / mismatch between model and observations.

Indeed, the initial state should be listed a distinct source of error. While we can reason-
ably consider that the water variables are annually reinitialized in temperate deciduous
broadleaf forests, we acknowledge that the initial state of carbon-cycle variables plays
a major role in the carbon dynamics of the modeled ecosystems. In the optimization
procedure, we only take into account the initial soil carbon stocks via the scaling pa-
rameter KsoilC (Table 2 in the manuscript) applied to both slow and passive soil carbon
pool in order to account for the local land-use history. The initial state of the biomass
is currently taken from the spinup of the model, which assumes a mature forest (con-
trasting with the young stand age at some sites considered in this study) and does not
take into account potential disruptive events (thinning, fire. . .). The optimization of the
initial state of the biomass will be integrated in future studies (in preparation), as it is
beyond the scope of this paper. We have mentioned the importance of initial state in
the revised manuscript:

• in the introduction,
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’The discrepancies between the fluxes simulated by terrestrial biosphere models
and the observations have five main origins: errors in flux measurements, errors
in meteorological forcings, error in structural equations of the model (including
missing processes), inadequate calibration of the model parameters, and erro-
neous initial state of the model. While the first two types of error are foreign
to the biosphere model itself, the last three items are crucial to improve model
simulations.’

• in section 2.4,

’The initial state of the model is optimized with the only parameter chosen as site-
specific: a multiplier of the different soil carbon pool contents, which are closely
related to the local land-use history (Carvalhais et al., 2008).’

P3323, L4-5: how much data was it actually used for all sites and individually per
site?

Over a total of 43 site-years used in this study, 196 days of NEE data and 2 of LE data
were left out. Table 1 gives the detail for each site. We added a sentence in the revised
version to summarize this information:

’Note that individual days with more than 20% of missing half-hourly observations were
not included in the assimilation; over a total of 43 site-years used in this study, this
missing data represents 196 and 2 days in the NEE and LE data streams, respectively.’

P3323, L6-18: from the construction of R described in this section it is not
clear how different are the observational and prior model error and what are
the properties and distributions of the model errors used in R (e.g. is the error
heteroscedastic? What the mean error is in NEE and LE to the cost function?
Does it also vary by site?). It is also not clear the role of the factor kσ in the
construction of R.
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Table 1. Length of the selected gap-filled data at each site, with the number of assimilated NEE
and LE days.

Site Period Number of days NEE days used LE days used
DE-Hai 2000-2006 2555 2528 2555
DK-Sor 2004-2006 1095 1095 1095
FR-Fon 2006 365 365 365
FR-Hes 2001-2003 1095 1095 1095
JP-Tak 1999-2004 2190 2151 2190
UK-Ham 2004-2005 730 682 728
US-Bar 2004-2005 730 715 730
US-Ha1 2003-2006 1460 1452 1460
US-LPH 2003-2004 730 730 730
US-MOz 2005-2006 730 730 730
US-UMB 1999-2003 1825 1825 1825
US-WCr 1999-2004 2190 2131 2190

In this study, we assume Gaussian errors distributions both for parameters and obser-
vations (3323/23-24), thus for model errors as well. In addition, the Bayesian frame-
work only deals with centered errors, thus our cost function does not include any sys-
tematic error. Also, for simplicity we assume a homoscedastic error both NEE and LE,
and we define one daily uncertainty for each one of the two data streams.

Regarding NEE, although the model error is yet to be well characterized in TEM, it
is commonly assumed that it could be on the order of 1-2 gC/m2/d, much larger (in
terms of variance) than the random flux measurement error (0.4 gC/m2/d, Hollinger
and Richardson, 2005). Further support in that direction was recently found by Kuppel
et al. (submitted).

Finally, we chose to keep R diagonal because the model error structure is poorly known
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at present. For want of a better calibration, for each type of data (NEE and LE) we
base our estimation of the variance on the prior model-data mean square difference
(MSD). Based on the ’inflated variances’ method recommended by Chevallier (2007),
the variances in R are calculated by multiplying the MSD by the ’inflation factor’ ksigma,
which represents our estimation of the characteristic autocorrelation time length of the
model error (here, 30 days).

Also, for simplicity the following revised text has been moved to the section 2.3, which
described the data assimilation system :

’Regarding the observational error statistics, the error covariance matrix R should in-
clude both the error on the measurements and the error on the model process repre-
sentation. On the one hand, the random measurement error on the observed fluxes
is known not to be constant and can be estimated as the residual of the gap-filling al-
gorithm (Richardson et al., 2008). On the other hand, model errors are rather difficult
to assess and may be much larger than the measurement error itself. Therefore, we
chose to focus on the model error whose correlations cannot be neglected (Cheval-
lier et al., 2006). The difficulty of evaluating the structure of the model error leads us
to keep R diagonal and, as compensation, artificially inflate the variances (Chevallier,
2007). First, the variances in R are defined as constant in time for each type of ob-
servation (NEE and LE). Second, their values are chosen based on the mean squared
difference between the prior model and the observations, multiplied by the inflation fac-
tor ksigma, which represents our estimation of the characteristic autocorrelation time
length (in days) of the model error. The value of ksigma is fixed to 30, which for the error
propagation is equivalent to assimilating one observation every 30 days.’

P3325, L9-11: analogous to Carvalhais et al. [2008]
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This has been added to the text.

P3327, L5-6: but performance statistics are computed on daily data?

We smoothed the signal only for display purposes, performances are indeed computed
with the daily averaged data. We are now more specific in the text:

’Figure 2 shows the seasonal cycles of NEE and LE at two of the twelve sites used in
this study, where only two years of data are shown. Plots with all years at all the sites
can be found in Appendix A. Note that for the sake of clarity, data have been smoothed
with a 15-day moving average window in all the figures showing seasonal cycles, but
not in any of the optimizations.’

P3332, L2-8: a small table showing the reductions in RMS according to the ex-
perimental setup would be very helpful in grasping these more objectively.

Table 2 has been added (Table 3 in the revised manuscript), while the text has modified:

’We have further investigated such hypothesis with 6 MS experiments where, as com-
pared to the reference MS optimization, one or more of the four parameters related
to the heterotrophic respiration (KsoilC , Q10, HRH,b and HRH,c) are in turn left out
the assimilation procedure. Table 3 shows that without KsoilC there is a 38.5% re-
duction of the model-data RMS at yearly time scale, a value significantly lower than in
the standard case (49.3%). A similar degraded performance is found when the three
other parameters are simultaneously left out of the optimization, whereas we observe a
slight improvement (as compared to the standard MS case) when each one of them is
individually excluded. When the four parameters are not considered, the optimization
procedure becomes significantly less efficient with a 16.6% RMS reduction on yearly
average.’

P3332, L20-22: could also occur because of the correlation in the drivers.
C3132



Table 2. All-site yearly reduction of the model-data NEE RMS from the prior model, for various
combinations of Rh parameters left out the optimization.

Rh parameter(s) left out None KsoilC Q10 HRH,b HRH,c Q10+HRH,b+HRH,c all
Yearly RMS reduction (%) 49.3 38.5 49.3 54.3 55.2 38.6 16.6

If the Referee’s remark is about the error correlation in the drivers, we must point out
that we are using the observed meteorology, so that we can reasonably assume that
the error correlation between the different drivers is not significant. The error of one
captor is probably independent of the others.

But if the Referee means the correlation between the drivers themselves, the impact
on the posterior parameters errors is not clear to us: although we suspect that it would
have an influence, it is something we cannot directly test. In this context, we did not
change the text as we do not foresee any specific need to mention this point.

P3333, L15-16: known as the equiïňĄnality problem [see for example Franks et
al., 1997; Medlyn et al., 2005].

We have added it to the revised manuscript:

’This indicates that we might face an equifinality problem: a range of different parameter
sets may yield similar model performance, and similar model predictions.’

P3336, L1-7: the Ra parameters also include a scalar that implicitly scales Ra

to mismatches in vegetation biomass GRfrac, which could explain the summer
mismatch in NEE if Ra is in general overestimated during this period. We should
see that this deduction is very linked to the model structure since Rg does not
seem to depend on instantaneous productivity, as is usually assumed in other
models. Also here we see c0,i – how does this coefïňĄcient vary?
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We added to the text that our deductions in this paragraph are specific to the OR-
CHIDEE model. As for c0,i (g/g/day), this coefficient does not vary, it is prescribed per
PFT and its value also depends on the biomass compartment considered (2.62×10−3

(leaf), 1.19×10−4 (sapwood, fruits, and carbohydrate reserve), 1.67×10−3 (roots) and
0 (heartwood)). We added it to the text :

’...where Ti, Bi and LAI are respectively the soil or surface temperature, the biomass
content and the leaf area index, while c0,i (g.g−1.day−1) is the maintenance respiration
coefficient at 0◦C, which is prescribed depending on the PFT and the biomass pool
i: 0 (heartwood), 1.19×10−4 (sapwood, fruits, and carbohydrate reserve), 1.67×10−3

(roots) and 2.62×10−3 (leaf).’

P3336: Shouldn’t the energy balance parameters be site dependent?

In the current effort of spatialization of the information, we chose to test a generic set
of energy balance parameters. Given the good agreement between the MS- and SS-
optimized LE fluxes, we chose to consider this genericity assumption as reasonable.

P3338, L14: “green” should be grey.

Corrected.

P3338, L16: “purple” should be black.

Corrected.

P3340, 3.5.1.: Different methods to decompose NEE into GPP and Reco have been
compared before [Desai et al., 2008]. These would probably stand as a better
benchmark for the modeled ïňĆuxes here. The comparison shown here is very
oriented to a site where the actual NEE from both approaches is very different
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(Granier: -289 gC.m−2.yr−1 against -562 gC.m−2.yr−1 from the ’Lathuile’ dataset).
Another point to consider would be to see if the uncertainties from both ïňĆux
partitioning and modeled ïňĆuxes intersect.

Indeed we realize that this section lacks spatial representativity in order to make a
robust point out of the data of Granier et al. (2008) at Hesse site. As another referee
suggested, we will omit this paragraph in the revised manuscript and only mentioned
that such in-depth comparison with site-specific studies is beyond the scope of the
paper but would need further attention in a more systematic way at all sites:

’In-depth comparisons with site-specific gross flux estimates at each site (e.g. Granier
et al., 2008) is beyond the scope of this paper but would deserve further attention for a
more precise evaluation of the optimization procedure at all sites.

P3342, L6-9: this could be something very speciïňĄc to the structure of OR-
CHIDEE (see above) and see Keenan et al. [2012].

Our statement is indeed somewhat too general; we have tempered it in the revised
manuscript with:

’Overall, our optimization scheme is able to provide a set of parameters which fairly
improves the simulation of assimilation and respiration processes in the ORCHIDEE
model, although we have chosen to assimilate daily NEE and not to separate between
nighttime and daytime values.’

P3343, L2-4: since the (mis)matches in NDVI/FPAR time series stemming from
the land cover component are already considered (P3343, L4-10) the ignored
cells for comparison should only target those where no seasonal cycle is seen
in the observational data, and not in the observational and model data. The
comparisons would be biased optimistic by excluding cells with no seasonal
cycle from model outputs that might have it in the observations.
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This criterion was originally formulated to work with several PFTs, however in the cases
of deciduous broadleaf forests the model always simulates a significant seasonality. As
a result, we checked that removing this filter on the models output did not affect the
results as the DBF PFT is dominant (50% threshold). Therefore, we have modified the
sentence accordingly :

’The mesh cells where no clear NDVI annual cycle is visible are ignored in the calcula-
tion, i.e., when observed time series have a standard deviation lower than 0.04.’

P3345, L18-20: Could the link between the current work and the work of Santaren
et al. [2012, which is not published yet] be more concrete?

The paper is still not yet submitted (delays in the completion), and referring to it does
not add much to the discussion. Further to a suggestion made by the other referee, we
have omitted this sentence in the revised manuscript.

P3345, L24-27: would it be expected that the bias in snow sublimation propagate
to the current parameter sets?

The ORCHIDEE model tends to overestimate the snow sublimation during at the end
of winter and at spring time. During this period, we expect the optimization to produce
larger albedo values (parameter Kalbedo,veg) and reduced rugosity length (parameter
Z0overheight). However, given the relative shortness of this period, we assume little
effect on the other parameters’ optimization. We conducted a sensitivity test at JP-Tak
site (one of the most affected by this feature in our list of sites), artificially reducing
the snow sublimation during spring time and concluded that the impact was indeed
negligible. We added in the text that such effect has a minor impact on the parameter
values :

’The sublimation-related misfit of LE is not corrected, as we did not include specific
parameters of snow build up and sublimation. Note, however, that sensitivity tests
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have shown no significant impact of this discrepancy of LE upon the optimization of the
other energy balance parameters.’

P3346, L15-26: It seems also that the DBFs in the Northern Hemisphere are in
much colder regions than in the Southern Hemisphere. The sites considered
are between 36◦ and 56◦ N, and only 2 sites below 42. There is no indication if
the mean annual temperature (or any other climate diagnostic) would signiïňĄ-
cantly differ this optimization convergence would occur. Could this be given as
a reason behind the different conclusions in this study and Groenendijk et al.
[2011]?

At the global scale our analysis is only based on the phenology, which is solely
governed by a temperature criterion for the considered PFT, temperate deciduous
broadleaf forest (DBF). We acknowledge that a significant difference in mean annual
temperature in some of the regions considered in the southern hemisphere would
certainly affect the effectiveness of the optimized parameters regarding leaf onset
(Kpheno,crit) and senescence (Tsenes). However, we think that the major factor of dis-
crepancy is the phenology scheme itself, as ecosystems such as those in arid Aus-
tralian forests are likely to be primarily controlled by the soil water availability. Thus our
results might call for a refinement of the phenology scheme for such PFT with a slightly
different scheme for the drought-controled DBF leaf onset and leaf senescence. Such
refinement is beyond the scope of this paper. The conclusion has been rephrased in
that direction:

’From this starting point, the MS optimization brings a slight improvement in the north-
ern hemisphere, and contrasting results in the southern hemisphere, where none of
the sites used in the optimization are located: significant improvement in South Africa
but degradation in Australia. At the global scale, the correlation median shifts from
0.83 to 0.88. The degradation in Australia might reflect the limits of the phenological
scheme of deciduous forests in the model, solely based on a temperature criterion.
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The tree species in the arid Australian forests, although classified as DBF, are likely
to have a phenology strongly controlled by the available soil moisture, a feature much
less prevalent at the sites used in this study. At present, we can only suggest the need
for further investigations regarding the formulation of the DBF phenology in the model,
towards a refinement of the PFT classification.’

P3356, Table 2: the addition of a column with the posterior parameter values and
uncertainties would be very useful.

Given the number of different optimization set-ups, with different number of parameters
and uncertainty components (MS, SS...), summarizing it in a single table, especially in
Table 2, did not seem very convenient. We think that the Fig. 4 already provides a
useful summary.

P3359, Figure 2 (and beyond): no uncertainties in the data? In this case (Fig. 2b
NEE) we also see that the MS optimizations perform better than the SS. It seems
to happen in some cases. The reason this is happening could be related to the
uncertainties included in the cost function (R), which vary between SS and MS
settings.

We took the data as a reference, quantifying the uncertainty for the modeled fluxes.
Indeed MS optimization sometimes performs better than the SS, but in our view this
might also be linked to local minima in the convergence of the SS cost function, where
the MS cost function benefits from a larger nobs/npara ratio which would somewhat
’smooth’ the solution space for the cost function. The uncertainties included in the cost
function, based on the prior model-data mismatch, are however independent from the
optimization considered (MS or SS).

P3361, Figure 4: Does KsoilC correlate with NEE?
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This is a very good point. We looked at the correlation between the annual NEE
(gC/m2/yr, averaged over all the years available at each site) and the optimized values
of KsoilC . In both multi-site and single-site optimizations, we had observed no signifi-
cant correlation (lower than 0.3), which suggests that there are important drivers of the
annual carbon budget other than the initial carbon stocks, although the optimization of
the latter significantly reduces the annual mismatch between model and observation.
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