

An isotopic ($\Delta^{14}\text{C}$, $\delta^{13}\text{C}$, and $\delta^{15}\text{N}$) investigation of the composition of particulate organic matter and zooplankton food sources in Lake Superior and across a size-gradient of aquatic systems

Prosper K. Zigah^{a,1,*}, Elizabeth C. Minor^b, Josef P. Werne^b and S. Leigh McCallister^c

^aLarge Lakes Observatory and Water Resources Science Program, University of Minnesota, Duluth, Minnesota

^bLarge Lakes Observatory and Department of Chemistry and Biochemistry, University of Minnesota Duluth, Minnesota

^cDepartment of Biology, Virginia Commonwealth University, Richmond, Virginia

¹ Present address: Dept. of Surface Waters, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland.

*Corresponding author: Zigah004@umn.edu

For submission to: *Biogeosciences*

Running head: Radiocarbon in POM and zooplankton

26

Abstract

27 Food webs in aquatic systems can be supported both by carbon from recent local primary
28 productivity and by carbon subsidies, such as material from terrestrial ecosystems or past in situ
29 primary productivity. The importance of these subsidies to respiration and biomass production
30 remains a topic of debate. While some studies have reported that terrigenous organic carbon
31 supports disproportionately high zooplankton production, others have suggested that
32 phytoplankton preferentially supports zooplankton production in aquatic ecosystems. Here we
33 apply natural abundance radiocarbon ($\Delta^{14}\text{C}$) and stable isotope ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$) analyses to show that
34 zooplankton in Lake Superior selectively incorporate recently-fixed, locally-produced
35 (autochthonous) organic carbon even though other carbon sources are readily available.

36 Estimates from Bayesian isotopic modeling based on $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ values show that the average
37 lakewide median contributions of recent in-lake primary production and terrestrial, sedimentary,
38 and bacterial organic carbon to the bulk POM in Lake Superior were 58%, 5%, 33%, and 3%,
39 respectively. However, isotopic modeling estimates also show that recent in situ production
40 contributed a disproportionately large amount (median, 91%) of the carbon in mesozooplankton
41 biomass in Lake Superior. Although terrigenous organic carbon and old organic carbon from
42 resuspended sediments were significant portions (median, 38%) of the available basal food
43 resources, these contributed only a small amount to mesozooplankton biomass (median, 3% from
44 sedimentary organic carbon and 3% from terrigenous organic carbon). Comparison of
45 zooplankton food sources based on their radiocarbon composition showed that terrigenous
46 organic carbon was relatively more important in rivers and small lakes, and the proportion of
47 terrestrially-derived material used by zooplankton correlated with the hydrologic residence time
48 and the ratio of basin area to water surface area.

49 **1. Introduction**

50 The role of terrigenous organic carbon in aquatic food webs is not yet well constrained.
51 Some studies (Pace et al., 2004; Carpenter et al., 2005; Cole et al., 2006) have reported that
52 terrigenous organic carbon supports disproportionately high zooplankton production in lakes.
53 Others have suggested a smaller role for allochthony (the consumption of organic matter
54 produced outside of the system of interest), and have noted that, rather, phytoplankton sustain
55 disproportionately larger and/or most of the zooplankton production in aquatic ecosystems (Brett
56 et al., 2009; Karlsson, 2007; Pace et al., 2007; Karlsson et al., 2012). Still others have reported
57 seasonal shifts in the food resources supporting aquatic food webs such that autochthony
58 (consumption of organic matter produced within the system of interest) is predominant during
59 high within-lake phytoplankton productivity in summer whereas allochthony (as well as
60 heterotrophic bacterial biomass) is most important to zooplankton biomass during winter periods
61 when within-lake primary and secondary production is minimal (Grey et al., 2001; Taipale et al.,
62 2008; Karlsson and Sawstrom, 2009; Rautio et al., 2011).

63 There has been a realization that terrigenous organic matter exported from catchments is
64 less refractory within aquatic systems than previously recognized, and can fuel microbial
65 metabolism (Jones and Salonen, 1985; Tranvik, 1992), and that even the ancient (old according
66 to radiocarbon measurements) component traditionally thought to be more recalcitrant could
67 support bacterial (Cherrier et al., 1999; Petsch et al., 2001; McCallister et al., 2004), zooplankton
68 (Caraco et al., 2010), and fish production (Schell, 1983). Accordingly, the notion that terrestrial
69 carbon partially sustains food webs in aquatic systems has gained currency in the past few
70 decades (Salonen and Hammar, 1986; Hessen et al., 1990; Meili et al., 1993; Pulido-Villena et
71 al., 2005; Cole et al., 2011). Terrigenous carbon could be introduced and accumulated in aquatic

72 food webs by zooplankton directly feeding on terrestrially-derived detrital particles (Hessen et
73 al., 1990; Cole et al., 2006; Brett et al., 2009), and/or feeding on heterotrophic organisms that
74 consume terrestrially-derived organic carbon (Jones, 1992; Lennon and Pfaff, 2005; Berggren et
75 al., 2010).

76 Several studies in lakes have concluded that terrigenous food can support aquatic animal
77 consumers (Cole et al., 2006; Karlsson and Sawstrom, 2009), and the relative importance of
78 allochthony in lakes is thought to relate to factors such as lake color (indicating the amount of
79 humic material present), trophic status, and size. Therefore allochthony should be higher in small
80 humic lakes, and lower in eutrophic lakes and/or clear-water lakes with less terrestrial influence
81 on organic matter cycling (Jones, 1992; Pace et al., 2007; Cole et al., 2011). The relative
82 significance of these factors has been difficult to test as neither lab-based studies (Salonen and
83 Hammar, 1986; Brett et al., 2009), small-scale in situ enclosure studies (Hessen et al., 1990) nor
84 whole-lake ^{13}C -labeled bicarbonate addition approaches (Cole et al., 2002; Carpenter et al., 2005;
85 Cole et al., 2006; Pace et al., 2007; Taipale et al., 2008) are easily applied to large-lake or marine
86 systems. Also, the use of whole-lake ^{13}C labeling techniques for estimating the proportion of
87 terrigenous organic carbon supporting zooplankton in lakes is limited or challenged by the fact
88 that unlabeled food particles incorporated by zooplankton could possibly be from metalimnetic
89 phytoplankton or phytoplankton-derived material predating label introduction rather than from
90 terrestrial sources (Brett et al., 2009). Further, quantification of zooplankton food sources using
91 ambient stable carbon isotopic signatures is difficult because of the inherent difficulty in directly
92 measuring the $\delta^{13}\text{C}$ of phytoplankton, and the narrow and overlapping range of phytoplankton
93 and terrigenous organic matter $\delta^{13}\text{C}$ signatures, especially in freshwater systems (Hamilton et al.,
94 2005). The dynamic range of $\Delta^{14}\text{C}$ (-1000 to $\sim+200\text{‰}$) is much greater than that of $\delta^{13}\text{C}$ in
95 organic carbon (-32 to -12‰) (Petsch et al., 2001; McCallister et al., 2004; Wakeham et al.,

96 2006), and provides a more sensitive means for differentiating the sources of organic carbon in
97 the particulate organic matter (POM) matrix and organic carbon sustaining zooplankton
98 secondary production. Also, while both $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ are linear quantities that can be used for
99 isotopic mixing models, $\Delta^{14}\text{C}$ has the added advantage of being the same for consumers and their
100 food source in a modern ecosystem (as the $\Delta^{14}\text{C}$ calculation corrects for biochemical
101 fractionations) thereby eliminating the need for fractionation correction along trophic levels as is
102 the case for $\delta^{13}\text{C}$ (and $\delta^{15}\text{N}$).

103 In this study we examine the possible food sources of mesozooplankton in Lake Superior,
104 the world's largest freshwater lake by surface area (Herdendorf, 1990), using natural abundance
105 radiocarbon distributions. Recent investigations of Lake Superior, an oligotrophic system with
106 low nutrient concentrations and primary productivity and a pronounced deep-chlorophyll
107 maximum (Russ et al., 2004; Barbiero and Tuckman, 2004), have concluded that the lake appears
108 to be net heterotrophic (McManus et al., 2003; Cotner et al., 2004; Russ et al., 2004; Urban et al.,
109 2004; Urban et al., 2005). Terrigenous and resuspended sedimentary organic carbon sources
110 have radiocarbon signatures that are unique and different from those of the lake's dissolved
111 inorganic carbon and recently fixed primary production, hence providing the opportunity for
112 better understanding the role of these possible food sources in mesozooplankton production and
113 food web dynamics in the lake.

114 We exploit the natural abundance of radiocarbon ($\Delta^{14}\text{C}$), stable isotope ($\delta^{13}\text{C}$ and $\delta^{15}\text{N}$),
115 and elemental compositions (atomic C:N ratio) of mesozooplankton to assess the role of different
116 carbon sources in supporting mesozooplankton production, thereby providing a clearer picture of
117 food web dynamics in Lake Superior. We also assess the putative food sources of zooplankton in
118 a suite of other aquatic systems (riverine, smaller-lakes, and oceanic) for a broader-scale
119 understanding of zooplankton food sources in aquatic food webs.

120 **2. Methods**

121 **2.1 Sampling**

122 Cruises were undertaken on the R/V *Blue Heron* to sample Lake Superior in May-June
123 and August-September 2009 during isothermal (mixed) and thermally stratified water conditions,
124 respectively. Site locations, water depths, and sampling depths are given in Fig 1 and Table 1. At
125 each of the eight (8) sampling sites, we first obtained temperature, chlorophyll and depth profiles
126 using a Seabird model 911 plus conductivity, temperature, and depth (CTD) rosette equipped
127 with fluorometer, dissolved oxygen sensor, colored dissolved organic matter (CDOM) sensor,
128 and altimeter (See supplementary Fig 1 A-L). For each of our open-lake stations, where water-
129 column depths ranged from 155 to 388 m, we collected mesozooplankton using 50 m vertical
130 tows through the water column using a 300 μm plankton net. At each of the nearshore stations
131 (ONT and BR) the depth of tow was modified to a maximum depth of 4 to 10 m above the
132 sediment water interface. The biomass was rinsed with lake water into the cod end of the net and
133 duplicate samples were filtered onto glass-fiber filters (precombusted GF/F filters, 0.7 μm pore
134 size), and stored frozen. Although we did not separate mesozooplankton into different groups in
135 this study, a recent survey in the lake shows that copepods are the most dominant zooplankton in
136 the surface waters of offshore Lake Superior (Yurista et al., 2009). In this extensive study at 31
137 sites over a 3 year period, Yurista et al. (2009) reported ~90% (by biomass) of the crustacean
138 zooplankton in the offshore sites (>100 m water depth region) were copepods, and most of these
139 (~80%) were concentrated in the surface 50 m of the lake water column, which is the depth over
140 which we sampled our zooplankton in the offshore lake. Within the copepods, the taxa calanoids
141 dominated by *Diaptomus copepodites* and *Limnocalanus macrurus* were more abundant in the
142 lake than the cyclopoids which were mostly *Cyclops bicuspidatus thomasi* and *Cyclops*

143 *copepodites* (Yurista et al., 2009). The calanoid copepods contributed ca. 70% of the biomass of
144 crustacean zooplankton in Lake Superior (State of the great lakes report, 2009). For the copepods,
145 the average volumetric concentration by biomass (and by numbers) of adult calanoids, immature
146 calanoids, adult cyclopoids, and immature cyclopoids were $6255 \mu\text{g m}^{-3}$ (205 m^{-3}), $9682 \mu\text{g m}^{-3}$
147 (1864 m^{-3}), $1197 \mu\text{g m}^{-3}$ (236 m^{-3}), and $1305 \mu\text{g m}^{-3}$ (864 m^{-3}), respectively (Yurista et al., 2009).
148 For cladocerans, the concentration of bosminids and daphnia were $633 \mu\text{g m}^{-3}$ (342 m^{-3}) and 4203
149 $\mu\text{g m}^{-3}$ (309 m^{-3}), respectively (Yurista et al., 2009).

150 Sediment cores were taken from the open lake sites using an Ocean Instruments multi-
151 corer. Recovered cores were sectioned at 2 cm resolution and kept frozen until further analysis,
152 and the surface sediments (top 0-2 cm inclusive of the flocculant layer) were used in this study.

153 We collected dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and
154 particulate organic carbon (POC) samples from surface waters ($\leq 5 \text{ m}$ water depth). Water
155 samples were drawn using twelve 8 L Niskin bottles mounted on the CTD rosette. DIC samples
156 were collected directly from the Niskin bottles via pre-cleaned (10% HCl v/v, then ultra pure
157 water [Millipore Milli-Q Plus]) silicone tubing into previously acid-cleaned and combusted
158 (450°C for 4 hours) 500 mL amber Pyrex bottles. The bottles for DIC were rinsed three times
159 with sample and then overflowed with two volumes of the unfiltered water. As quickly as
160 possible after collection a small aliquot of water was removed, and the samples were preserved
161 with saturated mercuric chloride solution, sealed airtight with glass stoppers coated with Apiezon
162 M grease and stored at room temperature in the dark. POC and DOC samples were obtained by
163 filtering lake water through precombusted Whatman GF/F glass fiber filters (450°C for 4 hours;
164 $0.7 \mu\text{m}$ nominal pore size) via nitrogen pressurized stainless-steel canisters. Approximately 1 L of
165 DOC sample from the resulting filtrate was collected into an acid cleaned and combusted glass
166 bottle, acidified to pH 2 using 6N HCl (American Chemical Society Plus grade) and refrigerated.

167 After ~10 L of lake water had passed through a GF/F filter, the filter with retained particulate
168 matter (POC sample) was placed in previously-combusted aluminum foil and stored frozen until
169 analysis.

170 For comparison with our Lake Superior study we collated similar data for a suite of
171 aquatic ecosystems of various sizes and residence times. Data from five northern small lakes
172 sampled between June and September 2004 in Southern Quebec were adapted from McCallister
173 and del Giorgio (2008); these small lakes include Bran-de-Scie, Des Monts, Stukely, Bowker,
174 and Fraser Lakes. Zooplankton biomass and water samples for DOC, DIC, and POC and their
175 isotopic signature were collected at a depth of 0.5 – 1.0 m using a diaphragm pump connected to
176 an acid rinsed (10% HCl) plastic hose (McCallister and del Giorgio, 2008). Zooplankton were
177 collected by passing at least 200 L of water through a 50 μm mesh screen, subsequently washed
178 from the screen and stored overnight in deionized water at 4 °C to evacuate gut contents prior to
179 isotopic analysis (McCallister and del Giorgio, 2008). The zooplankton samples were dominated
180 by cladocerans and copepods. Cladocerans were primarily comprised of the genus *Daphnia*, most
181 notably by *Daphnia mendotae* and *Daphnia catawba*, while copepods were dominated by
182 *Diacyclopsbicuspidatus*, *Mesocyclops edax*, and *Leptodiaptomus minutus*. We also collated
183 existing data from the Pacific Ocean (including Pacific coastal ocean, North Central Pacific, and
184 North Eastern Pacific sites) and the Hudson River (eastern New York, USA). Data from the
185 Hudson River was adapted from Caraco et al. (2010). Pacific Ocean zooplankton data included
186 crustaceans and fishes, and were adapted from William et al. (1987), Druffel and William (1990),
187 Druffel and William (1991), and Druffel et al. (1996).

188 **2.2 Radiocarbon ($\Delta^{14}\text{C}$) analysis**

189 $\Delta^{14}\text{C}$ measurements for Lake Superior samples were performed at the National Ocean
190 Sciences Accelerator Mass Spectrometry Facility (NOSAMS) at the Woods Hole Oceanographic
191 Institution (WHOI). POC, zooplankton, and sediments were freeze-dried, acid fumigated (12 N
192 HCl) overnight, and redried, and then converted to CO_2 by combustion in a modified Carlo Erba
193 NA 1500 elemental analyzer (Zigah et al., 2011). DOC and DIC samples were converted to CO_2
194 by ultraviolet irradiation and phosphoric acid volatilization, respectively. The evolved CO_2 was
195 cryogenically separated and reduced to graphite with H_2 over Fe catalyst (Zigah et al., 2011).
196 The graphite produced was analyzed by accelerator mass spectrometry (AMS) along with
197 primary and secondary standards, and combustion and graphitization process blanks.

198 Radiocarbon values are reported as $\Delta^{14}\text{C}$, the part per thousand deviation of the sample's
199 $^{14}\text{C} : ^{12}\text{C}$ ratio relative to a nineteenth century wood standard that has been corrected to the activity
200 it would have had in 1950 and a $\delta^{13}\text{C}$ of -25‰. $\Delta^{14}\text{C}$ was corrected for fractionation using $\delta^{13}\text{C}$
201 of samples according to the convention of Stuiver and Polach (1977). Instrumental precision of
202 the $\Delta^{14}\text{C}$ analysis is based on the error of standards or multiple analyses on a target.

203 **2.3 Stable isotopes ($\delta^{13}\text{C}$ and $\delta^{15}\text{N}$) and C:N analysis**

204 Carbon and nitrogen contents of bulk POM and zooplankton were measured on a Costech
205 ECS 4010 elemental analyzer (EA) coupled to a Finnigan Delta Plus XP isotope ratio mass
206 spectrometer (IRMS) at the Large Lakes Observatory (LLO). $\delta^{13}\text{C}$ of samples (DOC, POC,
207 sediment OC and zooplankton) were determined at NOSAMS using an Optima IRMS on
208 subsamples intended for radiocarbon analyses. Stable nitrogen isotope ratios ($\delta^{15}\text{N}$) and a set of
209 samples for $\delta^{13}\text{C}$ of POM and $\delta^{13}\text{C}$ of zooplankton were measured at LLO using a Finnigan Delta
210 Plus XP IRMS with Conflo III interface (Thermo Fisher Scientific Inc., Waltham, MA) coupled

211 to a Costech ECS 4010 EA. Typical instrumental precisions of $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ based on analyses
212 of multiple external standards were 0.17‰ and 0.2‰, respectively. The stable isotope ratios
213 ($^{13}\text{C}:^{12}\text{C}$ and $^{15}\text{N}:^{14}\text{N}$) are reported as $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ respectively, which are the per mil difference
214 relative to Vienna Pee Dee Belemnite carbonate and atmospheric air standards.

215 **2.4 Bayesian MixSIR mixing model for multiple endmembers**

216 The Bayesian isotopic modeling software MixSIR (Version 1.04) (Moore and Semmens
217 2008; Semmens et al. 2009) was used to partition the proportional contributions of potential OC
218 sources to the bulk POC and to zooplankton diet based on their $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ signatures. The
219 MixSIR model works by determining probability distributions of sources contributing to the
220 observed mixed signal while accounting explicitly for the uncertainty in the isotopic signatures of
221 the sources and fractionation. The uncertainty of $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ values used for modeling here are
222 the analytical uncertainties based on analyses of multiple external standards or multiple analyses
223 of graphite targets in the case of $\Delta^{14}\text{C}$. Since isotopic fractionation is already corrected for in the
224 calculation of $\Delta^{14}\text{C}$ values, radiocarbon fractionation was not used in the model (thus specified as
225 zero). Isotopic fractionation of +1 was used for $\delta^{13}\text{C}$ (Fry and Sherr, 1984). Prior information was
226 not used in the model, hence all possible source combinations were equally possible contributions
227 to the observed mixed signal. The number of iterations used was 10,000,000 (and 100,000,000
228 when the posterior draws were less than 1000). For each potential source, we report the median
229 and the 5% and 95% confidence percentiles estimates of the proportional contribution of the
230 sources to the measured (observed) value.

231

232 **2.4.1. Choice of endmembers**

233 To determine carbon sources to POC and food sources supporting mesozooplankton
234 biomass, we chose isotopic end-members based on identifiable unique sources of OC to the POC
235 pool in the lake (Zigah et al., 2011; Zigah et al., 2012). Because our modeling is based upon
236 natural abundance stable carbon and radiocarbon distributions, these end-members vary from
237 those generally used in labeling experiments (e.g., Taipale et al., 2008) or natural abundance
238 stable isotope modeling (e.g., Karlsson et al., 2003). Based upon their unique $\Delta^{14}\text{C}$ values, the
239 potential components of POC in the lake include carbon derived from recent photosynthesis (here
240 described as “algal carbon” although it also includes herbivore biomass supported by recent
241 primary production), bacterial OC, terrestrial OC, and resuspended-sediment OC. As this is a
242 novel suite of end-members relative to previous work, we discuss our rationale further below.

243 Lake-wide primary production in Lake Superior is estimated at 9.73 Tg C per year
244 (Sterner, 2010), although most of the POC input from phytoplankton photosynthesis is thought to
245 be mineralized rapidly (Maier and Swain, 1978; Urban et al., 2005) and does not persist in the
246 lake. The POC pool in the lake is only \sim 1 Tg C, (compared to \sim 15 Tg DOC and \sim 122 Tg DIC;
247 Zigah et al., 2012). We assigned a $\delta^{13}\text{C}$ value of $-30 \pm 1\text{\textperthousand}$ as representative of algal C (Sierszen
248 et al. 2006). We used a $\Delta^{14}\text{C}$ of DIC as the $\Delta^{14}\text{C}$ of algal carbon from recent photosynthesis as
249 DIC-incorporation is the starting point for algal biomass production (McNichol and Lihini, 2007;
250 McCarthy et al., 2011). For calculating $\Delta^{14}\text{C}$ values, measured radiocarbon values are
251 normalized to remove mass-dependent isotopic fractionation such that $\Delta^{14}\text{C}$ values reflect only
252 time (age) or mixing (variably aged components). To normalize the sample, fractionation
253 between ^{14}C and ^{12}C is assumed to be approximately twice that between ^{13}C and ^{12}C since the
254 mass difference between ^{14}C and ^{12}C is twice that between ^{13}C and ^{12}C (Donahue et al., 1990;
255 McNichol and Lihini, 2007). Therefore, in a modern system, the $\Delta^{14}\text{C}$ of algal carbon tracks that
256 of DIC that was incorporated.

257 Bacterial carbon is another identifiable component of POC in the lake (Cotner et al.,
258 2004). For $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ of bacterial carbon, we used the $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ of DOC, the main
259 microbial food source, as we do not have direct measurement of bacterial biomass $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$.
260 We acknowledge that this is only a first order approximation of the $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ of bacteria in
261 Lake Superior, and look forward to further refining this model endpoint when better data become
262 available.

263 Radiocarbon values of bulk POC in the lake suggest that they contain a pre-aged carbon
264 source that may result from sediment resuspension and further that this resuspension can impact
265 surface water samples as well as deeper samples (Zigah et al., 2011; Zigah et al., 2012). This
266 finding is consistent with previous studies showing the importance of sediment resuspension in
267 Lake Superior (Urban et al., 2005; Churchill and Williams, 2004; Flood, 1989; Flood and
268 Johnson, 1984). In our Lake Superior work (see below), the OC in the surface sediments (0-2
269 cm) at the various study stations across the lake have $\Delta^{14}\text{C}$ values that are older (^{14}C -depleted)
270 than recent algal OC from lake photosynthesis. The physical mechanisms transporting such old
271 OC from the lake sediments into the lake surface water are not well known. However, Lake
272 Superior is dimictic, thus, there is density driven vertical mixing of the water column twice each
273 year. Hence, organic materials resuspended into the deep waters due to strong bottom currents
274 could be introduced into the surface waters during the lake overturn. In our lake surface (top 0-2
275 cm) sediment samples, the $\delta^{13}\text{C}$ values of OC were $-27.3\text{\textperthousand}$, $-26.9\text{\textperthousand}$, $-27.0\text{\textperthousand}$, $-26.2\text{\textperthousand}$, and $-$
276 $27.0\text{\textperthousand}$, and the $\Delta^{14}\text{C}$ values were $-20 \pm 3\text{\textperthousand}$, $-37 \pm 2\text{\textperthousand}$, $-23 \pm 2\text{\textperthousand}$, $-117 \pm 2\text{\textperthousand}$, and $-36 \pm 2\text{\textperthousand}$ at
277 sites CM, SM, NM, WM, and EM respectively, and the corresponding site-specific values were
278 used as the sediment OC end-member for each site in the lake. We note that this end member
279 assignment is a first order approximation as lateral advection of old OC from shallower depths,
280 especially at the WM site, is also possible.

281 The choice of end member for terrestrial OC was challenging because there are both ‘old’
282 and ‘recent’ terrestrial OC components. The radiocarbon value of recently synthesized terrestrial
283 OC reflects the radiocarbon value of atmospheric CO₂. We determined the radiocarbon value of
284 atmospheric CO₂ using the radiocarbon content of corn leaves (annual plant) collected in the
285 western watershed of the lake ($\Delta^{14}\text{C} = 38 \pm 2\text{\textperthousand}$, Zigah et al., 2011). While this approach does not
286 cover the entire watershed of the lake, we do not think there would be considerable differences
287 across the basins because most variations in atmospheric ^{14}C occur at a larger spatial scale. The
288 remoteness of the lake from big industrial plants or big cities, the uniformity of surface $\Delta^{14}\text{C}$ -DIC
289 across the lake, and the absence of considerable soot (black) carbon in the POC pools across the
290 lake (Zigah et al., 2012) suggest little regional variation in atmospheric ^{14}C around Lake
291 Superior. To account for the fact that terrestrially produced OC could spend some time in the soil
292 before delivery to the lake, we performed additional model runs replacing the corn $\Delta^{14}\text{C}$ value
293 with that of POC collected during high flow conditions in June 2008 from Amity Creek ($\Delta^{14}\text{C} =$
294 $11 \pm 2\text{\textperthousand}$; $\delta^{13}\text{C} = -27.3\text{\textperthousand}$, Zigah et al., 2011), a primarily forested watershed north shore stream
295 which drains into western Lake Superior. The choice of highflow data was because most
296 terrestrial influx in streams and rivers occurs during storm flows. While we note that using data
297 from one stream within the watershed might not be representative, the similarity of high flow
298 Amity Creek POC $\Delta^{14}\text{C}$ to nearshore POC $\Delta^{14}\text{C}$ ($\Delta^{14}\text{C}$ range of 7-17‰) from both the southern
299 and northern nearshore regions of the lake that we sampled implies that our terrestrial end-
300 member POC- $\Delta^{14}\text{C}$ is a good first approximation.

301
302 **2.5 Zooplankton allochthony based on $\Delta^{14}\text{C}$**
303 Zooplankton allochthony in Lake Superior was estimated using a binary (terrigenous and
304 autochthonous) mixing model as follows:

305
$$\Delta^{14}\text{C}_{\text{Zoop}} = f \cdot \Delta^{14}\text{C}_{\text{Terr}} + (1 - f) \cdot \Delta^{14}\text{C}_{\text{Algal}} \quad (1)$$

306 where f is the fraction of terrestrial OC in the zooplankton biomass, $(1 - f)$ is the fraction of algal-
307 derived carbon in the zooplankton biomass, and the subscripts ‘Terr’ and ‘Algal’ refer to
308 terrestrial and algal-derived, respectively. We used $\Delta^{14}\text{C}$ of DIC as the algal-derived OC
309 endmember. For the terrestrial endmember, we used the atmospheric $\text{CO}_2 \Delta^{14}\text{C}$ and $\Delta^{14}\text{C}$ of POC
310 from high flow Amity Creek in separate model runs for sensitivity analysis.

311 **2.6 Statistical analyses**

312 We used SigmaPlot 9.0 (Systat Software Inc., San Jose, California, USA) for all statistical
313 analyses. Relationships among samples were tested via correlation analyses in which case we
314 report the Pearson’s correlation coefficient (r), probability (p), and number of samples (n). The
315 difference between isotopic composition of zooplankton and that of DIC, POC and DOC was
316 determined using paired t-tests, and for these we reported the two-tailed probability value (p), and
317 the number of samples (n). Significance difference or correlation was tested at 95% confidence
318 level ($\alpha = 0.05$).

319 **3. Results**

320 **3.1 Lake Superior isotopic distributions**

321 The bulk POC in the lake (including both stratified and isothermal surface samples) had a
322 mean $\Delta^{14}\text{C}$ value of $10 \pm 29\text{\textperthousand}$ (range $-55\text{\textperthousand}$ to $39\text{\textperthousand}$, $n = 14$) (Fig. 2A and 2B; Table 2), and the
323 $\Delta^{14}\text{C}$ of DOC in the lake was $38 \pm 21\text{\textperthousand}$ (range $-10\text{\textperthousand}$ to $74\text{\textperthousand}$, $n = 13$) (Fig. 2A and 2B). $\Delta^{14}\text{C}$ of
324 mesozooplankton varied from 36 to $38\text{\textperthousand}$ at NB and ONT sites (both nearshore regions) to $62\text{\textperthousand}$
325 at CM and SM (both offshore regions) (Fig. 2A and 2B). At each site $\Delta^{14}\text{C}$ of mesozooplankton
326 and $\Delta^{14}\text{C}$ of DIC were similar (Fig. 2A and 2B) and a paired t-test showed no significant

327 difference in their values ($p = 0.96$, $n = 13$). In contrast, $\Delta^{14}\text{C}$ of mesozooplankton was
328 significantly more positive (thus, ^{14}C -enriched) than $\Delta^{14}\text{C}$ of either POC (t-test, $p < 0.0001$, $n =$
329 13) (Fig. 2A and 2B) or DOC (t-test, $p = 0.03$, $n = 13$) (Fig. 2A and 2B).

330 The $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ of POM in Lake Superior exhibited seasonal shifts. The bulk POM
331 was more ^{13}C -enriched ($\delta^{13}\text{C}$, mean = $-28.2 \pm 0.6\text{\textperthousand}$, range $-27.1\text{\textperthousand}$ to $-28.9\text{\textperthousand}$, $n = 7$) and ^{15}N -
332 depleted ($\delta^{15}\text{N}$, mean = $0.5 \pm 0.8\text{\textperthousand}$, range $-3.9\text{\textperthousand}$ to $-2.0\text{\textperthousand}$, $n = 7$; Table 2) during stratification in
333 August (excluding $\delta^{13}\text{C}$ of POM at EM) compared to the bulk POM in the isothermal lake in June
334 ($\delta^{13}\text{C}$, mean = $-29.9 \pm 0.4\text{\textperthousand}$, range $-29.5\text{\textperthousand}$ to $-30.4\text{\textperthousand}$, $n = 7$; $\delta^{15}\text{N}$, mean = $-2.9 \pm 0.6\text{\textperthousand}$, range $-$
335 $0.6\text{\textperthousand}$ to $1.7\text{\textperthousand}$, $n = 7$; Table 2). In contrast, the stable isotopic composition of mesozooplankton
336 in Lake Superior exhibited no seasonal shift for carbon and a smaller shift for nitrogen (Table 2).
337 The $\delta^{13}\text{C}$ of mesozooplankton in Lake Superior was $-30.0 \pm 0.6\text{\textperthousand}$ (range $-29.5\text{\textperthousand}$ to $-31.2\text{\textperthousand}$, $n =$
338 7) during isothermal conditions in June, and $-30.0 \pm 1.0\text{\textperthousand}$ (range $-28.2\text{\textperthousand}$ to $-31.3\text{\textperthousand}$, $n = 6$)
339 during stratification in August (excluding $\delta^{13}\text{C}_{\text{POM}}$ from ONT; Table 2). The average $\delta^{15}\text{N}$ of
340 mesozooplankton in the isothermal lake in June was $5.0 \pm 0.5\text{\textperthousand}$ (range $4.2\text{\textperthousand}$ to $5.4\text{\textperthousand}$, $n = 6$),
341 and shifted to $3.4 \pm 0.8\text{\textperthousand}$ (range $2.4\text{\textperthousand}$ to $4.4\text{\textperthousand}$, $n = 6$) in August (excluding ONT data in both
342 seasons) (Table 2).

343 The $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values of consumers reflect both the isotopic composition of the
344 incorporated food plus biochemical fractionations. Movement across trophic levels imposes
345 additional fractionation on the resulting biomass, with consumers exhibiting ^{13}C -enriched values
346 of $\sim 0.5\text{-}1\text{\textperthousand}$ (Fry and Sherr, 1984) and ^{15}N -enriched values of $2\text{-}3\text{\textperthousand}$ (Fry, 1991) relative to their
347 food source. In Lake Superior, the mesozooplankton were ^{15}N -enriched by an average of $\sim 4\text{\textperthousand}$
348 relative to bulk POM during isothermal condition, and ^{15}N -enriched by $\sim 6\text{\textperthousand}$ relative to bulk
349 POM during stratification (Table 2). In contrast to $\delta^{15}\text{N}$ values, mesozooplankton were ^{13}C -
350 depleted by an average of $\sim 1\text{\textperthousand}$ relative to bulk POM during stratification in August (Table 2).

351 The C:N values of mesozooplankton ranged from 6.2 to 8.7 (mean 7.1, n = 14), and were
352 consistently and significantly lower than the C:N values (C:N, mean 8.2, range 7.0 to 9.5) of bulk
353 POM (t test, $p = 0.001$, n = 14) (Table 2).

354

355 **3.2. Modeling sources of POC and Mesozooplankton diet in Lake Superior**

356 **3.2.1. POC sources**

357 The contribution of potential source materials to the bulk POC was estimated using the
358 Bayesian MixSIR model based on source $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ signatures. Based on the model results,
359 the median (and 5% and 95% confidence percentiles) contribution of algal carbon to the bulk
360 POM varied from 10% (5 – 14%) at the EM site during isothermal condition to 85% (77 – 93%)
361 at the NM site during isothermal condition (Table 3). The median contribution of terrestrial
362 carbon to bulk POM ranged from 1% (0.1 – 5%) at EM site during isothermal condition to 19%
363 (2 – 47%) at the WM site during stratification (Table 3). Sedimentary OC influence on bulk
364 POM varied from a median of 10% (2 – 15%) during stratification at WM site to 87% (84-91%)
365 during isothermal condition at EM site (Table 3). The average lakewide (including both seasons)
366 median contributions of algal, terrestrial, sedimentary, and bacterial OC to the bulk POM were
367 58%, 4%, 34%, and 2% (Table 3), and the corresponding values with creek POC as terrestrial
368 endmember were 58%, 6%, 32%, and 3%, respectively (Table 3).

369 **3.2.2. Sources of mesozooplankton diet**

370 After estimating the relative contributions of potential basal food resources to the bulk
371 POM, we used the Bayesian MixSIR mixing model to evaluate the relative contributions of these
372 basal foods to mesozooplankton production in Lake Superior. Algal-based food contributed a
373 disproportionately large amount to the mesozooplankton biomass in Lake Superior, with a
374 median contribution (average of both isothermal and stratified season at all sites) of 91% (range:

375 85 - 95%). Mesozooplankton in Lake Superior also appear to gain a lakewide median of 3% (2-
376 4%) of their biomass carbon from consumption of bacterial biomass (Table 4). Although making
377 up a considerable portion of the bulk POC in the lake, OC from the sediment and terrestrial POC
378 contributed minimally (median: 3% each) to mesozooplankton carbon (Table 4).

379 Based on a two-endmember mixing model using recent in-lake primary production and
380 terrestrial inputs as the endmembers, mesozooplankton allochthony varied across the lake sites,
381 ranging from 0-54% (with corn leaves used as the terrestrial endmember) or 0-25% (with creek
382 POC as the terrestrial endmember) and was in most cases much lower than mesozooplankton
383 autochthony (Table 5). The mesozooplankton autochthony estimates from both multiple
384 endmember (Table 4) and binary endmember (Table 5) models were comparable with a lakewide
385 average offset of ~8% or 3% if the Isothermal SM site with large difference is excluded. The
386 offset is only \leq 1% when the creek POC is used as the terrestrial endmember. The
387 mesozooplankton allochthony estimate from the binary model varied from the terrestrial
388 contribution from the multiple endmember Bayesian model with a lakewide average offset of
389 ~18% or 11% (if Isothermal SM is excluded). The offset, however, is \leq 6% when creek POC is
390 used as terrestrial endmember.

391 **3.3 Cross-system comparisons of isotopic distributions (Hudson River, Small Lakes, Lake
392 Superior, and the Pacific Ocean)**

393 Zooplankton in the Hudson River had pre-aged radiocarbon content ($\Delta^{14}\text{C} = -236\text{\textperthousand}$;
394 Caraco et al., 2010), and were ^{14}C -depleted relative to recent terrestrial OC, algae (based on $\Delta^{14}\text{C}$
395 DIC), POC, and DOC (Table 6). The $\Delta^{14}\text{C}$ of zooplankton in small lakes (Bran-de-Scie, Des
396 Monts, Stukely, Bowker, and Fraser Lakes) ranged from -2‰ in Bowker Lake to 40‰ in Des
397 Monts Lake (Fig. 3A), and was consistently ^{14}C -depleted relative to concurrent POC, DOC, and

398 DIC (with the exception of Fraser Lake with a DIC $\Delta^{14}\text{C}$ of -91‰ vs. a zooplankton $\Delta^{14}\text{C}$ of
399 10‰, Table 6; Fig. 3A). It is evident from $\Delta\Delta^{14}\text{C}_{\text{DIC-Zoop}}$ ($\Delta^{14}\text{C}_{\text{DIC}} - \Delta^{14}\text{C}_{\text{Zoop}}$) vs. $\Delta\Delta^{14}\text{C}_{\text{POC-Zoop}}$
400 ($\Delta^{14}\text{C}_{\text{POC}} - \Delta^{14}\text{C}_{\text{Zoop}}$) that the $\Delta^{14}\text{C}$ values of zooplankton in the small lakes are more similar to
401 $\Delta^{14}\text{C}$ of DIC than $\Delta^{14}\text{C}$ of POC, with the exception of Fraser Lake where the absolute values of
402 $\Delta\Delta^{14}\text{C}_{\text{DIC-Zoop}}$ and $\Delta\Delta^{14}\text{C}_{\text{POC-Zoop}}$ were almost the same (Table 6).

403 In the coastal Pacific Ocean, $\Delta^{14}\text{C}_{\text{DIC}}$ of 100‰ and $\Delta^{14}\text{C}_{\text{POC}}$ of 100‰ were identical and
404 slightly ^{14}C -enriched compared to $\Delta^{14}\text{C}_{\text{Zoop}}$ of 76‰ (Fig. 3B; Table 6). A similar trend was
405 observed in the north central Pacific Ocean where $\Delta^{14}\text{C}_{\text{Zoop}}$ of 124‰ was slightly ^{14}C -depleted
406 relative to the $\Delta^{14}\text{C}_{\text{DIC}}$ of 132‰ and $\Delta^{14}\text{C}_{\text{POC}}$ of 139‰ (Fig. 3B; Table 6). In contrast, the
407 zooplankton in the northeast Pacific Ocean had $\Delta^{14}\text{C}$ values identical to $\Delta^{14}\text{C}$ of POC, but
408 different from the $\Delta^{14}\text{C}$ of DIC as evident in the $\Delta\Delta^{14}\text{C}_{\text{DIC-Zoop}}$ and $\Delta\Delta^{14}\text{C}_{\text{POC-Zoop}}$ of 69‰ and -
409 4‰, respectively (Table 6).

410 The entire dataset was pooled to assess inter-system trends (thus small-to-large water
411 body ecosystems) in $\Delta^{14}\text{C}_{\text{zoops}}$ vs. $\Delta^{14}\text{C}_{\text{DIC}}$, and $\Delta^{14}\text{C}_{\text{zoops}}$ vs. $\Delta^{14}\text{C}_{\text{POC}}$. There was a positive
412 correlation between $\Delta^{14}\text{C}$ values of zooplankton and DIC (excluding Hudson River) in the pooled
413 $\Delta^{14}\text{C}$ data ($r = 0.82, p < 0.0001, n = 14$) (Fig. 4A), with ~67% of the variation in $\Delta^{14}\text{C}$ of
414 zooplankton accounted for by the changes in $\Delta^{14}\text{C}$ of phytoplankton utilizing in situ DIC (based
415 on correlation coefficient of 0.67, Table 4A). In contrast, $\Delta^{14}\text{C}$ of zooplankton was not correlated
416 to $\Delta^{14}\text{C}$ of bulk POC ($r = 0.03, p = 0.92, n = 14$) (Fig. 4B).

417 There was a positive correlation between $\Delta\Delta^{14}\text{C}_{\text{DIC-Zoop}}$ and the ratio of basin area to lake
418 surface area (correlation, $r = 0.88, p = 0.047$) (Fig. 5A). Although marginally significant
419 (correlation, $r = -0.84, p = 0.078$), there was a negative correlation between the hydrological
420 residence time of the lakes and $\Delta\Delta^{14}\text{C}_{\text{DIC-Zoop}}$, (Fig. 5B).

421

422 **4. Discussion**

423 **4.1 Composition of bulk POM, and putative food sources for consumers in Lake Superior**

424 Isotopic signatures of baseline food resources can be used to assess their relative
425 importance in the diet of their animal consumers. Food-source tracking using isotopic signatures
426 works if a measurable contrast exists between the potential food resources. Mesozooplankton in
427 Lake Superior could obtain their diet from recent primary production (perhaps cycled through an
428 additional small herbivore first), bacterial biomass, terrestrial OC, or OC from resuspended
429 sediments.

430 Our results indicate that in Lake Superior, the proportional median contribution of recent
431 primary production to bulk POC was 58% (Table 3). This is not surprising for a large cold
432 temperate oligotrophic lake with low levels of autochthonous primary production (Cotner et al.,
433 2004; Sterner, 2010). Although the estimated annual lake-wide primary production is 9.73 Tg C
434 (Sterner, 2010), the OC input from phytoplankton photosynthesis is thought to be mineralized
435 rapidly (Maier and Swain, 1978; Urban et al., 2005) and does not persist in the lake.
436 Consequently, the POC pool in the lake is estimated at only ~ 1 Tg C (compared to ~15 Tg DOC
437 and ~122 Tg DIC; Urban et al., 2005; Zigah et al., 2012).

438 Our model estimates show that the combined proportions of terrestrial OC and
439 resuspended-sediment OC can constitute a considerable fraction of the basal food available to
440 consumers in the lake (Table 3). These estimates are consistent with published values from
441 previous studies in the lake. Urban et al. (2004) reported that resuspended sedimentary OC
442 contributed 10-35% of OC in sinking POC off the Keweenaw Peninsula at the depth of 25-35 m
443 in the lake.

444 **4.2 Stable isotopes and C:N ratios**

445 Although bulk POM was ^{13}C -enriched and ^{15}N -depleted during stratification in August
446 relative to isothermal conditions in June, the mesozooplankton in the lake did not exhibit such
447 seasonal changes in their $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ signatures (Table 2). Mesozooplankton in the lake were
448 generally ^{13}C -depleted relative to the bulk POM, especially in the productive surface waters
449 during stratification in August. Such ^{13}C -depletion of mesozooplankton compared to bulk POM
450 has been reported by several researchers (del Giorgio and France, 1996; Karlsson et al., 2003;
451 Pulido-Villena et al., 2005; Mathews and Mazumder, 2006; McCallister and del Giorgio, 2008),
452 and suggests that the mesozooplankton were primarily supported by a subsurface algal food with
453 ^{13}C -depleted values, or a baseline algal food source within the surface POM with ^{13}C -depleted
454 values as typical trophic-level enrichments for $\delta^{13}\text{C}$ are +0.5 to +1‰ (Fry and Sherr, 1984).
455 Another possibility is the accumulation and/or storage of lipids by the mesozooplankton from
456 their food, thus making their entire biomass or whole body more ^{13}C -depleted than their food
457 source as lipids are more ^{13}C -depleted than other biochemicals in their biomass (DeNiro and
458 Epstein, 1978; McConaughey and McRoy, 1979; Kling et al., 1992; Matthew and Mazumder,
459 2005; Smyntek et al., 2007). Mesozooplankton in Lake Superior do exhibit an increase in C:N
460 values during stratification in August relative to isothermal conditions in June, which is
461 consistent with increasing accumulation and storage of lipids during the more productive and
462 warmer season (McConaughey and McRoy, 1979; Kiljunen et al., 2006; Smyntek et al., 2007;
463 Syvaranta and Rautio, 2010).

464 **4.3 Radiocarbon-based estimation of mesozooplankton food sources in Lake Superior**

465 Taken together, and without seasonal comparison, the stable C and N isotope values do
466 not distinguish mesozooplankton from the bulk POM pool from which they feed, especially

467 during isothermal conditions in the lake. Adding radiocarbon information allows for the
468 estimation of mesozooplankton dependence on food sources other than that year's in situ primary
469 production (and its immediate consumers), and also significantly refines the relationship between
470 POM and mesozooplankton.

471 Mesozooplankton in Lake Superior in both isothermal and stratified conditions have $\Delta^{14}\text{C}$
472 values that track those of co-occurring DIC rather than bulk POM (Fig. 1), indicating that the
473 mesozooplankton in this system are preferentially feeding on food resources resulting from
474 contemporary photosynthesis rather than indiscriminately upon bulk POM. Bayesian MixSIR
475 modeling results generally show that most of the mesozooplankton biomass in the entire lake,
476 and in both seasons (medians 85-95%; Table 4) came from incorporation of recent primary
477 production. These results are generally consistent with mesozooplankton autochthony estimates
478 from binary isotopic mixing modeling with the exception of SM site during isothermal conditions
479 (range 61-100% or 75-100% depending on choice of terrestrial endmember as shown in Table 5).
480 Both approaches show considerable enrichment in mesozooplankton biomass relative to the
481 proportion of "algae" in bulk POC (median, 58%; Table 3). That algal carbon dominantly
482 supports mesozooplankton biomass production was not surprising as algal-derived food is
483 generally known to be labile and the most preferred food option for secondary producers (Brett et
484 al., 2009). Our results agree with previous studies in other lakes (del Giorgio and France, 1996;
485 Cole et al., 2002; McCallister and del Giorgio, 2008; Mohammed and Taylor, 2009; Karlsson et
486 al., 2012) and rivers (Sobczak et al., 2002; Thorp and Delong, 2002; Meersche et al., 2009) that
487 reported that zooplankton were sustained disproportionately and/or largely by phytoplankton
488 biomass.

489 Mesozooplankton dependence on organic carbon subsidies (sedimentary and terrestrial
490 OC) in Lake Superior was small (Table 4), although these organic carbon resources make up a

491 considerable fraction of the bulk POC in the lake (Table 3). Contrary to our results, other studies
492 have reported larger use of non-algal food by zooplankton in some aquatic systems based on
493 either natural abundances of $\Delta^{14}\text{C}$ (Schell, 1983; Caraco et al., 2010), $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ (Meili et al.,
494 1996; Jones et al., 1998; Karlsson et al., 2004; Matthews and Mazumber, 2006), or whole lake
495 addition of ^{13}C -labeled bicarbonates (Carpenter et al., 2005; Pace et al., 2007; Taipale et al.,
496 2008).

497 Differently aged components (modern vs. ancient) of organic carbon subsidies may have
498 different fates in aquatic ecosystems. The relative ages of the non-algal OC that support
499 heterotrophic microbial communities and the upper trophic levels of food webs are not well
500 known although this knowledge is essential in understanding food web dynamics. In Lake
501 Superior, although pre-aged organic carbon from the sediment was a putative food option in the
502 lake, and constituted a median proportion of as much as 87% (84-91%) of the available food
503 carbon (POC) during isothermal (mixed-lake water) condition at EM site and 84% (78-87%)
504 during stratified condition at SM site (Table 3), mesozooplankton in the lake only incorporated
505 trace amounts (median: 3% [1-7%]) of this old carbon into their biomass (Table 4). This
506 observation could be due to a general decrease in palatability of considerably aged organic
507 carbon or could be due to the extensive amount of reworking this material has experienced in
508 Lake Superior. Some studies have suggested that modern terrestrial organic carbon supports
509 heterotrophic respiration (Mayorga et al., 2005) whereas ancient terrestrial components could be
510 important food sources for heterotrophic microbes (McCallister et al., 2004) and animal
511 consumers (Ishikawa et al., 2010) in certain aquatic systems. In contrast to Lake Superior, studies
512 of the Hudson River food-web (Caraco et al., 2010) and bacterial biomass production in the
513 Hudson and York River systems (McCallister et al., 2004) have shown that both
514 mesozooplankton and bacteria can use considerably aged reduced carbon as a food source. Also,

515 in the open ocean in eastern North Pacific, radiocarbon studies show that bacteria assimilate both
516 modern and ancient organic carbon (Cherrier et al., 1999). Schell (1983) in a study of the
517 Colville River and coastal Alaskan Beaufort Sea reported that old carbon from peat in the
518 catchment introduced primarily into food webs in the freshwater portions of the system, i.e.,
519 anadromous fish and ducks feeding in these areas. While it is still not clear which aquatic
520 variables drive the relative utilization of ancient vs. modern food sources in these systems, some
521 studies have indicated that terrestrial materials from the catchment are less refractory than
522 previously thought (Hessen, 1992; Tranvik, 1992), and others have suggested addition of new
523 synthesized algal food could act as co-metabolic primer facilitating the use of the aged
524 (potentially refractory) organic material (Horvath, 1972; McCallister et al., 2004; Goni et al.,
525 2006; Aller et al., 2008).

526 It should be noted that, while this study is one of the most extensive isotopic (particularly
527 radiocarbon) investigations of the ecosystem of any of the great lakes in the world, our results
528 represent a general large-scale view of the ecosystem functioning of Lake Superior since the
529 spatial and temporal coverage of this study is limited to 8 sampling sites covering nearshore and
530 offshore locations, and visited twice during thermal stratification and mixed-lake condition. A
531 high resolution spatial and temporal sampling scheme would be needed for a more detailed
532 understanding of the feeding habits and/ ecology of the mesozooplankton in the lake.

533 **4.4 Comparison of zooplankton food sources in small-to-large aquatic systems**

534 To gain cross-system insight into the food sources supporting animal consumers in
535 aquatic systems, we compared the food sources of zooplankton in the Hudson River, five separate
536 small northern lakes, and different sites in the North Pacific Ocean, to the food resources
537 supporting zooplankton in a large lake (Lake Superior). This cross-system dataset is not

538 representative of global lake diversity and/or variability and are only from North America as we
539 cannot find radiocarbon composition of zooplankton in aquatic systems in other parts of the
540 world. Trends observed and discussed here give a broad picture of ecosystem functioning across
541 lake size gradient in the US and Canada. A more globally distributed dataset is needed to
542 ascertain whether the trends observed in this study are consistent with the global view of the
543 relationship between lake-size and zooplankton ecology.

544 In the Hudson River, and Bran-de-Scie, Des Monts, Stukely, and Bowker Lakes, the
545 zooplankton biomass was generally largely supported by in-situ primary production (and its
546 immediate consumers) as evidenced by smaller values of $\Delta\Delta^{14}\text{C}_{\text{DIC-Zoop}}$ relative to $\Delta\Delta^{14}\text{C}_{\text{POC-Zoop}}$
547 (Table 6). However, the ^{14}C -depletion of zooplankton biomass relative to the putative
548 autochthonous food sources (Table 6) indicates the use of some aged allochthonous food source
549 by the zooplankton for their dietary needs. Zooplankton incorporation of aged allochthonous food
550 in these small lake systems contrasts with observations in Lake Superior, where the
551 mesozooplankton preferentially and heavily depended on in situ primary production.
552 Conservative estimates based on $\Delta\Delta^{14}\text{C}_{\text{DIC-Zoop}}$ indicate that the proportion of allochthonous food
553 supporting zooplankton in the small lakes (except Fraser Lake) was larger than that in open Lake
554 Superior (Table 6). This is also consistent with the observed relationship between zooplankton
555 dependence on allochthonous food resources and variables such as ratio of catchment area to lake
556 surface area (Fig. 5A), and water residence time (Fig. 5B). The ratio of basin area to surface area
557 of a lake gives an indication of potential terrestrial subsidy to the lake's ecosystem. As the basin
558 area-to-surface area ratio increases, suggesting potentially higher terrestrial influence, the
559 difference between $\Delta^{14}\text{C}_{\text{Zoop}}$ and $\Delta^{14}\text{C}_{\text{DIC}}$ also increases as reflected in the positive correlation
560 between $\Delta\Delta^{14}\text{C}_{\text{DIC-Zoop}}$ and the ratio of basin area to lake surface area (Fig. 5A). Hydrologic
561 residence time is a variable that is related to lake size. Small lakes tend to have shorter water

562 residence times whereas large lakes usually hold water for longer time periods (Table 1). There
563 was generally a negative relationship between the hydrological residence time of the lakes and
564 $\Delta\Delta^{14}\text{C}_{\text{DIC-Zoop}}$ (Fig. 5B), implying the difference between $\Delta^{14}\text{C}$ of zooplankton and $\Delta^{14}\text{C}$ of DIC
565 decreases with an increase in lake water residence time, and by extension, with lake size.

566 In the oceanic sites, $\Delta^{14}\text{C}$ values of zooplankton and bulk POM were similar at all sites
567 (Fig. 3B), suggesting that either the bulk POM was almost entirely derived from that year's
568 primary production, or that the zooplankton were indiscriminately feeding on the bulk POM. It is
569 worth noting however that estimating zooplankton food sources in the oceanic sites is
570 complicated by the considerable differences in $\Delta^{14}\text{C}$ values of DIC with depth and laterally, such
571 that water mass movements, and migratory feeding of zooplankton (and upper trophic organisms)
572 could significantly mask the actual radiocarbon relationships between zooplankton, DIC and
573 POC. The pooled data from the small lakes, Lake Superior and the Pacific Ocean show strong
574 correlation between $\Delta^{14}\text{C}$ values of zooplankton and DIC, but poor correlation between $\Delta^{14}\text{C}$ of
575 zooplankton and bulk POM (Fig. 4A, 4B) indicating that in most aquatic ecosystems, recent in-
576 situ primary production is the most preferred food resource for zooplankton.

577 It is worth stating that different zooplankton groups do have different feeding and/or
578 ecological strategies, and the observed zooplankton food preferences and the relationship
579 between lake size and allochthony of zooplankton discussed above could be influenced by this.
580 While the higher mesozooplankton autochthony seen in Lake Superior relative to the smaller
581 lakes could be attributed to the specific filter feeding style of the predominant calanoid copepods
582 (~70% of crustacean zooplankton) in the lake, the small offset between $\Delta^{14}\text{C}$ of algae (based on
583 $\Delta^{14}\text{C-DIC}$) and $\Delta^{14}\text{C}$ of the bulk mesozooplankton suggest the remaining zooplankton groups in
584 Lake Superior (~30%) including cyclopoid copepods and daphnids were also largely feeding on
585 algae, although these zooplankton groups are adapted to utilize other food options such as

586 detritus, protists, bacteria and other zooplankton. Since cladocerans such as daphnids, and
587 cyclopoid copepods are typically more abundant in small nutrient enriched aquatic systems
588 (Gannon and Stember, 1978; Balcer et al., 1984), it could be argued that their adaptation for
589 feeding on non-algal food options is responsible for the relatively high zooplankton allochthony
590 seen in the smaller lakes. However, the zooplankton composition itself could be coupled to
591 nutrient (N and P) availability (Demott and Gulati, 1999; Schulz and Sterner, 1999; Conde-
592 Porcuna et al., 2002) and hence terrestrial influence, consistent with the observed pattern of
593 increasing zooplankton allochthony with terrestrial influence as seen in this study.

594 **5. Conclusions**

595 Our isotopic investigation shows that intermediate trophic-level mesozooplankton in Lake
596 Superior prefer to incorporate fresh autochthonous food, despite the availability of other organic
597 carbon sources, and that upper trophic levels are likely not supported by terrestrial and/or
598 resuspended-sediment OC subsidies to the carbon cycle. A similar trend is apparent in our
599 oceanic sites, and selected small lakes, although the small lakes do exhibit a higher degree of
600 zooplankton dependence on allochthonous food resources. This provides real-world support to
601 lab studies showing preferential incorporation of phytoplankton fatty acids and POC into
602 herbivorous zooplankton offered mixed diets of terrestrially-derived and phytoplankton-derived
603 particulate organic matter (Brett et al., 2009) and confirms in a large lake, and similar clear-water
604 systems such as the open oceans, the observation from unproductive small lakes that zooplankton
605 selectively incorporate fresh autochthonous organic carbon (Karlsson, 2007; Karlsson et al.,
606 2012). Our results suggest that if spatial or temporal subsidies of organic carbon fuel the net
607 heterotrophy seen in Lake Superior, their effects are limited to the microbial loop and lower
608 trophic levels, and do not extend to mesozooplankton and higher trophic levels. Further research

609 should focus upon catabolic metabolism of mesozooplankton and both anabolic and catabolic
610 metabolism in the microbial loop to further our understanding of such subsidies in the carbon
611 cycle and energy transfer.

612

613 **Acknowledgements**

614

615 The authors thank Koushik Dutta, Meg MacDonald, and Danielle Schminkey from University
616 of Minnesota Duluth, Annie Stuart and Lindsey Koren from Virginia Commonwealth University
617 and the captain and crew of the R/V *Blue Heron* for sampling assistance; the staff at the National
618 Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS) for radiocarbon analyses;
619 Koushik Dutta of the Organic and Stable Isotope Biogeochemistry Analytical Research Facility
620 (OSI-BARF) at the Large Lakes Observatory, University of Minnesota Duluth for stable carbon
621 and nitrogen isotope analyses; Robert Hecky of Large Lakes Observatory, University of
622 Minnesota Duluth for pre-cruise discussions on zooplankton sampling, and comments on an
623 earlier version of the manuscript, the associate editor Steven Bouillon and two anonymous
624 reviewers whose valuable comments considerably improved this paper. This work was funded by
625 a National Science Foundation-Ocean Sciences grant (OCE- 0825600) to E.C.M. and J.P.W, and
626 OCE-0825403 to S.L.M.

627

628 **References**

629

630 Aller, R. C., Blair, N. E., and Brunskill, G. J.: Early diagenetic cycling, incineration, and burial of
631 sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea), *J.
632 Geophys. Res.* 113, F01S09, doi:10.1029/2006JF000689, 2008.

633 Balcer, M. D., Korda, N. L., and Dodson, S. I.: Zooplankton of the great lakes: A guide to
634 identification and ecology of the common crustacean species, The University of
635 Wisconsin press, pp. 6-10, 1984.

636 Barbiero, R. P. and Tuchman, M. L.: The deep chlorophyll maximum in Lake Superior. *J. Great
637 Lakes Res.* 30, 256-268, 2004.

638 Berggren M., Strom, L., Laudon, H., Karlsson, J., Jonsson, A., Giesler, R., Bergstrom, A. K., and
639 Jansson, M.: Lake Secondary production fueled by rapid transfer of low molecular weight
640 organic carbon from terrestrial sources to aquatic consumers, *Ecol. Lett.* 13, 870-880,
641 2010.

642 Brett, M. T., Kainz, M. J., Taipale, S. J., and Seshan, H.: Phytoplankton, not allochthonous
643 carbon, sustains herbivorous zooplankton production, *PNAS* 106, 21197-21201, 2009.

644 Caraco, N., Bauer, J. E., Cole, J. J., Petsch, S., and Raymond, P.: Millenial-aged organic carbon
645 subsidies to a modern river food web, *Ecology* 91, 2385-2393, 2010.

646 Carpenter, S. R., Cole, J. J., Pace, M. L., Van de Bogert, M., Bade, D. L., Bastviken, D., Gille, C.
647 M., Hodgson, J. R., Kitchell, J. F., and Kritzberg, E. S.: Ecosystem subsidies: Terrestrial
648 support of aquatic food webs from ^{13}C addition to contrasting lakes, *Ecology*, 86, 2737–
649 2750, 2005.

650 Cherrier, J., Bauer, J. E., Druffel, E. R. M., Coffin, R. B., and Chanton, J. P.: Radiocarbon in
651 marine bacteria: Evidence for the ages of assimilated carbon, *Limnol. Oceanogr.* 44, 730-
652 736, 1999.

653 Churchill, J. H., and Williams, A. J.: Bottom stress generation and sediment transport over the
654 shelf and slope off of Lake Superior's Keweenaw peninsula, *J. Geophys. Res.*, 109, C10S04,
655 doi:10.1029/2003JC001997, 2004.

656 Cole J. J., Carpenter, S. R., Kitchell, J. F., and Pace, M. L.: Pathways of organic carbon
657 utilization in small lakes: Results from a whole-lake C-13 addition and coupled model,
658 *Limnol Oceanogr.* 47, 1664-1675, 2002.

659 Cole, J. J., Carpenter, S. R., Pace, M. L., Van de Bogert, M. C., Kitchell, J. L., and Hodgson, J.
660 R.: Differential support of lake food webs by three types of terrestrial organic carbon,
661 *Ecol. Lett.* 9, 558-568, 2006.

662 Cole, J. L., Carpenter, S. R., Kitchell, J., Pace , M. L., Solomon, C. T., and Weidel, B.: Strong
663 evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of
664 carbon, nitrogen, and hydrogen, *PNAS* 108, 1975-1980, 2011.

665 Conde-Porcuna, J. M., Ramos-Rodriguez, E., and Perez-Martinez, C.: Correlation between
666 nutrient concentrations and zooplankton populations in a mesotrophic reservoir.
667 *Freshwater Biology* 47, 1463-1473, 2002.

668 Cotner, J. B., Biddanda, B. A., Makino, W., and Stets, E.: Organic carbon biogeochemistry of
669 Lake Superior, *Aquat. Ecosyst. Health Manag.* 7, 451-464, 2004.

670 Del Giorgio, P. A., and France, R. L.: Ecosystem-specific patterns in the relationship between
671 zooplankton and POM or microplankton $\delta^{13}\text{C}$, *Limnol. Oceanogr.* 41, 359-365, 1996.

672 DeMott, W. R., and Gulati, R. D.: Phosphorus limitation in *Daphnia*: evidence from a long term
673 study of three hypereutrophic Dutch lakes. *Limnol. Oceanogr.* 44, 1557-1564, 1999.

674 Deniro, M. J., and Epstein, S.: Influence of diet on the distribution of carbon isotopes in animals,
675 *Geochim. Cosmochim. Acta* 42, 495-506, 1978.

676 Donahue, D. J., Linick, T. W., and Jull, A. J. T.: Isotope ratio and background corrections
677 for accelerator mass spectrometry radiocarbon measurements. *Radiocarbon* 32, 135-142,
678 1990.

679 Druffel, E. R. M., Bauer, J. E., Williams , P. M., Griffin, S., and Wolgast, D.: Seasonal variability
680 of particulate organic radiocarbon in the Northeast Pacific Ocean, *J. Geophys. Res.* 101,
681 543-552, 1996.

682 Druffel, E. R. M., and Williams, P. M.: Identification of a deep marine source of particulate
683 organic carbon using bomb ^{14}C . *Nature* 347, 172-174, 1990.

684 Druffel, E. R. M., and Williams, P. M.: Radiocarbon in seawater and organisms from the Pacific
685 coast of Baja California. *Radiocarbon* 33, 291-296, 1991.

686 Flood, R. D.: Submersible studies of current-modified bottom topography in Lake Superior, *J.*
687 *Great Lakes Res.*, 15, 3-14, 1989.

688 Flood, R. D., and Johnson, T. C.: Side-scan sonar targets in Lake Superior-evidence for bedforms
689 and sediment transport, *Sedimentology*, 31, 311-333, 1984.

690 Fry, B.: Stable isotopes diagrams of freshwater food webs. *Ecology* 72, 2293-2297, 1991.

691 Fry, B., and Sherr, E.: $\delta^{13}\text{C}$ measurements as indicators of carbon flow in marine and freshwater
692 ecosystems, Contributions in Marine Science 27, 13-47, 1984.

693 Gannon, J. E., and Stemberger, R. S.: Zooplankton (especially crustacean communities and
694 rotifiers) as indicators of water quality. Trans. Amer. Micros. Soc. 97, 16-35, 1978.

695 Goni, M. A., Monacci, N., Gisewhite, R., Ogston, A., Crockett, J., and Nittrouer, C. A.:
696 Distribution and sources of particulate organic matter in the water column and sediments
697 of the Fly River Delta, Gulf of Papua (Papua New Guinea). Estuarine Coastal and Shelf
698 Science 69, 225-245, 2006.

699 Grey, J. R., Jones, R. I., and Sleep, D.: Seasonal changes in the importance of the source of the
700 organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope
701 analysis. Limnol. Oceanogr. 46, 505-513, 2001.

702 Hamilton, S. K., Sippel, S. J., and Bunn, S. E.: Separation of algae from detritus for stable isotope
703 or ecological stoichiometry studies using density fractionation in colloidal silica, Limnol.
704 Oceanogr. Methods 3, 149-157, 2005.

705 Herdendorf, C. E.: Distribution of the world's large lakes, p. 3-38. In M. M. Tilzer, and C.
706 Serruya [ed.], Large Lakes. Springer-Verlag, 1990.

707 Hessen, D. O.: Dissolved organic carbon in a humic lake: effects on bacteria production and
708 respiration. Hydrobiologia 229, 115-123, 1992.

709 Hessen, D. O., Anderson, T., and Lyche, A.: Carbon metabolism in a humic lake: pool sizes and
710 cycling through zooplankton, Limnol. Oceanogr. 35, 84-99, 1990.

711 Horvath, R. S.: Microbial co-metabolism and the degradation of organic compounds in nature.

712 Bacteriol Rev. 36, 146-155, 1972.

713 Ishikawa, N. F., Uchida, M., Shibata, Y., and Tayasu, I.: A new application of radiocarbon (^{14}C)

714 concentrations to stream food web analysis, Nuclear Instruments and Methods in Physics

715 Research B 268, 1175–1178, 2010.

716 Jones, R. I.: The influence of humic substances on lacustrine planktonic food chains,

717 Hydrobiologia 229, 73-91, 1992.

718 Jones, R. I., Grey, J., Sleep, D., and Quarmby, C.: An assessment, using stable isotopes, of the

719 importance of allochthonous organic carbon sources to the pelagic food web in Loch

720 Ness. Proc. R. Soc. Lond. B. 265, 105-111, 1998.

721 Jones, R. I., and Salonen, K.: The importance of bacteria utilization of released phytoplankton

722 photosynthate in two humic forest lakes in southern Finland, Holarctic Ecology 8, 133-

723 140, 1985.

724 Karlsson, J.: Different carbon support for respiration and secondary production in unproductive

725 lakes, Oikos 116, 1691-1696, 2007.

726 Karlsson, J., Jonsson, A., Meili, M., Jansson, M. Control of zooplankton dependence on

727 allochthonous organic carbon in humic and clear-water lakes in northern Sweden, Limnol.

728 Oceanogr. 48, 269-276, 2003.

729 Karlsson, J., Jonsson, A., Meili, M., and Jansson, M.: $\delta^{15}\text{N}$ of zooplankton species in subarctic

730 lakes in northern Sweden: effects of diet and trophic fractionation, Freshwater Biology,

731 49, 526-534, 2004.

732 Karlsson, J., and Sawstrom, C.: Benthic algae support zooplankton growth during winter in a
733 clear-water lake, *Oikos* 118, 539-544, 2009.

734 Karlsson, J., Berggren, M., Ask, J., Bystrom, P., Jonsson, A., Laudon, H., and Jansson, M.:
735 Terrestrial organic matter support of lake food webs: Evidence from lake metabolism and
736 stable hydrogen isotopes of consumers. *Limnol. Oceanogr.* 57, 1042-1048, 2012.

737 Keough, M., Sierszen, E., and Hagley, C. A.: Analysis of a Lake Superior coastal food web with
738 stable isotope techniques, *Limnol. Oceanogr.* 41, 136-146, 1996.

739 Kiljunen, M., Grey, J., Sinisalo, T., Harrod, C., Immonen, H., and Jones, R. I.: A revised model
740 for lipid-normalizing $\delta^{13}\text{C}$ values from aquatic organisms, with implications for isotopic
741 mixing models, *J. Appl. Ecol.* 43, 1213-1222, 2006.

742 Kling, G. W., Fry, B., and O'Brien, W. J.: Stable isotopes and planktonic trophic structure in
743 arctic lakes, *Ecology* 73, 561-566, 1992.

744 Lennon J. T., and Pfaff, L. E.: Source and supply of terrestrial organic matter affects aquatic
745 microbial metabolism. *Aquat. Microb. Ecol.* 39, 107-119, 2005.

746 Maier, W. J., and Swain, W. R.: Lake Superior organic carbon budget, *Water Res.*, 12, 403-412,
747 1978.

748 Matthews, B., and Mazumder, A.: Temporal variation in body composition (C:N) helps explain
749 seasonal patterns of zooplankton $\delta^{13}\text{C}$. *Freshwater Biology* 50, 502-515, 2005.

750 Matthews, B., and Mazumder, A.: Habitat specialization and the exploitation of allochthonous
751 carbon by zooplankton, *Ecology* 87, 2800-2812, 2006.

752 Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V., Hedges, J. L., Quay, P. D.,
753 Richey, J. E., and Brown, T. A.: Young organic matter as a source of carbon dioxide
754 outgassing from Amazonian rivers, *Nature* 436, 538-541, 2005.

755 McCallister, S. L., Bauer, J. E., Cherrier, J., and Ducklow, H. W.: Assessing the sources and ages
756 of organic matter supporting estuarine bacterial production: A novel multiple isotopes
757 ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$, $\Delta^{14}\text{C}$) approach. *Limnol. Oceanogr.* 49, 1687-1702, 2004.

758 McCallister, S. L., and del Giorgio, P. A.: Direct measurement of the $\delta^{13}\text{C}$ signature of carbon
759 respired by bacteria in lakes: Linkages to potential carbon sources, ecosystem baseline
760 metabolism, and CO_2 fluxes, *Limnol. Oceanogr.* 53, 1204-1216, 2008.

761 McCarthy, M. D., Beaupre, S. R., Walker, B. D., Voparil, I., Guilderson , T. P., and Druffel, E.
762 R. M.: Chemosynthetic origin of ^{14}C -depleted dissolved organic matter in a ridge-flank
763 hydrothermal system, *Nature Geoscience*, 4, 32-36, 2011.

764 McConaughey, T., and McRoy, C. P.: Food-web structure and the fractionation of carbon
765 isotopes in the Bering Sea, *Marine Biology* 53, 257-262, 1979.

766 McNichol, A. P., and Aluwihare, L. I.: The Power of Radiocarbon in Biogeochemical Studies of
767 the Marine Carbon Cycle: Insights from studies of Dissolved and Particulate Organic
768 Carbon (DOC and POC), *Chem. Rev.* 107, 443-466, 2007.

769 McManus, J., Heinen , E. A., and Baehr , M. M.: Hypolimnetic oxidation rates in Lake Superior:
770 Role of dissolved organic material on the lake's carbon budget, *Limnol. Oceanogr.* 48,
771 1624-1632, 2003.

772 Meersche, K. V. D., Rijswijk, P. V., Soetaert, K., and Middelburg, J. J.: Autochthonous and
773 allochthonous contributions to mesozooplankton diet in a tidal river and estuary:
774 Integrating carbon isotope and fatty acid constraints, Limnol. Oceanogr. 54, 62-74, 2009.

775 Meili, M., Fry, B., and Kling, G. W.: Fractionation of stable isotopes (^{13}C , ^{15}N) in the food web
776 of a humic lake. Verh. Int. Ver. Limnol. 25, 501-505, 1993.

777 Meili, M., Kling, G. W., Fry, B., Bell, R. T., and Ahlgren, I.: Sources and Partitioning of organic
778 matter in a pelagic microbial food web inferred from the isotopic composition ($\delta^{13}\text{C}$ and
779 $\delta^{15}\text{N}$) of zooplankton species. Arch Hydrobiol. Spec. Issues Adv. Limnol. 48, 53-61,
780 1996.

781 Mohamed, M. N., and Taylor, W. D.: Relative contribution of autochthonous and allochthonous
782 carbon to limnetic zooplankton: A new cross-system approach. Fund Appl. Limnol. 175,
783 113-124, 2009.

784 Moore, J. W. and Semmens, B. X.: Incorporating uncertainty and prior information into stable
785 isotope mixing models. Ecol. Lett., 11, 470-480, 2008.

786 Pace, M. L., Carpenter, S. R., Cole, J. J., Coloso, J., Kitchell, J. F., Hodgson, J. R., Middelburg, J. J.,
787 Preston, N. D., Solomon, C. T., and Weidel, B.: Does terrestrial organic carbon
788 subsidize the planktonic food webs in a clear-water lake?, Limnol. Oceanogr., 52, 2177–
789 2189, 2007.

790 Pace, M. L., Cole, J. J., Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Bogert, M. V., D. L.,
791 Bade, Kritzberg, E. S., and Bastviken, D.: Whole-lake carbon-13 additions reveal
792 terrestrial support of aquatic food webs, Nature 427, 240-243, 2004.

793 Petsch, S. T., Eglinton , T. I., and Edwards, K. J.: ^{14}C -Dead living Biomass: Evidence for
794 microbial assimilation of ancient organic carbon during shale weathering, *Science* 292,
795 1127-1131, 2001.

796 Pulido-Villena, E., Reche, I., Morales-Baquero, R.: Food web reliance on allochthonous carbon
797 in two high mountain lakes with contrasting catchments: a stable isotope approach, *Can.*
798 *J. Fish. Aquat. Sci.* 62, 2640-2648, 2005.

799 Rautio, M., Mariash, H., and Forsstrom, L.: Seasonal shifts between autochthonous and
800 allochthonous carbon contributions to zooplankton diets in a subarctic lake, *Limnol.*
801 *Oceanogr.* 56, 1513-1524, 2011.

802 Russ, M. E., Ostrom, N. E., Gandhi, H., Ostrom, P. H., and Urban, N. R.: Temporal and spatial
803 variations in R : P ratios in Lake Superior, an oligotrophic freshwater environment, *J.*
804 *Geophys. Res.*, 109, C10S12, doi: 10.1029/2003JC001890, 2004.

805 Salonen, K., and Hammar, T.: On the importance of dissolved organic matter in the nutrition of
806 zooplankton in some lake waters, *Oecologia* 68, 246-253, 1986.

807 Schell, D. L.: Carbon-13 and Carbon-14 Abundances in Alaskan Aquatic Organisms: Delayed
808 Production from Peat in Arctic Food Webs, *Science* 219, 1068-1071, 1983.

809 Schulz, K. L., and Sterner, R. W.: Phytoplankton phosphorus limitation and food quality for
810 Bosmina. *Limnol. Oceanogr.* 44, 1549–1556, 1999.

811 Semmens, B. X., Moore, J. W., and Ward, E. J.: Improving Bayesian isotope mixing models: a
812 response to Jackson et al. (2009). *Ecol. Lett.*, 12, E6-E8, 2009.

813 Smyntek, P. M., Teece, A. M., Schultz, K. L., Thackeray, S. J.: A standard protocol for stable
814 isotope analysis of zooplankton in aquatic food web research using mass balance
815 correction models, Limnol. Oceanogr. 52, 2135-2146, 2007.

816 Sobczak, W. V., Cloern, J. E., Jassby, A. D., and Muller-Solger, A. B.: Bioavailability of organic
817 matter in a highly disturbed estuary: the role of detrital and algal resources, PNAS 99,
818 8101-8105, 2002.

819 Environment Canada and The US EPA, State of the great lakes 2009, Zooplankton populations,
820 pp. 97-101, 2009.

821 Sterner, R. W.: In situ-measured primary production in Lake Superior, J. Gt. Lakes Res. 36, 139-
822 149, 2010.

823 Stuiver, M., and Polach, H. A.: Discussion: Reporting of ^{14}C data, Radiocarbon 19, 355-363,
824 1977.

825 Syvaranta, J., and Rautio, M.: Zooplankton, Lipids and stable isotopes: importance of seasonal,
826 latitudinal, and taxonomic differences, Can. J. Fish. Aquat. Sci. 67, 1721-1729, 2010.

827 Taipale, S., Kankaala , P., Tirola, M., and Jones, R. I.: Whole-Lake dissolved inorganic ^{13}C
828 additions reveal seasonal shifts in zooplankton diet, Ecology 89, 463-474, 2008.

829 Thorp, J. H., and Delong, M. D.: Dominance of autochthonous autotrophic carbon in food webs
830 of heterotrophic rivers? Oikos 96, 543-550, 2002.

831 Tranvik, L. J.: Allochthonous dissolved organic matter as an energy source for pelagic bacteria
832 and the concept of the microbial loop, Hydrobiologia 229, 107-114, 1992.

833 Urban, N. R., Auer, M. T., Green, S. A., Lu, X., Apul, D. S., Powell, K. D., and Bub, L.: Carbon
834 cycling in Lake Superior, *J. Geophys. Res.* 110, C06S90, doi:10.1029/2003JC002230,
835 2005.

836 Urban, N. R., Lu, X., Chai, Y., and Apul, D. S.: Sediment trap studies in Lake Superior: Insights
837 into resuspension, cross-margin transport, and carbon cycling, *J. Gt. Lakes Res.* 30, 147-
838 161, 2004.

839 Wakeham, S. G., McNichol, A. P., Kostka, J. E., and Pease, T. K.: Natural-abundance
840 radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt marsh
841 sediments, *Geochim. Cosmochim. Acta* 70, 1761-1771, 2006.

842 Williams, P. M., Druffel, E. R. M., and Smith Jr , K. L.: Dietary carbon sources for deep-sea
843 organisms as inferred from their organic radiocarbon activities, *Deep-Sea Research* 34,
844 253-266, 1987.

845 Yurista, P. M., Kelly, J. R., and Miller, S. E.: Lake Superior zooplankton biomass: alternative
846 estimate from a probability-based net survey and spatially extensive LOPC surveys, *J. Great
847 Lakes Res.* 35, 337-346, 2009.

848 Zigah, P. K., Minor, E. C., Werne, J. P., and McCallister , S. L.: Radiocarbon and stable carbon
849 isotopic insights into provenance and cycling of carbon in Lake Superior, *Limnol.
850 Oceanogr.* 56, 867-886, 2011.

851 Zigah, P. K., Minor, E. C., and Werne, J. P.: Radiocarbon and stable- isotope geochemistry of
852 organic and inorganic carbon in Lake Superior, *Global Biogeochem. Cycles.* 26, GB1023;
853 doi:10.1029/2011GB004132, 2012.

855 Table 1. Coordinates, sampling depths, hydrologic residence, basin area, and surface areas of the rivers, small lakes, Lake Superior and
856 the Pacific Ocean. nd = not determined or not known.

Aquatic system	Water column condition	Date of sampling	Latitude	Longitude	Water depth (m)	Sampling depth (m)	Hydrologic residence time (years)	Surface area (km ²)	Basin area (km ²)	Basin area / Surface area
Hudson river	Isothermal (mixed)	2004-2005	40°.42 N- 44°.06 N	73 °56 W- 74 °01 W	7	0.2	0.3	760.41	34628.1	45.54*
Bran-de-Scie	Stratified (thermally)	1 Sep 2004	45°.41 N	72 °20 W	8.4	0.5-1	0.026	0.13	26.3	202.31 ⁺⁺
Des Monts	Stratified	8 Sep 2004	45° 40 N	72 °18 W	5.5	0.5-1	0.013	0.26	46.5	178.85 ⁺⁺
Stukely	Stratified	15 Sep 2004	45°38 N	72° 25 W	33.1	0.5-1	4.03	4	20.8	5.20 ⁺⁺
Bowker	Stratified	15 Sep 2004	45 °41 N	72° 22 W	60.4	0.5-1	8.96	2.5	10.9	4.36 ⁺⁺
Fraser	Stratified	28 Sep 2004	45° 39 N	72 °18 W	18.7	0.5-1	0.36	1.6	61.8	38.63 ⁺⁺
Baptism river mouth (BR)	Isothermal	21 Jun 2009	47°33 N	91°19 W	20	0-15	191	82170	127700	1.55
Baptism river mouth (BR)	Stratified	24 Aug 2009	47°33 N	91°19 W	20	0-15	191	82170	127700	1.55
Ontonagon river mouth (ONT)	Isothermal	19 Jun 2009	46°9 N	89°34 W	20	0-10	191	82170	127700	1.55
Nipigon Bay (NB)	Stratified	16 Aug 2009	48°86 N	87°76 W	62	0-50	191	82170	127700	1.55
Western Lake Superior (WM)	Isothermal	20 Jun 2009	47°31 N	89°85 W	171	0-50	191	82170	127700	1.55
Western Lake Superior (WM)	Stratified	23 Aug 2009	47°31 N	89°85 W	171	0-50	191	82170	127700	1.55
Central Lake Superior (CM)	Isothermal	15 Jun 2009	48°03 N	87°74 W	257	0-50	191	82170	127700	1.55
Eastern Lake Superior (EM)	Isothermal	17 Jun 2009	47°56 N	86°65 W	242	0-50	191	82170	127700	1.55
Eastern Lake Superior (EM)	Stratified	15 Aug 2009	47°56 N	86°65 W	242	0-50	191	82170	127700	1.55
Southern Lake Superior (SM)	Isothermal	14 Jun 2009	46°91 N	86°6 W	398	0-50	191	82170	127700	1.55
Southern Lake Superior (SM)	Stratified	19 Aug 2009	46°91 N	86°6 W	398	0-50	191	82170	127700	1.55
Northern Lake Superior (NM)	Isothermal	16 Jun 2009	48°49 N	87°06 W	216	0-50	191	82170	127700	1.55
Northern Lake Superior (NM)	Stratified	16 Aug 2009	48°49 N	87°06 W	216	0-50	191	82170	127700	1.55
Pacific coastal ocean	Stratified	1987	1980,1986, 27°33.0 N;	114°52.3 W; 33°50 N ~30°39'N;	~900	0-20	37000	165200 000	20300000	0.12 ^{**}
North Central Pacific (NCP)	Stratified	1972-1983	31°00'N	159°00W	~5800	0-1700	37000	165200 000	20300000	0.12 [#]
Northeast Pacific (NEP)	Stratified	1975-1977	34°00 N	123°00 W	~4100	0-1500	37000	165200 000	20300000	0.12 ⁺

857 * Caraco et al., 2010,

858 ** Druffel and William 1990 and Druffel and William, 1991,

859 [#] William et al., 1987 and Druffel and William, 1990860 ⁺ William et al., 1987 and Druffel et al., 1996861 ⁺⁺ McCallister and del Giorgio, 2008

862 Table 2. Radiocarbon, stable isotope and atomic C:N ratio of zooplankton (Zoop) and organic and inorganic carbon pools in the
 863 surface waters of Lake Superior. Precision of radiocarbon values is based on analyses of multiple external standards, and those of
 864 stable isotopes are based on replicate sample analyses.

Station and date	$\Delta^{14}\text{C}$ (‰)				$\delta^{13}\text{C}$ (‰)			$\delta^{15}\text{N}$ (‰)		Molar C/N		
	DIC	Zoop	DOC	POC	Zoop	DOC	POC	POC	Zoop	POC	Zoop	
Jun-09 Isothermal	WM	56 ± 4	57 ± 4	49 ± 4	21 ± 4	-29.5 ± 0.3	-26.5	-29.5 ± 0.4	1.7	5.4	7.2	6.4
	CM	61 ± 4	52 ± 4	58 ± 4	-55 ± 4	-29.9 ± 1.1	-25.9	-29.9 ± 0.1	0.1	4.6	7.9	6.2
	EM	59 ± 5	63 ± 3	42 ± 4	-24 ± 3	-30.0 ± 1.0	-26.3	-30.2 ± 0.2	0.1	4.9	7.9	6.7
	SM	62 ± 3	49 ± 3	25 ± 5	34 ± 5	-29.7 ± 0.0	-26.0	-29.8 ± 0.0	0.4	4.2	8	7.1
	NM	52 ± 2	65 ± 4	22 ± 4	34 ± 3	-30.0 ± 1.1	-26.5	-30.4 ± 0.7	0.7	5.4	7	6.2
	ONT	38 ± 2	54 ± 3	-10 ± 3	16 ± 3	-31.2 ± 0.0	nd	-29.5 ± 0.3	-0.6	2.8	9.1	7.7
	BR	54 ± 4	47 ± 4	38 ± 4	14 ± 4	-29.5 ± 1.8	nd	-30.4 ± 0.4	1.1	5.4	9.5	6.5
Aug-09 Stratified	WM	61 ± 3	62 ± 4	51 ± 3	33 ± 4	-30.3 ± 0.9	-26.1	-27.8 ± 0.0	-2.8	3.6	8.4	7.6
	CM	62 ± 3	nd	nd	39 ± 3	nd	-26.0	-28.8 ± 0.5	-2.3	Nd	8.3	nd
	EM	59 ± 4	56 ± 3	54 ± 3	38 ± 4	-30.1 ± 0.5	-26.0	-30.2 ± 1.4	-3.9	3.9	7.6	7.3
	SM	54 ± 4	54 ± 3	27 ± 4	-24 ± 3	-29.4 ± 0.5	-26.0	-28.1 ± 0.0	-2.9	3.4	8.4	6.5
	NM	50 ± 3	61 ± 4	21 ± 3	22 ± 3	-30.4 ± 0.5	-26.1	-28.9 ± 0.0	-2.9	4.4	8.5	8.2
	ONT	56 ± 4	nd	nd	nd	-25.9 ± 0.4	-28.3	-27.2 ± 0.0	-3.7	0.1	8.3	8.1
	BR	60 ± 4	44 ± 3	74 ± 4	7 ± 3	-28.2 ± 0.2	-26.5	-28.4 ± 0.1	-2.7	2.6	8.4	5.8
	NB	36 ± 3	36 ± 4	39 ± 4	-19 ± 4	-31.3 ± 0.8	-26.5	-28.1 ± 0.2	-2	2.4	7.9	8.7

865
866

867

868 Table 3. Proportional median contribution of various food resources to the bulk POM in the water column of Lake Superior. The
 869 Bayesian MixSIR model was used for these calculations with algal carbon from recent photosynthesis, terrestrial POC, sedimentary
 870 carbon, and bacterial biomass as end-members (as described in section 2.4.1). The values in parentheses are the 5% and 95%
 871 confidence percentiles. The regular values are model estimates when corn leaves is used as the terrestrial end member; bold values are
 872 when POC from high flow Amity creek is used as the terrestrial endmember.

Station	Condition	Algal Carbon	Terrestrial POC	Sedimentary OC	Bacterial carbon
CM	Stratified	0.67 (0.59 - 0.75)	0.04 (0.003 - 0.16)	0.24 (0.17 - 0.30)	0.02 (0.002 - 0.09)
		0.67 (0.59 - 0.75)	0.08 (0.01 - 0.30)	0.20 (0.06 - 0.28)	0.02 (0.002 - 0.09)
EM	Isothermal	0.10 (0.05 - 0.14)	0.01 (0.001 - 0.05)	0.87 (0.84 - 0.91)	0.01 (0.001 - 0.04)
		0.11 (0.06 - 0.14)	0.01 (0.001 - 0.04)	0.87 (0.84 - 0.91)	0.01 (0.00 - 0.04)
EM	Stratified	0.81 (0.75 - 0.88)	0.02 (0.001 - 0.07)	0.15 (0.09 - 0.21)	0.01 (0.001 - 0.04)
		0.81 (0.75 - 0.88)	0.03 (0.002 - 0.12)	0.14 (0.06 - 0.20)	0.01 (0.001 - 0.04)
NM	Isothermal	0.85 (0.77 - 0.93)	0.02 (0.001 - 0.06)	0.11 (0.03 - 0.18)	0.02 (0.001 - 0.07)
		0.84 (0.77 - 0.92)	0.03 (0.002 - 0.11)	0.10 (0.02 - 0.18)	0.02 (0.001 - 0.07)
NM	Stratified	0.55 (0.45 - 0.63)	0.05 (0.004 - 0.17)	0.34 (0.27 - 0.40)	0.04 (0.004 - 0.15)
		0.55 (0.42 - 0.63)	0.10 (0.01 - 0.40)	0.28 (0.13 - 0.37)	0.04 (0.003 - 0.15)
SM	Isothermal	0.74 (0.68 - 0.79)	0.02 (0.001 - 0.07)	0.22 (0.16 - 0.28)	0.01 (0.001 - 0.06)
		0.74 (0.68 - 0.79)	0.03 (0.002 - 0.11)	0.21 (0.14 - 0.27)	0.01 (0.001 - 0.06)
SM	Stratified	0.11 (0.03 - 0.15)	0.03 (0.002 - 0.10)	0.84 (0.80 - 0.87)	0.02 (0.001 - 0.07)
		0.11 (0.05 - 0.16)	0.03 (0.002 - 0.12)	0.83 (0.78 - 0.87)	0.02 (0.001 - 0.07)
WM	Isothermal	0.77 (0.71 - 0.82)	0.02 (0.001 - 0.08)	0.18 (0.15 - 0.21)	0.02 (0.001 - 0.06)
		0.77 (0.71 - 0.81)	0.03 (0.002 - 0.10)	0.18 (0.15 - 0.21)	0.02 (0.001 - 0.06)
WM	Stratified	0.60 (0.43 - 0.75)	0.15 (0.01 - 0.42)	0.13 (0.09 - 0.16)	0.09 (0.01 - 0.24)
		0.59 (0.44 - 0.74)	0.19 (0.02 - 0.47)	0.10 (0.02 - 0.15)	0.09 (0.01 - 0.24)

873

874 Table 4. Proportional median contribution of putative food sources to zooplankton biomass in Lake Superior. The Bayesian MixSIR
 875 model was used in computing these values using algal carbon from recent photosynthesis, terrestrial POC, sedimentary carbon, and
 876 bacterial biomass as food options (as described in section 2.4.1). The values in parentheses are the 5% and 95% confidence percentiles.
 877 As in Table 3, the regular values are model estimates when corn leaves is used as the terrestrial end member; bold values are when
 878 POC from high flow Amity creek is used as the terrestrial endmember.

Station	Condition	Algal Carbon	Terrestrial POC	Sedimentary OC	Bacterial carbon
CM	Isothermal	0.88 (0.79 - 0.95) 0.88 (0.80 - 0.95)	0.03 (0.002 - 0.12) 0.04 (0.003 - 0.12)	0.06 (0.01 - 0.12) 0.05 (0.01 - 0.11)	0.02 (0.002 - 0.07) 0.02 (0.002 - 0.07)
EM	Isothermal	0.94 (0.88 - 0.98) 0.95 (0.89 - 0.98)	0.02 (0.002 - 0.08) 0.02 (0.001 - 0.06)	0.01 (0.001 - 0.04) 0.01 (0.001 - 0.04)	0.02 (0.001 - 0.07) 0.02 (0.001 - 0.07)
EM	Stratified	0.92 (0.85 - 0.97) 0.92 (0.86 - 0.97)	0.02 (0.001 - 0.10) 0.02 (0.002 - 0.08)	0.02 (0.002 - 0.06) 0.02 (0.002 - 0.06)	0.02 (0.001 - 0.08) 0.02 (0.001 - 0.08)
SM	Isothermal	0.85 (0.77 - 0.92) 0.85 (0.78 - 0.92)	0.03 (0.003 - 0.12) 0.05 (0.003 - 0.15)	0.07 (0.02 - 0.13) 0.06 (0.01 - 0.12)	0.03 (0.002 - 0.10) 0.03 (0.002 - 0.10)
SM	Stratified	0.90 (0.81 - 0.96) 0.92 (0.84 - 0.97)	0.04 (0.003 - 0.14) 0.03 (0.002 - 0.09)	0.02 (0.001 - 0.06) 0.02 (0.001 - 0.05)	0.03 (0.002 - 0.09) 0.03 (0.002 - 0.10)
WM	Isothermal	0.91 (0.81 - 0.97) 0.92 (0.84 - 0.97)	0.03 (0.003 - 0.12) 0.02 (0.002 - 0.08)	0.01 (0.001 - 0.03) 0.01 (0.001 - 0.03)	0.03 (0.003 - 0.12) 0.04 (0.003 - 0.13)
WM	Stratified	0.95 (0.88 - 0.98) 0.95 (0.89 - 0.98)	0.02 (0.002 - 0.07) 0.02 (0.001 - 0.06)	0.01 (0.001 - 0.03) 0.01 (0.001 - 0.03)	0.02 (0.001 - 0.07) 0.02 (0.001 - 0.07)

879

880 Table 5. Zooplankton allochthony vs. autochthony in Lake Superior based on radiocarbon values of algae (based on DIC) and
 881 terrestrial organic carbon (with radiocarbon of atmospheric CO₂ as the terrestrial endmember). The values in parenthesis are estimates
 882 when the radiocarbon value of POC from high flow Amity creek is used as the terrestrial endmember; nd is not determined due to the
 883 absence of data (not measured or lost during sample processing) or no feasible solution from the model.

Site	Condition	Zooplankton autochthony (%)	Zooplankton allochthony (%)
WM	Isothermal	100 (100)	0 (0)
WM	Stratified	nd	nd
CM	Isothermal	61 (82)	39 (18)
CM	Stratified	nd	nd
EM	Isothermal	84 (92)	16 (8)
EM	Stratified	86 (94)	14 (6)
SM	Isothermal	46 (75)	54 (25)
SM	Stratified	100 (100)	0 (0)

884

885

886

887

888

889 Table 6. Comparison of the radiocarbon signatures of DIC, DOC, POC, and zooplankton in small-to-large surface area aquatic
 890 systems. The Open Lake Superior values are the averages of all the open lake sites during isothermal condition, and during
 891 stratification.

Aquatic system	$\Delta^{14}\text{C-DIC}$	$\Delta^{14}\text{C- DOC}$	$\Delta^{14}\text{C-POC}$	$\Delta^{14}\text{C-Zoop}$	$\Delta\Delta^{14}\text{C}$ (DIC-Zoop)	$\Delta\Delta^{14}\text{C}$ (POC-Zoop)	Reference
	(‰)	(‰)	(‰)	(‰)	(‰)	(‰)	
Hudson river	-57 ± 14	40 ± 9	-145 ± 27	-236 ± 25	179 ± 29	91 ± 37	Caraco et al., 2010
Bran-de-Scie	37 ± 3	14 ± 5	115 ± 3	11 ± 4	26 ± 5	104 ± 5	McCallister and del Giorgio, 2008
Des Monts	52 ± 3	73 ± 3	111 ± 4	40 ± 3	13 ± 4	71 ± 5	McCallister and del Giorgio, 2008
Stukely	37 ± 4	93 ± 4	179 ± 4	29 ± 4	8 ± 6	150 ± 6	McCallister and del Giorgio, 2008
Bowker	-0.4 ± 3	76 ± 4	74 ± 4	-2 ± 4	1 ± 5	76 ± 6	McCallister and del Giorgio, 2008
Fraser	-90.9 ± 3	101 ± 4	106 ± 4	10 ± 6	-101 ± 7	96 ± 7	McCallister and del Giorgio, 2008
Baptism river mouth (BR)	54 ± 4	38 ± 4	14 ± 4	47 ± 4	7 ± 6	-33 ± 6	This study
Baptism river mouth (BR)	60 ± 4	74 ± 4	7 ± 3	44 ± 3	16 ± 5	-37 ± 4	This study
Ontonagon river mouth (ONT)	38 ± 2	-10 ± 3	16 ± 3	54 ± 3	-16 ± 4	-38 ± 4	This study
Nipigon Bay (NB)	36 ± 3	39 ± 4	-19 ± 4	36 ± 4	0 ± 5	-55 ± 6	This study
Open Lake Superior (isothermal)	58 ± 4	39 ± 4	2 ± 3	57 ± 4	-1 ± 5	-49 ± 5	This study
Open Lake Superior (stratified)	56 ± 4	38 ± 3	17 ± 4	58 ± 4	-2 ± 5	-41 ± 5	This study
Pacific coastal ocean	100 ± 4	-200	100	76 ± 5	24 ± 6	24 ± 5	Druffel and Williams, 1991; Druffel and Williams, 1990
North Central Pacific (NCP)	132	-200	139 ± 9	124 ± 46	8	15	Williams et al., 1987; Druffel and Williams, 1990
Northeast Pacific (NEP)	155	-200	82	86 ± 40	69	-4	Williams et al., 1987; Druffel et al., 1996

892 FIGURE LEGENDS

893 Figure 1. Map of Lake Superior showing sampling sites across the lake. The open lake sites
894 include western station/mooring (WM), central mooring (CM), northern mooring (NM),
895 eastern mooring (EM), and southern mooring (SM). The nearshore sites are off Baptism River
896 (BR), off Ontonagon River (ONT), and off Nipigon Bay (NB).

897

898 Figure 2. $\Delta^{14}\text{C}$ values for DIC, Mesozooplankton, DOC, and POC samples in (A) the
899 isothermal lake in June, and (B) the stratified lake in August 2009.

900

901 Figure 3. $\Delta^{14}\text{C}$ values for DIC, Zooplankton, DOC, and POC samples in (A) selected small
902 lakes that includes Bran-de-Scie (Br), Des Monts (De), Stukely (St), Bowker (Bo), and Fraser
903 (Fr) Lakes, and (B) sites in the Pacific Ocean that includes Pacific coastal ocean (PC), North
904 Central Pacific (NCP), and North Eastern Pacific (NEP). Data adapted from William et al.,
905 1987, Druffel and William, 1990, Druffel and William, 1991, Druffel et al., 1996.

906

907 Figure 4. The relationship between $\Delta^{14}\text{C}$ of zooplankton and (A) $\Delta^{14}\text{C}$ of DIC, and (B) $\Delta^{14}\text{C}$
908 of POC. These comparisons show that the radiocarbon signatures of zooplankton are largely
909 determined by those of DIC, and hence algal carbon from recent photosynthesis within the
910 lake. For Lake Superior, two points, the average isothermal values and average stratification
911 values, were used in order to not bias the trends.

912

913 Figure 5. Relationship between the difference of $\Delta^{14}\text{C}$ values of DIC and Zooplankton, and
914 (A) ratio of basin area to lake surface area, and (B) hydrologic residence time of the various
915 lakes. Although marginally significant correlation ($p = 0.08$) between $\Delta\Delta^{14}\text{C}_{\text{DIC-Zoop}}$ and

916 hydrologic residence time, these two plots generally illustrate that zooplankton support by
917 allochthonous organic carbon is related to variables that indicate terrestrial influence.

918

919 Supplementary Figure 1: CTD data of sampling sites in Lake Superior showing the depth
920 profiles of temperature, beam transmission (Wetlab CStar,%), fluorescence (Wetlab Wetstar,
921 mg/m³), dissolved oxygen, and wet CDOM (Wetlab CDOM, mg/m³) in the mixed water
922 column in June and stratified condition in August.

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

Figure 1.

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

Figure 2.

955

956

957

958

Figure 3.

Figure 4.

974 Figure 5.

975
 976
 977
 978
 979
 980
 981
 982