
The authors would like to thank the Reviewer for the very helpful comments and suggestions. 
We will take them into consideration in the revised manuscript and we will insert the flow-chart 
as suggested. Moreover, we will modify some figures according to the Reviewer’s suggestion. 
Finally, we would like to respond to some individual points: 
 
>What is about the uncertainty of different model-data fusion approaches 

Model-data fusion (MDF) relies on the combination of models with observational constrains 
through an optimization approach. In this way, model parameters, model states and their 
respective uncertainties can be estimated, conditional on the data.   
MDF requires assumptions about the data and how to define the "cost function" (e.g. likelihood 
function, etc.) that is the basis of optimization. Different assumptions lead to different cost 
functions and therefore to different optima.  
Here, we used the least square cost function (i.e. sum of squared error) assuming that data are 
homoscedastic and with gaussian errors. Different cost functions can be used with different MDF 
approaches that can be classified as follow (Williams et al., 2009): 1)  “Global search” 
algorithms (e.g. Metropolis or Metropolis Hastings, genetic algorithms); 2. “Gradient-descent” 
algorithms (e.g. Quasi-Newton methods, Levenberg-Marquardt), “Sequential” algorithms (e.g. 
Kalman filter). An intercomparison of MDF algorithms is presented in Fox et al., (2009). 
In this work we chose a "Global search" method (i.e. Metropolis algorithm) although the same 
cost function could be used with other approaches (down-gradient methods). Getting stuck in a 
local minimum is an important potential source of uncertainty and there is no algorithm yet 
developed that is guaranteed to find the global optimum. Here, we ran the optimizations several 
times, with different starting points, to verify that we were finding the global optimum. 
Metropolis is known to be good at avoiding being trapped in local minima because allows for 
changes in the searching direction. For these reasons, for phenological research Metropolis is a 
widely used method (e.g. Chuine et al, 1998, Schaber and Badeck 2003 among the others). 
 
Page 888 line 12 and 13 authors wrote” around 2.0” and in line 23 “around 6.0” whereas in 
the table 3 you put <2.0 and <6.0. Please explain those numbers and the use of those numbers in 
more detail. 
 

We have included in the text a description of the ΔAICc values as follow: if the difference, 
ΔAICc, is zero or very small, both models are essentially equally likely to be the best model. If 
ΔAICc is ~ 2.0, then the model with the lower AICc is almost three times more likely to be best. 
If, however, ΔAICc  is ~  6.0, then the model with the lower AICc is about 20 times more likely 
to be best . Then, in Tables 3 we classified each model according to the difference between its 
AICc and the one of the best model. Models were classified as models with ΔAICc <2 (models 
considered as equal or up to 3 times worse than the best), models with 2<ΔAICc<6 (essentially 
models with very low probability to be considered good as the best) and model with ΔAICc>6  
(poor models compared to the best). For more detail on the use of the AIC we refer to Anderson 
et al., (2000).  

 
Page 889 line 22 explain shortly the Sen‘s slope estimation  
 



The Sen’s slope estimator (Sen, 1968) is a non-parametric procedure for estimation of trend 
magnitude for univariate time-series with monotonous trends and no seasonal or other cycles in 
the data (no autocorrelation in the time series). However, Yue et al., (2002) proposed a method to 
minimize the influence of autocorrelation on the ability to detect trends with non parametric 
methods. 
Non-parametric methods are preferred to parametric methods (i.e. regression analysis: regression 
slope) because no assumption is made regarding the probability distribution of data while 
parametric tests assume normally distributed variables (homogeneous variance) and 
homoscedastic. 
The second advantage is its robustness to outliers or to abrupt breaks due to inhomogeneous time 
series (Hirsch et al. 1982).   
The Sen's Slope estimates the slope of a time series computing slopes for all the pairs of ordinal 
time points and then uses the median of these slopes as an estimate of the overall slope. Here, we 
used the Sen’s slope estimator to assess the slope (or magnitude) of trends in bud-burst dates. 
We will add this clarification and a short description of the method in the Materials and Methods 
section providing to the readers more references. 
 
Fig. 2a? Explain more why the bud burst date overlap sometime e.g. in the 2070s. Where the 
warmer scenario show a delayed onset!?  
 
This can be explained by the convergence of temperatures simulated by the two different 
scenarios and the interaction between photoperiod limitation and temperature for the warmer 
scenario (A1fi). Figure 2a shows that around 2070 the temperature of the Scenario A1fi 
decreases while the scenario B1 report particularly high mean temperatures in that period. The 
convergence of temperatures modeled by the two scenarios is very likely the reason of the 
overlapping between bud-burst dates simulated for the two scenarios. 
 
Fig. 3 legend is not understandable. I do not know what represent a and what are the bars for?  
 
We will improve the legend of this figure. Grey bars represent the average budburst dates across 
species (Fig 3a) and the average budburst for each species (Fig 3b).   
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