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Abstract. We present a method to calibrate and validate observational models that interrelate re-

motely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of

remote sensing observation of visible and microwave radiations and geophysical data are assembled

and subdivided into calibration (Cal) and validation (Val) data sets. Each Cal/Val pair is used to de-

rive the coefficients (from the Cal set) and the accuracy (from the Val set) of the observation model.5

Combining the results from all Cal/Val pairs provides probability distributions of the model coeffi-

cients and model errors. The method is generic and demonstrated using comprehensive matchup sets

from two very different disciplines, soil moisture and water quality. The results demonstrate that the

method provides robust model coefficients and quantitative measure of the model uncertainty. This

approach can be adopted for the calibration/validation of satellite products of land and water surfaces10

and the resulting uncertainty can be used as input to data assimilation schemes.
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1 Introduction

Observation models are widely used for estimating geophysical variables of land and water

surfaces from remote sensing data. The simplest form is the empirical linear model, whereby

coefficients are derived from regressing measured geophysical variables with observed radiation.15

In most cases, these empirical models have some physical meaning and are often used because of

their simplicity. Examples of land remote sensing applications are available from active/passive

microwave remote sensing of soil moisture (e.g. Njoku et al., 2002). Similarly, water quality

applications uses
:::::
make

:::
use

:::
of

:::
the Lambert-Beer law to model the spectral absorption of light by

suspended and dissolved materials as a linear function of their concentrations (D’Sa and Miller,20

2005; Robinson, 2004). Currently, such strategies are proposed for NASA’s Soil Moisture Active

Passive (SMAP) mission combined radar/radiometer soil moisture product (Entekhabi et al., 2010),

the Netherlands automated monitoring network (IN PLACE: Integrated Network for Production

and Loss Assessment in the Coastal Environment), and the NASA Moderate Resolution Imaging

Spectroradiometer (MODIS) mission ocean color products (McClain et al., 2004). This type of25

model is developed from comprehensive sets of concurrent remote sensing observations and field

measurements, hereafter referred to as matchups. Ideally, the validity of any model is tested against

an independent data set. Therefore, the available matchups are often subdivided into independent

sets used for derivation of the model coefficients (calibration) and for accuracy assessment

(validation). Most studies subdivide matchups into so-called Calibration/Validation (Cal/Val) sets30

based on a statistical or regional resemblance (Devlin et al., 2008), but without a clear directive on

its effect for model accuracy. This is most likely the case because there is until now no objective

approach for subdividing Cal/Val sets. Many combinations of matchups can be used, specifically

when using a large number of points. Each Cal/Val pair has the same probability of occurrence,

but provides different results. As such, the selection procedure not only impacts the model’s35

accuracy, but also the accuracy assessment. On the other hand, the selection of Cal/Val pairs can

also be thought of as a stochastic sampling from a known probability distribution (e.g. Wang et al.,

2005; Salama and Stein, 2009). Such stochastic treatment of matchups within the Cal/Val context

has not yet been investigated in the field of earth observation, but has the advantage of providing

a quantitative uncertainty measure for both the model coefficients and derived geophysical variables.40

In this paper we follow a stochastic approach for selecting Cal/Val sets and demonstrate its use

for quantifying uncertainty. The
:::::::
proposed

::::::::
approach

:::::::::
combines

:::
the

:::::::::::
bootstrapping

:::::::
method

::
of

:
Efron

and Tibshirani (1993)
::::
with

:::
the

:::::::::
Jackknife

::::::::
technique

::::::
(which

::::::
leaves

:::
out

::::
one,

:::
or

:::::
more,

:::::::::::
observation)

:::
and

:::::
adapt

:::
the

:::::::
sample

::::
size

::
at

:::::
each

::::::::
iteration.

:::::::::::::
Bootstrapping

::::
and

::::::::
Jackknife

::::::::
methods

:::
are

:::::::
usually45

::::
used

::
to

:::::::
provide

:::
the

:::::::
standard

:::::
error

::
of

:::
the

::::::
derived

::::::
”plug

:::
in”

::::::::
estimates (Efron and Tibshirani, 1993)

:::
and

::::
have

:::::
been

::::::::
employed

:::
for

:::::::::
validating

::::::::::
observation

:::::::
models (e.g. Richardson et al. , 2005; Petus

et al., 2010; Melin , 2010; Salama and Su , 2010)
:
.
::::::::

However
::::

the
::::::::::
combination

:::
of

::::::::::::
bootstrapping
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::::::
without

:::::::::::
replacement

::::
with

:::::::::
Jackknife

::::::::
sampling

:::
and

:::::::::
changing

:::
the

::::::
sample

::::
size

:::
at

::::
each

::::::::
iteration

::
is

::::
novel

::::
and

:::::::
provides

:::
not

::::
only

:::
the

::::::::
accuracy

::
of

::::::::::::::::
regressed-estimates

:::
but

::::
also

:::
the

:::::::::
underlying

::::::::::
probability50

:::::::::
distribution

::
of

::::::::::::::::
regressed-estimates

::::
and

::::
their

::::::
errors.

:::
The

:
developed method samples from a complete matchups set to populate many sets of Cal/Val

pairs. Each pair is used to derive the model coefficients and their associated errors, from which

the probability distributions of the calibration and validation result is determined. In this paper the55

method is demonstrated for two data sets: i- L-band (1.6 GHz) backscatter (σ◦) - soil moisture

matchups collected during the 2002 OPE3 (Optimizing Production Inputs for Economic and En-

vironmental Enhancement) campaign (Joseph et al., 2010b,a), and ii- matchups of chlorophyll-a

concentrations and derived absorption coefficients obtained from the NASA bio-Optical Marine Al-

gorithm Data (NOMAD, version 2a.) (Werdell and Bailey, 2005).60

2 Data sets

2.1 Land Application - Soil Moisture

The 2002 OPE3 campaign focused on the active and passive microwave remote sensing of soil mois-

ture throughout the corn growth cycle. Part of the field activities consisted of weekly C- (4.75 GHz)

and L- (1.6 GHz) band σ◦ measurements with the NASA/George Washington University (GWU)65

truck-mounted scatterometer. Further in support of these remote sensing observations, an extensive

ground sampling was conducted that included soil moisture. Full details on the data sets collected

during the field campaign can be found in Joseph et al. (2010b,a). Here, we only make use of the 75

matchups between the L-band HH polarized σ◦ observed from a 35◦ view angle and the measured

soil moisture; hereafter referred to as the OPE3 matchups. The σ◦ observations are corrected for70

vegetation effects through application of method described in Joseph et al. (2008), which results in

the σ◦ representative for a bare soil surface. Many studies (e.g. Ulaby et al., 1984; Champaign and

Faivre, 1997; Njoku et al., 2002) have demonstrated the following linear relationship between soil

moisture and σ◦ observed under the same land cover conditions,

sm= aσ◦+b (1)75

where, sm is the soil moisture content (m3 m−3), a is the slope (m3 m−3 dB−1) representing the σ◦

sensitivity to soil moisture, and b is the offset (m3 m−3) accounting for the baseline effects, such as

surface roughness, topography, land cover. Both the σ◦ sensitivity to soil moisture and the baseline

effects depend on the sensing configuration (e.g. wavelength, polarization, view angle) as well as

the land surface (e.g. surface roughness, land cover, topography).80
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2.2 Water Application - Chlorophyll-a Absorption

The NASA bio-Optical Marine Algorithm Data (NOMAD, version 2a.) set includes measurements

of spectral remote-sensing reflectances, spectral marine absorption and backscattering coefficients,

and concentrations of water constituents (Werdell and Bailey, 2005). Here, we use only chlorophyll-a

(Chla) measurements derived from high performance liquid chromatography (HPLC). The observed85

radiance spectra and matching HPLC-derived Chla concentration consist of 424 matches, hereafter

referred to as the NOMAD matchups. The general practice is to derive the absorption coefficients

from the observed radiance spectra using semi-analytical inversion models(e.g. Van Der Woerd and

Pasterkamp, 2008; Maritorena et al., 2002). Lambert-Beer law is then employed to estimate the ab-

sorption per unit mass from derived absorption coefficients and measured concentrations.90

The Chla absorption coefficients at the blue band (λ0 = 440 nm) are derived from the observed

radiances using the cross entropy method as reported in Salama and Shen (2010). Following the

Lambert-Beer law, the absorption coefficient of Chla is described as a linear function of the concen-

tration (D’Sa and Miller, 2005, Eq.10),

achla(λ0)= a∗chla(λ0)Cchla+δ(λ0) (2)95

where, achla(λ0) is the absorption coefficient of Chla (m−1) at the wavelength λ0 (nm); a∗chla(λ0) is

the specific absorption coefficient which describes the absorption per unit weight (m2.mg−1); Cchla

is the concentration (mg.m−3); δ(λ0) is an offset related to sensor noise, retrieval error of achla(λ0),

(m−1) and the ratio of accessory pigments that are produced in different conditions of growth (nu-

trients and irradiance), e.g. ”xantines” that acts as sun protection.100

The two unknowns in Eq. 2, a∗chla(λ0) and δ(λ0), are estimated from regressing achla(λ0) versus

Cchla using linear-regression model. In practice Eq. 2 could deviate from linearity depending on

the packaging effect, cell sizes, physiology and species composition of the phytoplankton commu-

nity (Bricaud et al., 1995). For example, the effect of packaging on the variability of a∗chla(λ0) is

smaller in open oligotrophic oceans than in upwelling regions or coastal areas where larger phy-105

toplankton cells are abundant. Hence, the deviation of Eq.2 from linearity can then be understood

based on the water body investigated. The linearity of Eq.2 for the used data sets is justified in

section 4, Fig.1-b.

3 Method

The method randomly subdivides the data into many sets
::
(or

::::::::
Jackknife

:::::::
samples)

:
of Cal/Val pair. The110

Cal set is used to derive the coefficients of the observation model, whereas the Val set is employed

to check the accuracy of the model. The results are probability distributions of model coefficients

and their prediction uncertainties.

The Cal/Val sets are derived from the n available matchups following two rules: i-, both Cal and
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Val sets must contain at least 7 samples (kmin =7) and ii-, each sample is used once, either for115

calibration or for validation .
::::
(i.e.

::::::::
sampling

:::::::
without

::::::::::::
replacement).

:
The minimum sample size,

(kmin = 7), is selected, according to the method of Cohen et al. (2003), to achieve a 35% (e.g.,

desired level of accuracy for satellite derived Chl-a McClain et al., 2006; Bailey and Werdell, 2006)

of error in the derived slope at 95% of confidence.

120

The number of Cal/Val pairs is computed as nr=n−2kmin::::::::::::::::
nr=n−2kmin+1. Now, for each

i= [kmin,n−kmin] the method forms a Cal/Val pair by increasing/decreasing the number of data

points in the sets
:::::::
(forming

:::
the

:::::::::
Jackknife

::::::
sample). The number of possible combinations, npci, for

the ith Cal/Val pair is,

npci =

 n

ki

=
n!

ki!(n−ki)!
(3)125

where n is the total number of data points, ki is the number of samples in the Cal or Val set during

the ith iteration. For data sets with, n> 20, (holds for both the OPE3 and NOMAD matchups),

the number of possible combinations (npci) is large (e.g. 1.9848 E9 for 75 over 7 in OPE3), and

therefore npci is reduced to the number of used combinations, nuci, by selecting
:::::::::::
bootstrapping

nuci =10lognpci combinations from npci. In principle each combination nuci has the same prob-130

ability of occurrence, therefore the uniform distribution is used to select nuci unique combinations

from npci (bootstrap method of Efron and Tibshirani, 1993)). Each formed Cal/Val set is used for

the calibration and the subsequent validation of the empirical model. The validation is always per-

formed using type-II model (Bevington and Robinson, 2003), while the calibration depends on the

model, e.g. for linear model we use the type-I regression. The accuracy of the empirical model is135

assessed using two statistical measures: i-, the mean absolute error between derived and measured

values (MAE) and ii- the coefficient of determination
:::::::::::
determination

:::::::::
coefficient

:
(R2). The algo-

rithm produces three probability distributions (PDs), two for the calibration coefficients, PDc, and

one for the accuracy measure, PDv. The above method (called GeoCalVal) is implemented in the

following steps
::::::
model,

:::::
called

:::::::::
GeoCalVal:140

1. Take ki samples for the Cal set and n−ki for the Val set;

2. Compute npci from equation 3 and nuci =10lognpci;

3. Use the uniform distribution to generate nuci unique combinations of Cal sets and their com-

plements for Val sets;

4. Compute model coefficients from the calibration set and store them in PDc;145

5. Use the new model coefficient to estimate the geophysical variables from the Val set;

6. Compute the uncertainty of step 5 and store them in PDv;
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7. Increase ki by one and repeat steps 1 to 7.

GeoCalVal
:::::
model

:
is developed in MATLAB 2011a, The MathWorks, and the code is available from

the authors upon request.150

4 Results and discussions

The coefficients of determination

4.1
:::::::
Optimal

::::::
Cal/Val

:::::
pairs

:::
The

::::::::::::
determination

:::::::::
coefficients, R2,

:
of the Cal set are plotted against those of the Val set in Fig.1 for

all possible combinations. The data point position with respect to the X axis is an indication for the155

ability of the model to fit the matchups of the Cal set, whereas its position with respect to the Y axis

represents the model’s performance in deriving the geophysical variables, here soil moisture and

Chla absorption coefficient (achla(λ0)). Obviously, both the Cal and Val R2 depend on the number

of data points, reaching their maxima when all data points are included, which suggests for the Cal

sets that the used observation models in Eq. 1 and Eq. 2 are indeed linear.160

Both OPE3 and NOMAD matchups produce a narrow region of Cal/Val pairs, for which the calibra-

tion R2 is similar to validation R2; about 0.75-0.85. In other words, within these Cal/Val subdivi-

sions the model validity and the accuracy assessment are balanced. However, it is important to note

that the
::::
This

::::::
region

::::::
defines

:::
the

::::::
optimal

::::::
setups

:::
for

::::::::::
subdividing

::::::::
matchups

:::
into

:
Cal/Val pairs included

:::
sets.

::::
The

::::::::::
underlying

:::::::::
mechanism

::
of

:::
the

::::
data

::::::
points in this region are random. For example, the first165

five sets Cal,Val with the highest R2 in this region are 59, 16; 25, 50; 24,51; 21,54; 9,66for the

OPE3 and 116, 308; 353, 71; 349,75; 193,231; 324,100for the NOMAD matchups. From this we

can conclude that an optimal setup for subdividing matchups into
::::::::::
investigated

::::::
further.

:::
We

:::::
found

::::
that

::
the

:::::::
optimal

:::::::
Cal/Val

:::
sets

::::
are

:::::::
obtained

:::::
when

:::
the

:::
the

:::::::::
arithmetic

:::::
mean,

:::
µ,

:::
and

::::::::::
dispersion,

::
σ,

::
of

:::::
each

::
set

:::
are

:::::
equal

::
to

:::::
those

::
of

:::
the

:::::::
original

::::
data

:::
set.

::::
As

::::
such,

:::
the

:::::::
optimal

:
Cal/Val sets can not be defined170

a priori. The only objective approach is by evaluating all possible combination sets as is proposed

through the GeoCalVal method.
::::
pair

::::::
satisfies

:::
the

:::::::::
following

::::::::
condition:

:

µcal =µval =µdata,
:::::::::::::::

AND
::::

σcal =σval =σdata,
:::::::::::::::

(4)

:::::
where

:::
the

::::::::
subscripts

:::::
cal,

::::
val

::::
and

:::::
data

:::
are

:::
for

:::
the

::::::::::
calibration,

::::::::
validation

::::
and

:::::::
original

::::
data

::::
sets,

::::::::::
respectively.

:
175

7



4.2
:::
The

::::::::::
underlying

::::::::::
distribution

Fig.2 shows the derived probability distributions (PDs) of model coefficients, PDc, and the associ-

ated uncertainties, PDv, for the two matchup sets, OPE3 and NOMAD. The resulting PDs of model

coefficients have high kurtosis (acute peak around the mean) values and flat tails, i.e. more prone

to outliers. Different values of kmin were tested (not shown) and the results shows that all derived180

PDs from both data sets (OPE3 and NOMAD matchups) can be described by the t-location-scale

probability distribution (the black lines in Fig.2) of the form (Evans et al., 1993),

f =
Γ(0.5ν+0.5)

σ
√
νπΓ(0.5ν)

[
1+ν−1

(
x−µ

σ

)2
]−(0.5ν+0.5)

(5)

where, µ, σ and ν are the mean, standard deviation and shape factor (or the degree of freedom) re-

spectively. The Gamma function Γ is equivalent to the factorial function n! extended to non-integral185

arguments. The distribution in Eq.5 means that the standard variates of the data points follow the

Student t distribution. The function in Eq.5 is fitted to the distributions of derived model coefficients

and MAEs by varying the parameters µ, σ and ν, which are listed in Table 1 with their standard

errors.

The reason for having flat tails in the PDs of Fig.2 is due to the fact that the accuracy of model190

coefficients depends on the size of the Cal set. In other words, for a large Cal set we expect to have

higher accuracy as most data points are used, however this makes them also sensitive to outliers

in the Val set, because most of the data points have been used to create the Cal set. For a linear

observation model the t-probability density function should, thus, be employed to describe the

distributions PDc and PDv, regardless of the original distribution of geophysical measurements or195

remote sensing observations. For example, the NOMAD matchups set has a log-normal distribution,

while OPE3 is close to uniform distribution (not shown here) for measurements, residuals and

observations. Yet, the distribution of derived coefficients follows
:
, for both data setsEq.3.

:
,
:::::
Eq.5.

::::
This

::
is

:::::::
basically

::
a
:::::::::::
confirmation

::
of

::::::::
pervious

::::::::
statistical

::::::
studies

::::::
where

::::
they

::::
show

::::
that

:::
the

:::::::::
normality

:::::::::
distribution

::
is
::::

not
::::::
always

::
a
::::
valid

::::::::::
assumption

:::
for

::::::
linear

::::::
models

::::
and

:::
the

::::::::::::
t-distribution

::
is

:::::::
broader200

:::
and

::::::::
therefore

::::::
better

:::::
suited

:
(Singh , 1988).

::::
In

:::
this

:::::::
regard,

::::::
having

::::
the

:::::
result

:::
of

:::
our

:::::::::
sampling

::::::
scheme

::::::::::
reproducing

::::
the

:::::::::::
t-distribution

::
is

:::::::
another

:::::::::
validation

::
of

:::
the

::::::::::
correctness

::
of

::::
the

::::::::::
GeoCalVal.

:::
The

::::::::
proposed

:::::::
method

:::::::
reveals

:::
the

::::::
shape

::
of

::::
the

:::::::::
underlying

::::::::::
probability

::::::::::
distribution

:::::::
without

::::
any

::::::
a prior

::::::::::
assumption

:::
on

::
its

::::::::::
parameters

:::::
(e.g.

:::::::
degree

::
of

:::::::::
freedom).

:::::
For

:::::::::
non-linear

:::::::
models

:::::
there

:
is
:::

no
:::::::::::::

straightforward
::::::::::

theoretical
::::::::::::
approximation

:::
of

:::
the

::::::::
expected

::::::::::
probability

::::::::::
distribution.

:::
If
::::

we205

:::::
would

::::::
follow

:::
the

::::::
theory,

::::
we

:::::
would

:::::
have

:::
no

::::::
means

::
to

::::::
justify

:::
our

::::::::::
assumption

:::
on

:::
the

::::::::::
underlying

:::::::::
probability

:::::::::
distribution

::::
and

::
its

::::::::::
parameters.

::::
The

::::
only

:::::::
objective

::::::::
approach

::
is

::
by

:::::::::
evaluating

:::
all

:::::::
possible

::::::::::
combination

:::
sets

:::
as

:
is
::::::::
proposed

:::::::
through

:::
the

:::::::::
GeoCalVal

:::::::
method.
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4.3
:::::
Effect

::
of

::::::
sample

::::
size210

:::::
Fixing

:::
the

:::::::
number

::
of

::::::::
sampling

:::::
points

::::
will

:::::
result

::
in

:::
PD

::::
with

:::::
lower

::::::::
Kurtosis,

:::
i.e.

:::
the

:::
PD

::::
will

::
be

::::
less

::::::
peaked.

:::::
That

::::::
means,

:::::::
adapting

:::
the

::::::
sample

::::
size

::::
will

:::::::
increase

:::
the

::::::::
accuracy

::
of

:::
the

::::::
derived

::::::::::
parameters

:::::
(slope

:::
and

::::::::
intercept

::
in

:::
this

:::::
case),

::
as

:::
the

:::::::::
dispersion

::::
will

:::
also

:::
be

:::::::
reduced.

::::
The

:::::::::
importance

::
of

::::::::
adapting

::
the

::::
size

:::
of

:::
the

:::::::
sample

::
is

::::::
related

:::
to

:::
the

::::::::
common

:::::::
practice

::
in
::::::::::

calibration
::::
and

::::::::
validation

:::
of

:::::
earth

:::::::::
observation

::::::::
products.

:::::
Here

:::
we

::::::
search

:::
for

:::
the

:::::::
optimal

:::::::
division

::::::
(thus,

::::::
sample

::::
size)

:::
of

:::
the

:::::::
Cal/Val215

:::
sets

::::
such

::::
that

:::
the

::::
Cal

:::
set

::::::::
produces

:::::::::
EO-model

::::::::::
coefficients

:::
that

::::::
enable

:::
in

:::::::::
generating

:::
EO

::::::::
products

::::::::
(estimated

:::::
from

:::
the

:::
Val

:::
set)

::::
with

::
an

::::::::
accuracy

::::::::
satisfying

:::
the

:::::::
mission

:::::::::::
requirements.

::::::
Hence,

::::
one

::
of

:::
the

::::::::
statistical

::::::::
questions

::::::::
addressed

:::::
within

:::
our

::::::::::
manuscript

::
is:

::::
what

::
is
:::
the

::::::::
minimum

::::::
sample

::::
size

::::::
needed

:::
for

:::::::::
calibrating

:::::::::
observation

::::::
models

:::
so

:::
that

::
it

:::::::
produces

:::
EO

::::::::
products

:::::
within

:::
the

::::::::
designed

::::::
mission

::::::::
accuracy

:::
and

:::::
within

:::
the

::::::::
accuracy

::
of

:::
the

:::::::::
calibration

:::::
itself?

::::
This

:::::::
question

:::
can

::::
only

:::
be

:::::::
answered

::
if
:::
we

::::::
change

:::
the220

::::::
sample

:::
size

:::
and

:::::
study

:::
it’s

:::::
effect

::
on

:::
the

::::::::
accuracy

::
of

:::::::::
calibration

:::
and

::::::::
validation

::
as

::::::
shown

::
in

:::::
Fig.1.

:::::
Thus

:::::::::
GeoCalVal

::::::
makes

:::
use

::
of

:::
the

:::::
more

::::::::::
complicated

::::
and

::::::::::::::
computationally

:::::::::
demanding

::::::::
sampling

:::::::
scheme

::::::
because

::::
only

:::::::
through

::::
this

:::::::
approach

:::
we

:::
can

::::::::
quantify

::
in

::
an

::::::::
objective

::::::
manner

:::
the

:::::::
optimal

::::::
sample

::::
size

:::
and

:::
the

::::::
optimal

:::::::
division

:::
of

:
a
::::
data

::
set

::::
into

:::
Cal

::::
and

:::
Val

:::::
pairs.

4.4
:::::::::
Application

:::
of

:::
the

::::::::::
GeoCalVal

:::::
model225

The detailed knowledge on the PDs of uncertainties and uncertainty sources embedded within the

remote sensed geophysical variable (shown in Fig.2) can be used as input for data assimilation

schemes (Reichle, 2008). On the other hand, these PDs can also be employed to derive the prob-

ability distribution of uncertainty within the remote sensing observations itself, i.e. one PD per

observation. The relationship between measurements and observations is described by a model of230

the form, Y= f (Φ,X), in which Φ is the set of n model coefficients, Φ= [ϕ1,ϕ2...ϕn], X is the set

of m geophysical measurements (with m>n) and Y is the corresponding remote sensing observa-

tions. Assuming that the fluctuations in the measured quantity, X, and derived model coefficients Φ

are uncorrelated, we approximate the second moment using the truncated Taylor series expansion,

σ2
y =w2

xσ
2
x+

n∑
i=1

w2
ϕi
σ2
ϕi

(6)235

where, w is the partial derivative of Y with respect to the measurements X and each model coeffi-

cient, ϕi. The terms σ2 are the corresponding variances. For the linear model Y = a×X+ b, the

uncertainty in Eq.6 becomes σ2
y = a2σ2

x+x2σ2
a+σ2

b. The coefficient a and the uncertainties terms

σ2
a and σ2

b are quantified from the derived probability distributions of model coefficients, PDc. Mea-

surements uncertainty, σ2
x, is either assumed (e.g. NOMAD matchups) or estimated from available240

measurements (e.g. OPE3). In the NOMAD data set the concentrations of Chla were estimated us-

ing high-performance liquid chromatography (HPLC) method. Many studies (Claustre et al., 2004;

Hooker et al., 2005) found that the error in HPLC estimation of Chla, on average, varies between 7%

9



and 25%. On the other hand, each observation site in the OPE3 data set contains 21 soil moisture

measurements. The standard deviation of these measurements, per observation, can be used as a245

proxy for σx.

Estimated values of σx, a, σa and σb form the inputs to Eq. 6 to produce the PD quantifying the

uncertainty of each remote sensing observation. This results in a PD of uncertainty per data point

which has
∑nr

i nuci number of samples, i.e. number of all used combinations. It should, however,

be noted that this uncertainty should not be confused with observation errors associated with remote250

sensing retrievals, which included also other components (e.g. model goodness-of-fit and inversion

uncertainty).

5 Conclusions

In this paper we present a method, GeoCalVal ,
:::
the

:::::::::
GeoCalVal

:::::
model

:
for an objective selection of255

calibration/validation data sets to assess the performance of observation model for geophysical vari-

ables. All
:::::::::
GeoCalVal

::::::::
combines

::::
two

:::::::::
traditional

::::::::::
re-sampling

:::::::
methods

::::::::::::
(bootstrapping

::::
and

:::::::::
Jackknife)

:::
and

:::::
adapt

:::
the

:::::::
sample

::::
size

::
at

:::::
each

:::::::
iteration.

::::::
This

::::::::::
combination

:::
of

::::::::::::
bootstrapping

::::
with

:::::::::
Jackknife

:::::::
sampling

::::
and

::::::::
changing

:::
the

:::::::
sample

::::
size

::
at

::::
each

::::
test

:::::::
iteration

::
is
::::::

novel
:::
and

::::::::
provides

:::
not

::::
only

::::
the

:::::::
accuracy

::
of

:::::::::::::::::
regressed-estimates

:::
and

:::::::::
associated

:::::
errors

:::
but

::::
also

::::
their

:::::::::::
underlaying

:::::::::::
distributions.

::::
The260

:::::::::
GeoCalVal

::::
tests

::
all

:
probable combinations of Cal/Val setup are tested resulting in

:::
and

::::::::
considers

:::
the

:::::
effect

::
of

:::::::
changing

:::
the

::::::
sample

::::
size

::
on

:::
the

::::::::
accuracy

::
of

::::::::::::::::
regressed-estimates.

::::
The

:::::::::
end-results

:::
are proba-

bility distributions of model coefficients (calibration) and uncertainties in the estimates (validation).

The method

:::::::::
GeoCalVal is applied to two matchups sets, which shows that:265

– GeoCalVal, provides an optimal setup for subdividing matchups into Cal/Val sets;

– The coefficients and associated uncertainties of linear observation models follow the t-location

scale distribution, i.e the distribution of their standard variate follows the Student t distribution;

– The derived PDs provide complete information on the variations of model coefficients, their

uncertainties and the accuracy of observations, that can be employed in time series analysis270

and data assimilation schemes;

– The
::::::
optimal

:::::::
Cal/Val

:::
sets

::::
are

:::::::
obtained

:::::
when

:::
the

::::
the

::::::::
arithmetic

::::::
mean

:::
and

:::::::::
dispersion

::
of
::::

the

::::::
Cal/Val

:::
sets

:::
are

:::::
equal

::
to

:::::
those

::
of

:::
the

:::::::
original

::::
data

:::
set;

–
:::
The

:
presented method is applicable to any data set and can be adjusted to any observation

model regardless of the application area, e.g. water quality or surface hydrology.275
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Fig. 1. Coefficients of determination
::::::::::
Determination

:::::::::
coefficient,

:::
R2, between measured and observed values of:

(a) soil moisture and (b) Chla absorption coefficient. The solid line is the 1:1 reference line.
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Fig. 2. Derived probability distributions of model coefficients (a, b, d, e) and associated uncertainties (c, f) for

the OPE3 data (upper panels) and NOMAD matchups (lower panels). The solid lines are the fits by Eq.5 with

coefficients given in Table 1.
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Table 1. Estimated parameters of the best fit t-location-scale distribution to model coefficients and MAE

uncertainties. The degree of fit is expressed in standard error.

OPE3 matchups

µ σ ν

slope [m3.m−3.dB−1] 34.0870 1.3729 2.7342

standard error 0.0160 0.0186 0.0882

intercept [m3.m−3] -26.5426 0.2137 2.7668

standard error 0.0025 0.0029 0.0887

MAE [m3.m−3] 0.0244 0.0025 3.3380

standard error 3E-05 3E-05 0.1128

NOMAD matchups

µ σ ν

slope [m2.mg−1] 0.0304 0.0013 1.9722

standard error 2.6E-6 3E-6 0.0085

intercept[m−1] 0.0195642 0.00128274 2.3505

standard error 2.6E-06 3E-06 0.0114

MAE [mg.m−3] 0.6043 0.0534 3.4957

standard error 0.0001 0.0001 0.02012
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