Reply to comments on Braakhekke et al, Modeling the vertical
soil organic matter profile using Bayesian parameter estimation,
Biogeosciences Discussions, 2012

General comments

We thank the reviewers for their constructive comments, which often focussed on very detailed and
technical aspects of the study. They have contributed to a great improvement of the paper.

Due to an error in the measurement data for Hainich, the calibrations needed to be rerun. For these
reruns we followed reviewer #1’s suggestion in comment 2.3, and used a different likelihood function, in
which the uncertainty of the model residuals is integrated out. This is described in section 2.4.1 of the
revised manuscript. The calibrations for both sites were rerun using this new likelihood function. The
calibration results for Loobos were virtually identical to those presented previously. For Hainich there
were several differences but the tenor of the results stayed the same. The most important differences
are: (i) the minimum misfit of the modes. Mode B is now more clearly favourite, while for the mode
C the misfit has become comparatively larger. (ii) the modeled advective fluxes for mode B are now
more strongly overestimated compared to the measured DOC fluxes.

In 2011 an similar version of this manuscript was published in Biogeosciences discussions (Vol. 8,
7257-7312, 2011). We refer to this document in several places as the 2011 version of the manuscript.

Reply to review 1 by B. Scharnagl
Specific comments

2.1 Both reviewer #1 and #2 commented on the definition of the likelihood in Bayes theorem
(Eq. 6). However, their advice is conflicting (also with the advice of reviewer #1 of the 2011
manuscript). Furthermore, review of literature shows that there is in general no consensus on
the exact formulation of Bayes’ theorem (Mosegaard & Sambridge, 2002, Inverse Problems, 18,
R29-R54; van Oijen et al., 2005, Tree Physiology 25, 915-927; Tarantola, 2006, Inverse Problem
Theory). We follow the suggestion of reviewer #1 with the modification of writing probability
as lower case p, as reviewer #2 suggested, which is customary for probability density functions:

p(0|0) = ¢ p(0) p(0O|0).

2.2 The reviewer criticised our choice for a log-normal likelihood function for the Bayesian calibration,
as described in section 2.4.1. We must first note that the description of the likelihood function in
the manuscript as a log-normal distribution was incorrect. Rather, we used a normal distribution
for the log of the measurements (except for the 2!°Pb_ ), which is not the same. Nevertheless,
this still implies a right-skewed likelihood function for the model residuals of the untransformed
variables. We agree with the reviewer that normally distributed model residuals is the natural
starting point for most calibration exercises. However, we have several reasons to expect that a
log transformation is appropriate in our case and chose to do so again in the reruns. Our reasons
are as follows:

1. All of the observed variables are expected to have right-skewed distributions because they
cannot be less than zero and have large variances due to spatial heterogeneity. The measure-
ment error coming from other sources (e.g. the C/N analyser) may be normally distributed,
but these errors can be assumed to be negligible compared to the spatial variation. Analysis
of measurements from a large campaign at Hainich with 100 cores (Schrumpf et al., 2011 Bio-
geosciences, 8, 1193-1212) confirms this for the organic carbon stocks and mass fractions, and
shows that the distributions become closer to normal when a log transformation is applied.
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Figure 1: Example of how an improper posterior distribution can result from using a normal likelihood
function for the modeled C stock using a simple soil carbon model. The model estimates the steady
state C stock as C' = T/;, where I is the litter input and k the decomposition rate. The left graph
shows the likelihood function used for the steady state C stock (C ~ N(1,0.5)), and the right graph
the resulting posterior distribution for k using I = 1 and a uniform prior on the positive reals.

2. In the new calibrations we treated the soil carbon mass fractions and effective decomposition
rate coefficients in the mineral soil as one data stream with the same variance. Since these mass
fractions show clear heteroscedasticity, taking the log is required to obtain similar variance
for all depths.

3. There is a theoretical reason to apply a log transformation, which relates to our use of a first-
order decomposition model. In such models the decomposition rate coefficients are in general
inversely proportional to the modeled soil carbon quantity. For a simple one-pool model, a
carbon stock of zero can only be produced for an infinite decomposition rate coefficient, if litter
input is larger than zero. This means that using a likelihood function that does not approach
zero at zero carbon stock yields an improper posterior distribution for the decomposition rate,
that does not asymptotically approach zero at infinity, if an uninformative prior is used (see
Fig. [1). SOMPROF is obviously much more complex than this example, but it does lend
theoretical support to our choice for applying the log transformation because the resulting
likelihood function for the untransformed variables approaches zero at zero carbon stock.

Although we agree with the reviewer that posterior checking of the assumptions concerning the
distribution of the model residuals is prudent, this is difficult in our case. Since the residuals
for the different data streams are expected to be differently distributed (see also next point, and
section 2.4.1 of the revised manuscript), checking the distribution would have to be performed
separately for each data stream. However, per data stream there are very few data points
available. Checking the distribution of the residuals for all replicate measurements would be
possible, but this distribution would be determined by the distribution of the replicates (which
we already know), not the modelling error.

Section 2.4.1 has been revised and we extended section 2.3.1 to explain our reasons for the log
transformation.

2.3 The reviewer rightfully pointed out that o used in the likelihood function (section 2.4.1) refers
to the variance of the model residuals, not the observations. By using the standard deviation
of the observations for ¢ we pretend that our model is perfect, which is usually not true. For
the reruns we followed the reviewers suggestion of using a modified likelihood function where the
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Figure 2: Comparison of posterior distributions for Loobos, calibration setup 3. The green line shows
the conditional distributions derived with the previous likelihood function for given values of o equal
to the standard deviation of the measurements. The red line shows the marginal distribution over all
values of o.

2.4

unknown sigma is integrated out based on the uninformative Jeffreys prior. The new results for
Loobos are virtually identical to those of the previous runs (Fig. [2). (For Hainich the new results
cannot be compared with the previous runs because different observations were used; see general
comments above.) This shows that the modelling error has limited influence on the distribution
of the model residuals in our case. Several reasons may be put forward for this.

First, as explained in section 2.4.1 of the manuscript, replicate measurements from different soil
cores were used individually to calculate the sum of squares. However, for most data streams
these were all compared with only one model prediction, hence the spread of the model residuals
is fully determined by the spread of the replicate measurements, which was already accounted
for in our previous approach. The exception to this are the profile variables (mineral soil C and
210pp,, fractions), for which measurements at several depth levels were included. But the fit to
this data is generally quite good (see Fig. 5 in the manuscript), i.e. modelling error is relatively
small.

Second, the number of estimated parameters is relatively large compared to the number of
observations, which partially explains the poor constraint on some the model parameters. This
is likely to cause over-fitting, which means the modelling error is small. On the other hand, the
spatial heterogeneity of soil carbon stocks and fractions is notoriously large, which is expressed by
the spread of the replicate measurements. Therefore, the spatial uncertainty is likely to dominate
distribution of the residuals.

The reviewer commented on the use of the correction factor which accounts for the effects of
generating samples in log- or logit-transformed space (Appendix A2). The introduction of the
Jacobian of transformation follows from the rules for change of variables for probability density
functionsﬂ It can easily be demonstrated by generating a large random sample of numbers z
from a uniform distribution on any interval, and plotting a histogram of exp(z), which follows
1/z. We improved the explanation in Appendix A2 and we included a reference to Box and Cox
(1964).

The description in the previous version of the manuscript was misleading because it implied we
did not apply the correction factor for calibration setup 3, which is not true. For all calibrations
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we sampled in transformed space and we applied the Jacobian correction. However, in calibration
3 the correction factor cancels out with factors in the log- and logit normal probability density
functions which were used as priors. For example, the log-normal distribution is defined as:

and the correction factor in case of a log transformation is equal to . Thus we simply used the
corresponding normal distribution for the log of the parameter, without the % factor. Essentially,
we modified the prior such that it already included the correction factor. Since this is trivial to the
description, we shortened it and simply stated we used the correction factor for all calibrations.

We did not refer to the correction factor as the “Hastings factor”. The confusion may have been
caused by the fact that we previously (in the 2011 version of the manuscript) termed it such and
because we denoted it by “J”, which is often used to indicate the Hastings factor. The Jacobian
correction could, however, be construed as such since the Hastings factor is introduced to account
for an asymmetric proposal distribution. A normal proposal distribution in e.g. log-space, leads
to a log-normal proposal distribution in untransformed space, which is asymmetric. Nevertheless,
to avoid further confusion we changed the symbol to .

2.5 The reviewer commented on the misfit quantity, used to compare the modes, as described in
section 3.2 and table 3. The caption of table 3 and the description in the text were indeed
incorrect. The misfit function is defined as the negative log density of the unnormalized posterior,
hence a minus sign was missing in the formula. This was corrected and the explanation in section
3.2 was extended (see also reply to point 5 of reviewer 2). For normal likelihood functions and
priors, the misfit can be interpreted as a weighted sum of squared residuals against observations
and prior parameter estimates (Tarantola, 2006, Inverse Problem Theory, p.36). In our case this
interpretation does not hold, but it is still a valid statistic to compare the modes.

2.6 The reviewer asked about the usefulness of the effective decomposition rate observations, in
the context of this research. It is difficult to assess the information content of the effective
decomposition rate measurements without performing a separate calibration study without these
observations, which is outside the scope of this study. However, we believe that this information
is important for constraining the decomposition rates of the organic matter pools. As can be seen
in Figs. 4 and 7 (and Fig. 7 in the supplementary material), the marginal posterior distribution
of the decomposition rate coeflicient for the dominant pool LS is much more tightly constrained
for Hainich (mode B) than for Loobos. It is likely that this is largely due to the presence of the
effective decomposition rate measurements for Hainich, because in the deep soil, this pool almost
completely determines the model prediction for this variable. Furthermore, for Loobos we see
strong correlations between ks, arr,—rs and v (supplementary Fig. 6), which indicate that the
formation, loss and transport of this pool cannot be constrained individually. For Hainich these
correlations are less strong, which is presumably also caused by the effective decomposition rate
observations. It also suggests that through the correlation structure these observations can also
help to constrain other parameters.

It is true that these measurements involve considerable efforts. However, we believe that when
studying vertically explicit soil carbon cycling these measurements are worth the effort. We
added additional discussion related to this question to section 4.3.

Technical corrections

Unless otherwise mentioned all suggestions were followed.

p-11270 1.16 The reviewer asked about the factor used to artificially inflate the variance of the posterior
as described in appendix A3 and the caption of Supplement Fig 2. (now Fig. 3). The paragraph



in appendix A3 describes the initial “exploratory” runs intended to search for multiple modes.
The run performed for Supplement Fig. 2. (now Fig. 3) was a separate run meant to demonstrate
that the multi-modality is not an artifact of the sampling, in view of the comments from the
reviewers of the 2011 version of this paper. For this run we did not want to inflate the variance
of the posterior more than necessary to sample over all modes.

Reply to review 2
Specific comments

1. The reviewer commented on the definition of Bayes theorem in Eq. (6). The advice of the
reviewers #1 and #2 on the formulation of the likelihood conflicts. We chose the following
compromise: p(0]0) = ¢ p(6) p(0|0). See also discussion of point 2.1 in the reply to review #1,
above.

2. The reviewer commented on the statement that an analytical solution of the posterior does not
exist for our study in section 2.4 (now in section 2.4.3). We followed the reviewers suggestion
and moved all discussions about the MCMC algorithm to section 2.4.3, which is now a general
section on Monte Carlo simulations, both inverse and forward. Furthermore, we added a sentence
to explain more clearly why an analytical expression of the posterior is not available.

3. The reviewer commented on the choice of a log-normal model for the likelihood function described
in section 2.4.1. In the reruns a different likelihood function was used. This is discussed in the
reply to point 2.3 of reviewer #1 and in section 2.4.1 of the revised manuscript. Note that for
most data streams the measurements were log-transformed for the calibrations. Our reasons for
this are discussed in the reply to point 2.2 of reviewer #1.

Concerning the formulation of the likelihood function, in the revised manuscript we use the
proportionality symbol to express the likelihood function, which means the normalizing constant
can be omitted (Gelman et al., 2004, Bayesian data analysis, Ch. 1).

4. The reviewer pointed out that the several parameters for Loobos are poorly constrained by the
data while this is only noted for several of them, in section 3.1. This is correct. The text has
been modified.

5. The reviewer commented on the definition of the misfit, as described in section 3.2 and Table 3.
The misfit was indeed incorrectly defined, both in the text and in the caption of Table 3. This
has been corrected, and we followed the reviewers suggestion of adding an exact definition of this
quantity. See also reply to point 2.5 of reviewer #1.

6. The reviewer pointed out that Table 2 needs more explanation on the prior distributions and
upper bounds of the parameters. Additional information has been added.

7. The reviewer pointed out the conflict between Fig 3. and Table 2. related to the upper bound
of parameter v. Fig 3. has been corrected.

8. The reviewer commented on the used of the correction factor in the calculation of the posterior
density in appendix A2. This section has been modified. See also reply to point 2.4 of reviewer

#1.

Technical corrections

All suggestions were followed.



Reply to review 3
Specific comments

1. The reviewer asked why an average annual cycle was used to force the model (section 2.1.1),
rather than using the full time series of data that were available.

We must first note that since we did not use time series measurements in the calibration, we had
no constraints on the dynamic behavior of the model over time, only of the model state at the
end of the simulation. It is true that inter-annual variability of the forcing may affect organic
carbon stocks over long time scales. The reviewer is correct in stating that this could have been
somewhat better accounted for, had we used the full time series of measurements available to us.
Our reasons for not doing so were as follows:

— The time series of forcing data (litter fall and soil temperature and moisture) available to
us spanned different time periods and had many gaps. Using the full time series would be
difficult and require harmonizing the of the different variables and performing gap filling.

— Our main reason for considering the seasonal cycle was to account for variability in the
forcing data. The seasonal (intra-annual) variability typically represents the largest part of
this variation. Over the complete length of the simulation the inter-variability is presumably
much larger (particularly for Hainich), but the time series of the forcing measurements
provides little information about this. The uncertainty that results from using the same
annual cycle over the whole simulation is discussed in section 4.6.

— Test simulations where we used a constant average annual values for the forcing gave very
similar results compared to runs with an average annual cycle. This shows that even the
seasonal climate fluctuations do not have large effects on the model results.

Section 2.1 has been extended to more clearly explain our choice for an average forcing cycle of
one year.

2. The reviewer pointed out that the vertical distribution function of root litter input for Loobos
discussed in section 2.2.1 should be better explained. The root litter distribution used for Loobos
was not derived by fitting to a data set, since no suitable measurements were available for this site.
Rather, the function was based on information from Janssens et al. (2002, Forest Ecology and
Management, 168: 231-240) for the Brasschaat site in Belgium which is very similar to Loobos.
Furthermore, personal communication from I. Janssens and J. Elbers, helped to establish the
vertical distribution function. In the study for the 2011 version of this paper all root input was
distributed according to the function used for understorey which is very shallow. The results of
this study suggested that liquid phase transport of organic matter was mainly responsible for
the OM in the deep soil but we realized this could have been caused by the fact that we ignored
deep litter input by the pine roots. Hence, we modified the distribution function to account for
this. Despite the different distribution, very similar results were obtained, which strengthens our
conclusions concerning the role of liquid phase transport at Loobos. We modified section 2.2.1
to better explain background of this function.

Technical corrections

Unless otherwise mentioned all suggestions were followed.

P 11247 1L13-15 The reviewer asked about the lower boundary conditions for the diffusion-advection
model. These are described at the end of the paragraph.

P 11284, Fig 1 The reviewer pointed out that diffusion can also lead to upward transport, which is not
shown in Fig 1. This is correct. Although net transport will in general be downward, diffusion
in principle also lead to upward transport. We added additional arrows to Figure 1. to indicate
this.



Reply to short comment by O. Dilly

The commenter asked for better representation of the soil profile measurements at both sites. We added
a table with all the information used in the calibration to the supplementary material (Supplement Tab.
1), as well as a graph depicting the measured soil carbon stocks and mass fractions (Supplement Fig.
2). For additional information about the Hainich site we refer to Schrumpf et al. (2011, Biogeosciences,
8, 1193-1212).



