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Abstract   18 

Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between 19 

environmental drivers and carbon dynamics in these forests remain poorly understood. This limited 20 

understanding is partly a result of the challenges associated with in situ flux studies.  Tower-based CO2 21 

eddy covariance (EC) systems are installed in only a few mangrove forests worldwide and the longest EC 22 

record from the Florida Everglades contains less than 9 years of observations.  A primary goal of the 23 

present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency 24 

in this forest.  These tower-based observations represent a basis for associating CO2 fluxes with canopy 25 

light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger-26 

scale investigations.  We present a model for mangrove canopy light use efficiency utilizing the enhanced 27 

green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) 28 

that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance 29 

and changes in regional environmental conditions, including temperature and salinity. Model parameters 30 

are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration 31 

(RE), and we present the first-ever tower-based estimates of mangrove forest RE derived from night-time 32 

CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 33 

uptake, which declines 5% per each 10 parts per thousand (ppt) increases in salinity.  Light use efficiency 34 

in this forest declines with increasing daily photosynthetic active radiation, which is an important 35 

departure from the assumption of constant light use efficiency typically applied in satellite-driven models.  36 

The model developed here provides a framework for estimating CO2 uptake by these forests from 37 

reflectance data and information about environmental conditions. 38 

  39 
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1 Introduction 40 
Mangrove forests have received significant attention recently due to an increased recognition of the role 41 

these systems play in global carbon (C) cycles (Donato et al., 2011).  However, compared to terrestrial 42 

systems, the processes that regulate ecosystem-atmosphere carbon dioxide (CO2) fluxes, including gross 43 

primary productivity (GPP) and ecosystem respiration (RE), are not well understood. Tower-based, eddy 44 

covariance (EC) measures of the net (i.e., GPP-RE) ecosystem-atmosphere CO2 exchange (or NEE) in 45 

conjunction with continuous measurements of environmental variables were started only recently 46 

compared to terrestrial systems (see Barr et al., 2010) and remain extremely rare. These observations 47 

show that canopy-scale CO2 fluxes are influenced by stressors that are unique to mangrove forests, 48 

including periodic flooding and variable soil pore-water salinity. Using these EC data to calculate canopy-49 

level light use efficiency (LUE, defined as GPP divided by incoming photosynthetic active radiation (PAR)) 50 

will improve our understanding of C cycling in these forests.  Modeling canopy-level LUE in relation to 51 

PAR and ground-based scalars in turn provides a first step towards using satellite reflectance data to 52 

define the larger role these forests play in both regional and global C budgets. However, typical LUE 53 

models developed for terrestrial systems do not account for the unique factors that influence C dynamics 54 

in tidal forests, and new approaches are needed. 55 

 For all plant communities, including mangrove forests, the net ecosystem carbon balance (NECB, or 56 

the C accumulating in plants and soils (Chapin et al., 2006)) can be estimated using the following 57 

expression: 58 

        (1) 59 

where FDIC, FDOC, and FPOC are the net lateral exchanges of dissolved inorganic C (DIC), organic C 60 

(DOC), and particulate organic C (POC).  All terms in equation (1) are expressed in g C m-2 t-1. Negative 61 

NEE values represent a loss of C from the atmosphere, and negative F values represent C loss from the 62 

ecosystem. In terrestrial systems with minimal F, positive nighttime NEE values are considered a proxy 63 

for RE. Compared to terrestrial systems, mangrove forests are characterized by low nighttime NEE, large 64 

daytime –NEE values and large -F (Barr et al., 2012). However, comprehensive in situ measures of 65 

mangrove forest C dynamics that simultaneously account for both vertical C fluxes (i.e., NEE) and lateral 66 

C fluxes (F) have not been attempted.  Continuous and long-term estimates of FDIC, FDOC, and FPOC 67 

usually do not exist.  Instead, lateral C fluxes are ordinarily determined only during short-term intensive 68 

field campaigns (e.g., Romigh et al., 2006; Alongi et al., 2004; Souza et al., 2009; Mayorga et al., 2005).  69 

In the absence of these measurements, nighttime, tower-based NEE estimates in many mangrove forests 70 

cannot be used as a direct proxy for RE as they are in terrestrial systems, since the actual ecosystem-71 

scale respiratory CO2 fluxes in tidal systems will also include respiratory fluxes derived from F transported 72 

outside of the EC footprint.  Non-standard methods for calculating RE and, therefore, GPP are required in 73 

mangrove forests utilizing EC. 74 

 Monteith (1966, 1972) first proposed the concept of relating GPP to PAR through a light use 75 

efficiency term,  or multiplicative efficiency terms.  Light use efficiencies describe the process of solar 76 

NECB NEE FDIC FDOC FPOC
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irradiance transmission through the atmosphere, light absorption by green vegetation, and photosynthetic 77 

CO2 assimilation by foliage.  Light use efficiency terms in ecosystem models (e.g., Xiao et al., 2004; Cook 78 

et al., 2008; Potter, 2010) are calculated in a two-step process.  First, functional relationships are 79 

established between environmental drivers, such as temperature and water stress that regulate 80 

physiological functioning and thus GPP.  A second step is to determine how much of the incident solar 81 

irradiance is absorbed by photosynthetic active green vegetation.  Useful proxies for the process of light 82 

absorption by vegetation can be determined using remote sensing information (Zhao and Running, 2008). 83 

In one of the first attempts to incorporate remote sensing information into ecosystem models, Tucker et al. 84 

(1983) estimated the productivity of grasslands using the normalized difference vegetation index (NDVI) 85 

from the Advanced Very High Resolution Radiometer (AVHRR) aboard polar orbiting platforms.  Several 86 

other models have been tested and validated using relationships between remote sensing information 87 

and ground-based C flux data (Heinsch et al., 2006; Turner et al., 2006; Zhao et al., 2005). More recently, 88 

Chen et al. (2010) applied the enhanced vegetation index (EVI) as input into a vegetation photosynthesis 89 

model (VPM, Xiao et al., 2004) to take advantage of the high return frequency (1-2 per day) of the 90 

Moderate Resolution Imaging Spectroradiometer (MODIS) and the increased spatial resolution (30-m) of 91 

LANDSAT.  However, the usefulness of satellite reflectance-driven models such as these developed for 92 

simulating terrestrial GPP, such as the MODIS GPP product 93 

(http://modis.gsfc.nasa.gov/data/dataprod/nontech/MOD17.php) has not been determined for mangrove 94 

forests.  These types of models are needed to better integrate estimates of mangrove forest CO2 95 

assimilation patterns across tropical and subtropical coastal zones into global-scale C balance 96 

calculations.  Therefore, the objectives of this study are: 1) to calculate RE and GPP in a tidal mangrove 97 

forest using a novel application of EC-based estimates of NEE, 2) to parameterize and test a model of 98 

daily canopy GPP and LUE driven by satellite reflectance data, and 3) to compare these GPP estimates 99 

to the MODIS GPP product for this location. 100 

 101 

2 Methods 102 

2.1 Site description and meteorological and eddy covariance measurements 103 

The study site (25.3646 oN, 81.0779 oW), located within Everglades National Park, is near the mouth of 104 

the Shark River and ~4 km from the Gulf of Mexico (Fig. 1).  The onsite 30-m eddy covariance tower is 105 

co-located with long-term monitoring sites operated by the Florida Coastal Everglades Long Term 106 

Ecological Research (FCE LTER, site SRS6) program and the US Geological Survey (site SH3).  Around 107 

the tower site, the dominant mangrove species include Rhizhophora mangle, Avicennia germinans, and 108 

Laguncularia racemosa, and their maximum heights reach about 19 m.  Meteorological measurements 109 

and EC observations to determine NEE have been made since 2003 at a height of 27 m.   110 

 During October 2005, the forest experienced a major disturbance caused by Hurricane Wilma.  The 111 

disturbance caused major defoliation of the forest and tree mortality, with 25 % of stems >1.5 m in height 112 

being destroyed by the hurricane winds (Barr et al., 2012).  Following Hurricane Wilma, instruments were 113 
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deployed on a new 30-m tower with renewed measurements beginning in November 2006 (Barr et al., 114 

2012).  Continuous meteorological measurements are recorded as 1-minute averages on data loggers 115 

(model CR3000, Campbell Scientific, Inc., Logan, UT), and stored in files saved at 30-min intervals in a 116 

laptop computer located on site.  High frequency (10 Hertz) EC data are stored directly on the laptop 117 

computer for subsequence processing to derive 30-min average fluxes (using Matlab code, The 118 

Mathworks, Inc., Natick, MA), following the protocols employed by scientists associated with the 119 

AmeriFlux network (http://public.ornl.gov/ameriflux/index.html).  Data gap-filling procedures were 120 

implemented to produce continuous time series.  Additional details for site characteristics and data 121 

processing protocols are provided in Barr et al. (2010) and Barr et al. (2012). 122 

 123 

2.2 Partitioning NEE into RE and GPP 124 

Estimates of ecosystem respiration (RE; mol CO2 m
-2 s-1) are needed to calculate GPP (mol CO2 m

-2 s-125 
1), which is defined as GPP = -NEE + RE.  In tidal mangrove forests equipped with EC, nighttime NEE can 126 

be considered as a proxy for nighttime RE only when the sediment surface is exposed to the atmosphere 127 

during low tides. NEE represents the EC-derived CO2 flux at a height of 27 m plus the amount of CO2, 128 

stored in column of air below this height since the previous time step.  This storage was estimated from 129 

the change in CO2 mixing ratio at the infrared gas analyzer level of 27 m (Barr et al., 2010).  When the 130 

sediment surface is inundated during a flood tide, a fraction of the CO2 respired by soil, roots, and detritus 131 

is dissolved in the overlying water column and transported into the adjacent estuary as DIC during the 132 

subsequent ebb tide.  Therefore, tower-based nighttime NEE ≠ RE when the surface is inundated.  To 133 

correct for this effect in our calculations of GPP, non-linear least squares regression analyses were 134 

performed to express nighttime RE as a function of air temperature, TA (after Reichstein et al., 2005) using 135 

only valid NEE values determined when the sediment surface was exposed (Fig. 2).  Regression 136 

analyses of nighttime NEE as a function of TA during high tides show significantly different relationships 137 

than at low tide and are included in Fig. 2 for comparison. High tide data were excluded from our 138 

calculations and the function relating low-tide RE to TA was used to gap-fill these periods.   Data gaps 139 

occurring when the EC system was not operating, or when there was insufficient turbulence and when the 140 

flux footprint included large contributions from adjacent rivers (Barr et al., 2010) were also filled using this 141 

function.  The RE function in (2) includes both an Arrhenius-type activation component and a high 142 

temperature deactivation response.  143  ܴா = ܴாଶ ݔ݁	 ቆܧ ቀ ଵ்ೃಶಷି బ் − ଵ்ಲି బ்ቁቇ ቀ1 + ሺܧ൫ݔ݁ ܶ − ܶሻ൯ቁ൘      (2) 144 

The RE20 (µmol (CO2) m-2 s-1) represents the ecosystem-level respiration rate at the reference air 145 

temperature, TREF, which is set as 293.15 K.  This RE20 value differs from the more common reference 146 

temperature of 283.15 K (Lloyd and Taylor, 1994) because it is a closer approximation of the minimum 147 

temperature range frequently observed in this forest.  Also, the RE was related to air temperature rather 148 

than the more prevalently used soil temperature (Lloyd and Taylor, 1994).  The use of air, rather than soil 149 
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temperature was justified by considering the sources contributing to RE.  Foliage respiration alone can 150 

contribute 73% of the total RE during low tide periods at night (Barr et al., 2010).  Measurements of soil 151 

respiration in relatively undisturbed mangrove forests throughout the Caribbean, Australia, and New 152 

Zealand (Lovelock, 2008) suggest that soils contribute less respired CO2 to RE compared to that of above 153 

ground sources. However, the fractional contribution of the soil to RE may increase as a result of 154 

hurricanes or other disturbances.  Soil respiration increased by 18% in a dry tropical forest in Mexico one 155 

year following disturbance from Hurricane Wilma (Vargas and Allen, 2008). 156 

 In (2), the Eo (K) and ED (K) parameters are temperature-dependent activation energy and 157 

deactivation sensitivity, respectively.  The To (K) also accounts for changes in activation energy 158 

associated with variations in temperature.  Its expected values range between 0 K and observed air 159 

temperature (Lloyd and Taylor, 1994).  The TD (K) term is the temperature at which deactivation occurs, 160 

and represents a unique feature in this study that explicitly accounts for a reduction in respiration above a 161 

threshold temperature.  The deactivation term, represented by the denominator in (2), has the same 162 

functional response to high temperature (>35 C) as relationships describing foliage carboxylation and 163 

dark respiration rates (Campbell and Norman, 1998).  The response of RE to temperature is a dynamic 164 

process, and consequently the fitted characteristics in (2) are expected to change seasonally.  To capture 165 

such variability in respiratory responses, values of RE and regression characteristics (e.g., RE20, E0, T0, 166 

ED, TD) were determined for a 3-day moving window using nighttime data during low tide periods from a 167 

15-day centered window.  Similar to the findings of Reichstein et al. (2005), a window size of 15 days was 168 

sufficiently long to provide adequate data and temperature range for performing the non-linear regression 169 

of (2) and short enough to minimize the confounding seasonal changes in respiration response.  During 170 

each 3-day period, the relationship in (2) was used to compute half-hourly daytime RE, and half-hourly 171 

GPP values were computed as the difference between RE and daytime NEE (i.e., GPP = -NEE+RE).  Half-172 

hourly values of GPP (mol C m-2 s-1) were summed as shown in (3) to provide daily GPP and 8-day 173 

average values in units of mol C m-2 per day.  This 8-day time step matches that of the MODIS product 174 

and removes noise in the daily data while retaining seasonal trends. The coefficient of 0.0216 in (3) 175 

converts units of mol CO2 m
-2 s-1 to g C m-2 per each 30-min flux averaging interval. 176 

 177 
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GPPGPP          (3) 178 

 179 

2.3 Albedo, EVI, and MODIS GPP 180 

We investigate seasonal changes in canopy structural properties using two measures of canopy 181 

reflectance: albedo and EVI.  The surface albedo (Fig. 3a) was estimated as the ratio of reflected to 182 

incoming solar irradiance measured above the canopy.  The adjusted albedo was estimated as the 183 

average of albedo values for the periods when the solar elevation angle ranged between 35 and 50 184 
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degrees. This adjustment was necessary to remove the influence of changing daily solar elevation angles 185 

over the course of the study. 186 

 The MODIS EVI product was used to examine seasonal patterns in the mangrove canopy reflectance 187 

properties.  It is well established (Huete et al., 2002; Jiang et al., 2008) that the EVI data are more reliable 188 

compared to NDVI in environments with high biomass content.  For this study, the EVI data (Fig. 3b) were 189 

obtained from the MOD13A1 product (EOS; http://modis.gsfc.nasa.gov/).  The mangrove flux tower site is 190 

included in grid h10v06, with a 500-m spatial resolution.  Using GIS (Geographic Information System) 191 

software (Matlab Mapping Toolbox, The Mathworks, Inc., Natick, MA), the 16-day composite average EVI 192 

values for the pixel corresponding to the flux tower site and the 8 adjacent pixels were extracted for the 193 

period 2000 to 2011.  This 9-pixel domain approximates the extent of the EC measurement footprint (see 194 

Fig. 1 in Barr et al., 2010).  The MODIS GPP product, MOD17A2 (https://lpdaac.usgs.gov), was also 195 

extracted from grid h10v06 for comparison with estimated and modeled GPP in this study.  MODIS GPP 196 

represents a 16-day composite average with a 1-km spatial resolution.  Values were averaged for the 197 

pixel corresponding to flux tower site and 4 adjacent pixels included within the measurement footprint and 198 

not centered over water. 199 

 200 

2.4 LUE modeling framework 201 

The mangrove vegetation photosynthesis light-use efficiency model (MVP-LUE) presented here is based 202 

on the production efficiency modeling (PEM) framework (Prince and Goward, 1995; Running et al., 1999; 203 

Running et al., 2000).  It has the basic form of 204 

 205 

  fPARPARGPPLUE g     /         (4) 206 

where LUE (mol C (mol photons)-1) is calculated as the ratio of 8-day sums of GPP to PAR (mol (photons) 207 

m-2).  The g is a quantum efficiency (mol C (mol photons)-1) that describes conversion of incident PAR 208 

into gross primary production specific to the irradiance incident on green vegetation.  fPAR (unitless) is 209 

the ratio (8-day average) of PAR absorbed by green vegetation to total incident PAR determined above 210 

the vegetated landscape.  Previous modeling studies suggested that fPAR linearly increased with EVI 211 

(Xiao et al., 2004) or NDVI (Goetz et al., 1999; Schubert et al., 2010).  However, in the present study, 212 

fPAR increases in response to increasing EVI as determined from the 500-m spatial resolution data 213 

according to: 214 

EVImEVIefPAR     1           (5) 215 

where mEVI determines the initial slope of fPAR response to increasing EVI.  The rate of increase in 8-day 216 

average fPAR to increasing EVI diminishes and is dependent on the value of mEVI.  We found that the 217 

observed quantum LUE of the mangrove ecosystem approaches some optimum efficiency, 0 (defined as 218 

the light conditions when maximum NEE is attained). The 0 is not known a priori and must be determined 219 

from an optimization procedure.  Most of the time, environmental conditions are less than optimal, and 220 
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therefore g is often less than 0.  The g represents a multiplicative chain of efficiencies (Monteith, 1972) 221 

where each f  term in the chain accounts for a reduction in quantum LUE below 0. 222 

 Several variables contribute to reducing the quantum efficiency in this forest.  The first is elevated 223 

foliage temperature resulting from air temperatures (TA > 303 K) which elicit sub-optimal carboxylation 224 

rates (Barr et al., 2010).  Such responses to elevated temperature can be expressed by the relationship 225 

shown in (6) formulated by Raich et al. (1991): 226 

  
     2OptAMaxAMinA

MaxAMinA
T

TTTTTT

TTTT
f

A 


        (6) 227 

where TA is air temperature recorded at 27 m above the ground (Fig. 4a), and TMin, TMax, and TOpt are 228 

minimum, maximum, and optimal temperatures for GPP, respectively.  The function fTA attains the value 229 

of 1 when TA becomes the same as TOpt and is set to zero for TA < TMin.  Raich et al. (1991) determined 230 

GPP as a function of temperature for several vegetation types in South America, including tropical 231 

evergreen forests, grasslands, and temperate forests.  To compare the temperature dependency of 232 

productivity that occurred independently of the magnitude of GPP, ratios of GPP to site-specific maximum 233 

GPP (GPPMax) were compared.  All three vegetation types exhibited ratios (i.e., GPP/GPPMax) that 234 

followed the relationship in (6) but each possessed its own unique characteristics (TMin, TMax, and TOpt).  235 

While this relationship in (6) was not previously quantified for the mangrove ecosystem, the shape of the 236 

curve is consistent with –NEE response to TA during 2004-2005 (see Fig. 6 in Barr et al., 2010) for 237 

conditions when PAR >1000 mol (photons) m-2 s-1. 238 

 Barr et al. (2010) showed a linear decline in the 8-day averages of LUE/LUEsalinity=0 versus 8-day 239 

average soil pore salinity between 10-40 parts per thousand (ppt) of dissolved solutes during both pre 240 

(2004-2005) and post-hurricane (November 2006 to December 2011) periods. This reduction in LUE 241 

attributed to changes in salinity (fsal) is defined in (7).  LUEsalinity=0 was determined from the intercept of the 242 

regression. 243 

fsal 1   msal    salinity          (7) 244 

The msal defines the rate of decrease in fsal in response to increasing salinity.  The decline in LUE with 245 

increasing salinity may be partially attributed to photosynthetic saturation under high PAR (>50 mol 246 

photons m-2 day-1) which coincides with maximal salinity during May and June. A linear function in (8) was 247 

included to account for photosynthesis saturation manifested as declining LUE with increasing PAR. 248 

PARmf PARPAR     1           (8) 
249 

The mPAR defines the rate of decrease in fPAR in response to increasing PAR. 250 

 Since fPAR, fTA, fsal, and fPAR have a maximum value of 1, light-use efficiencies approach 0 as EVI 251 

attains the value of 1, air temperature approaches TOpt, and salinity (ppt) and PAR (mol photons m-2 day-1) 252 

decrease to zero.  The overall resulting quantum efficiency may then be expressed as the multiplicative 253 

set of efficiencies to account for the effects of temperature, salinity, and PAR as shown in (9). 254 
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PARsalTg fff
A

     0           (9) 255 

 To implement the model described in (4) to (9), the individual forcing terms (i.e., 0, mEVI, TMin, TMax, 256 

TOpt, msal, mPAR) must be derived from the data through the use of an optimization approach.  We apply a 257 

Bayesian framework to solve for the posterior probability of model parameters and LUE during the 258 

periods 2004-2005 and November 2006 to 2011 when EC-derived estimates of GPP and LUE are 259 

available.  The Bayesian analytical framework provides several advantages over more traditional model 260 

optimization approaches, including the ability to directly estimate uncertainties in modeled LUE without 261 

the use of ad hoc procedures.  Outputs from the optimization procedure provide the forcing terms (e.g., 262 

mEVI, TOpt, etc.) that are described probabilistically, thereby allowing us to assess the applicability of each 263 

term.  To cast this model within the Bayesian framework, LUE was considered to exhibit a normal 264 

distribution as: 265 

 LUE ,~  LUENLUE          (10) 266 

where LUE is the time-varying mean and is equal to the expected 8-day average LUE with variance LUE.  267 

A quantile-quantile (QQ) plot of LUE data against the standard normal distribution was used to verify the 268 

normality assumption.  The forcing terms were considered to have a prior probability distribution which, 269 

when taken together, follow a multivariate normal distribution. That is, 270 

ۈۉ
ۇۈۈ

ఌబಶೇܶܶ௫ܶ௧݉௦݉ோۋی
ܰ~ۊۋۋ

ۈۉ
ۇۈۈ

ఓഄబఓಶೇ்ߤߤ ்ೌೣߤ ்ߤೞೌߤುಲೃ
, ∑
ۋی
 271 (11)          ۊۋۋ

with mean values, , and covariance matrix, .  Off diagonal terms in  explicitly quantify the inter-272 

dependence of model forcing terms, if such relationships exist.  The inverse-Wishart distribution (O'Hagan 273 

and Forster, 2004) was used to describe the prior probability distribution of because it represents the 274 

conjugate probability distribution of the multivariate normal distribution (Gelman et al., 2004), and 275 

expresses the uncertainty about  before the data are taken into account.  The inverse-Wishart 276 

distribution represents the multivariate generalization of the scaled inverse-chi-squared distribution, which 277 

is the conjugate prior of the univariate normal distribution with unknown mean and variance.  The inverse-278 

Wishart distribution is defined by its own set of parameters,  and , commonly referred to as 279 

hyperparameters that represent the inverse scale matrix and degrees of freedom of the distribution, 280 

respectively. 281  Σ~ݒ݊ܫ ,ሺݐݎℎܽݏܹ݅− ሻ          (12) 282 

The  was initialized with a 6 X 6 identity matrix, and the degrees of freedom,  = 6, representing the 283 

number of forcing terms.  To learn the optimal probability distributions of the forcing terms (0, mEVI, TMin, 284 

TMax, TOpt, msal), a Markov chain Monte Carlo (MCMC) procedure with Gibbs sampling (Cassella and 285 

George, 1992; Gilks et al., 1995) was performed in Matbugs.  Matbugs is a Matlab (The Mathworks Inc., 286 
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Natick, MA) interface to WinBUGS (Spiegelhalter et al., 2003).  Gibbs sampling is the simplest of the 287 

Markov chain simulation algorithms (Gelman et al., 2004) and is used to directly sample from each 288 

conditional posterior distribution in a model.  The resulting distribution of the forcing terms maximizes the 289 

likelihood that the LUE during the study period would be observed given the modeled LUE values.   The 290 

Gibbs sampling procedure within WinBUGS requires initial values (i.e., best guesses) for all the forcing 291 

terms.  Here, initial values were determined using a constrained optimization technique (Matlab 292 

Optimization Toolbox) in minimizing the sum of squared errors (SSE) between modeled and EC 293 

estimated 8-day LUE values obtained during the entire study period of 2004-2005 and November 2006 to 294 

December 2011.  The constrained optimization is useful for obtaining a single point estimate of forcing 295 

terms, but does not provide a robust fit that includes the probability distribution of both parameters and 296 

modeled LUE values. 297 

3 Results and discussion 298 

3.1 Calculating RE and GPP from NEE 299 

Temperature, level of inundation, and foliage physiology drive respiration in this forest. Nighttime NEE 300 

increased with increasing TA below ~25 C during both high and low tide periods during 2004-2005 (Fig. 301 

2a).  NEE was ~1 mol (CO2) m
-2 s-1 higher during low tides, and NEE rates converged at temperatures > 302 

25 C for both low and high tide periods during 2004-2005 and 2006-2011 (Fig. 2a and 2b, respectively).  303 

The exponential function with deactivation in (2) generally fit the NEE data during 2004-2005 and 2006-304 

2011 periods (Fig. 2a-d).  During 2004-2005, there was some evidence of bi-modality in RE response to 305 

temperature with maxima occurring at TA values ranging between 15 and 20 C and 25 to 28 C (Fig. 2a).  306 

The NEE was ~1 mol (CO2) m
-2 s-1 higher during 2006-2011 compared to 2004-2005 for temperatures 307 

above 25 C, possibly due to an increased respiratory contribution from decomposing coarse woody debris 308 

(CWD) generated by the hurricane.  The hurricane disturbance also resulted in warmer soils during 2006-309 

2011 as more solar irradiance reached the soil surface beneath the damaged canopy (Barr et al., 2012).  310 

Such processes contributed to increased nighttime soil-air temperature gradients of 1 to 3 oC one year 311 

following disturbance (Table 1, Barr et al., 2012).  Warmer soils in this system are expected to lead to 312 

increased belowground respiration and fractional increases in the belowground contribution to total 313 

nighttime RE.  During both pre- and post-disturbance periods, the functional response of RE to air 314 

temperature exhibited a better fit than that using soil temperature. 315 

 The substantial seasonal changes in the respiratory response of the mangrove ecosystem (Fig. 2c,d) 316 

required the use of moving windows to fit (2) to these data.  By partitioning the data by time, particularly 317 

into dry and wet season periods, the apparent bi-modality of nighttime NEE versus TA response (Fig. 2a) 318 

was no longer apparent in the fitted model.  The deactivation term in (2) that is needed to account for the 319 

observed decline in nighttime NEE at elevated TA represents a unique characteristic of NEE patterns at 320 

this site compared to terrestrial forests.   The temperature that defines the transition from increasing to 321 

decreasing respiratory response changed with seasons and as a result of disturbance.  The increase in 322 

nighttime NEE in response to increasing TA following the hurricane disturbance was most evident during 323 
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dry season months when the values increased by ~1 mol (CO2) m-2 s-1 as TA exceeded 20 C, and 324 

continued on an upward trend until reaching a maximum of ~4 mol (CO2) m
-2 s-1 at 22 C.  Before the 325 

hurricane disturbance, NEE declined with temperatures exceeding 19 C.  This increase in temperature, 326 

which defines peak respiratory response, also suggested an increased contribution of belowground 327 

respiration to RE following disturbance.  Quantifying the belowground contribution to RE and the 328 

respiratory response to soil temperature require continuous measurements of belowground respiration, 329 

and such measurements were not made during this study.  Due to the long-term nature of this 330 

investigation (spanning several years), the ecosystem respiration response captured the broad 331 

temperature ranges and levels of inundation experienced by the mangrove forest.  As a result, it was 332 

possible to identify and quantify the dynamic character of the total respiratory responses, RE to air 333 

temperature and subsequent declines in respiration above Topt. 334 

 335 

3.2 Albedo and EVI 336 

Canopy-scale CO2 fluxes in mangrove forests vary seasonally as a result of changes in leaf area index 337 

and physiological responses to stressors.  Such changes in the amount and function of foliage were 338 

inferred from temporal patterns in locally-measured surface albedo and the satellite-based greenness 339 

index, EVI.  Albedo (Fig. 3a) varied seasonally with minimum values of 0.10 to 0.11 during May and June 340 

and maximum values of 0.13 to 0.15 during December to January.  Albedo was about 0.12 during 341 

January 2007 and represented a decline of >0.01 compared to values observed before Hurricane Wilma.  342 

Raw and adjusted albedo variability resulted in response to the recovery of foliage from the 2005 343 

disturbance, with apparent full recovery observed by 2011.  Structural damage and defoliation of the 344 

mangrove forest was evident in the 16-day EVI time series (Fig. 3b) in the days following hurricane 345 

disturbance on October 24, 2005.  The EVI declined from 0.4-0.5 to 0.22 following the 2005 disturbance.  346 

When tower measurements resumed in November 2006, re-foliation of surviving branches in upper 347 

canopy and new shoots in the understory had already occurred, with rapid re-growth occurring during 348 

June to October 2006.  Yet, recovery was incomplete.  EVI exhibited a decline of ~12% when 2007-2008 349 

values were compared with those obtained in 2004-2005.  These patterns were consistent with the 30% 350 

lower annual –NEE obtained for 2007.  Though noisy, EVI exhibited similar sinusoidal seasonal patterns 351 

with maxima and minima values coinciding with the winter and summer solstices, respectively. EVI values 352 

represent a much larger area than do the albedo measurements (~250,000 m2 (per pixel), versus ~3000 353 

m2, respectively).  Such seasonal patterns were consistent with coherent patterns in monthly litter fall 354 

rates (Castaneda, 2010) within the flux footprint of the tower site. 355 

 356 

3.3 Physical drivers of mangrove productivity 357 

In south Florida, mangroves receive highly variable amounts of PAR (Fig. 4a) resulting from sinusoidal 358 

seasonal patterns and cloud cover from localized convective storms during the May to October wet 359 

season.  The seasonal peak in PAR, and therefore the amount of energy available to drive 360 
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photosynthesis and GPP, occurred during April and May before the onset of the wet season in late May 361 

and June.  Air temperatures (Fig. 4b) during March to May were between 25 and 30 C, and these 362 

conditions favored near optimal foliage carboxylation rates and GPP.  However, surface water salinities 363 

(Fig. 4c) achieved their highest values (30-40 ppt) during this time period with peak values of 35-40 ppt 364 

extending into June and the start of the wet season.  Such high salinities have previously been shown to 365 

contribute to reduced stomatal conductance and lowered net carbon assimilation at the leaf level (Barr et 366 

al., 2009) during the afternoon.  Surface water salinities above 28 ppt also result in reduced NEE at the 367 

ecosystem scale (Barr et al., 2010). PAR declined throughout the wet season following the summer 368 

solstice in June coincident with reduced salinity levels resulting from increased freshwater flow through 369 

Shark River.  Seasonal minima in salinity of 15-20 ppt occurred at the end of the wet season in October 370 

and November.  Productivity was predicted to be seasonally lowest during December and January when 371 

air temperatures were below 20 C and when PAR reached seasonal minima of 20-30 mol photons m-2 per 372 

day coincident with the winter solstice.  During the extended cold spell of January 2010, temperatures 373 

reached nearly the freezing point during several early morning periods, with an 8-day average of 374 

approximately 10 C.  Premature abscission of leaves in the canopy crown was observed on site, and 375 

likely resulted in reduced productivity and GPP. 376 

 377 

3.4 Canopy-scale CO2 fluxes 378 

During the year-round growing season, this forest exhibited pronounced seasonal NEE patterns.  379 

Seasonal maxima in daily CO2 uptake by the forest were observed during March to May in 2004-2005 380 

(Fig. 5a).  Secondary peaks were observed during the month of November both before and after the 381 

hurricane.  RE values (Fig. 5b) were seasonally highest during June to August with 8-day averages of 382 

0.30-0.40 and 0.30-0.55 mol C m-2 day-1 during 2004-2005 and 2007-2011, respectively.    RE values 383 

were lowest between December and April.  GPP (Fig. 5c) values were lowest during January and 384 

February coincident with seasonal minima in PAR and TA, and exhibited broad seasonal maxima between 385 

April and October, with values of 0.50-0.63 and 0.50-0.75 mol C m-2 day-1 during 2004-2005 and 2007-386 

2011, respectively.  LUE and PAR exhibited a strong negative correlation (R2 = -0.70), suggesting that 387 

this ecosystem has adapted a physiological strategy for maintaining high GPP rates throughout most of 388 

the year.  Elevated GPP values during cloudy days may be caused by higher fractions of diffuse 389 

compared to direct solar irradiance penetrating to lower canopy layers and raising the whole canopy LUE 390 

(Barr et al., 2010).  Other forests experience enhanced C assimilation when subject to elevated diffuse 391 

irradiance (Gu et al., 2003). 392 

 393 

3.5 Light use efficiency 394 

Seasonal LUE patterns (Fig. 5d) were different compared to GPP and exhibited seasonal maxima (13-20 395 

mmol C (mol PAR)-1) during the months of September to December while PAR and salinity levels were 396 

declining or at their seasonal minima.  LUE values generally declined with the progression of the dry 397 
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seasons, reaching annual minima of 7-10 mmol C (mol PAR)-1 during the months of April to June, with 398 

some inter-annual variability.  For example, in January 2010 LUE declined from an 8-day average of 19 to 399 

6 mmol C (mol PAR)-1 from 19 December 2009 to 4 January 2010.  This period coincided with several 400 

weeks of nighttime temperatures that approached 0 deg. C.  These cold air masses induced foliage 401 

senescence and extensive litterfall.  Salinity represents an important control on mangrove forest LUE, and 402 

therefore on ecosystem productivity.  The regression analyses that relate the 8-day average LUE (i.e. 403 

LUE/LUEsalinity=0) to salinity (Fig. 6) provided a 1.5% reduction in this ratio for every 1 ppt salinity increase.  404 

The trend formed the basis of the linear forcing of salinity on LUE included in relationship (7) which was 405 

required in the MVP-LUE model.  The linear forcing was also consistent with previous results (Barr et al., 406 

2010) and showed that midday LUE declined linearly with increasing salinity resulting in a 48% reduction 407 

in LUE from the lowest (16.7 ppt) to highest (34.7 ppt) salinity recorded during the 2004-2005 study 408 

period.  The observed reductions in LUE were also consistent with previous studies (Ball and Pidsley, 409 

1995; Sobrado, 1999; Krauss and Allen, 2003; Parida et al., 2004) that indicated declines in leaf-level C 410 

assimilation in response to increasing soil water salinity.  By extrapolating the observed linear decline in 411 

LUE, the productivity of the mangrove ecosystem ceases at surface water salinity approaching 70 ppt 412 

according to the model expressed in relationship (7).  Whereas such high salinity levels do not occur at 413 

the Everglades study site, this estimate is in close agreement with average salinity tolerances of 60-90 414 

ppt reported for red, white, and black mangroves (Odum et al., 1982). 415 

 416 

3.6 MVP-LUE model results 417 

The cross-validated LUE model (Section 2.4) was capable of reproducing the observed responses of LUE 418 

and GPP to seasonal changes in environmental variables and recovery from a major hurricane 419 

disturbance.   The modeled LUE median and 95% uncertainty bounds (Fig. 7) provided posterior 420 

predictions from 10,000 MCMC iterations in each of 3 independent chains determined from 5-fold cross 421 

validation.  The largest discrepancies between estimated and modeled LUE occurred during March to 422 

May of 2007 and 2008 when estimated LUE were seasonally lowest.  Posterior means calculated over 423 

the full 2004-2011 period of record were evaluated by the Pearson’s correlation coefficient (R), the 424 

coefficient of efficiency (CoE), and the normalized bias (NB).  The model performed nearly as well during 425 

validation (R2 = 0.646, CoE = 0.645; NB = -0.015) as during training (R2 = 0.651, CoE = 0.651; NB = -426 

0.015).   427 

 Posterior distributions of model forcings (Table 1) allowed estimates of mangrove productivity in 428 

response to key forcings, including EVI, air temperature, and salinity.  The positive mEVI (4.03±0.52; 429 

mean±1 s.d.) confirmed that fPAR, and therefore LUE, increased with EVI values.  Air temperatures of 430 

27.8±0.3 C (mean±1 s.d.) favored optimal mangrove LUE.  These temperatures (Fig. 4b) occurred most 431 

frequently during March to May and October to November.  Both modeled and estimated LUE values 432 

declined as air temperatures approached the TMax value of 33.5±0.6 C.  The slope, msal (0.0047±0.0022) 433 

of the salinity forcing, fsal, was a factor of three lower compared to the slope (0.0146) determined from the 434 
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response of LUE/LUEsalinity=0 to salinity (Fig. 6).  This apparent sharper decline in LUE with increasing 435 

salinity masked the effect of increasing PAR on LUE since seasonal PAR peaks in nearly the same 436 

season (May-June) as salinity.  The Bayesian model results suggest that LUE significantly declined with 437 

increasing PAR with a slope, mPAR of 0.0101±0.0004 (Table 1).  Photosynthetic saturation with increasing 438 

PAR is currently not included in many light-use efficiency based models of productivity using satellite data 439 

(e.g., Xiao et al., 2004; Cook, et al., 2008; Chen et al., 2010).  An increase from the lowest (15 ppt) to 440 

highest (39 ppt) salinity values observed during the study period was predicted to result in an 11% 441 

reduction in LUE.  Also, an increase in PAR from the lowest (17 mol photons m-2 day-1) to highest (67 mol 442 

photons m-2 day-1) 8-day average during 2004-2011 resulted in a 51% reduction in LUE. 443 

 Air temperature, salinity, PAR, and EVI were all determined as significant predictors of LUE (Fig. 7).  444 

Low temperatures (~10 C) during passages of cold fronts can last from a few days to weeks during 445 

December to February, resulting in large reductions in LUE and therefore GPP.  For instance, the 446 

passage of cold fronts during January 2010 resulted in estimated and modeled LUE of ~6 mmol C (mol 447 

photons)-1.  While other controls on LUE remained constant, a change in air temperature from 28 C 448 

(optimum temperature) to 10 C was predicted to result in a 65% reduction in LUE.  These results confirm 449 

that mangrove forests become severely stressed when daily average temperatures drop below ~5 C.  450 

Ross et al. (2009) measured high mangrove mortality following freeze events and the inability of 451 

mangroves to survive in climates where temperatures near the freezing point are frequent. 452 

 453 

3.7 MVP-LUE and MODIS GPP compared to EC GPP estimates 454 

The calibrated MVP-LUE model provided an improved mechanistic understanding of mangrove forest 455 

productivity compared to the standard MODIS GPP product.  Specifically, least squares linear regressions 456 

of 8-day MVP-LUE modeled GPP values to EC-estimated GPP (Fig. 8a) indicated improved performance 457 

during 2004-2005 (slope = 0.720, intercept = 0.144, R2 = 0.56) compared to the 2006-2011 period 458 

following hurricane disturbance (slope = 0.483, intercept = 0.249, R2 = 0.45).  The regression of MODIS 459 

GPP to EC-estimated GPP (Fig. 8b) suggested that the un-calibrated MODIS model only weakly captured 460 

productivity trends during 2004-2005 (slope = 0.477, intercept = 0.238, R2 = 0.050) and failed to capture 461 

any trends in GPP during 2006-2011 (slope = -0.372, intercept = 0.597, R2 = 0.056).  The MVP-LUE 462 

model captured the broad seasonal maxima (0.5-0.7 mol C m-2 day-1) in EC-estimated GPP (Fig. 9) as a 463 

result of the strong dependence of mangrove forest productivity on air temperature.  During December to 464 

February temperatures below ~20 C, and to a lesser extent, shorter day length and daily PAR resulted in 465 

short-lived minima in GPP of 0.2-0.35 mol C m-2 day-1.  The productivity response of mangrove forests to 466 

temperature has not been calibrated in the MODIS product and may partially explain the lack of 467 

correlation between MODIS GPP and EC-estimates.  Also, the increased variance in MODIS GPP 468 

compared to EC-estimates (Fig. 8b) may be attributed to the MODIS model structure, which considers 469 

GPP as linearly increasing with PAR.  The dampened GPP response to PAR identified in the MVP-LUE 470 

model resulted in seasonal variability in GPP better matching observations.  Also, the MVP-LUE model 471 
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captured the sustained plateau in EC-estimated GPP into November. This resulted from lowered salinity 472 

stress during September to November represented in the model (eq. 7) and a modulated response of 473 

GPP to daily PAR integrals represented by the decline in LUE with increasing PAR (eq. 8). 474 

 475 

4 Summary and conclusions 476 

This research represents a first attempt to design and verify a light use efficiency model for mangroves 477 

through the integration of remotely sensed information, and meteorological and hydrologic data.  This 478 

study is the first one to quantify the respiratory responses of mangrove forests over temporal scales of 479 

several growing seasons.  Ecosystem respiration was successfully modeled using an atypical response 480 

function that includes a high temperature (~33 C) deactivation term.  Estimation of the temporally and 481 

temperature-dependent response of ecosystem respiration to air temperature provided a critical first step 482 

in modeling mangrove GPP. 483 

 Observed seasonal patterns in 8-day LUE were controlled by variability in daily PAR and air 484 

temperature, and to a lesser extent salinity and EVI fluctuations.  LUE was lower when seasonal PAR 485 

was highest during April and May as a result of photosynthetic saturation.  Also, salinity maxima of 35 to 486 

40 ppt contributed to canopy-scale reductions in LUE during April to early June amounting to a 5% 487 

reduction in LUE per each 10 ppt increase in salinity.  Lowered LUE values during December and 488 

January were the result of lower air temperatures and lowered physiological activity.  As temperatures 489 

approach 3 C, our model predicts that CO2 uptake in these forests approaches zero.  Significantly 490 

reduced EVI values after Hurricane Wilma in 2005 also resulted in significantly lowered model estimates 491 

of CO2 uptake during the period when the EC tower was not operating. These results suggest that 492 

mangrove forest LUE can be quite variable in subtropical environments that experience seasonal 493 

variations in solar irradiance and air temperature, and disturbance from tropical storms.   494 

 The model and functional relationships determined in this study provide an important first step for 495 

understanding the larger role mangrove forests play in both regional and global C budgets.  Remote 496 

sensing applications building on these results provide a means to estimate CO2 fluxes in areas outside 497 

the flux tower footprint and in other mangrove forests around the tropics and subtropics.  To do this, 498 

spatiotemporal patterns in salinity are required as model input, which may be resolved as in the 499 

Everglades from networks of hydrologic monitoring stations.  PAR and air temperature data fields are also 500 

required. However, validating this model in locations not equipped with EC will require novel approaches 501 

that link predicted GPP values to other measurable parameters, such as biomass accumulation, or NECB 502 

at appropriate time scales.  As more EC towers are deployed in other types of mangrove forests, LUE 503 

models such as this one may be used to identify patterns in quantum efficiencies across species, across 504 

forest structural characteristics (e.g. scattered or dwarf forests), and latitudinal position. The integrated 505 

datasets in turn will enable more precise approximations of the role mangrove forests play in global C 506 

dynamics. 507 

 508 
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 642 

Tables 643 
 644 
Table 1. MVP-LUE model forcing terms and associated uncertainty bounds 645 

Parameter Description Mean SD 2.50% Median 97.50% 

0 Optimum light-use 
efficiency  
(mmol C (mol photons)-1) 

31.8 2.2 27.7 31.6 36.7 

mEVI Curvature of fPAR 
response to EVI 
(dimensionless) 

4.03 0.52 3.11 3.99 5.21 

Tmin Temperature minimum 
(C) 

2.6 0.6 1.4 2.7 3.7 

Tmax Temperature maximum 
(C) 

33.5 0.6 32.4 33.5 34.8 

Topt Temperature optimum 
(C) 

27.8 0.3 27.2 27.8 28.5 

msal Salinity forcing 
(dimensionless) 

0.0047 0.0022 0.0000 0.0048 0.0084 

mPAR PAR-saturation forcing 0.0101 0.0004 0.0092 0.0102 0.0110 

 646 
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Figures 648 
 649 

 650 

Fig. 1. Map of Everglades National Park showing mangrove forest zones along the coast, the study site, 651 
and the Park boundaries, defined by the thick green line.  The 30-m EC tower, SRS6, and SH3 are co-652 
located at the study site. 653 
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 655 

 656 
 657 

Fig. 2. Nighttime net ecosystem exchange (NEE (mol (CO2) m
-2 s-1)) versus air temperature at 27 m are 658 

partitioned by low and high tide periods in 2004-2005 (A) and 2006-2011 (B) and by dry and wet season 659 
months in 2004-2005 (C) and 2006-2011 (D).  Each subset of the data was divided into 30 bins and the 660 
average (circles) and ±1 standard deviation (dashed lines) were computed for each bin.  Best-fit lines 661 
(equation 2) of the half-hourly NEE versus air temperature are included.  During low tide periods, NEE is 662 
equivalent to RE.  663 
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 664 
Fig. 3. Eight-day average albedo (raw) and albedo adjusted to include only those values when the solar 665 
elevation angle was between 35o and 50o (A).  Eight-day 500-m resolution EVI (B) values were linearly 666 
interpolated using 16-day composites.  Averages include the pixel that contains the tower site and the 667 
adjacent 8 pixels. 668 
  669 
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 670 

 671 
Fig. 4. Eight-day averages of photosynthetic active irradiance, PAR; mol (photons) m-2 day-1 (A) and air 672 
temperature (oC) (B) at a height of 27 m at the SRS6 tower site.  Eight-day average surface water 673 
salinities (ppt) (C) measured from a well at the USGS SH3 site adjacent to the tower. 674 
  675 



25 
 

 676 

 677 
 678 
Fig. 5. Eight-day sums of –NEE, mol C m-2 day-1 (A) from the SRS6 tower site and derived products 679 
including ecosystem respiration, RE; mol C m-2 day-1 (B), gross primary productivity, GPP; mol C m-2 day-1 680 
(C), and light (PAR) use efficiency LUE; mmol C (mol photons)-1 (D). 681 
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 683 

Fig. 6. Eight-day average light-use efficiency (LUE) normalized by the extrapolated LUE, LUE0 at a 684 
salinity value of 0 ppt during 2004-2005 and November 2006 to December 2011.  The best fit line (slope = 685 
-0.0146 and intercept = 1.0) represents the predicted decline in fractional LUE with 8-day average salinity 686 

beginning at a value of 1.0 at zero salinity. 687 
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 690 
Fig. 7. Eight-day average estimated and modeled LUE (mmol C (mol photons)-1) at the tower site during 691 
2004 through 2011.  LUE estimates were not available from August 2005 through October 2006. The line 692 
(red) represents the posterior median LUE and shaded area represents the 2.5% and 97.5% uncertainty 693 
bounds.  Uncertainties are provided for validation data sets derived from 5-fold cross validation.  Modeled 694 
LUE is controlled by 8-day averages of EVI, air temperature at 27 m, and surface water salinity. 695 
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 697 

Fig. 8. Eight-day averages of MVP-LUE modeled GPP (LUE*PAR) versus 8-day averages of EC-698 
estimated GPP during 2004-2005 and 2006-2011 (A).  Best-fit lines were determined from least squares 699 
linear regression and include 95% confidence bands for the best-fit line during 2004-2005 (slope = 0.720, 700 
intercept = 0.144, R2 = 0.56) and 2006-2011 (slope = 0.483, intercept = 0.249, R2 = 0.45).  8-day 701 
averages of MODIS GPP versus 8-day averages of eddy covariance estimated GPP (B) and best-fit lines 702 
during 2004-2005 (slope = 0.477, intercept = 0.238, R2 = 0.050) and 2006-2011 (slope = -0.372, intercept 703 
= 0.597. R2 = 0.056). 704 
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 706 

Fig. 9. Eight-day averages of EC-estimated and MVP-LUE modeled GPP (LUE*PAR) and 3-period 707 
moving average of modeled GPP during 2004-2011. 708 

 709 


