
Response to Reviewers by O. Andrews 
 
We thank the reviewers for their helpful and constructive comments which have 
significantly improved the manuscript.  We have made the following general 
modifications to address the reviewer’s main points: 
 

• Added new Figure 2 that compares observed and simulated zonal mean 
[O2] distributions, and included with this a more in-depth discussion of 
model performance. 

• Added new Table 2 that compares two estimates of internal variability in 
the observations (from long-term [O2] time series measurements) with 
model simulated internal variability.  

• Significantly expanded the text with more discussion of statistical 
techniques and parameter choices, along with revisions for clarity. 

 
We hope that our revised manuscript will satisfy the comments of the reviewers.  
Please find below our detailed responses (emboldened), which follow each 
reviewer comment.   
 
Response to Anonymous Referee #1 (RC C5499) 
 
The present study investigates the detectability of externally forced oceanic O2 
changes with respect to natural variability. The authors use an optimal fingerprinting 
method and two CMIP5 Earth system models to determine the cause of changes in the 
marine O2 distribution as recorded by WOCE and earlier O2 data. Overall evaluation: 
The topic of the study is extremely relevant for a broad scope of readers from climate 
modellers to conservationists. However, I do have a major point of criticism regarding 
the degree of uncertainty introduced by the lack of knowledge about the natural 
background variability of O2 and the way this is (mainly not) discussed in the paper. 
Apart from that the paper is well written and I am confident that it will be publishable 
after my claims have been addressed. 
 
As detailed below, we have expanded the text to better discuss our estimate of 
natural internal variability in [O2] and the measures taken to ensure that this 
estimate is robust. 
 
Major point of criticism: After reading the paper my impression is that the authors are 
using their undeniable statistical skills in a somehow selective manner. On the one 
hand they are using truncated EOFs and an Optimal Fingerprinting method, on the 
other hand they do very little to constrain the crucial parameters v(0) and v(i) and fail 
to discuss the uncertainty associated with their choice of simply using the simulated 
O2 variability as a reference.  
 
Constraints on vi (signal error): We apply a standard method used to account for 
signal error (vi) in climate change optimal detection by using TLS regression (e.g. 
Allen and Stott, 2003).  This is a variant of linear regression widely employed in 
optimal fingerprinting studies, which provides a more conservative estimate of 
scaling factors because it includes noise in the model fingerprints.  Signal error is 
thus already included in the method, and the only parameter that we specify is 
the amount of noise found in the models (xi) relative to that which is found in the 



observations  (determined by the ensemble size of the CMIP5 experiment [see 
Table 1]).  The description of this choice of fitting technique along with the 
inverse relationship between historical model ensemble size (n) and signal error 
has been better explained in the text of Section 2.2 (along with an added citation 
which describes the application of TLS regression to detection and attribution 
using GCMs [Stott et al., 2003]): 
 
“Signal error (vi) is inversely proportional to the model ensemble size (n) and can 
negatively bias scaling factors (Allen and Tett, 1999), particularly for variables where 
the forced response is small relative to internal variability.  Thus, TLS is widely used 
in optimal detection studies as a more conservative approach which explicitly 
accounts for the effect of noise in simulated response patterns relative to that which is 
found in the observations (e.g. Stott et al., 2003; Terray et al., 2012; Stott et al., 
2008).”  
 
Constraints on v0 (noise in the observations):  Although we estimate internal 
variability in the observations from ESMs our method checks that modelled 
variability provides an adequate representation of observed climate noise for our 
purposes.  The choice to derive internal variability in the observations (v0) from 
control integrations of ESMs is based on the underlying rationale of optimal 
fingerprinting that internal variability is not easily estimated from observations 
on large spatial and temporal scales, and that piControl data provides a pure 
expression of the variability of the internal system.  Moreover, observations of 
[O2] contain signals driven by solar, volcanic and anthropogenic forcings.  This 
point has been made more clearly in revised Section 2.2. 
 
Considerable effort has been taken in our study to provide a reliable estimate of 
internal variability in [O2] (v0).  We employ the standard residual consistency F-
test which guides our analysis to retain a reduced dimension space in which 
internal variability is well simulated by models.  This technique provides an 
effective strategy for evaluating whether the residual observed variance is 
consistent with model simulated internal variability at a given confidence level.  
Since the residual test passes for all experiments at our chosen truncation (apart 
from the Atlantic basin which marginally fails) we have confidence that 
piControl data has power as an independent estimate of noise in the 
observations.  We have further explained this test in the Methods Section 2.2: 
 
“In order to avoid spurious detection it is a necessary prerequisite that the internal 
variability estimated from control simulations (v0) provides a realistic estimate 
observed climate noise in [O2].  As such, the number of EOFs retained in the optimal 
fingerprint analysis is guided by checking the fidelity of model simulated internal 
variability against the residual observed variance at k truncations using a standard 
residual consistency F-test (Allen and Tett, 1999).  This check is used to test the null 
hypothesis that internal variability as simulated by models is consistent with observed 
variability on the scales retained in the analysis.” 
 
The authors claim that “The instrumental record of dissolved O2 measurements is not 
sufficiently long to get a reliable approximation of internal climate variability (v0), 
and also includes perturbations driven by external forcing.” However, surface O2 data 
are available for HOT (1989-2012), BATS (1988-2012) and ESTOC (1994-2012). Of 



course this is not really sufficient and it includes perturbations, but it could give us at 
least some idea whether or not the two ESMs do a reasonable job in reproducing the 
interannual O2 variability. What would an underestimation of the internal variability 
(as mentioned in the Discussion) mean for the potential detectability ant the present 
conclusions of the paper? A signal-to-ratio study has to come up with a reliable 
estimate for the noise. If the available data cannot provide such an estimate we cannot 
make a reliable statement about the signal detectability. 
 
As suggested by Reviewer 1 we have further justified our choice of v0 by 
comparing internal variability estimated from piControl data with available [O2] 
time series data from Ocean Station Papa (1956–2007, Eastern North Pacific; 
Whitney et al., [2007]) and the Oyashio Current region (1968–1998, Western 
Subarctic Pacific; Ono et al. [2001]). This is presented in new Table 2 (see below) 
with a description included in Section 2.2: 
 
“In addition to the residual consistency test, we assess the reliability of model 
simulated climate variability by comparing piControl output with detrended 
subsurface [O2] measurements from two long-term time series: Ocean Station Papa 
(1956–2007, Whitney et al., 2007) and the Oyashio Current region (1968–1998, Ono 
et al. 2001).  Observed decadal standard deviations calculated for both time series fall 
within the 10–90% ranges of MPI-ESM-LR control simulation estimates, 
demonstrating that this model provides a robust estimate of internal variability in [O2] 
on decadal timescales (Table 2).  The HadGEM2-ES control simulation significantly 
underestimates decadal variability in [O2] when compared to time series data and is 
thus less reliable than simulations from MPI-ESM-LR in the context of our analysis. “  
 
 
Table 2. Comparison of decadal standard deviations of [O2] (µmol kg-1) between 
observations and CMIP5 piControl experiments at Ocean Station Papa in the Eastern 
North Pacific (50°N, 145°W, σ = 26.9 [~ 250 – 350 m]) and the Oyashio Current 
region in the subarctic Western North Pacific (39° – 42°N, 143° – 145°E, σ = 26.9 [~ 
400 – 450 m]).  piControl output from MPI-ESM-LR and HadGEM2-ES is sampled 
to calculate multiple estimates of decadal standard deviations for each time series.  
The mean and (10th – 90th) percentile ranges of piControl estimates are shown. 
Observations are detrended using a linear fit to extract variability.  Drift has been 
removed from the control integration of HadGEM2-ES as described in Section 2.1. 
 
 Observations MPI-ESM-LR HadGEM2-ES 
Ocean Station Papa 
Oyashio Current region 

11.1 
8.1 

9.1 (6.2 – 12.0) 
9.9 (4.9 – 15.1) 

5.3 (3.9 – 6.7) 
1.4 (0.4 – 2.4) 

 
 
 
Finally, in order to avoid confusion, we have augmented the paragraph in 
Section 4 (Discussion) which explores the implications of models underestimating 
variability in observed [O2].  Whilst this is an interesting topic for discussion 
such a statement could wrongly imply that v0 is demonstrably underestimated in 
our analysis, when the intention was more to generally introduce the topic of 
simulated climate variability in ESMs and ocean-only hindcasts.  To address this 



we include a statement in Section 4 to clarify the steps taken to ensure a 
reasonable estimate of internal climate noise: 
 
“However, the piControl derived estimates of natural internal variability used in this 
analysis are shown to be consistent with observed variance using a standard residual 
consistency test and comparison of simulated noise with two observational estimates 
(Sect. 2.2 and Table 2).” 
 
Minor points: 
 
p. 12471 / l. 16 A Corrigendum has been published for the Schmittner et al. [2008] 
paper reporting an error in the calculation of light limitation. The authors might want 
to check if the results of the paper can be cited in this context. 
 
We have checked the corrigendum and there are no implications for our study.  
Centennial scale increases in the volume of suboxia as reported by Schmittner et 
al. (2008) are a robust result and have been cited elsewhere since the 
corrigendum (e.g. Duteil and Oschlies, 2011; Peña et al., 2010). 
 
p 12474 / l. 1 What is meant by “is taken into account in this data using an a priori 
noise estimate, ...”? 
 
This statement has been reworked and refers to the approach taken to 
characterise natural variability in [O2] data a priori (Helm et al., 2011; Bindoff 
and Wunsch, 1992.  We have improved the explanation of this in the text.  New 
text: 
 
“Noise variance calculated using the difference between neighbouring data points is 
used to provide an a priori estimate of natural variability in [O2] data (Helm et al., 
2010, Helm et al., 2011; Bindoff and Wunsch, 1992). This technique accounts for 
mesoscale processes and to some extent longer period internal variability such as the 
dominant climate modes.” 
 
p. 12487 / l. 8 It is not really “our understanding of the background internal 
variability” but the authors choice to use the simulated O2 variability as a reference. 
 
Accepted and changed to “internal variability as simulated by models”. 
 
Figure 5: y-label should read “Change in ...” 
 
Accepted and axis label corrected to read “Change in Stratification Index”. 
 
Figure 6: On the one hand the authors make the effort to derive the reference 
variability shading from the “diagonal of the autocovariance matrices estimated by 
sampling model piControl simulations” but they do not discuss the fact that a simple 
factor 2 in the estimate for the background O2 variability would result in very 
different conclusions regarding the detectability of O2 changes. 
 
As stated above we validate our choice of model simulated internal variability 
using (1) a residual consistency check; and in the revised manuscript (2) via 



comparison with [O2] time series data from two locations.  The internal 
variability of the models is represented statistically through v0 (as discussed 
above).  This covariance matrix takes into account the covariance with 
neighbouring spatial points.  Consequently the diagonal elements plotted on 
Figure 7 (previously Figure 6) provide a simple diagnostic which illustrates the 
latitudinal variations in internal variability but do not show the full relationships 
of the covariance matrices and its consequences on the estimates of scaling 
factors. 
 
Looking at Figures 2-5, the models do a rather poor job in reproducing the observed 
changes. This is not the authors fault but some of the discussions of the model-data 
comparisons sound more like wishful thinking. 
 
A thorough discussion of model-data agreement has been provided in response 
to Reviewer 2 (see Response to Anonymous Referee #2 below).  Section 3.1 
(Model-data comparison) has also been edited. 
 
Response to Anonymous Referee #2 (RC C5529) 
 
This paper applies a statistical technique to the output of two state-of-the-art climate 
models participating in the IPCC 5th Assessment Report (the CMIP5 model suite) to 
investigate whether observed changes in ocean oxygen content can be explained by 
anthropogenic forcing or are simply due to natural variability. Using an optimal 
fingerprinting method they find that the changes are inconsistent with internal 
variability (as simulated in the climate models). Specifically, these results are robust 
for depth and zonal-mean O2 changes for the global ocean and for zonal-mean 
changes for the global ocean and Pacific basin. Changes in the Atlantic basin are 
found to be consistent with natural variability. 
 
The paper addresses an important question in climate science. Much research suggests 
that deoxygenation will occur as the climate warms, and while observations do in fact 
suggest this, it has remained unclear whether the changes taking place are natural or 
anthropogenic. 
 
This is a paper that’s definitely appropriate for BG but I have concerns. Primary 
among them is the fact that Figs. 2 and 3 comparing model and data don’t inspire 
much confidence in even the most state-of-the-art climate models. Not only is the 
magnitude of the changes severely underestimated by the models, in some cases even 
the sign is incorrect. These aren’t point-wise comparisons where one would hardly 
expect the models to perfectly replicate reality. Instead, these are plots of very large 
scale features. It is unclear to me whether it makes any sense to apply sophisticated 
statistical techniques to tease out small signals to such models at all.  
 
Indeed the reviewer is right that there is always an unavoidable structural 
uncertainty in optimal fingerprinting studies (e.g. Hegerl and Zwiers, 2011) 
driven by the representation of physical and biogeochemical processes in models, 
which can cause systematic errors in model response patterns.  The use of 
several models and several spatial averaging schemes allows us to generate 
multiple model fingerprints to better quantify the effects of possible structural 



errors in model response patterns.  We now include the following statement in 
Section 2.2: 
 
“The use of several models and several spatial averaging schemes provides multiple 
model fingerprints that are used to quantify possible errors in model response patterns 
(“structural uncertainty”) driven by inadequate representation of physical and 
biogeochemical process in ESMs (e.g. Hegerl and Zwiers, 2011).” 
 
However, as we show in our study, positive detection results (β > 0) for global 
and Pacific basin detection experiments demonstrate that significant correlations 
exist between model simulated and observed [O2] changes.  This is reinforced by 
the global 2-D detection experiment where 5–95% uncertainty bounds on β are 
consistent with 1, passing the “attribution test” of model-data consistency in 
amplitude.  Moreover, if the models were insufficient to detect trends in [O2] due 
to structural error statistical tests performed in our study would fail.  
Specifically, the residual consistency F-test provides information about model-
data agreement and structural error in the optimal detection analysis.  Where 
the residual test passes (for all global experiments and the Pacific basin 
individually) we have some confidence that, in a statistical sense, the residual of 
the TLS regression agrees with model estimates of noise, as would be expected if 
models have capacity to estimate the forced signal and that this response 
adequately fits the observations.   Text has been added to Sections 2.2 and 3.2 to 
explain that the residual consistency test is also used to diagnose possible 
inconsistencies between forced model responses and observations: 
 
Section 2.2 “Failure of the residual consistency test could also indicate that the timing 
or pattern of ESM response is incorrect” 
 
Section 3.2: “The residual consistency test passes for both model experiments 
indicating no inconsistency between residual observed variance and model simulated 
internal variability, and suggesting that both ESMs simulate the externally forced 
signal adequately to explain observed [O2] changes.” 
 
The statistical tests succeed because generally models either reproduce the sign 
of zonal mean [O2] change (Fig. 3) or where they don’t their response falls within 
the envelope of internal variability, as shown in Figure 7.  Significant model-data 
disagreement in the 1-D case is evident at ~ 60°S, and is explained in Section 4 as 
a potential limitation of this study likely driven by elevated ventilation in the 
Southern Ocean.  We are also able to better investigate the degree of model-data 
agreement by using 2-D fingerprints, which demonstrate that models have 
significant capacity to reproduce the main features of [O2] change as a function 
of latitude and depth (Fig. 4 and Fig. 5).  MPI-ESM-LR in particular has skill in 
simulating a pattern of high latitude deoxygenation throughout the water 
column countered by a region of [O2] increase within the ocean interior at low 
latitude.  The signal-to-noise ratios of observations and model response patterns 
are also maximised via normalisation by internal variability (v0).  
 
The TLS detection method assumes that structural uncertainties in models are 
driven by internal variability.  This assumption holds in our study, with errors in 
model response patterns being most prominent at mid–high latitudes where 



climate noise is largest, and generally falling within the spread of internal 
variability (as shown in Figure 7).  We have clarified this in Sect. 3.2 and Sect. 4: 
 
Section 3.2: “Structural errors in the pattern of [O2] change simulated by both models 
also generally fall within the spread of internal variability.” 
 
Section 4: “Qualitative model-data comparison (Sect. 3.1) suggests that regional 
differences between model simulated and observed patterns of [O2] change could also 
contribute to the weaker simulated zonal mean signal.  However, consistent with the 
assumption of the TLS detection model that “structural uncertainty” has the same 
structure as internal variability (e.g. Terray et al., 2012), model errors generally fall 
within the range of internal variability (Fig. 7).”  
 
Finally, it is worth highlighting that whilst detection studies with a hypothetical 
ESM which reproduces the observations exactly would have the most power in 
detecting forcings in observed changes, optimal fingerprinting also provides an 
effective and rigorous strategy for evaluation of climate model simulations 
against observations.  For example, β values greater than one indicate that there 
are missing forcings or errors in model responses, and failure of the residual 
consistency test in the Atlantic basin suggests deficiencies in model fingerprints 
or simulated variability (see discussion in Sect. 3.2 and Sect. 4).  A statement 
about the utility of optimal fingerprinting in model evaluation has also been 
added to the introduction of Section 2.2 for context: 
 
“This statistical technique is widely used in the detection and attribution of climate 
change (e.g. IDAG, 2005; Hegerl et al., 2010) and also provides a powerful test of 
ESM performance which accounts for the effect of natural internal variability.” 
 
 
On a similar note, I would have liked to see how well the models do with respect to 
the O2 distribution itself. A figure comparing the simulated O2 distribution at 
different depths or vertical profiles with data would be very helpful. 
 
We have added a figure showing zonal mean sections of observed and simulated 
(MPI-ESM-LR and HadGEM2-ES) [O2] distributions (new Figure 2.).  A 
comparison of model simulated [O2] distribution with observations has also been 
included in Section 3.1.  Generally the latitude-depth features of observed zonal 
mean [O2] distribution are reproduced by both models.  A comprehensive model-
data evaluation of biogeochemical tracers in MPI-ESM-LR CMIP5 historical 
experiments at different depth levels has recently been undertaken by Ilyina et 
al. (2012).  Reference to this paper is now also included in Section 3.1.  Our 
presentation of zonal mean [O2] sections complements the analysis of Ilyina et al. 
(2012), which plots horizontal [O2] distributions at different depth levels.  We 
added the following new text in Section 3.1: 
 
“We evaluate model performance by comparing simulated and observed zonally 
averaged [O2] distributions for the ~1992 time period.  Historical integrations of MPI-
ESM-LR and HadGEM2-ES are able to capture the general latitude-depth pattern of 
[O2] distribution present in the observations (Fig. 2).  The [O2] minimum between 
20°S and 20°N is reproduced at mid-depths by both models, with increasing [O2] 



towards higher latitudes in both hemispheres.  However, HadGEM2-ES simulates 
higher than observed oxygen concentrations in this region. MPI-ESM-LR 
overestimates the spatial extent of low-latitude oxygen minimum waters and produces 
erroneously high [O2] south of 60°S.  Ilyina et al. (2012) present a detailed 
comparison between biogeochemical tracers in MPI-ESM-LR CMIP5 historical 
simulations and observations using a range of statistical metrics to assess model 
capability.” 
 

 
 
Fig. 2. Zonal mean [O2] distribution (µmol kg-1) for ~1992 as a function of latitude 
and depth from (A) observations (Helm et al., 2011), and historical integrations of (B) 
MPI-ESM-LR and (C) HadGEM2-ES. 



 
Second, I found the description of the optimal fingerprinting method very hard to 
understand. A clearer, intuitive description of the method would be greatly beneficial 
to those of us who lack the requisite mathematical and statistical knowledge. 
 
Section 2.2 has been extensively revised and edited for clarity.   
 
Third, to the extent I understood their approach, the largest uncertainty seems to be in 
the selection of values of the noise parameters v_i and v_0. Models tend to 
underestimate variability and the ocean is typically undersampled so this is an issue 
with the observations as well. I found the discussion of this and the dependence of the 
results on their choice of these parameters inadequate.  
 
A significant discussion and justification of vi and v0 has been undertaken in 
response to comments of Reviewer 1 (see Response to Anonymous Referee #1 
above). 
 
Incidentally, a simple time series of control and historical model simulations and 
observations at places where such data exist (the ocean time series stations?) would be 
very helpful here. 
 
As detailed in the response to Reviewer 1 (see Response to Anonymous Referee 
#1 above) we have included new Table 2 which compares decadal standard 
deviations from two long ocean times series with MPI-ESM-LR and HadGEM2-
ES piControl output sampled at these locations.   
 
Also on the topic of their method, I was surprised by the sheer number of EOFs used 
(O(40)). I did not quite follow how this number is selected but in most other contexts 
I have seen the Akaike Information Criterion (AIC) used. Why not here? 
 
We use the residual check (as is standard practise in optimal fingerprinting) to 
guide the choice of EOF truncation in our analysis towards a dimension space 
within which models simulate v0 reasonably well (e.g. Allen and Stott, 2003).  The 
common use of EOFs to describe the fundamental signal in data, in this case, 
tends to minimise the number of modes retained.  However, for spatially 
resolved 2-D data more than 40 EOFs can be necessary to explain the variance in 
the data, particularly where higher wavenumber modes of internal variability 
become important (e.g. Terray et al., 2012).   This point is made more clearly in 
revised Section 2.2. 
 
Sec. 3.1 first sentence: "marked zonal" should be "marked meridional" I think. 
 
Accepted and changed. 
 
In summary, the authors tackle an interesting and important topic. On the one hand, 
the authors should be given credit for approaching the problem rigorously and making 
use of climate model simulations. On the other, what is one to make of results based 
on models that obviously perform very poorly even at the largest scales (by the 
particular metric of reproducing O2 changes). That said, on balance I am inclined to 
support eventual publication of the paper. 
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