Final authors response to comments to the manuscript BG-2012-433

Dalmonech and Zaehle Constraints from atmospheric CO2 and satellite-based vegetation activity
observations on current land carbon cycle trends.

REVIEWER #1

Reply to major comments:

| first thank the reviewer for his useful comments. It follows the reply to the list of reviewer’s comments
(in bold).

(1)The title is a bit misleading, and reads more like a ‘data-model assimilation scheme’.
I suggest changing it such that is more consistent with the key objectives of the paper
(e.g. Towards a more objective evaluation: : :.).

We agree and propose a revised title: Towards a more objective evaluation of modelled land
carbon trends using atmospheric CO2 and satellite-based vegetation activity observations

(2) In the abstract it states that ‘ : :The selection of observational characteristics (traits) specifically
considers the robustness of information given the uncertainties in both data and evaluation scheme: :
Y. When | first red this | became very excited, because this would indeed be a significant
improvement. But after reviewing, | didn’t really see how uncertainties were explicitly treated. Just
not using the observations when they are not as robust (e.g. optical satellite data over the tropics)
does not have much merit in my opinion. One could rank the observations in regards to robustness.
For example, satellite vegetation data are in general most robust at seasonal time scales, and least
robust at quasidecadal time scales (Tucker et al. 2005; ref. given in ms). There is a related discussion
about this point in the Introduction on Page 16090 (lines 1-8) as well, but the stated ‘philosophy’
based on a null-model and how this deals (or does not deal) with uncertainties in observations and
evaluation scheme are not clear to me. Since this is a key point of the paper, the specific approach and
thinking behind it should be made as transparent as possible to increase the impact of the study.

(3) Since this study uses only a small subset of available observations (e.g. see Randerson et al. 2009),
it appears that the key contribution to the existing state of the art in model data comparisons is the
extension towards a more objective evaluation scheme including quantitative model performance
(ranking) measures. |, therefore, suggest emphasizing this portion of the study much more through
restructuring the paper. The following comment (main comment (4)) is also related to this.

We agree with the reviewer that the methodology is the key innovation of this manuscript.

We first apologies to have been unclear about the scope of the method regarding the treatment of
uncertainties. Common to most of the evaluation schemes, data and model errors are not considered
explicitly. This is the major limitation of the study and will be explicitly stated in the revised version of
the manuscript. Errors are not considered because unknown in most of the case, and because, at
exception of the cost-function metric, metrics do not take in to account biases and random errors in
their mathematical formulations. However, the cost-function metric, requires the knowledge of the
structure of model and data error (see i.e. review of Raupach etal.2005 GCB).



What we meant to stateis that given i) uncertainties in data and observation, operators to link model
and data exist, and ii)data error and structural errors are often not known or provided quantitatively,
our metrics and traits have been focussed in characteristics that are robust against these unquantifiable
uncertainties. In addition, we provide the lower benchmark (see below) which allows us to provide an
objective evaluation of the numerical value of the statistical comparison against a null-model,
accounting for the uncertainties in the observation operators.

We follow the suggestion of the reviewer emphasizing aspects as the ‘objectivity and robustness of the
method’ and in the revised introduction we make clearer key points of the approach following what is
reported thereinafter:

1) We decided to use direct observations and dataset that were not strongly model-mediated (this
explains why a restricted number of reference dataset was used, and we did not use upscaled products),
and with a global coverage (this explains why we used atmospheric CO2 and satellite based vegetation
activity)

2) To bypass part of the problem of uncertainties of the data sources (that are unknown), we aimed to
provide traits and metrics that can be robust against the use of different satellite datasets (and not i.e.
using several dataset and providing then weights to the final scores as in Randerson et al.2009, since
anyhow the definition of a weight represents a personal author choice).To do this we used traits based
mainly on sign of changes and specific traits in time. With regards to the decadal time scale, GIMMS-
NDVI has been shown to be suitable for long term trend study (see Beker et al.2011, in the ms).

3) The use of a lower benchmark (the null-model) helps to partially circumvent the limits due to the
uncertainties of the evaluation approach: A part of the uncertainties in the evaluation scheme emerges
because the interpretation of the numerical value of the metric is not straightforward. While this is
simple for the perfect data-model match (i.e. root mean square error equal to zero, or correlation equal
to 1), this is ill-defined for the case of a mismatch. The idea of our work is that we provide a lower bound
to the metric by calculating the statistic for a reference case (neutral model). Any numerical value of the
metric in question better than this reference value implies that the land surface model under
investigation adds information to the signal, and the linear distance between the numerical values of the
metric for the reference and the ‘perfect fit’ case provides an objective measure of how good the model
is relative to the null model. To ease comparison amongst traits, the final metric is always scaled to the
lower benchmark and in the range 0-1.

This third point is particular important when considering the uncertainties in the transport model, since
the lower benchmark is obtained using the same transport model. Scaling the metric to the lower
benchmark (the CO2 signal obtained from fossil fuel emissions and net ocean net carbon fluxes only,
implying a neutral land), highlights the contribution of modeled land fluxes to match the observation.
Hence, the final score number is cleaned by the contribution of other CO2 source/sink other than the
modeled land fluxes. This statement is also linked to the reply of comment #5.

In the revised version, we will make changes to clarify the motivation, scope and limitations of the
approach following the points reported below

After line 12 of page 16089 we will include:

e Several global model evaluation analyses have been published in the last decades with respect
to land model performances of the carbon cycle (Anav, et al.2013,Cadule et al.2009, Blyth et



al.2009,Randerson et al.2009, Heimann et al.1998), however they differ with respect to
reference dataset used, selection of the observational traits and their computation and
mathematical formulations used to quantify the data-model mismatch. This is cause of
uncertainties when it comes to rank several land surface models Recent model benchmarking
initiatives (Randerson et al.,, 2009; Luo et al,2012) have underlined the need for the
development of a standard set of tests and metrics applicable to any land surface model at
different spatial and temporal scale.

In addition to a lack of standards, a key challenge in evaluating global biosphere models comes
from the uncertainties in observations. From a perspective of data-model mismatch
guantification, given uncertainties in data and observation, operators to link model and data
exist, however data error and structural errors are often not known or provided quantitatively
(e.g. Raupach et al.2005).

This study adds hence a new component to the attempt to move toward a more standard
protocol by defining novel tests and quantitative model performance measures that are robust
against the mentioned unquantifiable uncertainties. In order to provide a robust and a more
objective evaluation framework we first selected only a parsimonious number of reference
datasets that are as much as possible direct observations . Atmospheric CO2 and remote sensing
data of vegetation activity were thus selected taking advantage of the complementary
information contained in atmospheric CO, observations and remote sensing data of vegetation
activity.

We selected ecologically relevant information from ‘observations’ which helps constraining
model projections, but robust with respect to the choice of satellite based dataset or transport
model. The traits and metric selection was carried in the direction to provide model test
sensitive to differences in signs of the changes and difference of phase detected between data
and model

Compared to previous studies, the analyses performed here attempt to provide a more
objective evaluation approach by imposing a lower acceptable model performance measure
(baseline benchmark) based on the assumption of a Null-model, i.e. a model that does not show
any trend in the quantity under investigation. This information are used to set a lower bound
for the metric aim to quantify how much information the land surface model adds to the signal
and to quantify hence how good the model is relative to the null model.

Despite no uncertainties in data or model were quantitatively included in the benchmarking
framework,we show how the informations extracted in the data are able to disentangle model
biases.

(4) Figure 2 captures a big portion of the key results. But after reviewing the paper |
was unable to understand how the global scores were really derived. | suggest to make
this point much more transparent.

In the new version of the ms, the section 2.4 will be re-nominated as 2.4 The baseline benchmark and
final scores. In the revised section, we will detail how the aggregation to the global scores were made, as

follows:



First the scores are computed for the model output and are considered as raw-metrics (Mor in eq.1).
The same statistics is applied to return the metric for the lower benchmark case (Mref in eq.1). The
latter result is used to scale linearly the metric of the model to a new 0-1 metrics according to eq.1.
where 1 indicate perfect data-model match and 0 indicates that the model is not able to perform better
than a system without land.

For the satellite-based scores, the global score is the average of the score computed for each transcom3
region, whereas for the CO2-station based scores first the scores for each station were averaged by
latitudinal band. The global score was then derived as the average of the score computed by latitudinal
band. In the polar plot, O score.

(5) Section 3.5.3. | wonder how meaningful any model data comparisons are that involve
the atmospheric CO2 growth rate (e.g. Fig. 10). This metric integrates numerous

carbon sink processes at various spatial and temporal scales. This also points to a
general problem in model-data intercomparisons in regards to using observations that
are difficult to interpret. | would refrain from using such ‘traits’ as it is not clear what
understanding could be gained in such comparisons.

It is clear that using atmospheric CO2 as target, we are considering a mixed signal coming from different
regions and processes (but this holds also for the mean seasonal cycle of CO,, or most other observables
at larger spatial scales).There is a lot of evidence to support an important role of the land’s response to
climate variability at interannual-decadal time scale in the interannual variability of the atmospheric
growth rate of CO2 (Cadule et al.2009 in the ms, Peylan et al.2005 in the ms,Keeling et al.1995 in the ms,
, Cox et al.2013 on Nature), as even suggested by the reviewer (see his comment 7). Also, the long-term
trend in atmospheric CO,, given fairly well-known emissions and net ocean fluxes (le Quere et al. 2009)
provides information on the land C uptake that we expect a land model to simulate.

The fact that a trait is not linked to a specific single process, does not mean that can not be used to
indicate that the model is not able to return what we capture in the observations, i.e. we can still
diagnose the performance of a model. The precise point of this paper then is to link this information to
independent information (from satellites in this case) to see whether we can isolate the reasons for this
mismatch with alternative constraints. Admittedly, the manuscript does not completely achieve this
task, as sufficient information to constrain all aspects of the land carbon cycle are not available. The
merit of our work is that we try to move behind metrics that only considers the mean state of the
system/climatology of the variables of interest (i.e. the mean seasonal cycle of atmospheric CO2). In the
perspective of evaluating models that are used to return future carbon projection, also the climate-
induces variability at interannual time scales and longer time scale has to be of interest in the
evaluation.

In the revised manuscript, we will strengthen the discussion to underline the point made above.

Reply to minor comments:

(1) Page 16096, lines (13-21). Using observations in the most meaningful way. The CO2 record derived
from observing stations is a complicated signal as it contains a long-term trend (from ff burning
emissions) and a superimposed seasonal cycle due to plant activity. Simply doing a trend analysis on
monthly CO2 data, as stated is not a meaningful metric, and one has to extract the seasonal cycle in a
prior step (see Keeling et al. 1996; ref. given in ms). Extraction of the seasonal cycle, however, relies
on knowledge about the underlying trend (which is not known), and for that reason the amplitude of



the seasonal cycle is considered the most robust signal (and hence used by several authors as a carbon
cycle metric) followed by the downward and upward shifts. Unless the authors can convincingly show
that their seasonal cycle xtraction method does account for the complexity in these data, | would not
have any trust in the bserved monthly CO2 trends (MT) and thus also not in the corresponding data
model comparison.

The monthly trend was performed on the seasonal signal of the atmospheric CO2 defined as the signal
that retains only the frequencies higher and equal to the annual frequency, according to Thoning et
al.89. We have shown (in Figure 5a) that the resulting trends are not affected by ocean and fossil signals.
We conducted further experiments that were not reported in the manuscript to ensure that the
observed monthly trends are not due to biases in the wind fields or seasonality of the fossil fuel
emissions.

The increased terrestrial carbon uptake diagnosed in summer (fig.5a) is consistent with the occurrence
of positive trends of vegetation activity in the northern hemisphere (high latitudes) and likely to be
linked to the negative correlation that we detect between time of onset and mean annual temperatures,
implying earlier springs. It is also consistent with analyses of the long-term trends in seasonality in long-
term monitoring stations (Ralph Keeling, pers. comm.)

Since we applied the same filtering technique on the modelled and observed concentration data
sampled with the same time resolution, any biases inferred during the extraction process of the signal
would affect observed and modelled signals in the same manner, such that the metric is robust against
these potential biases. However, the observational trait extracted is also returned, and hence it is
robust, when a different type of filtering that the one used in the ms, is performed.

In the manuscript at the section 2.3 first lines, we make clearer that the outcome of the filtering is a
seasonal component up to the annual frequency and an interannual signal, including all the frequency
lower than the annual.

(2) Page 16096, line (9). ‘: : .in both standard and modeled fluxes: : :". What are the
standard fluxes?

We refer to the standard fluxes as terrestrial net carbon exchanges inferred from atmospheric
concentration data using the TM3 transport model (Roedenbeck et al.2005)

(3) Page 16097, lines (4-6). ‘A direct comparison of : : . | would highly disagree with this sentence.
We have now observations, including satellite-derived products (e.g. MODIS GPP products, or GPP
from upscaled FluxNet which could be used to evaluate magnitudes of simulated GPP. In fact, the
absolute magnitude is as important as the phase to get the carbon sinks right (which is also discussed
later in the paper when modeled and observed atmospheric CO2 are compared). | suggest changing
this sentence.

In the manuscript we are referring specifically to remote sensing data, hence satellite-based vegetation
indexes (i.e. NDVI,EVI), FAPAR or LAl retrieved by satellite data.

The beginning of the section 2.3.2 of the revised ms will be rewritten according to what hereinafter
reported:



Comparing the FAPAR data or NDVI in absolute terms is not a suitable strategy due to a series of general
issues including different retrieval and post-processing algorithms used to compute the final estimated
FAPAR/NDVI in different satellites products, to remove i.e. cloud contamination and atmospheric
corruption etc. In addition the radiances recorded by satellites differ from the way to compute radiation
extinction at the land surface in land surface models. This difference does a priori not allow for a perfect
match between observations and model.

In a recent paper published in Journal of climate, Dahlke, C., Loew, A., & Reick, C. H. (2013). Robust
identification of global greening phase patterns from remote sensing vegetation products. Journal of
Climate, 25, 8289-8307. doi:10.1175/JCLI-D-11-00319.1, they clearly show the emerging absolute
differences. And this further supports the author’s statement in the manuscript. All these issues
influence hence the selection of the traits and how information can be extracted from the ‘observed’
temporal series in the most robust way.

With regards to the GPP-upscaled dataset, this is a model-mediate. In our work we used, where
possible, direct observations or dataset that were as much as possible not mediated by models, as
support of a robust-approach to the model evaluation. In general, the outcome of an upscaled product
is dependent on the statistical algorithm or model used to upscale the site level information, and its
representativeness depends also by the representativeness of the site level information (i.e. observation
could mainly cover a specific biome but lack in others biomes as well important). Despite the used of the
GPP-upscaled dataset has been shown to be usefull for the improvement of a land surface model (Bonan
et al.), we did not use this dataset for a quantitative comparison.

(4) Page 16097, lines (10-26). How did the authors calculate the ‘t-onset’ dates from the fAPAR
records? The explanation given here is entirely non-transparent.

The sentence will be rewritten in the new version of the manuscript in section 2.3.2. The proxy of the
time of onset of vegetation activity (fAPAR in our study) is calculated on the seasonal signal, that is zero
centered after the low frequency informations have been removed from the original signal (according to
the filtering method).The time of onset of vegetation activity is then the point in time of the upward
zero-crossing point of the seasonal signal. See figure below as exemplar. A similar figure will be included
in the Appendix.
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(5) Page 16099, lines (17-18). Why didn’t the authors also exclude tropical Africa? Are
there viewer clouds over this portion of the tropics?

Thanks for pointing this inconsistency in the text out: grid cells with dominance of tropical forests in

Africa were also excluded by the analysis. We clarify this in the new manuscript.

(6) Page 16103, lines (12-13). The text here states that data for Pt. Barrow are shown in the
corresponding Fig. 5, but in Fig. 5 caption it seems it is the Alert observingstation. For this comparison
shown in Fig. 5, see also my minor comment (1).

We correct the name in the manuscript. It is the station of Alert, not Barrow.

(7) Page 16104, lines (1-2). Not sure about the logic here. Since the mean seasonal cycle comparison
showed good performance of JSBACH, the mismatch in Fig. 5b may not be as much due to an
‘asynchrony of photosynthesis and respiration’ but more related to divergence in observed and
modeled climate sensitivities of photosynthesis and respiration. Here, | may also add that reproducing
interannual or longer-term variability is a much stringer test than corresponding comparisons at
seasonal time scales.

We agree with the reviewer that the mismatch in fig.5b might be due to divergence in observed and
modeled climate sensitivities of photosynthesis and respiration, this is actually what we implied. We will
re-write the sentence.

(8) Page 16106, lines (11-14). In relations between spring phenology and land sur-face arming, why did
the authors use annual temperatures? | would expect spring temperatures, or at least cold season
temperatures, would be more suitable here.

The annual mean temperature was used because, at that spatial scale of analysis, was the variable
providing the most robust information in terms of detection of significant correlation (but we tested
several explaining variables, data not shown). The problems starts with defining “spring” temperatures
consistently for boreal and temperate ecosystems in the northern and southern hemisphere. A further
justification of the simplification of using annual mean temperatures is the fact that at coarse resolution
there are several vegetation types within the same grid cell, with likely different temperature sensitivity.
Hence any detailed analysis considering i.e. winter mean temperature, growing degree days (GDD) etc,
are more suitable for high spatial/temporal resolution studies. Obviously, this correlations is only an
emerging empirical relationship, and we do not imply causality.

REVIEWER #2

| thank the reviewer for his critical and useful comments and for checking cautiously manuscript
typing/figures and tables. It follows the reply to the list of reviewer’s comments (in bold).



The only major concern | have is that | miss a discussion of the approach’s limitations to some extent.
Often, climate and biosphere traits are only weakly correlated, which has implications for the
interpretation of results.

We agree that the weak correlation requires careful interpretation, and this is what we have provided in
the discussion section of the manuscript. Importantly, weak correlations do not mean insignificant
correlations. We tested the significance of statistical relationship and took in to account number of
independent informations. When comparing trends, correlations, and covariations (with or without link
to climate variability), we underline the tendency of the system to respond in a specific way to external
forcing/climate, or to respond instantaneously or with some lag. The metric selection works in this
direction: they are sensitive to difference in sign and difference of phase detected between data and
model, but do not rely on the slope of the regression, since this is less likely to be robust and well-
determined by the data at hand. We will reemphasize in the discussion, section 3.4 and 3.5,that the
gualitative trend information is the information that we are looking, and that this is more robust that
any direct numerical comparison of the observed trends.

Similarly, uncertainties from other sources are often listed but could be better addressed in the
interpretation of results; the uncertainties from the transport model are explicitly discussed at
appropriate places, but ocean uptake, land-use emissions, satellite data interpretation could be
extended.

Land-use emissions: is a model output, not an external dataset. We added a reference to the
manuscript, in which the method and its implications is described (Reick et al. in review: Reick, C.,
Raddatz, T., Brovkin, V., & Gayler, V. (submitted). The representation of natural and anthropogenic land
cover change in MPI-ESM, Journal of Advances of Modelling Earth Systems, 4).

Satellite data: In the revised manuscript, we will add a keyreference (Dahlke, C., Loew, A., & Reick, C. H.
(2013). Robust identification of global greening phase patterns from remote sensing vegetation
products. Journal of Climate, 25, 8289-8307. doi:10.1175/JCLI-D-11-00319.1) in the methodological
section, in which we already discuss how we derived information from satellite data in forms of traits
that were robust toward the use of different satellite dataset. In particular traits that were not
dependent on the absolute value of the satellite-based variable were used, but based on information on
time, correlations, and sign of the changes.

Ocean uptake: the uncertainties of the estimate ocean fluxes( and other observational datasets) were
not included in the metrics as previously stated. However we used one of the best available ocean C-
fluxes product (based on Takahashi dataset as priori information and involving several biogeophysical
ocean models). They showed (Mikaloff et al.2007 in the ms) how the inverted fluxes of natural CO2
sink/sources are robust (limited sensitivity to the ocean model used) and not limited by the few
observational coverage (that is not true instead for the inverted fluxes on land). And they provide an
upper estimate of 0.25 Pg C y-1 as uncertainties on the global anthropogenic CO2 uptake by ocean
(Mikaloff et al.2006 in the ms). We have quantified the contribution of the ocean signal to the metrices
and found that most metrices are not strongly influenced by the ocean signal, hence our conclusion
appear robust against uncertainties in these fluxes.



The identification of suggested mechanisms in JSBACH responsible for analyzed discrepancies
between observations and model is not always clear and could be explained a bit more.

The main focus of the paper is the development of a benchmarking system, not the evaluation of
JSBACH, therefore - and to keep the manuscript at a reasonable length - we did not provide detailed
explanations of the model deficiencies. However, in the revised version, we will rework the text to
explain the most pertinent model-data mismatches better.

The presented evaluation scheme should be discussed more in the context of existing evaluation
schemes (site-level dynamics for water and carbon, global pools and dynamics, space for time etc.).

A list of points in the manuscript has already underlined how this study differs/provides a novel
contribution to what has been already done

I)the complementary use of both vegetation activity related dataset and atmospheric CO2

II)the use of bounded metrics, using the lower benchmark to scale and that avoid misleading scores and
it makes the quantitative assessment less dependent by the choice of the mathematical formulation of
the metric;

[ll) extensive use of variability in addition to multi-annual mean properties, which makes the metrics
more related to the system dynamics.

In the revised manuscript, we will strengthen this novelty by adding a comparison to the existing global
benchmarking schemes. To avoid an unnecessarily long manuscript, we will not discuss site-level
evaluation schemes in detail, as this is not the focus of our study.

Almost all figures could be improved with respect to explanations in text, legends and captions.

This will be taken in to account in the new version of the manuscript.

SPECIFIC COMMENTS TO THE MANUSCRIPT

* title: the paper is not on constraints on current trends but on evaluation of current projections,
I'd suggest to title the paper “Atmospheric CO2 and satellite-based vegetation activity observations in
evaluations of carbon cycle projections”

We agree and propose a revised title: Towards a more objective evaluation of modelled land
carbon trends using atmospheric CO2 and satellite-based vegetation activity observations

* 16088/20 (and elsewhere): model failure is a strong word: I'd suggest “model deficiencies”
Thanks, this will be changed in the new version.

* 16091/23ff: | don’t know too much about the details of TMs but | would imagine that uncertainties
of reanalysis wind fields is higher in remote areas?

There surely is a trade-off between the accuracy of wind-fields and surface emissions in remote stations.
An assessment of the impact of modeled concentrations using TM3 suggests that the uncertainty in
remote stations is lower than in continental areas, supporting our choice of remote stations as more
robust (MPl Biogeochemistry , technical reports 5-6: http://www.bgc-jena.mpg.de/bgc-
systems/pmwiki2/pmwiki.php/Publications/TechnicalReports).




* 16091/26-16092/8: This needs a bit more explanation. After reading it several times, some
understanding dawns but it remains unclear how the robustness is assessed here.
The sentence has been rewritten in the new version of the manuscript in order to be less misleading.

* 16092/13: what is the “collection g”? Can’t find it in Tucker or Beck
"g" is part of an internal versioning system that we are acquainted for (from documentation) and which
may be useful to mention for the GIMMS user community. We have added the documentation as

additional reference for this data set.

* 16093/21: how was the aggregation performed?

We used conservative regridding. This information will be added to the revised manuscript.

* 160595/3-4: It would help my flow of reading if you’d specify the actual years used: 80s (1982-1991),
90s (1992-1997), 2000s (1998-2006)
This will be changed in the new version.

* 16095/6-7: confusing: “by mean of normalized”; rephrase sentence.

‘The systematic quantitative assessment of the correspondence of anomalies and trends in simulated
vegetation activity and net C exchange is performed using normalized metrics”. The sentence has been
rewritten in the new version of the ms.

* 16096/10: This trait checks for large regional inconsistencies between: : :?

The sentence has been rewritten in the new version of the manuscript. Specifically the trait as reported
in 16096/10 checks for the inconsistency between regional seasonal carbon fluxes returned from
inverted fluxes and from the model.

* 16096/22: I'd suspect that the original atmospheric CO2 time series has multiple zero-crossing dates:
how was the data aggregated (running mean, trend?) to identify a single zero-crossing date? BTW:
Section 2.1.1 does not specify the temporal resolution of the CO2 data.

The temporal resolution of CO2 data is the original resolution as recorded at the monitoring station
(hourly to daily/weekly). Data have been filtered according to Thoning et al.89: the seasonal signal is the
signal that retains high frequency information only (>= than the annual frequency) and cut very high
frequency information (daily-10days).The signal is hence smooth and multiple zero-crossing dates do
not occur. For each year the algorithm looks for the downward zero-crossing point of the seasonal time-
series. This zero crossing point leads the minimum of the signal for the specific year. This information
are included in the new version of the manuscript.

* 16097/21: what is the zero-crossing point in fAPAR data which | would expect to be always positive?
The proxy of the time of onset of vegetation activity (fAPAR in our study) is calculated on the seasonal
signal, that is zero centered after the low frequency informations have been removed from the original
signal (according to the filtering method).The time of onset of vegetation activity is then the point in
time of the upward zero-crossing point of the seasonal signal. (see figure reported above).



* 16097/22: I’'m very much in favor of evaluating correlations between climate and vegetation signals,
as climate in models can be substantially skewed as you write earlier. Why do you here use linear
differences between observed and modeled months of t-onset/t-max, even though these should
directly reflect biases in driving climate data seasonalities?

We apply the principle of ocam’s razor in defining the metric, and there seems to be no justification for
a non-linear metric. We did not find a good predictor of t-onset/t-max that could be used as a climate-
bias independent metric..The differences between the most frequent month of t-onset/t-max are an
indication of the differences in the mean field of the variable of interest.In our study, in which the
benchmarking has been applied to the model run in offline mode (but see line 16110/11), the detected
differences might reflect i.e. different response of leaves development to temperature/soil hydrology
processes. ldentifying, the additional model-data difference attributable to climate biases in coupled
climate-land studies is nonetheless possible by comparing the scores or an uncoupled and coupled
simulation.

* 16102/18: wouldn’t it rather be “the east and south of the North America Temperate
region”?
Yes,the sentence has been rewritten.

* 16102/9-14: | feel that the “data not shown” would be better suited to support the claimed
overestimation of the amplitude than the latitudinal gradient shown in Fig 3b. If not, this requires
more explanation.

The sentence has been rewritten in the new version of the manuscript. Fig 3b represents the amplitude
of the mean seasonal cycle with the latitude; hence the figure 3b suits the statement about the
‘overestimation of the amplitude’

* 16102/26 “owing to” instead of “responsible to” or do you mean “responsible for”?
“Responsible for”

* 16103/10: how does this conclusion refer to selecting only areas with one vegetative season
(16097/10)?

The sentence has been rewritten in the new version of the manuscript. The statement refers principally
not to tropical evergreen forests, but to area dominated by deciduous broad leaved forests in the
tropical latitudinal band. The occurrence of one growing seasons as expression of leaves phenology is
driven by seasonality in climate.

* 16106/1: instead of “results not shown” the previous studies could be cited I guess?

The paper did not pass peer-review yet. The sentence will be removed in the revised version.

* 16107/4: NDVI in regions with: : : is mainly driven: : :
The sentence will be rewritten according to suggestion.

COMMENTS TO FIGURES AND TABLES




* Figure 2: LTT in right-hand panel should be names V-LTT as in Table 3 to avoid

Confusion

This will be changed in the new version.

* Figure 2: what is the meaning of blue/red/black traits?

In the new version the traits label have the same colour.

* Figure 3a: what is the meaning of the color coding?

The colour coding indicates the latitudinal band. In the new version this will be written explicitly.

* Figure A2: what is the horizontal line?

Is the mean of the scores reported in the same figure. In the new version this will be written explicitly.

* Figure 8 seems to use at least 2 different tones of blue — does it have any meaning?

In the new version of the manuscript only one tone of blue/red will be reported.

* Figure 7/8: it seems the areas masked out differ (Greenland) — and why would northern

Greenland not be masked out?

In the new version of the manuscript we correct the masks. In Greenland are already missing satellite
data of FAPAR in most of the region. The grid cells that we additional masked out, are grid cells where,
despite some vegetation is growing, the area is dominated by ice.

Technical corrections as suggested by reviewer will be included.



