
We thank referee#4 for his comments that contributed to improve our manuscript. In 
the following, our responses (in black) are proposed with the corresponding 
corrections : 
 

1. The use of the spatial dimensions to help with smoothing and gap filling data 
is become more common and this has not been considered here. Here has been 
a lot of interest recently within the image processing community about the 
Discrete Cosine Transform. Its application to very large data sets has been 
demonstrated using Satellite data (See Wang et. al. reference below). Even 
considering only the temporal dimension DCT is still an excellent gap filling 
and smoothing tool and so I’m surprised it isn’t one of the methods examined 
in this paper. 

The authors should add a short paragraph to the discussion to introduce 
the idea that spatial data is a possible sources of information to help improve 
gap filling. They should refer to the DCT and the Wang et al. paper. 

Wang, Guojie, et al. “A three-dimensional gap filling method for large 
geophysical datasets: Application to global satellite soil moisture observations” 
Environmental Modelling& Software 30 (2012): 139-142 
 
As suggested a short paragraph has been included in the 'Introduction' section 
to introduce the idea that spatial data is a possible source of information to 
help improve gap filling (L9-11 ):  
Several investigations have been focusing on the improvement of the MODIS 
products using specific mathematical filters which use either temporal or 
spatial techniques to get temporally smoothed and spatially continuous 
products (Gao et al., 2007; Borak and Jasinski, 2009; Jiang et al., 2010; 
Verger et al., 2011; Yuan et al., 2011). Spatial filters using pixel-level or 
regional ecosystem statistical data include geostatistical and regression 
methods (Goovaerts, 1997; Berterretche et al., 2005; Wang et al., 2012). 
Nevertheless spatial filters may fail for LAI products derived from coarse 
resolution satellites to represent the complexity of real landscapes mainly over 
mixed pixels where LAI could vary widely within a short distance. To 
overcome this limitation some studies tried to combine both temporal and 
spatial methods by using historical high-quality data and temporal curves 
from neighbor pixels (e.g. Moody et al., 2005; Fang et al., 2008; Gao et al., 
2008). Our study refers only to temporal methods. 

Berterretche,M., Hudak, A. T., Cohen,W. B., Maiersperger, T. K., 
Gower, S. T., Dungan, J.: Comparison of regression and geostatistical 
methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a 
boreal forest. Remote Sensing of Environment, 96(1), 49−61, 2005. 

Fang, H., Liang, S., Townshend, J. R. & Dickinson, R. E.: Spatially 
and temporally continuous LAI data sets based on an integrated filtering 
method: Examples from North America. Remote Sensing of Environment, 112: 
75–93, 2008. 

Gao, F, Morisette, J., Wolfe, R., Ederer, G., Pedelty, J., Masuoka, E., 
Myneni, R., Tan, B., Nightingale, J.: An Algorithm to Produce Temporally and 
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Spatially continuous MODIS-LAI Time Series. IEEE Geoscience and Remote 
Sensing Letters, 5(1) 60−64, 2008. 

Goovaerts, P.: Geostatistics for natural resources evaluation. New 
York7 Oxford University Press, 1997. 

Moody, E. G., King, M. D., Platnick, S., Schaaf, C. B., Gao, F.: 
Spatially complete global spectral surface albedos: Value-added datasets 
derived from Terra MODIS land products. IEEE Transactions on Geoscience 
and Remote Sensing, 43(1), 144−158, 2005. 

Wang, G., Garcia, D., Liu, Y., Dolman, A. J.: A three-dimensional gap 
filling method for large geophysical datasets: Application to global satellite 
soil moisture observations. Environmental Modelling& Software 30: 139-142, 
2012. 
 

2. It is important to keep in the mind of the reader that the techniques used are 
specific implementations of more general procedures. This important because 
it means that the results may be as general as they appear. An example is that 
for several of the techniques parameters are set using “trial and error” and held 
constant for all experiments, where as in fact better results may have been 
achieved in different scenarios by optimizing these parameters (for example 
using 1 eigenvector and a 40 day window in ICSSA). Consequently, the 
conclusions drawn are not actually referring to the technique itself, but the 
combination of the technique and parameters chosen. Because the method of 
choosing the parameters is not made explicit (and, I assume involves a certain 
level of subjectivity) the discussion and conclusion seem more general than I 
believe they really are. In practice may smoothers use techniques such as 
cross-validation to optimize their internal parameters. 

The authors should include more detail on what they mean by “trial 
and error” in the description of each technique and should also add a 
paragraph into the discussions to comment on how general the results are 
given the chosen parameters. The potential to optimize these parameters on a 
per-scenario basis should be at least alluded to in the discussion. 

A related issue is the way in which the SavitzkyGolay Filter is referred 
to in the paper. The authors use a variant of this filter that fits to the top of the 
data envelope – but a basic implementation of the SGF does not do that. 
However, the authors refer to this as “SGF” throughout the manuscript, which 
could leave an unfamiliar reader with the impression that the SGF will induce 
biases if they apply it to their data. This is not the case. 

The authors should rename the SavitzkyGolay Filter from “SGF” to 
something else throughout the text to avoid confusion. They should also add a 
sentence in the conclusions to explain that other implementation of the filter 
would not exhibit the biases that this variant has shown in the results. 
 
We fully agree that the implementation of methods and selection of 
parameters may be critical in methods’ performances. We also agree that this 
is particularly true for the Savitzky-Golay method since the two different 
variants of the method here considered provided very different results. In this 
sense the lower performances obtained with SGF are mostly attributed to the 
upper envelope approach. Contrarily, TSGF, which is also based on an 
adaptative Savitzky-Golay but using a very different implementation, appears 
to be one of the most performing methods based on the RMSE scores (Fig. 6 



and 7).  This has been indicated in the ‘Discussion and conclusion section’ 
(L9-12): 

However, the performances of the different methods for processing time series 
depend on their implementation (e.g. very different results with two variants of 
Savitzky-Golay filter: SGF and TSGF). The selected methods were applied 
here as close as possible to their standard implementation including the 
original parameterization as proposed by their authors. When the parameters 
for each method were not known they were adjusted using a trial and error 
approach. Other techniques based on systematic cross validation could have 
been implemented. This was not considered here since it would lead to 
significant increase in computation time not compatible with current 
operational processing lines capabilities. 
 
Finally, regarding the naming of the Chen’s version of adaptive Savitsky-
Golay filter we propose to keep ‘SGF’ since it is the most common 
implementation for processing time series of biophysical variables in remote 
sensing. The SGF is well referenced through out the article and hence we 
believe it should not create any confusion to readers.  
 

3. Regarding the minor issues: 
a. P17058, l7: “phenology” -> “phenological” 

This has been corrected 
b. P17058, l11: “Of the eight methods…” ->This whole sentence needs 

re-wording. Suggest: “Except ICSSA and EMD, all other methods are 
commonly used for processing biophysical time series data” 
The sentence has been corrected as suggested 

c. P17058, l18: “resulting into” -> “resulting in” 
This has been corrected 

d. P17058, l18: “shaky” - > I am unsure about the choice of word here, 
may be “noisy” would be better 
We used this term to indicate the non-smooth temporal evolution of the 
LAI, which may be also due to noise (from sensors, atmospheric 
corrections, etc.) and to avoid confusion when discussing the effect of 
noise.  

e. P17060, l23: “trial and errors” -> “trial and error” (n.b. this need 
changing elsewhere too). 
This has been corrected. There have been two instances of the 
typographical error, both of which have been corrected. 

f. P17061, l24: “method may be considered as well as based on curve 
fitting” -> suggest: “method may also be considered to be based on 
curve fitting” 
This has been corrected 

g. P17064, l15: “12days” -> “12 day” 
This has been corrected 

h. P17066, l18: “simulate the missing data” -> I think this should be 
“simulate the gaps in the data”, to “simulate missing data” implies 
generating the actual values which is not what is intended here. 
Throughout the text “missing data” was used to refer to the data that 
was missing in the series. However, at the location pointed, the 



confusion is apparent and accordingly the text in the location has been 
corrected. 

i. P17067, l11: change “shaky” 
We used this term to indicate the non-smooth temporal evolution of the 
LAI, which may be also due to noise (from sensors, atmospheric 
corrections, etc.) and to avoid confusion when discussing the effect of 
noise. 

j. P17069, l14: “fill the gaps” - > should this be “fill all of the gaps”? 
This has been corrected 

k. P17071, l29: “boxcompromise” -> “compromise” 
This has been corrected 

l. P17072, l8: you refer to a parameter lambda here, but it is not 
mentioned by this name in sections 2.2.4. 
This has been corrected to “smoothing parameter” 
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Abstract

Moderate resolution satellite sensors including MODIS already provide more than 10 yr
of observations well suited to describe and understand the dynamics of the Earth sur-
face. However, these time series are incomplete because of cloud cover and asso-
ciated with significant uncertainties. This study compares eight methods designed to5

improve the continuity by filling gaps and the consistency by smoothing the time course.
It includes methods exploiting the time series as a whole (Iterative caterpillar singular
spectrum analysis (ICSSA), empirical mode decomposition (EMD), low pass filtering
(LPF) and Whittaker smoother (Whit)) as well as methods working on limited temporal
windows of few weeks to few months (Adaptive Savitzky-Golay filter (SGF), temporal10

smoothing and gap filling (TSGF) and asymmetric Gaussian function (AGF)) in addition
to the simple climatological LAI yearly profile (Clim). Methods were applied to MODIS
leaf area index product for the period 2000–2008 over 25 sites showing a large range
of seasonal patterns. Performances were discussed with emphasis on the balance
achieved by each method between accuracy and roughness depending on the fraction15

of missing observations and the length of the gaps. Results demonstrate that EMD, LPF
and AGF methods were failing in case of significant fraction of gaps (% Gap>20 %),
while ICSSA, Whit and SGF were always providing estimates for dates with missing
data. TSGF (respectively Clim) was able to fill more than 50 % of the gaps for sites with
more than 60 % (resp. 80 %) fraction of gaps. However, investigation of the accuracy of20

the reconstructed values shows that it degrades rapidly for sites with more than 20 %
missing data, particularly for ICSSA, Whit and SGF. In these conditions, TSGF pro-
vides the best performances significantly better than the simple Clim for gaps shorter
than about 100 days. The roughness of the reconstructed temporal profiles shows large
differences between the several methods, with a decrease of the roughness with the25

fraction of missing data, except for ICSSA. TSGF provides the smoothest temporal pro-
files for sites with % Gap>30 %. Conversely, ICSSA, LPF, Whit, AGF and Clim provide
smoother profiles than TSGF for sites with % Gap<30 %. Impact of the accuracy and
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smoothness of the reconstructed time series were evaluated on the timing of pheno-
logical stages. The dates of start, maximum and end of the season are estimated with
an accuracy of about 10 days for the sites with % Gap<10 % and increases rapidly
with % Gap. TSGF provides the more accurate estimates of phenological timing up to
% Gap<60 %.5

1 Introduction

Leaf area index, LAI, is recognized as an essential climate variable (GCOS, 2006) since
it plays a key role in vegetation functioning and exchanges of mass and energy between
the atmosphere, the plant and the soil. LAI is defined as half the area of the green el-
ements per unit horizontal surface (Chen and Black, 1992). Satellite observations in10

the reflective solar domain have been used intensively for more than a decade to mon-
itor LAI dynamics over the globe using medium resolution sensors such as MODIS
(Moderate Resolution Imaging Spectroradiometer) (Myneni et al., 2002), VEGETATION
(Deng et al., 2006; Baret et al., 2007), MERIS (MEdium Resolution Imaging Spectrom-
eter) (Bacour et al., 2006a) or AVHRR (Advanced Very High Resolution Radiometer)15

(Ganguly et al., 2008). LAI was thus used in numerous investigations including climate
change (Pettorelli et al., 2005; Kobayashi et al., 2007), global carbon fluxes (Wylie et
al., 2007; Schubert et al., 2010) land cover (Jakubauskas et al., 2002; Boles et al.,
2004; Thenkabail et al., 2005; Heiskanen and Kivinen, 2008) and land cover change
(Hansen et al., 2002, 2008; Coops et al., 2009; Pouliot et al., 2009) or crop production20

forecasting (Kastens et al., 2005; Dente et al., 2008; Becker-Reshef et al., 2010). For
all these applications, the availability of long and continuous LAI time series is essential
as outlined in (GCOS, 2010).

The current products show significant discontinuities mainly due to cloud or snow
cover (Weiss et al., 2007) as well as system failure. Further, because of residual cloud25

contamination, imperfect atmospheric or directional corrections as well as instability
of the inversion process, products may be characterized by significant temporal noise
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not expected for the actual LAI values. LAI is the result of incremental processes in
vegetation such as leaf development and senescence. Therefore, LAI should be rel-
atively smooth with time. However, this temporal smoothness property is not always
observed over current LAI products as demonstrated by several authors (Weiss et al.,
2007; Verger et al., 2008; Camacho et al., 2012). The MODIS LAI product was recog-5

nized as one of the less smooth mainly because of a combination of factors including
a short (8 days) compositing window, the maximum value compositing algorithm used
and instability in the retrieval algorithm, though MODIS collection 5 products are an
improvement over the collection 4 products (De Kauwe et al., 2011). Several investi-
gations have been focusing on the improvement of the MODIS products using specific10

filtering techniques to get smoother temporal series (Gao et al., 2007; Borak and Jasin-
ski, 2009; Jiang et al., 2010; Verger et al., 2011; Yuan et al., 2011).

Time Series processing is thus an important ingredient of a biophysical algorithm in
order to get the expected continuous and smooth dynamics required by many appli-
cations. The earliest methods used in remote sensing, often called compositing were15

reviewed by Qi and Kerr (1974). They mostly operate over a local temporal window,
focusing on minimizing artifacts due to cloud or snow contamination, atmospheric or
directional residual effects. They included the well-known MVC (Maximum Value Com-
positing) (Holben, 1986) and BISE (Best Index Slope Extraction from) (Viovy et al.,
1992). More recently, (Hird and McDermid, 2009) reviewed the abundant literature on20

time series processing in remote sensing, mostly focusing on NDVI (Normalized Dif-
ference Vegetation Index) (Rouse et al., 1974). They further compared six methods
operating over a restricted temporal window and demonstrated that under their con-
ditions, logistic or (Beck et al., 2006) Asymmetric Gaussian Function (Jönsson and
Eklundh, 2004) curve fitting methods were outperforming more simple local filtering25

methods. Jiang et al. (2010) compared three statistical methods both to smooth the
time series and to provide forecast over a season. These methods are based on the
decomposition of the time series into noise, seasonal variability and trend and require
therefore relatively long time series of observations. Fourier transforms (Azzali and
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Several investigations have been focusing on the improvement of the MODIS products using specific mathematical filters which use either temporal or spatial techniques to get temporally smoothed and spatially continuous products (Gao et al., 2008; Borak and Jasinski, 2009; Jiang et al., 2010; Verger et al., 2011; Yuan et al., 2011). Spatial filters using pixel-level or regional ecosystem statistical data include geostatistical and regression methods (Goovaerts, 1997; Berterretche et al., 2005; Wang et al., 2012). Nevertheless spatial filters may fail for LAI products derived from coarse resolution satellites to represent the complexity of real landscapes mainly over mixed pixels where LAI could vary widely within a short distance. To overcome this limitation some studies tried to combine both temporal and spatial methods by using historical high-quality data and temporal curves from neighbor pixels (e.g. Moody et al., 2005; Fang et al., 2008; Gao et al., 2008). Our study refers only to temporal methods.
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Menenti, 1999), or wavelet decomposition (Martinez and Gilabert, 2009) have also
been used to characterize the phenology of vegetation from medium resolution obser-
vations. However, several studies have demonstrated the superiority of local methods,
i.e. based on a restricted temporal window, as compared to Fourier transform meth-
ods applied to the whole time series (Jönsson and Eklundh, 2002; Beck et al., 2006;5

Ma and Veroustraete, 2006; Hird and McDermid, 2009). Physically based corrections
were also proposed in order to correct for the known factors of variability, resulting in
the GIMMS data set (Tucker et al., 2005). However orbital drift and directionality were
rather corrected using Empirical Mode Decomposition techniques (Pinzon et al., 2005).
More recently, the Long Term Data Record (LTDR) series derived from AVHRR sensors10

(Vermote et al., 2009) and CYCLOPES (Baret et al., 2007) and GEOV1 (Meroni et al.,
2012) derived from VEGETATION proposed also global time series based on physical
principles.Alcaraz-Segura et al. (2010) and Meroni et al. (2012) showed that significant
differences were observed between these several NDVI time series, making the identi-
fication of anomalies and trends more complex. The choice of the smoothing gap filling15

or compositing method may have a large impact on the accuracy of the phenology ex-
tracted from the reconstructed time series (Hird and McDermid, 2009; Atkinson et al.,
2012).

This brief review of studies focusing on satellite time series from medium resolution
sensors shows that a number of methods are available. It is however still difficult to20

identify the potentials and limitations associated since no comprehensive evaluation is
available. Comparison is often qualitative, or when quantitative, it is mostly centered on
a small sample of global conditions. Most of them have been applied to NDVI rather
than on true biophysical variable such as LAI. Further, very little attention was paid
to the missing data structure: as a matter of fact satellite observations present miss-25

ing data mostly because of cloud masking which creates irregular time steps between
actual observations of the surface. Gap filling is therefore an important aspect of the
processing. Finally, only a small fraction of the studies were employing methods capa-
ble of processing the time series as a whole such as the decomposition methods.
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The objective of this study is to evaluate the capacity of several methods to provide
faithful reconstruction of time series in presence of significant amount of missing ob-
servations as well as observations contaminated by uncertainties. The methods will
therefore be compared using several criterions including the ability to run over peri-
ods without observations of variable length, the fidelity of reconstructed values with the5

actual ones and the smoothness of the reconstructed temporal profiles. In addition,
consequences on the ability to capture phenology stages will be also quantified since
this is a usual application of the time series

Eight methods were selected because they were well referenced while being based
either on local curve fitting techniques, or decomposition techniques working on the10

time series as a whole. Of the eight methods, except ICSSA and EMD, all the other
methods are familiar methods for processing biophysical time series data. ICSSA and
EMD, commonly used in other subject areas, were considered in this study due to their
potential ability to recover seasonal trends and reduce noise. The study is based on
MODIS LAI collection 5 product (Shabanov et al., 2005) at 1km spatial and 8 days15

temporal sampling over a 9 yr period. The MODIS LAI products were demonstrated
to get relatively good accuracy (closeness to actual ground observations) but were
suffering from lack of precision (temporal or spatial consistency), resulting into shaky
temporal profiles as stated earlier. Processing of such time series is therefore expected
to result in significant improvement of its consistency. A sample of sites selected to20

represent the range of variability expected over the globe was considered.

2 Approach, data and methods

The MODIS LAI products will first be described. Then the 8 methods selected will be
briefly presented. Finally, the approach for evaluating the methods and the associated
metrics used will be described.25
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2.1 The MODIS data and preprocessing

The data used in this study are the MODIS Collection 5 LAI products (MOD15A2)
derived from TERRA and AQUA platforms. The products were downloaded from
the land processes distributed active archive center (https://lpdaac.usgs.gov/products/
modis products table/mod15a2) for the 2000–2008 period. They correspond to 1 km5

spatial sampling interval using a sinusoidal projection system. The temporal sampling
is 8 days based on a daily composition: all observations available in the 8-day com-
positing window are accumulated, and the one getting the maximum FAPAR value
is selected. The main MODIS LAI retrieval algorithm relies on the inversion of a 3-D
radiative transfer model using the red and near infrared bidirectional reflectance factor10

values, associated uncertainties, the view-illumination geometry and biome type (within
eight types based on MOD12Q1 land cover map) as inputs (Myneni et al., 2002; Sha-
banov et al., 2005). If the main algorithm fails, a back-up procedure is triggered to es-
timate LAI from biome specific NDVI based relationships. However, the LAI estimates
using the back-up algorithm are of lower quality mostly due to residual clouds and poor15

atmospheric correction (Yang et al., 2006a, b). Hence, these estimates are not used
in this study and are considered as missing observations. Although MODIS LAI prod-
uct has been extensively validated (e.g. De Kauwe et al., 2011; Ganguly et al., 2008),
high level of noise was inducing shaky temporal profiles and unrealistic seasonality
(Kobayashi et al., 2010), which justifies the interest of using MODIS LAI products for20

smoothing and gap-filling investigations.
A first preprocessing step was applied to remove unexpected abrupt variations in

the time series: values that are substantially different from both their left- and right-
hand neighbors and from the median in a 72 days length local window are considered
as missing values as proposed (Jönsson and Eklundh, 2004) in the TIMESAT tool-25

box. Further, for Evergreen Broadleaf forests presenting reduced seasonality and high
level of variability in the time series because of frequent occurrence of residual cloud
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contamination, any value lower than the first decile are eliminated since these usually
low LAI values are not expected in this canopy type.

2.2 The methods investigated

Eight candidate methods (Table 1) were selected, including both decomposition tech-
niques generally applied to the whole time series and curve fitting methods working on5

a limited temporal window. Decomposition methods split the signal into additive com-
ponents. The time series are then reconstructed using only the components of interest,
usually removing the high frequency components considered as noise. Decomposition
methods should capture the seasonality and the trend signals observed over the whole
time series, which may be exploited in the reconstruction phase to replace missing10

values. Curve fitting techniques adjust the parameters of a functional by minimizing a
cost function that is usually the sum of quadratic differences between observations and
simulations. Because the adjustment is operated over a limited temporal window, only
a limited amount of information is used when filling gaps.

2.2.1 Iterative Caterpillar Singular Spectrum Analysis Method (ICSSA)15

This is a modification of the CSSA (Golyandina and Osipov, 2007) method developed to
describe time series and fill missing data by decomposing the time series into empirical
orthogonal functions (EOF). This modified version was proposed by Kandasamy et
al. (2012) to correct for overestimation of seasonal valleys and better fitting to the peaks
as compared to the original CSSA formulation. The method requires 2 parameters: the20

window length and the number of eigenvectors (orthogonal functions) used for the
reconstruction. Better reconstruction can be obtained for large number of eigenvectors
but at the cost of a decrease of the smoothness. After trial and errors, the number of
eigenvector was set to 1, and the window length was set to 40 days. This method allows
filling gaps and forecasting data at the extremities of the time series.25
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2.2.2 Empirical Mode Decomposition method (EMD)

This method proposed by Huang et al. (1998) consists in decomposing the time se-
ries into a small number of Intrinsic Mode Frequencies (IMFs) derived directly from the
time series itself using an adaptive iterative process where the data are represented by
intrinsic mode functions, to which the Hilbert transform can be applied. The method re-5

quires setting 2 parameters: the threshold for convergence and the maximum number
of IMFs. The threshold for convergence is set to 0.3 according to (Huang et al., 1998)
and the maximum number of IMFs was restricted to 10 after trial and errors. The first
IMF, mostly affected by noise, was smoothed using a uniform mean kernel to remove
the high frequency fluctuations at the expense of a loss in the amplitude (Demir and10

Erturk, 2008). Note that the EMD method requires the time series to be continuous. To
allow the application of EMD to MODIS time series, the missing data within 128 days
were filled by linear interpolation as proposed by Verger et al. (2011). However, when
the time series contains gaps longer than 128 days, the whole series was not recon-
structed. As a matter of fact, linear interpolation provides generally poor performances15

in case of long periods without observations.

2.2.3 Low Pass Filtering (LPF)

This method originally proposed by Thoning et al. (1989) was adapted by Bacour et
al. (2006b) for better retrieving the seasonality from AVHRR time series. A time depen-
dent function with 10 terms (2 polynomial and 8 harmonic terms) is first adjusted to20

the data. Then, the residuals of this first fitting are filtered with a low pass filter using
two cut-off frequencies defined to separate the intra-annual and inter-annual variations.
The final reconstruction is obtained by summing the polynomial and harmonic terms
with the filtered residuals. Although this method may be considered as well as based
on curve fitting, it applies over the time series as a whole. This method requires the25

data to be continuous. Hence, similarly to the EMD method, the gaps within 128 days
were filled by linear interpolation. For gaps longer than 128 days, LPF was considered
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unsuccessful and, in this case, it results in missing reconstructed values for the whole
time series.

2.2.4 Whittaker Smoother (Whit)

This method proposed by Whittaker (1923) is based on the minimization of a cost
function describing the balance between fidelity expressed as the quadratic difference5

between estimates and actual observations and roughness expressed as the quadratic
difference between successive estimates. This balance is controlled by a smoothing pa-
rameter. The higher this value, the smoother is the result but at the expense of fidelity.
Finding an appropriate value of the smoothing parameter is difficult, as it depends on
the data. After trial and errors the smoothing parameter was set to 100. The smooth-10

ness is also controlled by the order of differentiation which is fixed to 3 as proposed by
Eilers (2003) for time series data sampled at regular intervals but with missing obser-
vations.

2.2.5 Adaptive Savitzky Golay Filter (SGF)

This method proposed by Chen et al. (2004) iteratively applies the Savitzky-Golay filter15

(Savitzky and Golay, 1964) to match the upper envelope of the time series. This spe-
cific adaptation was designed to minimize the effects of cloud and snow contamination
that generally decreases the estimates of vegetation indices such as NDVI as well as
biophysical variables such as LAI. The original Savitzky-Golay filter consists in a local
polynomial fitting with two parameters: the length of the temporal window used and20

the order of the polynomial. As proposed by Chen et al. (2004), the values of these
parameters were optimized for each case to get the best match between observations
and reconstructed values. However, the range of variation of the window length was
restricted to 72–112 days, and that of the polynomial order to 2–4. Missing data in the
time series were filled by linear interpolation independently of the size of the gaps as25

proposed in the original version.
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2.2.6 Temporal Smoothing and Gap Filling (TSGF)

This method is another adaptation of the Savitzky-Golay filter where the polynomial
degree was fixed to 2 but the temporal window may be asymmetric and variable in
length. It was designed by Verger et al. (2011) to better handle time series with miss-
ing observations. The temporal window corresponding to a nominal date is adjusted5

to include at least 3 observations within a maximum 64 days period on each side of
the nominal date. If less than 6 observations are available within the maximum ±64
days temporal window, the polynomial fitting is not applied. The gaps in the recon-
structed data are filled by an iterative (2 iterations) linear interpolation within 128 days
window. For periods with missing data longer than 128 days, the interpolation is not10

applied which results in missing data. The possible flattening of the reconstructed time
series observed over peaks was further corrected by scaling the smoothed series to
the observations in a local window (Verger et al., 2011).

2.2.7 Asymmetric Gaussian Fitting (AGF)

This method has been proposed by Jönsson and Eklundh (2002, 2004) within the15

TIMESAT toolbox. A Gaussian function is adjusted locally over the growing and senesc-
ing part of each season. The functions are finally merged to get a smooth transition
from one season to another. This method can handle small gaps. The original TIME-
SAT implementation of this method included 3 conditions preventing the near constant
and noisy data from being processed. Two of these conditions (minimum seasonality20

in the data and maximum fraction of missing data of 25 %) were not considered here
to enlarge its domain of validity in case of missing data. This thus allows more rigorous
comparison with the other methods. However, the last condition was kept: the method
was not applied over seasons with gaps longer than 72 days and, in these cases, re-
constructions for the entire time series are not provided.25
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2.2.8 Climatology (Clim)

The climatology describes the typical yearly time course. It was included within the set
of methods investigated since it may provide smooth and complete time series with
however no changes from year to year. The climatology was computed every 8 days
during a year by averaging the values available over a ±12 days window across all5

the years of the time series. The climatology was then corrected to provide more con-
tinuous and consistent temporal patterns as proposed in Baret et al. (2011). To pro-
vide smoother values, a simple Savitzky-Golay filter was applied (Savitzky and Golay,
1964). Note that the climatology may present missing values when no observations
in the 24 days temporal window centered on a given date in the year were available10

across the whole years of the time series. In such situations, linear interpolation was
used to fill gaps shorter than 128 days. Gaps longer than 128 days will result in missing
data. Once the average yearly time course was computed, it was replicated across all
the years considered to provide a reconstructed time series.

2.3 Evaluation approach15

The approach proposed to evaluate the methods is based on two steps as sketched
in Fig. 1. The first one is dedicated to the preparation of reference time series over a
limited number of representative sites. As a result of this step, two time series will be
output: (i) a time series with no gaps and small uncertainties considered as the refer-
ence (LAIref), and (ii) a time series with no gaps with realistic uncertainties (LAIcomp).20

In the second step, time series with variable occurrence of missing data will be sim-
ulated (LAIsim) from the previously LAIcomp time series. Each method will be applied
on this LAIsim data to get the corresponding reconstructed time series (LAIrec). Finally,
the LAIrec obtained with each of the 8 methods will be evaluated based on a range of
metrics describing the fidelity, the roughness of time series and the accuracy of phe-25

nological stages that can be derived from the time series.
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2.3.1 Generation of the reference and completed LAI time series

In the first step, few sites were selected with the objective to show a wide variability of
seasonal patterns while having a minimal number of missing data. For this purpose,
the 420 BELMANIP2 sites identified by Baret et al. (2006) to represent the variability
of vegetation types and conditions around the world were considered. These 420 sites5

were first classified according to GLOBCOVER land cover map (Defourny et al., 2009)
with the original classes aggregated into 5 main classes: Shrub/Savannah/bare area
(SB), Grasslands and Crops (GC), Deciduous Broad Leaf Forests (DB), Evergreen
Broad Leaf Forests (EB) and Needle Leaf Forests (NF). For EB and NF sites, most
sites show significant fraction of missing data. The 5 sites showing the minimal gap10

fraction with a large variability in seasonal patterns were finally selected. The same
process was applied to SB, GC and EB classes, resulting in a total of 25 sites (5 sites
for each of the 5 biome classes) (Table 2)

The 8 methods presented earlier were applied to each of the 25 sites and show
very good agreement. The median across all methods is a good approximation of the15

expected LAI product values (Fig. 2) with 4 out of the 8 methods investigated very
close (RMSE (Root Mean Square Error) lower than 0.05) to the median across all
methods. The time series made with the median across the 8 methods will therefore
be considered as the reference values, LAIref, in the following. This LAIref does not
show any missing data since the gaps in the original time series were filled by the20

reconstructed values of the 8 methods. LAIref constitutes a good reference with minimal
uncertainties attached to the LAI values because of the temporal smoothing coming
from each method and the computation of the median across the 8 methods. A second
set of time series was generated to provide realistic LAI values: the original LAI values,
LAIori were complemented at the location of missing data by LAIref values contaminated25

by a noise that was randomly drawn within the distribution of residuals (LAIref −LAIori)
for each site. These realistic but continuous temporal profiles with no gaps (LAIcomp)
will be used in the second step of the approach for simulating time series with gaps.
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2.3.2 Simulation of time series with gaps

In the second step, emphasis was put on the occurrence of missing data (% Gap). The
gap structure observed over each one of the 420 sites was applied to the completed
time series (LAIcomp). This allows the gap structure to be more realistic as compared
to other strategies that would consist in randomly simulating gaps. However, vegeta-5

tion type and the associated climate experienced, hence the cloud occurrence and
corresponding gap structure, are probably correlated. To account for such possible de-
pendency, the gap structure applied to one of the 25 sites was selected within the gap
sites belonging to the same vegetation class (Table 3). Note that the balance amongst
vegetation classes in BELMANIP2 was preserved (Table 3) providing approximate rep-10

resentativeness of global scale conditions regarding the occurrence of missing data:
SB and CG represent about 2/3 of the land area, associated with relatively low frac-
tion of missing data (gap percentage, Fig. 3). Forests represent about 1/3 of the global
land area with relatively high fraction of missing data. However, sites with less than 9
observations for the whole 9 yr period (i.e. less than one observation per year in av-15

erage) were not considered since none of the methods will be able to provide a fair
reconstruction of the LAI time course. A total of 384 sites were finally used to simulate
the missing data (Table 3). Because each vegetation class is represented by 5 sites
used for the LAIref and LAIcomp values, a total of 1920 cases (384×5) with realistic LAI
uncertainties and gap structure were finally available.20

2.4 Metrics used to quantify performances

The performances of the 8 methods considered in this study were evaluated based
both on LAI values as well as phenology. Note that when the reconstructed LAI values
(LAIrec, Fig. 1) were outside the definition domain (0<LAIrec <7), the reconstructed
value was systematically set to the closest bound (0 or 7). Note also that in several25

situations, the methods may fail to reconstruct the whole time series due to long periods
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of gaps. This will be quantified by the reconstruction fraction (% Reconstructions), i.e.
the fraction of dates with reconstructed values in LAIrec time series.

2.4.1 Metrics based on LAI values

The RMSE (Root Mean Square Error) computed over all cases quantifies the fidelity of
the reconstruction of the time series:5

RMSE =

√√√√√√

∑N
j=1

∑nj
t=1

(
LAIjrec (t)−LAIjref (t)

)2

∑N
j=1nj

(1)

where LAIjref(t) and LAIjrec(t) are respectively the reference and the reconstructed val-
ues for date t and case j , n is the number of dates with observations for case j and N
is the number of cases considered.

Finally, the metrics proposed by Whittaker (1923) called here roughness will be used10

to quantify the shaky nature of the reconstructed time series:

Roughness =

√√√√√√

∑N
j=1

∑nj
t=1

(
LAIjrec (t)−LAIjrec (t−1)

)2

∑N
j=1nj

(2)

2.4.2 Metrics based on phenology

The 5 evergreen broadleaf forest sites were excluded from these metrics since the
identification of seasonality was questionable at the single pixel scale considered in15

this study, and would result in large uncertainties in the timing of phenological stages
if they exist (some sites do not show obvious seasonality). Three phenological events
were considered: the Start of Season (SoS), Maximum of Season (MoS) and End of

17067

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Season (EoS). SoS and EoS were defined similarly to Jönsson and Eklundh (2002)
as the timing when LAI reaches 20 % of the whole LAI amplitude before (SoS) or after
(EoS) the timing of maximum LAI (MoS). The reference dates of these three stages
were derived by applying this phenology extraction method to the LAIref data (Pref).
Then the RMSE for the timing of SoS, MoS and EoS are computed:5

RMSE(days) =

√√√√√√

∑N
j=1

∑mj

s=1

(
P j

rec (s)− P j
ref (s)

)2

∑N
j=1mj

(3)

where P j
ref(s) and P j

rec(s) are, respectively, the reference and the reconstructed dates
for the phenological events and case j , m is the number of phenological events for
case j (i.e. the number of seasons in the time series j ) and N is the number of cases
considered.10

3 Results

The methods will first be evaluated with regards to fidelity and roughness of the recon-
structed time series. Then, they will be evaluated with regard to their ability to describe
the phenology. In both cases, the impact of the occurrence of missing data (called
% Gap) will be analyzed.15

3.1 Performances for LAI reconstruction

Before investigating quantitatively the performances through the several metrics envi-
sioned, the main features of each method will be qualitatively assessed. Five cases of
LAIrec within the 1920’s ones have been selected (Fig. 4) and their temporal profiles
plotted against LAIref. They represent the 5 typical vegetation types under a medium20

occurrence of missing data. Visual inspection shows that:
17068
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– The climatology is often shifted from the reference temporal profile, highlighting
the inter-annual fluctuations, particularly for non-forest vegetation types (SB and
CG in Fig. 4).

– In presence of periods with long and continuous missing data, several methods
were not able to reconstruct the time series over these periods, particularly TSGF5

and Clim, while AGF, EMD, LPF fail for the entire time series (SB in Fig. 4). How-
ever, the other methods (ICSSA, Whit, SGF) showing continuity in LAIrec do not
always provide realistic (as compared with LAIref) reconstructions in such cases.

– When observations show a significant level of temporal noise (the forest sites in
Fig. 4: DB, EB and NF), significant differences are observed between the meth-10

ods, both in terms of fidelity (closeness to LAIref) and roughness, particularly for
SGF and EMD.

3.1.1 Capacity to reconstruct the temporal series in presence of missing data

All the methods were not able to fill the gaps, i.e. to provide an estimated value in
gaps. This was quantified by the % Success, i.e. the fraction of gaps that were able15

to be filled. Whit, SGF, ICSSA allow to fill most of the gaps even if they are very long
(Fig. 5a). Conversely, EMD, LPF and AGF show a rapid decrease of % Success with the
length of the gaps, with no reconstructions for gaps longer than 85 (AGF) to 130 days
(EMD, LPF). Even for small gaps, only 50 % of them were filled. This is due to the fact
that a specific gap may be associated to other ones in a close vicinity in the time series.20

TSGF is able to fill gaps up to gap length of 128 days as expected by its definition. The
climatology shows also a progressive decrease of % Success with gaps of 128 days
length being filled in 80 % of cases because of the accumulation of observations over
the 9 yr period.

The capacity to fill individual gaps has consequences on the reconstruction fraction25

(% Reconstructions), i.e. the fraction of dates with reconstructed LAI values, LAIrec,
relative to the total number of dates in the LAIcomp time series. Only three methods
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(Whit, SGF, ICSSA) were able to provide a continuous reconstructed time series over all
the cases investigated (Fig. 5b) even for large occurrence of missing data in agreement
with Fig. 5a. In contrast, AGF is characterized by the smallest % Success (Fig. 5a) and
% Reconstruction (Fig. 5b): only 50 % of the dates are reconstructed for cases with
more than 25 % of missing data in their time series (Fig. 5b). LPF and EMD that do5

not accept gaps longer than 128 days (Table 1) show also a similar drastic decrease of
the reconstruction fraction with the occurrence of missing data in the cases considered
(Fig. 5b). The TSGF method, although also not filling gaps longer than 128 days is more
resilient to the occurrence of gaps: TSGF was able to reconstruct more than 50 % of the
data for cases with more than 60 % of missing data. When a gap longer than 128 days10

appears in a time series, the remaining parts of the time series are reconstructed.
This was not the case for LPF and EMD for which the whole time series was not
reconstructed for cases having a gap longer than 128 days. Clim allows reconstructing
most of the time series, even for cases with large amount of missing data, benefiting
from the replications between years, cloudy days being not always the same day of the15

year.
To improve the robustness of the metrics used to characterize the performances on

LAI and phenology reconstruction, they will be computed only when % Reconstruc-
tions >50 % (Fig. 5b). As a consequence, all the methods will be compared for cases
with less than % Gap<20 %; TSGF, Clim, ICSSA, SGF and Whit will be compared for20

20 %<% Gap< 60 %; and for % Gap>60 %, only Clim, ICSSA, SGF and Whit will be
compared (Fig. 5b).

3.1.2 Fidelity to LAIref

Fidelity is quantified by RMSE. To better highlight the reconstruction capacity of the
methods, RMSE were computed by comparing LAIrec with LAIref either over actual25

dates with observations or over dates with missing data in LAIsim. Results show that,
except for Clim and SGF, all the other methods show generally good fidelity with LAIref
for the dates where observations are available (Fig. 6). These good performances
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are observed almost independently from the occurrence of missing data (Fig. 6). The
higher RMSE values observed for SGF is due to a positive bias induced by the fitting
of the upper envelope of the observations. Clim shows a RMSE value close to that of
SGF (Fig. 6) that mostly refers to the inter-annual variability of LAI seasonality.

Over dates of missing observations, the reconstruction capacity degrades rapidly as5

a function of the length of gaps for all methods except Clim that keeps a RMSE value
around 0.35 independently from the gap length as expected (Fig. 7a). LPF and TSGF
provide the best performances up to gap length around 100 days when Clim starts to
be the best method. AGF, Whit, EMD and SGF show similar performances with RMSE
lower than the climatology up to gap length around 70 days, while ICSSA performances10

rapidly degrade with the length of gaps. The fidelity of reconstructions in gaps as a
function of the fraction of missing observations in the time series (Fig. 7b) derives
logically from the reconstruction performances as a function of the gap length (Fig. 7a).
The RMSE values computed over dates of missing observations are relatively low for all
methods up to % Gap< 20 %. Then, SGF, Whit and ICSSA show a rapid increase of the15

RMSE with % Gap, with poorer performances as compared to Clim for % Gap>30 %
(Fig. 7b). These three methods show obvious artifacts when reconstructing long gaps
(Fig. 4, non-forest sites 5 and 338). TSGF shows relatively low RMSE values up to
60 % gap (Figs. 6, 7b). Clim shows similar performances over dates with missing data
(Fig. 7b) and dates with observations (Fig. 6) as expected since it is not dependent on20

the local observations.

3.1.3 Roughness

The roughness was computed over the whole reconstructed time series and is pre-
sented as a function of % Gap (Fig. 8). Results show that for % Gap<30 %, EMD and
SGF show the highest roughness values in agreement with the previous qualitative ob-25

servations (Fig. 4). The behavior of SGF is controlled by its iterative nature that puts
emphasis on fidelity relative to the upper envelope. For EMD, the 10 modes selected
were showing variable patterns and it was difficult to find a better boxcompromise
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between smoothness and fidelity. ICSSA shows a roughness value close to that of
Clim for % Gap<20 %. However, the roughness of ICSSA strongly increases when
% Gap>20 %. This is partially due to inconsistencies observed in its temporal pattern
with abrupt variations in the periods with high discontinuities in the data (Fig. 4, jumps
observed between the lowest and the highest values when data are missing for non-5

forest sites 5 and 338). AGF and LPF show the smoothest temporal profiles however
limited to cases with % Gap<20 %. Whit provides always smooth reconstructed pro-
files, even for large amount of missing data. This is obviously controlled by the lambda
parameter. Whit is just slightly rougher than LPF and AGF. TSGF shows a slightly
higher roughness values than Whit for the % Gap<30 %, with a significant decrease10

when % Gap increases. This is due to the linear interpolation used to fill the gaps
that explains also the decrease of roughness for EMD, SGF and Clim when % Gap
increases.

3.2 Performances for describing the phenology

The capacity of the several methods to identify the main phenological stages (SoS,15

MoS and EoS) was evaluated using the dates derived from LAIref as a reference. The
performances (RMSE in days) were analyzed as a function of the occurrence of missing
data (% Gap). Results show a general degradation of RMSE when % Gap increases
for the three stages considered.

Closer inspection of performances in terms of RMSE for SoS estimates shows large20

differences between methods (Fig. 9a). For complete time series (% Gap=0), RMSE
values are between 3 days (LPF) and 15 days (AGF), with the exception of the climatol-
ogy with a RMSE around 25 days, indicating a significant inter-annual variability in the
timing of SoS. EMD, TSGF, Whit and SGF have RMSE around 1 days. For discontinu-
ous time series, Whit, SGF and ICSSA show a continuous and steep increase of RMSE25

with % Gap. Conversely, the RMSE values of Clim and, in a lesser way, TSGF increase
moderately with % Gap. Similar patterns are observed for MoS (Figure 9b) with how-
ever smaller differences between methods for % Gap<20 % and a slightly lower rate
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of increase of RMSE with % Gap except for Clim. The performances for EoS (Fig. 9c)
appear to be very similar to what is observed for SoS (Fig. 9a). The Climatology (Clim)
performs better than ICSSA, SGF and Whit for % Gap>40 % for SoS and EoS, and for
% Gap>50 % for MoS. TSGF yields the smallest RMSE for % Gap>20 % for SoS, MoS
and EoS with however only small differences as compared to Clim for EoS (Fig. 9a–c).5

4 Discussion and conclusion

This study compares 8 methods designed to improve the continuity and consistency of
time series by filling gaps created by missing observations and smoothing the temporal
profiles to reduce local uncertainties. However, the performances of the different meth-
ods for processing time series depend on their implementation. The selected methods10

were applied here as close as possible to their standard implementation including the
original parameterization as proposed by their authors. The time series considered
correspond to actual MODIS LAI products over a sample of sites that were selected
to be both representative of the diversity of seasonal patterns and of the distribution
of the missing observations. This approach was expected to improve the realism of15

the context of the analysis that accounts for the implicit links between the vegetation
type and the distribution of missing observations. This may be critical for filling gaps or
smoothing the time series. The approach allowed defining a set of reference time se-
ries used to quantify the accuracy of each of the 8 methods as a function of the fraction
of missing observations.20

Results clearly show that some methods including LPF, AGF and EMD were failing
in about 50 % of the situations when the fraction of missing observations was larger
than 20 % which represents about 60 % of the situations investigated here. This is
partly due to the principles on which these methods are based, but also partly to their
implementation. Consequently, great care should be taken with the implementation of25

such methods to improve their rate of applicability in case of significant periods with
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missing observations. Conversely, ICSSA, Whit and Clim methods were applicable in
almost all situations while TSGF shows intermediate behavior.

For the methods resilient to periods of missing observations of significant length, their
capacity to provide realistic interpolation between actual observations was challenged
in cases corresponding to medium to high fraction of missing data. SGF, designed to fit5

the upper-envelope of observations, performs poorly (large RMSE and positive Bias)
over MODIS LAI time series. Better filtering principles are thus required to reject out-
liers possibly contaminated by residual clouds. ICSSA and Whit show unreliable inter-
polated values in the medium (few weeks) to large (few months) periods of missing data
although these methods are adjusted over the whole time series. The TSGF method10

appears to provide the most reliable interpolation capacity due to its adaptive tempo-
ral window, although limited to gaps smaller than 128 days. For longer periods without
observations, the Clim method appears to be the best one provided that enough data
are available over the time series of years used to build the climatology. Note that the
reconstruction performances for the best methods and for gaps shorter than 100 days15

fulfills the GCOS criterion on LAI uncertainties (RMSE>0.5) (GCOS, 2010) although
the reconstruction uncertainty is only part of the error budget.

Each method is based explicitly (Whit) or implicitly (the other methods) on a balance
between fidelity and smoothness. This is clearly demonstrated when plotting Rough-
ness and RMSE performances for each of the 25 selected sites (Table 2) for a class20

of occurrence of missing data (Fig. 10). For each method, all the 25 sites are approx-
imately organized around a line passing through the origin. The slope of this line indi-
cates the balance between fidelity and roughness. For relatively continuous time series
(0 %<% Gap<15 %), TSGF, ICSSA and Whit focus more on fidelity than smoothness
(Fig. 10, left). Conversely, LPF, EMD and AGF are focusing more on smoothness than25

fidelity. SGF constitutes a particular case because the fidelity is targeting the upper
envelope of the points, resulting in larger RMSE values, while roughness is also quite
important as described previously. Clim provides the steepest slope, with smooth tem-
poral profiles but a loose match with observations. Note that the slope of Clim is in
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between that of LAIcomp and LAIref (for which RMSE was replaced by the standard
deviation between observations). For the larger occurrence of missing data (Fig. 10,
right), the slopes increase significantly due to an increase of RMSE mostly due to inac-
curate reconstructions in the gaps, and a decrease of roughness due to more simple
patterns in the observations, except for ICSSA as noticed earlier.5

The slope between RMSE and Roughness (Fig. 10) appears thus a good indicator
of the balance between fidelity (RMSE) and smoothness of each method and its asso-
ciated sets of parameters. The overall performances may be described by the distance
to the ideal case (RMSE=Roughness=0) in the [Roughness, RMSE] feature plane
averaged over the 25 sites considered: the closer to the origin [0, 0], the smoother and10

the better match with LAIref (low RMSE). The behavior of each method as a function of
the occurrence of missing data is well sketched in the [Performances, Slopes] feature
plane (Fig. 11). For low amount of missing data, all the methods provide good perfor-
mances except SGF and Clim for the reasons exposed previously. When the fraction
of missing data increases, each method follows a particular pattern (the black arrow15

in Fig. 11) with a degradation of the performances and an increase in the slope indi-
cating more emphasis on the smoothness of the temporal profiles. For medium and
high occurrence of missing data, TSGF provides clearly the best overall performances
although restricted to gaps smaller than 128 days, followed by Whit. SGF and ICSSA
show poor performances.20

The consequences of the application of the several time series processing methods
on their capacity to describe phenology characteristics were finally evaluated. As ex-
pected, the methods providing the best accuracy on LAI estimation were also more
accurate for dating specific phenological events such as start, maximum and end of
season (Fig. 12).25

The effect of gaps on the derivation of time series appears as a major limitation of the
accuracy of the reconstructed temporal profiles. Techniques based on the processing
of the time series as a whole (ICSSA, EMD, LPF, Whit and Clim) were not demon-
strated to perform systematically better than techniques based on a limited temporal
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window (AGF, SGF, TSGF) although they were expected to fill long gaps with the “ex-
perience” gained across the several years available in the time series. Local methods
were generally more faithful but were lacking capacity to fill long gaps. Most methods
were performing poorer than Clim for gaps longer than about 100 days. Future works
should therefore be dedicated to develop methods where the features derived from the5

exploitation of the several years available in the time series including the climatology,
could be injected more explicitly as a background information for improving the relia-
bility of methods working over a limited time window such as a season or part of it,
with emphasis on the capacity to provide accurate phenological timing as proposed in
Verger et al. (2012).10
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Table 1. List of the methods investigated. Length of processing window (Whole means that the
processing window is the whole time series) and maximum gap length tolerated are indicated.

Abrev. Method Principles Processing Maximum Reference
Window length gap length
(days) (days)

ICSSA Iterative Caterpilar Decomposition into EOF’s using Whole – Golyandina and
Singular Spectrum Analysis Eigen value decomposition Osipov (2007)

EMD Empirical Mode Decomposition into Whole 128 Huang et al.
Decomposition IMF’s by “sifting” (1998)

LPF Low Pass Filtering Fitting a harmonic curve Whole 128 Bacour et al.
to the series, followed by 2-pass (2006b)
filtering of the residuals

Whit Whitaker Penalized Least Square Whole – Eilers (2003)
Regression – Smoothness is
governed by a parameter value

SGF Adaptive Savitzky-Golay filter with iterations 72–112 – Chen et al.
Savitzky-Golay Filter to fit the upper (2004)

envelope of the series

TSGF Temporal Savitzky-Golay filtering with 48–128 128 Verger et al.
Smoothing and flexible window and linear (2011)
Gap Filling interpolation for gaps

AGF Asymmetric Fitting Asymmetric Gaussian 60–300 72 Jönsson and
Gaussian Filter Function to seasons Eklundh (2002, 2004)

Clim Climatology Inter-annual median Whole 128∗ Baret et al.
for each 8-day period (2011)

∗ The maximum gap length applies on the yearly reconstructed time series, not on the original time series.
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Table 2. Sites selected for the study for the 5 biomes. The site number in BELMANIP2 ensemble
of 420 sites, latitude and longitude and fraction of missing data (% Gap) are indicated.

Biome Site # Lat.(◦) Lon. (◦) % Gap

Shrub Savannah Bare (SB) 5 −34.02 −65.63 1
136 −18.46 44.41 3
176 12.49 36.34 2
186 10.70 39.41 1
293 −21.54 143.83 1

Crop Grassland (GC) 69 38.63 −98.91 5
127 −27.61 27.95 1
225 35.09 −1.00 1
280 −31.38 116.87 1
338 25.99 68.52 0

Deciduous Broad leaf forests (DB) 131 −11.99 16.43 11
146 −5.45 31.74 9
162 4.86 28.80 8
165 5.98 31.18 1
296 −16.45 142.62 1

Evergreen Broadleaf Forests (EB) 19 −11.75 −53.35 41
30 −2.68 −63.65 48
50 17.59 −89.78 45

142 −4.60 23.44 38
320 24.54 121.25 41

Needle Leaf Forests (NF) 54 28.39 −108.25 11
55 26.53 −106.68 13
62 39.49 −120.83 18
65 30.28 −83.85 16

244 43.86 −1.10 20
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Table 3. Number of sites per vegetation class in BELMANIP2 set of sites, and number of cases
considered in the gap simulation experiment.

Vegetation class SB CG DB EB NF Total

Nb. sites in BELMANIP2 144 123 35 36 46 384
Nb. cases (time series) simulated 720 615 175 180 230 1920
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Fig. 1. Flow chart describing the approach used. Mi corresponds to method i within the 8
investigated. LAIrec (Mi ) corresponds to the reconstructed time series based on method Mi .
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Fig. 2. Comparison between the original LAI values (LAIori) and the median of the recon-
structed values (LAIref) based on the 8 methods considered over the 25 selected sites (Table 2)
(N =7561; R2 =0.90; RMSE=0.231; Bias=−0.008). The colors of this density plot correspond
to the frequency of data in each of the 0.1×0.1 cells LAI values.

17087

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 3. Cumulated distribution of the fraction of missing data (% Gap) in the simulated time
series (LAIsim) for each of the 5 vegetation classes (SB, CG, DB, EB, NF).
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Fig. 4. Time series (LAIrec) reconstructed by the several methods in presence of medium occur-
rence of missing data (25 %<% Gap<35 %). Black dots correspond to LAIcomp at the location
of observations. Empty circles on the x-axis correspond to the dates of missing data. The
dashed black curve corresponds to LAIref. Note that because of the structure of missing data,
EMD, LPF and AGF were not reconstructed for sites 5 and 65, as well as AGF for site 338.

17089

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

a b 

Fig. 5. (a) Fraction of gaps reconstructed (% Success) as a function of the length of the gaps
(LoG). (b) Fraction of missing data reconstructed (% Reconstructions) as a function of the
% Gap. The horizontal dashed line represents the 50 % threshold of % Reconstructions. The
several methods are represented by different colors. Some values were slightly shifted vertically
to ease the reading when curves were overlapping.
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Fig. 6. RMSE as a function of % Gap. The RMSE is computed between LAIref and the re-
constructed LAIrec time series over dates with actual observations in LAIsim. The values were
slightly shifted vertically to ease the reading when curves were overlapping.
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a� b�

Fig. 7. RMSE as a function of the length of gaps (a) and fraction of missing observations
(% Gap) (b). The RMSE is computed between LAIref and the reconstructed LAIrec time series
over dates with missing observations in LAIsim.

17092



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

�
Fig. 8. Roughness of LAIrec as a function of % Gap in LAIsim.
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a� b c

Fig. 9. RMSE relative to the timing (in days) of the start of season (a), maximum of season (b)
and end of season (c). The RMSE is evaluated between the phenological dates computed with
LAIref and those derived from the reconstructed LAIrec time series using the several methods
investigated.
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Fig. 10. RMSE as a function of Roughness observed over the reconstructed times series using
the several methods. Color dots correspond to the values for the different methods over the 25
sites for cases with % Gap in the selected classes of occurrence of missing data: 0–15 % (left)
and 45–55 % (right). Note that EMD, LPF and AGF are only displayed for the lowest occurrence
of missing data (0 %<% Gap<15 %). Black circles correspond to LAIcomp and black diamonds
to LAIref. Lines correspond to the zero-offset linear regressions.
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V

Fig. 11. Performances (distance to the origin) and slopes in the [Roughness, RMSE] feature
plane (Fig. 10) associated to each method for 0 %<% Gap<15 % (X), 25 %<% Gap<35 %
(!) and 35 %<% Gap<45 % ("). Note that EMD, LPF and AGF are only displayed for the
lowest % Gap class. The black arrow indicates the effect of an increase of the fraction of missing
data.
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V

�

Fig. 12. Accuracy of the start of season retrieval expressed in RMSE (days) as a function of the
accuracy of LAI estimated expressed in RMSE. The same colors (corresponding to methods)
and markers (corresponding to classes of % Gap) as in Fig. 11 are used.
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