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 10 

Abstract 11 

In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence 12 

the subtle and heterogeneous structural changes that occur across the broad circumpolar extent.  13 

Such changes may be related to ecotone form, described by the horizontal and vertical patterns of 14 

forest structure (e.g., tree cover, density and height) within TTE forest patches, driven by local site 15 

conditions, and linked to ecotone dynamics.  The unique circumstance of subtle, variable and 16 

widespread vegetation change warrants the application of spaceborne data including high-17 

resolution (< 5m) spaceborne imagery (HRSI) across broad scales for examining TTE form and 18 

predicting dynamics.  This study analyzes forest structure at the patch-scale in the TTE to provide 19 

a means to examine both vertical and horizontal components of ecotone form.  We demonstrate 20 

the potential of spaceborne data for integrating forest height and density to assess TTE form at the 21 

scale of forest patches across the circumpolar biome by (1) mapping forest patches in study sites 22 

along the TTE in northern Siberia with a multi-resolution suite of spaceborne data, and (2) 23 

examining the uncertainty of forest patch height from this suite of data across sites of primarily 24 

diffuse TTE forms.  Results demonstrate the opportunities for improving patch-scale spaceborne 25 

estimates of forest height, the vertical component of TTE form, with HRSI.   The distribution of 26 

relative maximum height uncertainty based on prediction intervals is centered at ~40%, 27 

constraining the use of height for discerning differences in forest patches.  We discuss this 28 



uncertainty in light of a conceptual model of general ecotone forms, and highlight how the 29 

uncertainty of spaceborne estimates of height can contribute to the uncertainty in identifying TTE 30 

forms.  A focus on reducing the uncertainty of height estimates in forest patches may improve 31 

depiction of TTE form, which may help explain variable forest responses in the TTE to climate 32 

change and the vulnerability of portions of the TTE to forest structure change. 33 

 34 

1 Introduction 35 

1.1 TTE vegetation structure and processes 36 

The circumpolar biome boundary between the boreal forest and arctic tundra, also known as 37 

the tree-line, the forest-tundra ecotone, or the taiga-tundra ecotone (TTE), is an ecological 38 

transition zone covering > 1.9 million km2 across North America and Eurasia (Payette et al, 2001; 39 

Ranson et al., 2011).  This ecotone is among the fastest warming on the planet (Bader, 2014).  The 40 

location, extent, structure and pattern of vegetation in the TTE influences interactions between the 41 

biosphere and the atmosphere through changes to the surface energy balance and distribution of 42 

carbon (Bonan, 2008; Callaghan et al., 2002a).   These TTE vegetation characteristics also affect 43 

local and regional arctic and sub-arctic biodiversity (Hofgaard et al., 2012) and are controlled by 44 

a variety of factors that are scale-dependent (Holtmeier and Broll, 2005).  At local scales the spatial 45 

configuration of trees is determined largely by site-level heterogeneity in hydrology, permafrost, 46 

disturbance, topography (aspect, slope, elevation), land use and the geomorphologic conditions 47 

associated with each (Dalen and Hofgaard, 2005; Danby and Hik, 2007; Frost et al., 2014; Haugo 48 

et al., 2011; Holtmeier and Broll, 2010; Lloyd et al., 2003). 49 

North of the Kheta River in central Siberia (e.g., 71.9°N 101.1°E), the TTE exhibits a change 50 

in forest structure across a gradient of open canopy (discontinuous) forest from south to north.   In 51 

this region, latitude coarsely controls TTE forest structure characteristics, which feature a general 52 

decrease in height and cover from south to north, as well as a variety of spatial patterns of trees 53 

(Holtmeier and Broll, 2010).  These structural characteristics influence a range of TTE 54 

biogeophysical and biogeochemical processes in a number of ways.  Forest structure provides 55 

clues as to the extent of sites with high organic matter accumulation and below-ground carbon 56 

pools (Thompson et al., 2016).  Recent work notes that rapid growth changes individual tree forms, 57 



thus altering recruitment dynamics (Dufour-Tremblay et al., 2012).  Height and canopy cover of 58 

trees and shrubs affect site-level radiative cooling, whereby larger canopies increase nocturnal 59 

warming and influence regeneration (D'Odorico et al., 2012).  Such tree height and canopy controls 60 

over the transmission of solar energy have been well documented (Davis et al., 1997; Hardy et al., 61 

1998; Ni et al., 1997; Zhang, 2004). The height and configuration of vegetation also partly 62 

influences permafrost by controlling snow supply, creating heterogenuous ground and permafrost 63 

temperatures (Roy-Léveillée et al., 2014).  Accounting for vegetation heterogeneity in schemes 64 

addressing surface radiation dynamics helps address the effects on rates of snowmelt in the boreal 65 

forest (Ni-Meister and Gao, 2011).  Modeling results support the importance of tree heights on 66 

boreal forest albedo, which is a function of canopy structure, the snow regime, and the angular 67 

distribution of irradiance (Ni and Woodcock, 2000).  Better representation of vegetation height 68 

and cover are needed to improve climate prediction and understand vegetation controls on the 69 

snow-albedo feedback in the high northern latitudes (Bonfils et al., 2012; Loranty et al., 2013).   70 

Furthermore, the structure of vegetation in the TTE helps regulate biodiversity, where the 71 

arrangement of groups of trees provides critical habitat for arctic flora and fauna (Harper et al., 72 

2011; Hofgaard et al., 2012).  73 

1.2 A conceptual model of the TTE: forest patches, ecotone form and the link to structural 74 

vulnerability 75 

The TTE, and other forest ecotones, can be conceptualized as self-organizing systems 76 

because of the feedbacks between the spatial patterns of groups of trees and associated ecological 77 

processes (Bekker, 2005; Malanson et al., 2006).  In this conceptual model groups of trees with 78 

similar vertical and horizontal structural characteristics can be represented as forest patches.  These 79 

patches have ecological meaning, because they reflect similar site history and environmental 80 

factors.  At a coarser scale, these patterns and structural characteristics of TTE forest patches have 81 

been conceptualized with a few general and globally recognized ecotone forms (Harsch and Bader, 82 

2011; Holtmeier and Broll, 2010).  In the TTE, these general ecotone forms (diffuse, abrupt, island, 83 

krummholz) reflect the spatial patterns of forest patches that are described by the horizontal and 84 

vertical structural characteristics of trees (e.g. canopy cover, height and density), and have different 85 

primary mechanisms controlling tree growth.   86 



The variation in ecotone form may help explain differing rates of TTE forest change across 87 

the circumpolar domain.  These forms tend to vary with site factors, which may partly control the 88 

heterogeneity of change seen across the circumpolar TTE (Harsch and Bader, 2011; Lloyd et al., 89 

2002).  Further investigation is needed into the link between observed changes in vegetation, their 90 

pattern, and local factors that may control these changes (Virtanen et al., 2010).  Epstein et al. 2004 91 

provide a synthesis of how TTE patterns and dynamics are linked, and explain that a better 92 

understanding of vegetation transitions can improve predictions of vegetation sensitivity.  Their 93 

observations provide a basis for the inference that TTE structure is most susceptible to 94 

temperature-induced changes in its structure where its structure is temperature-limited.  Thus, the 95 

structural vulnerability of the TTE may be broadly defined as the susceptibility of its vegetation 96 

structure to changes that result in shifts in its geographic position and changes to its spatial pattern 97 

of trees.  Vulnerable portions of the TTE are areas most likely to experience changes in forest 98 

structure that alter TTE structural patterns captured by forest patches and described by ecotone 99 

form.  100 

1.3 Towards identifying TTE form: spaceborne data integration, scaling and the 101 

uncertainty of TTE structure 102 

Spaceborne remote sensing data may facilitate identifying TTE form and linking it to local 103 

site factors and structural vulnerability (Callaghan et al., 2010; 2002b; Harsch and Bader, 2011; 104 

Kent et al., 1997).  They way in which spaceborne data is integrated and scaled may be a key part 105 

of identifying structural patterns and TTE form.  Fine-scale data can resolve individual trees that, 106 

when grouped to patches, may reveal ecotone forms (Danby and Hik, 2007; Hansen-Bristow and 107 

Ives, 1985; Hofgaard et al., 2012; 2009; Holtmeier and Broll, 2010; Mathisen et al., 2013).  108 

Without resolving groups of individual trees, coarse studies of the land surface may misrepresent 109 

ecotone form, be less frequently corroborated with ground data, and disguise the structural 110 

heterogeneity of discontinuous forests.  In a TTE landscape this structural heterogeneity is critical 111 

for understanding biodiversity, biogeochemical and biophysical characteristics such as carbon 112 

sources, sinks and fluxes, permafrost dynamics, surface roughness, albedo, and evapotranspiration 113 

(Bonan, 2008).  Furthermore, understanding at a fine-scale where the TTE is likely to change may 114 

improve understanding of the potential effects of changing TTE structure on these regional and 115 

global processes. 116 



A forest patch approach to the integration of multi-resolution remote sensing data may 117 

mitigate data scaling issues with regard to forest structure estimates.  One example of mitigation 118 

is the misrepresentation of forest structure that arises with the sole use of coarse data.   Medium-119 

resolution sensors such as Landsat and ALOS may not be suited for identifying the patch 120 

boundaries at the resolution required to study TTE structure.  However, their spectral or backscatter 121 

information may still have value for predicting patch characteristics when combined with the 122 

spatial detail of high resolution spaceborne imagery (HRSI) to define patch boundaries.  Such an 123 

approach integrates coarser data into an analysis while maintaining the spatial fidelity of feature 124 

boundaries.  Furthermore, a patch-level analysis helps attenuate high frequency noise in image 125 

data.  For example, ALOS PALSAR backscatter has significant pixel-level speckle (Le Toan et 126 

al., 2011; Mette et al., 2004; Shamsoddini and Trinder, 2012) which, when grouped with 127 

coincident HRSI patch boundaries, can be averaged to reduce the noise and quantified further with 128 

a variance estimate. 129 

In particular, data integration and scaling may also help mitigate the uncertainty of spaceborne 130 

estimates of vertical structure in discontinuous TTE forests.  A spaceborne assessment of forest 131 

structure from individual active sensors across a gradient of boreal forest structure shows broad 132 

ranges of uncertainty at plot-scales (Montesano et al., 2014a; 2015).  These plot-scales studies 133 

provide an indication of the scale at which TTE structure changes.  A spaceborne remote sensing 134 

approach that identifies forest patch boundaries with HRSI may provide insight into TTE structural 135 

characteristics that are indicative of general ecotone forms at scales that are dictated by the 136 

variation of TTE forest structure itself.  As such, a patch-based approach to capturing forest height 137 

and forest height uncertainty in the ecotone capitalizes on the added value that estimates of 138 

horizontal structure may provide for reducing uncertainties in estimates of vertical structure from 139 

remote sensing.   140 

An evaluation of forest structure uncertainty serves the long-term goal of monitoring change 141 

over time and between sites, as well as distinguishing the portions of the TTE that are vulnerable 142 

to changes in forest height, cover or density from those whose structure is more resilient, and the 143 

rates associated with these changes (Epstein et al., 2004). The spatial patterns of this structural 144 

vulnerability will help models predict the consequences of TTE structural change on regional and 145 

global processes. 146 



This work examines the uncertainty of mapped forest patch heights using a spaceborne remote 147 

sensing data integration approach.  We map forest patches with HRSI data (<5 m) to spatially 148 

assemble a medium spatial resolution (5 m - 50 m) suite of measurements from multi-spectral 149 

optical and SAR with light detection and ranging (LiDAR) samples to estimate and model forest 150 

height and its uncertainty by forest patch.  We discuss the implication of this uncertainty for both 151 

identifying TTE form and predicting dynamics, with regard to separating identifying portions of 152 

the TTE whose forest structure is vulnerable to temperature-induced changes. 153 

 154 

2 Methods 155 

2.1 Study area & ground reference data 156 

Our study area encompasses a region of the TTE in northern Siberia in which we identified 157 

forest patch mapping sites and incorporated existing calibration and validation field plot and stand 158 

data.  The region is subject to a severe continental climate, generally exhibits a gradient in  tree 159 

cover from discontinuous to sparse, features elevations generally < 50 m.a.s.l., and is underlain 160 

with continuous permafrost (Bondarev, 1997; Naurzbaev et al., 2004).  The forest cover, 161 

exclusively Larix gmelinii across all mapping, calibration and validation sites, exists at the climatic 162 

limit of forest vegetation, coinciding closely with the July 10°C isotherm (Osawa and Kajimoto, 163 

2009).  Tall shrubs, including Alnus sp., Betula sp., and Salix sp., and dwarf shrubs (e.g. Vaccinium 164 

sp.), occur along with sedge-grass, moss and lichen ground covers. 165 

The mapping sites are primarily situated on the Kheta-Khatanga Plain, north of the Kheta 166 

River, which is a tributary of the Khatanga River flowing north into the Laptev Sea.  One site, 167 

which sits just south of the Novaya River on the Taymyr Peninsula, includes a portion of Ary-168 

Mas, the world’s northernmost forest (Bondarev, 1997; Kharuk et al., 2007; Naurzbaev and 169 

Vaganov, 2000).  Mapping sites were chosen based on the presence of cloud-free multispectral 170 

and stereo pair data from HRSI available in the Digital Globe archive, and presence of patches of 171 

forest cover (Neigh et al., 2013).  We visually interpreted HRSI to identify sites in this portion the 172 

TTE where forest cover was discontinuous and where forest patches exhibited diffuse, abrupt or 173 

island ecotone patch forms. 174 



Ground reference sites were derived from two sources.  The first consisted of individual tree 175 

measurements at circular plots (15 m radius) coincident with spaceborne LiDAR footprints while 176 

the second comprised stand-level data specific to Larix gmelinii across a broader central Siberian 177 

region.  The plot data, collected during an August 2008 expedition to the Kotuykan and Kotuy 178 

Rivers, were used as either calibration or validation data in this study (Montesano et al., 2014b).  179 

Measurements were collected of tree diameters at breast height (DBH, 1.3 m) and tree heights 180 

(clinometers for 97% of trees and tape measurement for 3%) at plots coincident with spaceborne 181 

LiDAR footprints. The data used for this study included DBH for all tree stems with DBH >3 cm 182 

(±0.1 cm) and corresponding tree heights for each tree in each plot. These plot data, representing 183 

a range of discontinuous Larix gmelinii forest conditions found across northern Siberia excluding 184 

prostrate tree forms, were supplemented with the stand data reported in Bondarev (1997).  Shrub 185 

structure was not considered in this study. 186 

The forest mapping and ground reference sites do not spatially coincide.  This study 187 

examines the TTE on the Kheta-Khatanga Plain which exhibits a range of TTE forms, where the 188 

TTE covers a broader area, and where we had access to both stereo and multispectral HRSI data. 189 

While not spatially coincident, our ground reference sites characterize very similar forest 190 

conditions to those in the mapping sites.  The main difference is that the ground reference sites 191 

feature an ecotone that is compressed, covering a smaller area due to topography, relative to the 192 

mapping sites.  The type and structure of the Larix gmelinii forests is consistent across the broader 193 

region (Bondarev, 1997).  The geographic footprints of all mapping sites for which forest patches 194 

were examined, as well as the general locations of Kotuykan/Kotuy ground reference sites, are 195 

shown in Figure 1.   196 

2.2 Spaceborne data acquisition and processing 197 

A suite of spaceborne remote sensing datasets were used in this study to delineate forest 198 

patch boundaries, assign forest patches with remote sensing image pixel values, and predict forest 199 

patch height.  Table 1 lists the individual data sets along with their period of acquisition. These 200 

data were collected within ~8 year period (2004 - 2012) across sites during which, based on visual 201 

inspection of HRSI, there were no signs of disturbance from fires, and for which the rate of tree 202 

growth is likely well below that which would be detectable from spaceborne data in that time 203 

interval.  The data include spaceborne LiDAR data from the ICESat satellite’s Geoscience Laser 204 



Altimeter System (GLAS) and image data from passive optical Landsat-7 ETM and Worldview-1 205 

& -2, and synthetic aperture radar (SAR) from ALOS PALSAR. 206 

2.2.1 Spaceborne LiDAR data 207 

The spaceborne LiDAR data from GLAS featured ground footprint samples ~60 m in 208 

diameter (the actual footprint is an ellipse) of binned elevation returns of features within each 209 

footprint.  These data provided ground surface elevation samples as described in a previous study 210 

(Montesano et al., 2014b).   The set of GLAS data coincident with the DSM of the study sites was 211 

filtered in an effort to remove LiDAR footprints for which within-footprint elevation changes 212 

precluded capturing heights of trees generally less than 12 m tall.  The GLAS footprints used 213 

satisfied the following conditions; (1) the set of coincident DSM pixels had a standard deviation 214 

≤ 5 m, (2) the length of the LiDAR waveform was ≤20 m, and (3) the difference between the 215 

maximum and minimum DSM values within a 10 m radius of the GLAS LiDAR centroid was ≤ 216 

25 m.  This radius helped remove footprints for which there was a broad range of DSM values 217 

near the footprint centroid, indicative of terrain slope that would likely interfere with forest height 218 

estimation. 219 

2.2.2 Spaceborne Image data 220 

Spaceborne image data covering the full extent of each study site that were resampled from 221 

their original un-projected format during a re-projection into the Universal Transverse Mercator 222 

coordinate system (zone 48).  The images were either medium (25 m-30 m pixels) or high (<5 m 223 

pixels) resolution.  The medium resolution spaceborne imagery included a Landsat-7 ETM 224 

multispectral cloud-free composite and vegetation continuous fields tree cover (VCF) products 225 

and ALOS PALSAR tiled yearly mosaics (2007 - 2010) (Hansen et al., 2013; Shimada et al., 2014).  226 

The four ALOS PALSAR yearly mosaics were processed into an average temporal mosaic of dual 227 

polarization (HH and HV) backscatter power.  The high resolution data consisted of HRSI 228 

multispectral (Worldview-2 satellite) and panchromatic (Worldview-1 satellite) data acquired 229 

from the National Geospatial Intelligence Agency via the NextView License agreement between 230 

Digital Globe and the US Government (Neigh et al., 2013).   231 

This HRSI was processed in accordance with Montesano et al. (2014) to generate a digital 232 

surface model (DSM) of elevations for each study site using the NASA Ames Stereo Pipeline 233 



software (Moratto et al. 2010; Montesano et al., 2014b).  In addition to DSM generation, the HRSI 234 

data were processed to compute three additional image layers that were used to delineate and 235 

assign forest patches with the mean and variance of corresponding image pixel values.  The steps 236 

below describe the processing of the 3 additional layers: 237 

NDVI image: We computed a normalized difference vegetation index (NDVI) layer to create 238 

a mask separating areas of vegetation from non-vegetation within each mapping site.  This widely 239 

used algorithm was based on the near-infrared (NIR) and red channels of the multispectral HRSI 240 

([NIR – red] / [NIR + red]).  This NDVI calculation, based on uncalibrated digital number values 241 

of image pixels, supported the objective of classifying forest structure patterns rather than 242 

maintaining the fidelity of reflectance characteristics. 243 

Panchromatic image roughness:  This roughness data was based on the textural 244 

characteristics of each site’s panchromatic HRSI.   Image roughness/texture information is useful 245 

for examining horizontal forest structure, a component of which is tree density (e.g., Wood et al., 246 

2012; Wood et al., 2013).  We computed image roughness using the output layers from the bright 247 

and dark edge detection (described in Steps 10-12 of Table 2 in Johansen et al.) (Johansen et al., 248 

2014).  This image roughness derivation is resolution independent in that feature roughness can be 249 

captured as long as those features are resolved in the imagery.  Here, we use ~60cm data to quantify 250 

a signal from groups of Larix gmelinii trees.  The output from this roughness computation was a 251 

single image layer showing increased brightness values corresponding to increasingly textured 252 

surface features that is a result of the arrangement of trees across the landscape. 253 

Canopy roughness model:  The second of two image roughness layers, a canopy roughness 254 

model (CRM), was calculated from each DSM.  A low pass (averaging) filter (kernel size = 25 x 255 

25) was applied to a version of the DSM that was resampled to decrease the spatial resolution by 256 

a factor of 8.  The filtering generated a smoothed terrain elevation (elevterrain) layer that removed 257 

the elevation spikes from the discontinuous tree cover that is evident in the DSM.  This elevterrain 258 

layer was then resampled to the original spatial resolution.  Surface feature roughness was 259 

computed as the difference between the DSM and elevterrain, and were represented as heights above 260 

elevterrain.   261 



2.3 Forest masking, patch delineation and value assignment 262 

We analyzed forest structure at the study sites by masking forest area, delineating forest 263 

patch boundaries and assigning these patches with remotely sensed data values in order to model 264 

forest patch height.  This delineation and value assignment framework used the segmentation 265 

algorithms in Definiens Developer 8.7 (Benz et al., 2004).  This framework modifies the multi-266 

step, iterative segmentation and classification procedure discussed in previous work (Montesano 267 

et al., 2013).  The central difference is that this approach uses exclusively data from HRSI to 268 

identify a vegetation mask and refine it to create a forest mask.  We applied a segmentation to this 269 

forest mask to separate distinct forest patches, and then assigned those patches the mean and 270 

standard deviation of pixel values from all coincident data.  271 

Creating the forest mask was an iterative process that included segmentation and 272 

thresholding of the NDVI and 2 roughness layers.  The thresholds used to classify forest were 273 

based on preliminary interpretation of the Larix gmelinii forest and non-forest areas in imagery 274 

across all forest patch mapping sites.  The goal of this preliminary exploratory work was to 275 

understand the range of roughness and NDVI values associated with forest identified with visual 276 

interpretation of the particular set of imagery used.  This exploratory work identified thresholds 277 

that were image independent and could be used in an automated patch classification protocol across 278 

all sites.  However, these thresholds are sensitive to the seasonality of vegetation and, likely, the 279 

sun-sensor-target geometry at which the imagery was acquired.  A detailed examination of the 280 

trade-offs associated with threshold choices and forest mask results was not part of this work. 281 

The preliminary vegetation mask, generated from the initial separation of vegetation and 282 

non-vegetation within mapping sites, was based on an unsupervised contrast-based segmentation 283 

of the NDVI layer.  This first masking step was further modified with NDVI and image roughness 284 

thresholding steps to compile a final forest mask.  Next, we used both the panchromatic-derived 285 

roughness layer and the DSM-derived CRM to capture vegetation roughness and modify the 286 

preliminary vegetation mask.  Thresholds were applied to these two roughness layers to create a 287 

forest mask sub-category.  First, forest was separated from non-forest based on a panchromatic 288 

HRSI roughness threshold value = 5.5, where higher values represented rougher vegetation and 289 

were classified as forest.  Second, the forest mask was refined with information from the CRM.  A 290 

CRM threshold value = 1 was used to reclassify existing non-forest regions into the forest class.  291 



In the final step of this iterative forest masking process, remaining non-forest areas with a mean 292 

roughness > 3 and mean NDVI < 0.25 were classified as forest. This helped classify remaining 293 

vegetation whose roughness value suggested forest vegetation, but whose NDVI value had initially 294 

excluded them from this class.    295 

The forest mask provided the extent for which a 2-step procedure separated distinct forest 296 

patches before assigning patches with image values.  First, this forest mask was divided to separate 297 

portions of forest whose roughness values were > 2 standard deviations above the median 298 

roughness value.  Next, patches were broken apart according to surface elevation values provided 299 

from each site’s DSM.  Patches were assigned with the mean and standard deviation of image pixel 300 

values within the boundary of each patch.  Patch area was calculated to exclude patches below the 301 

minimum mapping unit of 0.5 hectares. The remaining patches coincident with LiDAR footprint 302 

samples were assigned forest patch height values via the direct height estimation approach 303 

discussed below.   304 

2.4 Predicting forest patch height directly at LiDAR footprints 305 

GLAS LiDAR sampling of forest canopy height provided a means to estimate average patch 306 

canopy height through direct spaceborne height measurements.  Where forest patches coincided 307 

with LiDAR footprints from GLAS, the canopy surface elevation from the DSMs and the ground 308 

elevation from either the DSMs or GLAS within a GLAS LiDAR footprint provided a sampling 309 

of forest height within the patch.  First, we applied the methodology presented in Montesano et al. 310 

(2014b) to compile spaceborne-derived canopy height within GLAS LiDAR footprints and convert 311 

those heights to plot-scale maximum canopy height with a linear model (Montesano et al., 2014b).  312 

Finally, these plot-scale canopy height predictions from all GLAS LiDAR footprints within a given 313 

patch were used to directly determine the mean predicted forest patch height and the mean height 314 

error from the prediction interval of the canopy height linear model. 315 

2.5 Modeling forest patch height indirectly 316 

Canopy height predictions were made indirectly for forest patches without direct spaceborne 317 

sampling of forest canopy height.  This indirect method, used for the vast majority (~90%) of forest 318 

patches > 0.5 ha across the study sites, involved (1) building a model from the set of forest patches 319 

with GLAS LiDAR samples relating the predicted forest patch canopy height (response variable) 320 



to patch values from the spaceborne image data summarized in Table 1 (predictor variables) and 321 

(2) applying that model to predict forest patch canopy height for those patches with no direct 322 

spaceborne height samples.  These methods, described in Montesano et al. (2013) and Kellndorfer 323 

et al. (2010), use the Random Forest regression tree approach for prediction (Breiman, 2001; 324 

Kellndorfer et al., 2010; Montesano et al., 2013).  This approach includes specifying both the 325 

number of decision trees that are averaged to produce the Random Forest prediction and the 326 

number of randomly selected predictor variables used to determine each split in each regression 327 

tree.  The result is a prediction model that is valid for the range of predictions on which the model 328 

was built and reduces overfitting, or, the degree to which the prediction model is applicable to only 329 

the specific set of input data.  330 

 331 

3 Results 332 

3.1 Forest patch delineation and direct sample density 333 

The forest patch was the fundamental unit of analysis in this study for which forest height 334 

was assigned either directly from spaceborne data at GLAS LiDAR footprints, or indirectly from 335 

spaceborne data by means of empirical modeling with Random Forest.  A representative example 336 

of a group of forest patches characteristic of a diffuse forest structure gradient delineated within 337 

the study area in shown in Figure 2.  Across the 9 study sites, 3931 forest patches > 0.5 ha were 338 

delineated based on NDVI, image roughness and DSMs all from the HRSI data.  Of this total, 364 339 

patches (9%) coincided with at least one GLAS LiDAR footprint at which a height sample was 340 

computed and used in the direct estimation of patch canopy height (Figure 3a).  The bimodal 341 

distribution that features a peak in the number of forest patches ~1 ha in size is evidence of the 342 

heterogeneous nature of forest cover in this region.  The plots in Figure 3b group forest patches, 343 

for which direct height estimates were made, into categories based on patch area.  They show the 344 

general distribution of sampling density of direct height estimates within these patches.  All 345 

patches with direct height samples featured a sampling density of < 3 samples ha-1.  The majority 346 

(94%) of sampled patches had sampling densities < 0.5 samples ha-1, of which most had patch 347 

areas > 10 ha.  Larger patches have lower sampling densities in part because of the irregular 348 

arrangement of GLAS LiDAR tracks across the landscape. 349 



3.2 Forest height calibration and validation 350 

Forest height calibration and validation data were used to build and assess the empirical 351 

model for direct spaceborne estimates of height.  Figure 4a shows sites for which ground reference 352 

calibration and validation data were collected.  In Figure 4b, the corresponding distributions of 353 

mean plot or stand height are shown for these sites.  Measurements were collected in plots along 354 

the Kotuykan River for this study (n = 69) and those from regionally coincident stands (n = 40) at 355 

6 sites across northern Siberia from Bondarev (1997). 356 

A portion of the Kotuykan/Kotuy River plots were used to calibrate (n = 33) the model used 357 

to estimate spaceborne canopy height at plot-scales after Montesano et al. (2014b), which was 358 

applied in the direct spaceborne estimation of forest patch height (Montesano et al., 2014b).   The 359 

remaining portion of the Kotuykan/Kotuy River plots (n = 36) and stands from Bondarev (1997) 360 

(n = 40) served as independent validation of the distribution of forest patch heights derived from 361 

direct spaceborne height estimation (Bondarev, 1997).  Mean heights of forest patches, plots, and 362 

stands were used to compare distributions of calibration and validation data because this was the 363 

height metric that was consistently available across the set of forest patches, the calibration plots 364 

and the validation plots and stands.  The distributions in Figure 4c show the proportion of forest 365 

patch heights for which direct spaceborne estimates of height were made.  This distribution of 366 

direct spaceborne estimates of forest patch heights is shown alongside the distributions of 367 

individual tree measurements averaged across plots or stands from (1) the calibration plots in 368 

Montesano et al. (2014b), (2) the remaining Kotuykan/Kotuy River validation plots, and (3) the 369 

validation stands from Bondarev (1997). 370 

3.3 Indirect forest patch height estimates 371 

Indirect spaceborne estimates of forest patch heights were made for the majority of patches 372 

examined.  Maximum and mean forest heights were predicted for 91% of forest patches across the 373 

study sites.  Random Forest regression tree models for 5 sets of spaceborne data predictor variables 374 

were used to estimate maximum and mean patch height indirectly for patches with no coincident 375 

direct spaceborne height estimates.  Figure 5 shows the residual standard error (RSE) and R2 of 376 

the best performing model (based on R2) for each spaceborne data predictor set (a particular 377 

combination of spaceborne data).  The predictor set ‘All’ that included all spaceborne image data 378 



layers identified in Table 1 explained > 60% of overall variation in modeled patch height.  This 379 

‘All’ model shows only incremental improvement over the model using only HRSI-derived 380 

predictors. The Landsat & ALOS spaceborne variables explain < 40% of variation within the 381 

modeled relationship between spaceborne predictors and patch height.  382 

3.4 Uncertainty of forest patch height estimates 383 

We assessed the best performing Random Forest model for indirectly estimating maximum 384 

and mean forest patch heights.  The best performing models were those from the ‘All’ predictor 385 

sets, described above, where the number of predictor variables was 14 and 15, for maximum and 386 

mean forest patch height, respectively.  Assessments were based on model R2 and RMSE for the 387 

maximum and mean patch height models, where 50% of patches with direct height estimates from 388 

which the indirect models were built were used for model training and 50% were used for model 389 

testing.  The results of a bootstrapping procedure to examine the distribution of R2 and RMSE 390 

from the Random Forest models applied to the set of testing data is shown in Figure 6a,b.  The 391 

plots show the bootstrapped distributions of best performing model R2 and RMSE, and are overlain 392 

with boxplots.  The Random Forest models for maximum and mean patch height explain 61% (+/- 393 

14% at 2 σ) and 59% (+/- 14% at 2 σ) of the variation with errors of 1.6 m (+/- 0.2 m at 2 σ) and 394 

1.3 (+/- 0.2 m at 2 σ), respectively, where 2 σ represents the 95% confidence interval. 395 

We computed 95% prediction intervals for patches receiving both direct and indirect height 396 

estimates.  These prediction intervals show the uncertainty associated with patch-level estimates 397 

of both maximum and mean patch heights. Figure 7a shows these height estimates and prediction 398 

intervals for all patches in this study across the continuum of patch sizes. Figure 7b shows the 399 

relative prediction error, which was computed as the difference between the upper and lower 400 

prediction interval range divided by the predicted height value. 401 

 402 

4 Discussion 403 

Recent work suggests that TTE form may reflect which portions of the TTE have forest 404 

structure that is controlled primarily by temperature.  With spaceborne remote sensing, various 405 

TTE forms across broad extents can be identified by characterizing the horizontal and vertical 406 

structure of trees.  By identifying these forms, the controls of TTE forest structure may be inferred. 407 



The ability to characterize horizontal and vertical structure is a precursor to both (1) distinguishing 408 

one TTE form from another, and (2) identifying areas where TTE form suggests tree growth is 409 

temperature limited. The intersection of such temperature limited TTE forms with regional 410 

warming trends may point to areas where TTE forests are vulnerable to changes in its structure. 411 

Our work demonstrates the potential from spaceborne remote sensing for depicting a key structural 412 

characteristic of TTE form (height), and suggests where improvements are needed in order to 413 

identify portions of the TTE vulnerable to warming-induced structural changes. 414 

This study’s site-scale approach to examining forest structure is an example of a way to 415 

quantify the potential for change in forest structure and its effects on broader TTE dynamics.  Such 416 

detailed monitoring is needed to resolve both the variability in TTE forest structure at fine spatial 417 

scales and the variability in structural responses to changes in environmental drivers that are 418 

observed across the TTE.  The high resolution delineation of forest patches at our study sites in 419 

the TTE of northern Siberia demonstrates the detailed monitoring that is possible for examining 420 

spatial patterns of forest structure across the circumpolar domain, because of the use of spaceborne 421 

data.  The forest patch height prediction intervals are estimates of the measurement error at the 422 

forest patch scale that explain existing constraints for discerning TTE form linked to changes in 423 

TTE forest structure.   424 

We discuss the utility of the patch-based analysis, review the patch-level estimates of 425 

uncertainty and then examine them in the context of a conceptual biogeographic model of TTE 426 

forest structure presented in recent literature.  Such a model helps clarify and focus spaceborne 427 

approaches to examining characteristics of TTE forest structure and its vulnerability to structural 428 

change.  429 

4.1 Patch-based TTE forest structure analysis 430 

The patch-based approach of remotely measuring TTE forest structure addresses the 431 

imperative for site-scale detail of TTE vegetation, whereby individual trees can be resolved, while 432 

acknowledging the influence of clusters of trees (patches) and their density on TTE attributes and 433 

dynamics.  This approach coarsens the data, reducing spatial detail.  However, from a 434 

biogeographic perspective, this reduction in detail is not arbitrary as are image pixel reductions 435 

when images are coarsened by means of down-sampling.  Rather, image features and ancillary 436 



datasets inform the coarsening procedure, creating patch boundaries that are based on spectral and 437 

textural characteristics of images as well as other landscape information.  Polygonal patches, 438 

particularly when vegetation patterns and heterogeneity are key landscape features, may be more 439 

informative than pixels particularly for studies at fine scales.  Furthermore, patches provide a 440 

means to integrate remote sensing data across an area and extend sample measurements 441 

(Kellndorfer et al., 2010; Lefsky, 2010; Montesano et al., 2013; van Aardt et al., 2006; Wulder and 442 

Seemann, 2003; Wulder et al., 2007).  We note that shrub structure was not accounted for in our 443 

field data, and not directly addressed with our patch height analysis.  However, it is likely that 444 

signals from shrubs persisted in the forest mask used to estimate patch structure, and thus may be 445 

incorporated into estimates of patch height and uncertainty. 446 

4.2 Forest patch height uncertainty 447 

There are four central results regarding the uncertainty of forest patch height across the study 448 

area.  The first two involve the sampling of canopy height within forest patches, while the last two 449 

focus on its modeling.  These local-scale results for the TTE are then contrasted with existing 450 

global-scale estimates of forest height. 451 

  The way in which forest patch heights are sampled affects estimates.  First, direct forest 452 

patch height estimates from a combination of coincident GLAS LiDAR ground surface and HRSI 453 

DSM-derived canopy elevations was made for ~9% of forest patches in the study area.  Second, 454 

the sampling density of these direct height estimates, driven by the sampling scheme of the 455 

spaceborne LiDAR, is < 0.5 samples ha-1 for 94% of sampled patches. This sampling density is 456 

well below the critical density of 16 sample ha-1 recommended for sampling forest biomass at the 457 

1 ha plot-scale (Huang et al., 2013).  These results suggest that the cost of increasing forest patch 458 

sizes is a decrease in the density of direct height measurements. This is likely an artifact of the 459 

GLAS sampling scheme, whose sampling is regular in the along-track direction (1 sample every 460 

~170 m), but whose coverage of ground tracks was highly irregular across forested areas.  Such a 461 

sampling scheme likely increases patch height uncertainty, thus limiting the ability to discern 462 

ecotone form. 463 

The modeling of forest patch height provided some insight into what drives the prediction 464 

of height and the associated uncertainty of predictions.  First, the model that explained the most 465 



variation included all remote sensing image data layers.  However, this “all data” model showed 466 

little improvement on that built from HRSI predictors.  Furthermore, in the former, the most 467 

important variables were from HRSI.  These variables, NDVI and the standard deviation of the 468 

canopy surface roughness, are indications of vegetation and its density within forest patches.  This 469 

suggests that the medium-resolution data from ALOS and Landsat products are not strong 470 

predictors of vertical structure characteristics across the range of forest patch sizes identified in 471 

the study area, and that without HRSI inputs, the heterogeneity of TTE forest structure at the scale 472 

of its change across the ecological transition zone from forest to tundra is lost.  473 

Second, the errors reported for the “all inputs” models predicting maximum and mean forest 474 

patch height show forest patch height errors, including error uncertainty at < 2 m σ (95% 475 

confidence interval).  However, the prediction intervals for these vertical structure metrics show 476 

the uncertainty in the predictions at the patch-level of ~ 40%.  These patch-level prediction 477 

intervals translate to a maximum patch height error of +/- 4 m for patches with maximum heights 478 

of 10 m.  These errors indicate that patches with maximum heights of 5 m and 10 m would be 479 

statistically indistinguishable on the basis of height.  This is a problem for identifying diffuse TTE 480 

forms, for which forest patch and tree height is a key attribute, because these forms generally 481 

features a gradual decrease in tree height and cover across portions of the ecotone where present.  482 

Diffuse forms are the most likely type of general form to demonstrate treeline advance, where 80% 483 

of diffuse ecotone sites examined in a meta-analysis show such treeline advance (Harsch et al., 484 

2009).   485 

These local-scale uncertainties improve upon recent global-scale spaceborne maps of 486 

vegetation height.  These maps feature height uncertainties (RMSE) of ~ 6 m, which are expected 487 

given that coarse-scale (>500 m) global maps of forest height aggregate many of these height 488 

measurement samples across broad spatial extents (Lefsky, 2010; Simard et al., 2011).  This 489 

uncertainty can be the difference between the presence or absence of a forest patch in the TTE and 490 

is therefore not suited for evaluating the link between TTE forest structure and heterogeneous 491 

local-scale site factors.   The height uncertainty of forest patches, ~90% of which have prediction 492 

intervals less than < 50% of the predicted heights, improves the uncertainty and spatial resolution 493 

of TTE forest height measurements.  However, this study’s primary benefit is in the fidelity of the 494 

spatial extent of TTE forest patches.  The scale of these patches are more appropriate than coarse, 495 



global-scale estimates of forest structure for reporting site-specific forest structure estimates that 496 

are critical for understanding forest characteristics at this biome boundary in flux.  497 

4.3 Improving the estimates of forest patch height 498 

Estimates of forest patch height need to be improved to distinguish important patch 499 

characteristics. A potentially large source of uncertainty of patch height estimates may be 500 

attributed to the limitation of the approach of using direct height estimates for calibration of the 501 

indirect patch height prediction method.  This approach for direct sampling of patch height, from 502 

differencing canopy and ground surface elevations within LiDAR footprints, involves sampling a 503 

very small portion of the overall patch.  The assumption associated with delineating forest patches 504 

is that each patch itself is a homogenous unit with similar tree structure characteristics throughout.  505 

However, the extent to which this assumption holds was not examined.  For patches with a high 506 

degree of tree structure heterogeneity, a single direct sample of height may not be sufficient to 507 

represent either maximum or mean patch heights.  These data, when used to train a Random Forest 508 

model, will degrade the modeled relationship of mean patch level image characteristics to patch 509 

height, because the sample used to determine patch height might not be representative of actual 510 

patch height.   511 

There are two ways to address this source of uncertainty.  The first is to accumulate more 512 

direct samples of forest heights within a patch.  This can be accomplished by collecting more 513 

ground surface elevation estimates within forest patches.  One way of doing this is with more 514 

LiDAR samples.  The LiDAR data collected after the launch of ICESat-2 should add to the existing 515 

set of GLAS samples, contributing significantly to increasing ground surface elevation estimates 516 

is forested areas, and adding enormous value to approaches that involve data integration from a 517 

variety of sensors.  More ground surface elevation estimates can also be made by improving the 518 

way in which they are derived from HRSI DSMs.  These improvements are needed because of 519 

higher errors associated with HRSI DSM ground surface elevation estimates within forested areas 520 

(Montesano et al., 2014b).  Second, the homogeneity of forest patches can be improved by refining 521 

algorithms associated with delineating forest patches.  This could include decreasing patch size, 522 

improving the canopy surface roughness algorithm (e.g., with tree-shadow fraction estimates), and 523 

including multi-temporal HRSI to help separate surface features whose reflectance characteristics 524 



differ throughout the growing season.  These refinements may improve the modeling of forest 525 

patch height and ultimately the ability to discern diffuse TTE forms.   526 

4.4 Spaceborne depiction of TTE form 527 

The conceptual model of ecotone forms presented by Harsch and Bader (2011) describes 528 

form as a result of the relative dominance of different controlling mechanisms (Harsch and Bader, 529 

2011).  Only some of these mechanisms are primarily driven by climate.  For the diffuse TTE 530 

form, the primary controlling mechanism of this conceptual pattern is the growth-limitation of 531 

trees, whereby tree-growth is driven by warming of summer or winter temperatures.  This study 532 

featured two key approaches for depicting diffuse TTE forms that may improve insight into the 533 

vulnerability to climate warming of current TTE structure. 534 

One key approach of this study involved integrating spatially detailed spaceborne 535 

observations.  This integration provided a means to simultaneously account for the horizontal and 536 

vertical components of the spatial patterns of forest structure in the TTE that may help improve 537 

depictions of the diffuse TTE form.  Recent literature on the patterns of trees in the TTE explain 538 

how tree density and height create varying forest patterns across the ecotone, that these patterns 539 

are important because they may provide clues as to the dynamics of TTE forest structure, and that 540 

they should be explored with detailed remote sensing (Bader et al., 2007; Harsch and Bader, 2011; 541 

Holtmeier and Broll, 2007).   542 

A second key approach aggregates the spaceborne estimates of horizontal and vertical 543 

structure at the scale of forest patches.  These patches provide a means to analyze the spatial pattern 544 

of forest structure.  This scaling is critical, because it facilitates a standardized approach to TTE 545 

structure mapping that is appropriate for the broad spatial domain of the TTE while adhering to 546 

requirements of site-specific forest structure detail.  This helps to explore the biogeography of TTE 547 

forest structure in the context of a conceptual model that highlights the importance of both TTE 548 

tree density and height.   549 

In this study, tree density is accounted for in an indirect manner with the delineation of 550 

forest patches that use the horizontal structure captured with HRSI.  This horizontal structure 551 

manifests itself as image texture or the frequency of vegetation across a spatial extent, and may be 552 

related to surface roughness, canopy cover or stem density, but a close examination of this 553 



relationship was not part of this study.  The patch-based approach for aggregating height 554 

information was a means to break apart the forested portions of each site by reducing the 555 

heterogeneity in horizontal structure.  Essentially, the use of the roughness information derived 556 

from HRSI helped establish a basis for the analysis of height by using it as a proxy for vegetation 557 

density, and by expressing it as a contiguous patch that served as the fundamental unit by which 558 

height was aggregated.  This data integration should provide more information for discerning 559 

diffuse TTE forms than individual assessments of either tree height or tree density.   560 

The site-scale, patch-based treatment of the landscape is driven by two central needs.  The 561 

first is the need for site-level understanding of TTE vegetation structure characteristics. The second 562 

is the need to understand the spatial patterns of trees across the landscape, because of the link 563 

between vegetation patterns and ecological processes.  This analytical approach should be 564 

developed to more deeply explore the TTE vegetation patterns that variations in height and density 565 

reveal, such as patch size, shape, landscape position, connectivity and spatial autocorrelation of 566 

varying types of forest patches across the TTE as well as the association of such patterns with 567 

permafrost and carbon flux dynamics.   568 

4.5 Implications for understanding TTE structure vulnerability 569 

Understanding the vulnerability of TTE structure is a key objective of research into expected 570 

changes in the high northern latitudes (Callaghan et al., 2002a).  Multiple lines of evidence indicate 571 

that vegetation changes are occurring in the TTE, and that these changes are heterogeneous across 572 

the circumpolar domain.  The most rapid TTE vegetation responses to climate change will occur 573 

where climate is the main factor controlling TTE vegetation (Epstein et al., 2004).  This suggests 574 

that TTE structure is most vulnerable at sites both controlled by, and undergoing changes in, 575 

climate.  Currently, the reported patch-level forest height uncertainty constrains the identification 576 

of the portions of the TTE that are most vulnerable to forest structure change.  However, this 577 

spaceborne approach framed by the conceptual model of TTE form provides a clear directive for 578 

near-term work of examining the biogeography of forest structure in the TTE, and understanding 579 

and forecasting vegetation responses in the TTE based on the susceptibility to structural changes 580 

(i.e. vulnerability) that these general patterns of forest structure suggest. 581 



It is unlikely to derive the dominant mechanisms controlling TTE forest structure directly 582 

from remote sensing.  However, these mechanisms may be inferred from remotely sensed TTE 583 

form.  Depictions of diffuse TTE forms, resolved with improved maps of TTE patterns that 584 

incorporate forest patch height estimates, may provide evidence as to the general mechanisms that 585 

give rise to these diffuse forms (e.g. temperature-limited growth).  Mapped TTE patterns, i.e. TTE 586 

form, would be useful for examining ecosystem dynamics in the high northern latitudes.  These 587 

maps could be integrated with topographic, hydrologic, permafrost and other climate data to 588 

suggest a gradient of TTE structure vulnerability.  They would (1) provide information on the 589 

patterns of environmental variables that are the dominant drivers of tree growth, (2) provide insight 590 

into the influence of TTE structural changes on biodiversity (Hofgaard et al., 2012), and (3) inform 591 

plant community and forest gap models that combine temperature, soil and disturbance data to 592 

examine the drivers of vegetation structure and forecast its potential for change in the TTE (Epstein 593 

et al., 2000; Xiaodong and Shugart, 2005).  For example, understanding TTE form in areas where 594 

vegetation structural changes have been noted may help explain the variability of structure change.  595 

Furthermore, these depictions could also contribute to spatially explicit site index information in 596 

ecosystem process models to help account for the variability in predictions of TTE forest structure 597 

dynamics across the circumpolar domain.  This will aid long-term forecasting by suggesting the 598 

most likely sites, at fine scales, for changes to vegetation-disturbance feedbacks and the extent to 599 

which biogeophysical interactions may shift (e.g., vegetation effects on surface albedo).  The 600 

vulnerability of TTE structure to temperature-induced change is one of many factors that may alter 601 

ecological processes in the high northern latitudes. 602 

 603 

5 Conclusions 604 

The vertical component of TTE form, maximum and mean forest patch height, as derived 605 

from a specific suite of spaceborne sensors at sites in northern Siberia, has an uncertainty of ~40%.  606 

With this uncertainty, forest patches with maximum heights of 5 m and 10 m are statistically 607 

indistinguishable on the basis of height.  Height is a key attribute of the diffuse TTE forms, which 608 

generally feature a gradual decrease of height and tree density across the ecotone and are the most 609 

likely form to demonstrate treeline advance.  Differences in the heights of forest patches are a 610 

central feature of the diffuse TTE form where significant structural changes have been observed.  611 



These differences suggests that improving the remote sensing of patch height will provide a key 612 

variable needed for examining TTE forest structure.  The conceptual model of TTE form should 613 

continue to guide the application of a patch-based, multi-sensor spaceborne data approach because 614 

of its potential for aggregating and scaling information provided by the structural patterns of 615 

groups of forest patches across the full TTE domain.  Such patterns may help infer which portions 616 

of the TTE are most vulnerable to temperature-induced structural changes.   617 

 618 
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8 Figures 823 

 824 

Figure 1. The study area in northern Siberia showing the 9 forest patch mapping sites (boxes) and 825 

the ground reference sites along the Kotuykan River (circles) at which individual tree height 826 

measurements in circular plots coincident with spaceborne LiDAR footprints were collected.  827 

 828 



 829 

Figure 2. A representative example of forest patches showing a diffuse forest structure gradient of 830 

Larix gmelinii across an upland site delineated from HRSI. The top image shows a subset of a 831 

Worldview-1 panchromatic image from 8/21/2012 in one of the forest patch mapping sites. The 832 

bottom image shows the same subset with forest patches overlaid (green with gray outline).  833 
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 836 

 837 

(b) 838 

Figure 3. (a) The distributions of forest patch size in hectares according to height attribution 839 

method. (b) The distribution of direct height sample density (shown as violin plots) for each forest 840 

patch size group, overlain with dots representing individual patches (red). 841 

 842 
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 844 



 845 

(c) 846 

Figure 4. (a) Map of locations of calibration (green) and validation (grey) sites in northern Siberia 847 

with the number of stands or plots associated with each site. The circles representing general site 848 

locations are sized according to the number of stands. (b) Histogram of mean plot and stand heights 849 

from calibration and validation data. (c) Comparison of the distribution of mean height of 850 

calibration and validation plots and stands with that of forest patches heights from direct estimates.  851 

Notched boxplots showing the 25th, 50th, and 75th percentiles of mean height as horizontal lines 852 

and 1.5 times the inter-quartile range as vertical lines. Notches roughly indicate the 95% 853 

confidence interval for the median. 854 

 855 



 856 

Figure 5. Results from Random Forest indirect forest patch height estimation for 5 spaceborne data 857 

predictor sets. 858 

 859 

 860 

 
(a) 

 
(b) 

Figure 6. The bootstrap-derived distributions (shown as violin plots, blue) of the Random Forest 861 

model’s (a) R2 and (b) RMSE for the indirect forest patch height prediction method whereby all 862 

spaceborne variables were used to predict maximum and mean forest patch height. Boxplots 863 



(white) show the 25th and 75th percentiles (lower and upper lines), median (dark line), and 1.5 * 864 

the inter-quartile range (whiskers). Data beyond the whiskers are shown as points. 865 
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(a)

 

 
(b) 



Figure 7. (a) Patch height and 95% prediction intervals (grey lines) for patches from direct 867 

prediction and indirect prediction shown across the continuum of patch sizes. (b) Distributions of 868 

relative prediction error (95% prediction interval) for patch height predictions. 869 

 870 

9 Tables 871 

Table 1. Summary of spaceborne datasets used to delineate or attribute forest patches. 872 

Dataset Date Attribute Value Spatial Resolution 

Landsat-7: 

ETM cloud-free composite; 

Vegetation Continuous Fields 

c. 2013 Top-of-atmosphere reflectance (mean): 

SWIR, NIR, Red, Green; 

Percent Tree Cover (mean) 

30 m pixel 

HRSI: Worldview 1 & 2 c. 2012 DSM (mean, min, max, st. dev); 

NDVI (mean), 

Panchromatic roughness (mean); 

CRM (mean, st. dev) 

~ 0.5 m – 2 m pixel 

ALOS PALSAR composite 2007-2010 backscatter power (HH, HV) 25 m pixel 

ICESat-GLAS LiDAR 2003-2006 ground surface elevation, waveform length ~60 m diameter footprint 
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