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ABSTRACT 12 

Iron oxide minerals play an important role in stabilizing organic carbon (OC) and regulating the 13 

biogeochemical cycles of OC on the earth surface. To predict the fate of OC, it is essential to 14 

understand the amount, spatial variability, and characteristics of Fe-bound OC in natural soils. In 15 

this study, we investigated the concentrations and characteristics of Fe-bound OC in soils 16 

collected from 14 forests in the United States, and determined the impact of ecogeographical 17 

variables and soil physicochemical properties on the association of OC and Fe minerals. On 18 

average, Fe-bound OC contributed 37.8% of total OC (TOC) in forest soils. Atomic ratios of 19 

OC:Fe ranged from 0.56 to 17.7 with values of 1-10 for most samples, and the ratios indicate the 20 

importance of both sorptive and incorporative interactions. The fraction of Fe-bound OC in TOC 21 

(fFe-OC) was not related to the concentration of reactive Fe, which suggests that the importance of 22 

association with Fe in OC accumulation was not governed by the concentration of reactive Fe. 23 

Concentrations of Fe-bound OC and fFe-OC increased with latitude and reached peak values at a 24 

site with a mean annual temperature of 6.6 ˚C. Attenuated total reflectance-Fourier transform 25 

infrared spectroscopy (ATR-FTIR) and near-edge X-ray absorption fine structure (NEXAFS) 26 

analyses revealed that Fe-bound OC was less aliphatic than non-Fe-bound OC. Fe-bound OC 27 
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also was more enriched in 13C compared to the non-Fe-bound OC, but C/N ratios did not differ 28 

substantially. In summary, 13C-enriched OC with less aliphatic carbon and more carboxylic 29 

carbon was associated with Fe minerals in the soils, with values of fFe-OC being controlled by 30 

both sorptive and incorporative associations between Fe and OC. Overall, this study 31 

demonstrates that Fe oxides play an important role in regulating the biogeochemical cycles of C 32 

in forest soils, and uncovers the governing factors for the spatial variability and characteristics of 33 

Fe-bound OC.  34 

 35 

1 Introduction 36 

Soil organic carbon (OC) in forests is a vital component of C biogeochemical cycles 37 

(Eswaran et al., 1999). Global warming can potentially accelerate the decomposition of forest 38 

soil OC, contributing to greenhouse gas emissions (Steffen et al., 1998). Alternatively, forest 39 

soils can act as strong sinks for OC, if appropriate management is implemented, such as forest 40 

harvesting and fire treatment (Eswaran et al., 1999; Johnson and Curtis, 2001). Understanding 41 

the fate and stability of forest OC is important for evaluating and managing the global C cycle 42 

under the framework of climate change.   43 

Currently, there is an information gap concerning the stability and residence time of OC, 44 

contributing to the problem that the residence time of OC (ranging from months to hundreds of 45 

years) is a major source of uncertainty in modeling and prediction of C cycles (Schmidt et al., 46 

2011; Riley et al., 2014). Many concepts have been proposed to account for OC stabilization and 47 

therefore residence times, including molecular recalcitrance, physical occlusion, and chemical 48 

protection (Sollins et al., 1996; Krull et al., 2003; Baldock et al., 2004; Mayer et al., 2004; 49 

Zimmerman et al., 2004; Schmidt et al., 2011). In general, the stability of OC is regulated by 50 

biogeochemical reactions occurring at the interfaces between OC, minerals, and microorganisms, 51 

and further knowledge about the mechanism for OC stabilization is critical for building up 52 

process-based models to simulate and predict C cycles. 53 

A number of lines of evidence suggest a key importance of iron oxide minerals in the 54 

stabilization of OC (Kalbitz et al., 2005; Kaiser and Guggenberger, 2007; Wagai and Mayer, 55 

2007). Iron oxides have a relatively high sorption capacity for OC, with sorption coefficients for 56 

OC much higher than that of other metal oxides (Kaiser and Guggenberger, 2007; Chorover and 57 
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Amistadi, 2001). Wagai and Mayer (2007) reported Fe-bound OC concentrations in soils up to 58 

22 mg g-1 soil, contributing up to 40% of total OC (TOC) for most forest soils. Similarly, 59 

Lalonde et al. (2012) found that Fe-bound OC contributed 22% of TOC in sediments. Studies 60 

have shown that Fe minerals protect OC from degradation and inhibit mineralization of OC 61 

(Baldock and Skjemstad, 2000; Kalbitz et al., 2005). There is, however, no systematic study on 62 

the occurrence of Fe-bound OC across different forests and its governing factors.  63 

The overall goals of this study were to investigate the spatial variability of Fe-bound OC 64 

across forest soils, the factors that control Fe-bound OC concentrations, and the characteristics of 65 

Fe-bound OC with respect to the physicochemical properties of soils. In this study, we first 66 

quantified the concentration of Fe-bound OC across 14 forest soils in the United States and 67 

analyzed the spatial distribution and influences of ecogeographical factors. Second, we 68 

investigated the impact of soil physicochemical properties on the Fe-OC associations. Third, we 69 

studied molecular characteristics of Fe-bound OC vs. non-Fe-bound OC, including how Fe-OC 70 

association influenced the chemical properties of OC and the stable isotope composition. Hence, 71 

this study provided a systematic evaluation for the Fe-bound OC in United States forests, the 72 

influences of ecological factors on the occurrence of Fe-bound OC, and the effects of association 73 

with Fe on the chemical properties of OC.  74 

 75 

2. Methods & Materials 76 

2.1 Chemicals and materials  77 

Reagents used for Fe reduction experiments include sodium bicarbonate (NaHCO3: 78 

Sigma-Aldrich, St. Louis, MO, USA), trisodium citrate dihydrate (Na3C6H5O7•2H2O: Acros 79 

Organics, New Jersey, USA), and sodium dithionite (Na2S2O4: Alfa Aesar, Ward Hill, MA, 80 

USA). All chemicals used were analytical grade. 81 

 82 

2.2 Soil sample collection, primary characterization and pretreatment 83 

Soil samples were collected from 14 forest sites in the United States (Obrist et al., 2011, 84 

2012, 2015). The abbreviations and the basic information for the sites are summarized in Table 1. 85 

More detailed information on the sites and sampling protocols can be found in previous 86 

publications (Obrist et al., 2011, 2012, 2015). Briefly, two replicate plots at each forest site were 87 
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sampled. During 2007-2009, top soils (0-20 cm) from all sites were collected using clean latex 88 

gloves and stainless steel sampling equipment. All the samples were immediately transferred to 89 

plastic freezer bags and kept on ice before transportation to the laboratory. Soil texture was 90 

analyzed by an ASTM 152-type hydrometer at the Soil Forage and Water Analysis Laboratory at 91 

Oklahoma State University (Obrist et al., 2011). The soil pH was measured by mixing soil 92 

particle with deionized (DI) water in a solid/solution ratio of 1:1 (Kalra, 1995). Soil samples 93 

used in the experiments in this study were ground to < 500 µm and freeze-dried after the removal 94 

of roots and visible plant material and large particles (>2 mm) by dry sieving.  95 

 96 

Table 1 97 

 98 

2.3 Total C (TC), TOC and stable C isotope analyses 99 

 TC, TOC and stable C isotopic compositions of soil samples were analyzed using a 100 

Eurovector elemental analyzer (Eurovector SPA, Milan, Italy) interfaced to a Micromass 101 

IsoPrime stable isotope ratio mass spectrometer (Micromass UK Ltd., Manchester, UK). 102 

Acetanilide (71.09 % C by weight) was used as a standard compound to establish a calibration 103 

curve between mass of C and the m/z 44 response from the mass spectrometer. In this study, the 104 

concentration of TC and TOC were expressed as weight %. Stable C isotope analyses were 105 

performed after the method of Werner et al. (1999), with results reported in the usual delta 106 

notation in units of ‰ vs. Vienna Pee Dee Belemnite (VPDB). For TOC analysis, soil samples 107 

were acidified with 1 M HCl with the solution/solid ratio of 1 mL solution/0.5 g soil and heated 108 

at 100˚C for 1 hour. The treatment was repeated three times until there was no further 109 

effervescence upon acid addition, after which the samples were dried and analyzed. All analyses 110 

are based on standard curves with R2>0.99. The detection limit for C is 0.2 mg g-1 soil. The 111 

average coefficient of variation for the analysis of C is 20.2%. 112 

 113 

2.4 Nitrogen (N) analysis 114 

The N concentration of each sample was analyzed using a Eurovector elemental analyzer. 115 

Acetanilide (10.36 % N by weight) was used as a standard compound to establish a calibration 116 

curve between mass of N and the response of the thermal conductivity detector in the elemental 117 

analyzer. Total N and non-Fe-bound N concentrations were measured before and after a Fe 118 
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reduction release treatment for each sample. All analyses are based on standard curves with 119 

R2>0.99. The detection limit for N is 0.2 mg g-1 soil. The average coefficient of variation for the 120 

analysis of N is 20.5%. 121 

 122 

2.5 Analysis of Fe-bound OC 123 

 The concentration of Fe-bound OC was quantified by an established Fe reduction release 124 

method, commonly known as DCB extraction involving sodium dithionite, citrate and 125 

bicarbonate (Mehra and Jackson, 1960; Wagai and Mayer, 2007; Lalonde et al., 2012). The DCB 126 

extraction is assumed to extract most free Fe oxides (i.e. goethite, hematite, ferrihydrite and 127 

others) existing in soils, but should not extract structural Fe in clay minerals (Mehra and Jackson, 128 

1960; Wagai and Mayer et al., 2007; Lalonde et al., 2012). In this study, we followed the specific 129 

protocol detailed in Lalonde et al. (2012). An aliquot (0.25 g) of soil was mixed with 15 mL of 130 

buffer solution at pH 7 (containing 0.11 M bicarbonate and 0.27 M trisodium citrate), and then 131 

heated to 80˚C in a water bath. The reducing agent sodium dithionite was added to the samples 132 

with final concentration of 0.1 M, and maintained at 80˚C for 15 min. The samples were then 133 

centrifuged at 10,000 rpm for 10 min, the supernatant was removed, and the residual particles 134 

were rinsed using 5 mL of DI water. The rinse/centrifuge process was performed three times. 135 

The residual particles were freeze-dried and analyzed for TC and TOC concentrations and 13C 136 

composition. The mass of residual particles was used to calculate the OC concentration 137 

associated with non-Fe minerals.  138 

          The background release of OC during the heating process was measured following the 139 

method in Lalonde et al. (2012), where sodium citrate and dithionite were replaced by sodium 140 

chloride with the same ionic strength. An aliquot (0.25 g) of dry soil was mixed with 15 mL of 141 

1.6 M NaCl and 0.11 M NaHCO3, and heated to 80˚C. Then 0.22 g of NaCl was added, and the 142 

solution was maintained at 80˚C for 15 min. The samples were then centrifuged at 10,000 rpm 143 

and rinsed three times, and freeze-dried before analysis. The mass of residual particles was used 144 

to calculate the concentration of OC released by heating to 80°C. In preliminary experiments, we 145 

found that the solution pH increased rapidly during the heating-extraction process with 146 

bicarbonate and sodium chloride only, and the increased pH values facilitated the release of 147 

additional OC. Hence, we used a lower initial pH of 6 to compensate for the shift to higher pH 148 

during heating. To validate the measurement for the concentration of OC released during heating, 149 
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we also tested the release of OC using a phosphate buffer (same ionic strength) in lieu of the 150 

bicarbonate buffer, which can maintain a pH of 7 during heating. Our results showed that the 151 

concentration of OC released was similar for both the bicarbonate and phosphate buffer 152 

extraction reactions (Supplementary Material, Fig. S1).  153 

 154 

2.6 Quantification of reactive Fe  155 

 The concentration of reactive Fe in soils was determined by analyzing the Fe released 156 

during the DCB reduction process. After the reduction treatment, the supernatant of each sample 157 

was filtered using a 0.2 µm syringe filter (cellulose acetate), and analyzed for Fe concentration 158 

by inductively coupled plasma - atomic emission spectroscopy (Varian-Vista AX CCD, Palo 159 

Alto, CA, USA) at an optical absorption wavelength of 259.9 nm. All analyses are based on 160 

standard curves with R2>0.99. The detection limit for Fe is 0.04 mg g-1 soil. The average 161 

coefficient of variation for the analysis of Fe is 25.8%. 162 

 163 

2.7 Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 164 

ATR-FTIR analysis to characterize the molecular composition of OC was performed for 165 

original soil samples and residual soils after DCB extraction using a Thermo Scientific Nicolet 166 

6700 FTIR (Waltham, MA). Dry soil samples were placed directly on the crystal and forced to 167 

contact well with the crystal. Spectra were acquired at the resolution of 4 cm-1 based on 100 168 

scans. Data collection and baseline correction were accomplished using OMNIC software 169 

version 8.3.103.  170 

 171 

2.8 Near-edge X-ray absorption fine structure (NEXAFS) analysis 172 

For further characterization of chemical structure of OM, carbon (1s) K-edge NEXAFS 173 

analyses were performed for select soil samples, i.e. for soils with the highest and lowest values 174 

of the fraction of Fe-bound OC to TOC. The soil particles were suspended in DI water and 175 

deposited on an Au-coated silicon wafer attached to a Cu sample holder. Before analysis, 176 

samples were dried in a vacuum desiccator. The X-ray-based experiments were performed on the 177 

Spherical Grating Monochromator (SGM) beamline at the Canadian Light Source (Saskatoon, 178 

Canada) (Regier et al., 2007). The energy scale was calibrated using citric acid (absorption at 179 

288.6 eV). Major technical parameters and set-up for the beamline include: X-ray energy ranges 180 
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250-2000 eV; 45 mm planer undulator; 1000 µm×100 µm spot size; silicon drift detectors (SDD); 181 

a titanium filter before the sample; entrance and exit slit gaps of 249.9 µm and 25 µm (Gillespie 182 

et al., 2015). Carbon 1s spectra were acquired by slew scans from 270 to 320 eV at 20 s dwell 183 

time and 20 scans per sample on a new spot. For data normalization, I0 was collected by 184 

measuring the scatter of the incident beam from a freshly Au-coated Si wafer using SDD.  185 

Before the I0 normalization, the pre-edge baseline was adjusted to near zero to remove the scatter 186 

in the sample data (Gillespie et al., 2015). 187 

3. Results and Discussion 188 

3.1 Concentration of Fe-bound OC  189 

This study covered five major forest types in North America, including Spruce-Fir, Pine, 190 

Oak, Chaparral, and Maple-beech-birch forests distributed between 29° and 47° N. For the 14 191 

forest soils, TC concentrations ranged between 1.5±0.1 and 8.3±2.1% (all percentages given are 192 

weight-based), and TOC concentrations ranged between 1.3±0.3 and 6.2±2.9%, which are 193 

comparable to values previously reported for North American forest soils (Wagai and Mayer, 194 

2007; Wilson et al., 2013). Bicarbonate extraction-calibrated Fe-bound OC concentrations 195 

ranged from 0.3 to 1.9%, with the fraction of Fe-bound OC to TOC (fFe-OC) averaging 37.8±20.0% 196 

(Fig. 1, Supplementary Material, Table S1). Forest HL (Maine) had the highest fFe-OC of 57.8%, 197 

while forests GS (Florida) and OR (Tennessee) had fFe-OC values below detection limits (i.e., 198 

below 0.6%). Based on an estimate that 1502 Pg (Pg=1×1015 g) of TOC is stored in terrestrial 199 

soils (Scharlemann, et al., 2014), scaling up these results to a global estimate would yield 200 

538.5±271.5 Pg of Fe-bound OC residing in terrestrial soils.  201 

 202 

Fig. 1 203 

 204 

3.2 Fe-OC association 205 

The values of fFe-OC were influenced not only by the concentration of reactive Fe, but also 206 

by the type of association between Fe and OC. In this study, the concentration of reactive Fe in 207 

forest soils ranged from 0.1 mg g-1 to 19.3 mg g-1, which is low compared to values of reactive 208 

Fe of up to 180 mg g-1 reported previously (Wagai and Mayer, 2007; Wagai et al., 2013) (Fig. 209 

2A). A Mollisol in forest site MS (California) had the highest concentration of reactive Fe, while 210 
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a Spodosol in forest site GS (Florida) had the lowest reactive Fe concentration. There was no 211 

significant correlation between fFe-OC and the concentration of reactive Fe (Pearson Correlation 212 

Coefficient r=–0.418, p=0.137, Fig. 2B). This suggests that the proportion of Fe-bound OC is not 213 

strongly controlled by the reactive Fe concentration.  214 

The OC:Fe molar ratio ranged from 0.56 to 17.7 for all 14 soils, with a value between 1 215 

and 10 for 10 soils (Fig. 2A). Previous studies have suggested that the OC:Fe molar ratio can be 216 

used as an indicator for the type of association between Fe oxides and OC, with lower values 217 

indicating sorptive interactions while higher values indicate incorporation of OC within Fe 218 

oxides (Wagai et al., 2007; Guggenberger and Kaiser, 2003). The highest sorption capacity 219 

measured for OC onto Fe oxide corresponds to an OC:Fe molar ratio = 1.0 (Kaiser and 220 

Guggenberger, 2006), but by incorporation and co-precipitation of Fe oxide OC:Fe molar ratio 221 

can reach much higher values (Guggenberger and Kaiser, 2003). With OC:Fe molar ratios 222 

generally between 1-10 for about two thirds of the forest soils in this study, we propose that 223 

incorporation of OC into Fe oxides plays a major role in the accumulation of Fe-bound OC 224 

exceeding sorption by at least a factor of 1 to almost 20 (Wagai and Mayer, 2007; Lalonde, 2012). 225 

However, for the HT (Michigan), HL (Maine) and TKF (California) forest soils, the OC:Fe 226 

molar ratios were even higher than 10 with a maximum value of 17.8 (Fig. 2A), implying that 227 

incorporation of OC into Fe oxides dominated at these sites. Similar to fFe-OC, OC:Fe ratios were 228 

not related to the concentration of reactive Fe and showed large variation for soils with similar 229 

concentration of total reactive Fe (Fig. 2B). This further indicates that the type of interactions 230 

between OC and Fe was not governed by the amount of Fe. The OC:Fe ratio is potentially 231 

regulated by the mineral phases of Fe, as poorly-crystalline Fe oxides have a higher capacity to 232 

bind with OC than crystalline Fe minerals (Eusterhues et al., 2014). When sorption dominates 233 

the interactions between OC and Fe, OC:Fe can also be influenced greatly by the particle size 234 

and surface area of Fe oxides (Gu et al., 1995). Further investigations are needed to determine 235 

the factors that control the OC:Fe ratio, and also fFe-OC values for soils. Nevertheless, the lack of 236 

(or poor) relationship shown here between the concentration of Fe-bound OC and Fe 237 

concentrations demonstrates the limitations associated with predicting and modeling the behavior 238 

of C in forest soils based on the Fe concentrations in soils alone. 239 

 240 
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Fig. 2.                                                  241 

 242 

3.3 Spatial variance and ecogeographical factors 243 

We analyzed the influences of ecogeographical factors on the occurrence of Fe-bound OC in 244 

forest soils (Fig. 3). There was a significant correlation between the TOC concentration and 245 

latitude (Pearson correlation coefficient p=0.619, r=0.018), a pattern commonly observed due to 246 

lower microbial activity and turnover rates of C at higher, colder latitudes (Davidson and 247 

Janssens, 2006). The concentration of reactive Fe, if excluding soil MS in California, was also 248 

significantly related to latitude (p=0.824, r=0.001). Both concentrations of Fe-bound OC and fFe-249 

OC were also correlated with latitude (p=0.523, r=0.053; p=0.525, r=0.054). Among our samples, 250 

the soil in forest HL in Maine, one of the three northern-most site with latitude of 45˚, had the 251 

highest fFe-OC of 57.8%. In forest GS in Florida with lowest latitude of 29.7˚, the fFe-OC was below 252 

detection limits, possibly due to the low concentration of reactive Fe (0.08 mg g-1). Hence, 253 

increase in latitude both increased concentrations of TOC in soil as well concentrations of Fe-254 

bound OC, suggesting increased interactions between Fe oxide and OC at higher latitudes. There 255 

were no clear trends in TOC or Fe-OC interactions with longitude. For elevation, we separated 256 

two groups of samples, with one group located below 1000 m (asl) and the other group above 257 

(mainly around 2000 and 4000 asl). Concentrations of TOC and Fe-bound OC, however, were 258 

not significantly different between the two groups. There were no clear trends with precipitation 259 

either, although others have reported positive relationships between mean annual precipitation 260 

and soil TOC concentration at a global scale (Amundson, 2001). The concentration of Fe-bound 261 

OC and fFe-OC reached peak value with mean annual temperatures at 6.6˚C, with lower values 262 

both at higher and lower temperatures. Temperature dependence of Fe-bound OC can be 263 

regulated by effects of temperature on the mineral phase of Fe oxides and OC dynamics. Given 264 

that ferrihydrite can incorporate more OC than other crystalline Fe oxides, an increase in 265 

temperature favors the transformation of ferrihydrite to other crystalline iron oxides 266 

(Gnanaprakash et al., 2007; Zhao et al., 1994). However, an increase in temperature can also 267 

accelerate weathering of other minerals, and increased release of silicon can slow the 268 

transformation of ferrihydrite (Cornell et al., 1987; White and Blum, 1995). However, there is 269 

also evidence that temperature can affect the chemical composition of soil OC substantially 270 

(Conant et al., 2011). For example, increased temperature decreased the content of oxidized 271 

http://scholar.google.com/citations?user=8rK8Xs4AAAAJ&hl=en&oi=sra
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functional groups, such as saccharides, which would consequently inhibit the interactions 272 

between OC and Fe oxides (Amelung et al., 1997). The overall pattern can result from combined 273 

effects of temperature on Fe mineral phase and OC transformation. Further investigations are 274 

required to elucidate the mechanism more accurately. Finally, the study covered 7 major soil 275 

orders, i.e. Alfisols (sample number n=3), Spodosols (n=4), Mollisols (n=1), Inceptisols (n=2), 276 

Entisols (n=2), Gelisols (n=1), and Ultisols (n=1). Although there are limited replications in 277 

many of these soil orders, the highest concentration of Fe-bound OC were observed in Spodosols. 278 

Regarding fFe-OC, the highest values were also found in Spodosols, possibly indicating a 279 

particular importance of Fe-bound OC in this soil type which occupies 3.5% of US land areas 280 

and 4% of global ice-free land (Soil Survey Staff, 1999). However, due to the limited number of 281 

samples for each soil order, these findings warrant further confirmation.  282 

 283 

Fig. 3 284 

 285 

3.4 Impact of soil physicochemical properties on Fe-OC association 286 

Soil texture can potentially influence the accumulation of Fe-bound OC. Figure 4 287 

demonstrates that the fraction of non-calibrated Fe-bound OC showed a significant positive 288 

correlation with the fraction of sand (r=0.72, p<0.001), and negative correlations with the 289 

fraction of silt (r=–0.697, p<0.001) and clay (r=–0.616, p<0.001). There were similar positive 290 

correlations between labile OC, and the fraction of sand (r=0.72, p<0.001), silt (r=0.72, p<0.001) 291 

and clay (r=0.72, p<0.001). However, the calibrated Fe-bound OC had no significant correlation 292 

with any of the texture fractions. These correlations indicate that the labile OC was mainly 293 

associated with the sand component of forest soils, but that the soil texture did not affect the Fe-294 

bound OC. There is debate on the relative roles of sand, clay and silt in the stabilization of OC in 295 

soil (Percival et al., 2000; Six et al., 2002; Eusterhues et al., 2005; Vogel et al., 2014). 296 

Eusterhues et al. (2005) found a relationship between the resistance of organic matter to 297 

oxidative degradation and the clay concentration in soils, suggesting the importance of clay 298 

minerals in the stabilization and accumulation of soil OC. Reduced chemical potential of soil 299 

organic matter in small pores of clay-rich soils also limits microbial degradation and enhance its 300 

stabilization (Riedel and Weber, 2016). In contrast, Percival et al. (2000) found that the clay 301 

mineral fraction explained little of the variation in the accumulation of OC across a range of soil 302 
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types in New Zealand. Vogel et al. (2014) found that less than 20% of clay mineral surfaces were 303 

covered by the sorption of OC, indicating that a limited proportion of clay mineral surface 304 

contributed towards the stabilization of OC. Our results suggest that the Fe oxide-mediated 305 

stabilization of OC was not related to the size/aggregation-based process, although the labile 306 

carbon concentrations increased with the fraction of sand in the soils.  307 

                           308 

Fig. 4  309 

 310 

The Fe-OC association can also be influenced by the soil pH, which affects the mineral 311 

phases of Fe oxides and their surface charge, and their interactions with OC. For our soil samples, 312 

the soil pH ranged from 4.1 to 6.3, similar to measurements by Wagai and Mayer (2007) for 313 

North America soils. There was no significant correlation between the fFe-OC and soil pH, e.g. the 314 

HL (Maine) soil with pH of 4.4 had the highest fFe-OC of 57.8%, while the TS(II) (Washington) 315 

soil with a similar pH of 4.5 only had a fFe-OC of 7.4%. For soils with pH ranging from 4.9 to 5.8, 316 

fFe-OC did not change correspondingly. Contrastingly, values of OC:Fe molar ratios were 317 

significantly  influenced by the soil pH; except for one outlier sample of TS(II) (Washington) 318 

soil, there was a significant negative correlation between the OC:Fe molar ratio and soil pH (r=-319 

0.477, p=0.09) (Supplementary Material, Fig. S2). This may be due to the lower pH values 320 

favoring the complexation and precipitation of Fe with OC, while higher pH favors sorptive 321 

interactions between Fe minerals and OC (Tipping et al., 2002). If comparing samples with 322 

similar pH, the soils with higher TOC had higher OC:Fe molar ratios, e.g. the GS soil (TOC = 323 

1.1%) with pH of 4.7 had an OC:Fe molar ratio = 8.5, while the HT (Michigan) soil (TOC = 324 

3.0%) with similar pH of 4.7 had an OC:Fe molar ratio = 17.1. This was consistent with 325 

Schwertmann et al. (1986), who found that the major form of Fe would change from FeOx to 326 

complexes with OC when there is higher OC supply. 327 

 328 

3.5 Molecular characteristics of Fe-bound OC  329 

The chemical composition of Fe-bound OC can be substantially different from non-Fe-330 

bound OC (Adhikari and Yang, 2015) with broad implications on the C biogeochemical cycles, 331 

although such differences so far have received limited attention. We analyzed the difference in 332 

chemical composition of Fe-bound OC compared to non-Fe-bound OC using ATR-FTIR 333 
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analysis (Fig. 5). Overall, there were limited fingerprint peaks for OC, because of the low 334 

concentration of TOC and technical challenge for analyzing whole soil particles with FTIR 335 

(Calderon et al., 2011; Simonetti et al., 2012). Reeves (2012) demonstrated that FTIR analysis of 336 

mineral soils in the ranges of 1600-1750 and 2800-3000 cm-1 only can be used to study OC. 337 

Peaks in the range of 500-1200 cm-1 indicate the presence of clay or other Fe/Al minerals (Fig. 5) 338 

(Madejova, 2003; Harsh et al., 2002; Parikh et al., 2014), such as kaolinite or montmorillonite at 339 

850-1200 cm-1 (Madejova, 2003). Absorption at 850-1200 cm-1 can also be due to the presence 340 

of polysaccharides, but definitive identification of polysaccharides is not possible in the presence 341 

of minerals (Senesi et al., 2003; Tandy et al., 2010). The spectra in the range of 1600-1750 cm-1 342 

normally contain fingerprint peaks for functional groups of amides, carboxylates and aromatics 343 

(Parikh et al., 2014), but we did not detect any significant peaks in this range. In the range of 344 

2800-3000 cm-1, there were no significant peaks for the original soil samples, but after Fe 345 

extraction we detected significant peaks at 2850 and 2930 cm-1, which are characteristic for the 346 

presence of aliphatic carbon. The substantial differences in spectra before and after Fe extraction 347 

indicate that aliphatic OC was enriched in the residual soils after extraction. Other functional 348 

groups, such as aromatic carbon and hydrophilic functional groups, were more strongly 349 

associated with Fe minerals and removed during the Fe extraction, as hydrophilic functional 350 

groups can form inner-sphere coordination complexation with iron oxides, and aromatic carbon 351 

has electron donor-acceptor interactions with iron oxides (Gu et al., 1995; Axe and Persson, 352 

2001). This result was consistent with a previous study using ultra-high resolution mass 353 

spectrometry, showing the release of more aromatic carbon during the reductive dissolution of Fe 354 

oxides (Riedel et al., 2014). Analysis for the chemical nature of Fe-bound OC can be influenced 355 

by the potential reaction of natural organic matter with dithionite, which was not noticed in 356 

previous studies (Lalonde et al., 2012; Wagai and Mayer, 2007). The most likely reaction 357 

between dithionite and organic matter is the reduction of oxidized organic functional groups. Our 358 

recent study showed that dithionite could reduce quinone groups in natural organic matter 359 

(Adhikari et al., 2016). Most likely, other major functional groups, such as carboxylic and 360 

carbonyl functional groups, cannot be reduced by dithionite based on their reduction potentials 361 

(Bar-Even et al., 2012; Mayhew et al., 1978). Further investigations are needed to elaborate the 362 

detailed influences of dithionite reduction on the molecular properties of organic matter. 363 

 364 
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Fig. 5 365 

 366 

Furthermore, we analyzed the C 1s NEXAFS spectra of two original, non-extracted soils 367 

with the highest and lowest values of fFe-OC, i.e. HL (Maine) (fFe-OC=57.8%) and OR (Tennessee) 368 

(fFe-OC non-detectable) (Supplementary Material, Fig. S3). Three major fingerprint peaks were 369 

detected for both soils, including peaks at 285.3, 287.0 and 288.7 eV, which are corresponding to 370 

aromatic carbon, aliphatic carbon and carboxylic carbon, respectively (Schumacher et al., 2005; 371 

Solomon et al., 2005; Lehmann et al., 2008). The OR (Tennessee) soil had a more substantial 372 

signal at 287.0 eV than the HL (Maine) soil, indicating a higher aliphatic carbon concentration in 373 

the OR (Tennessee) soil compared to the HL (Maine) soil. Ratio of carboxylic carbon to 374 

aromatic carbon (peak height) was 3.8 for HL (Maine) and 1.0 for OR (Tennessee), suggesting 375 

that the HL (Maine) soil with higher fFe-OC has relatively more carboxylic carbon compared to 376 

aromatic carbon. Hence, the C1s NEXAFS spectra suggest that the soil with the higher fFe-OC has 377 

higher concentration of carboxylic C, while the soil with the lower fFe-OC value has a higher 378 

aliphatic C concentration. This result is consistent with the comparison of ATR-FTIR spectra in 379 

soils before and after Fe extraction, providing evidence that Fe oxides are mainly associated with 380 

more hydrophilic and carboxylic carbon, while non-Fe-bound OC was more aliphatic.  381 

   382 

To further investigate the relationships between soil OC and Fe minerals, we analyzed the 383 

stable C isotopic compositions (δ13C) of Fe-bound vs. non-Fe-bound OC (i.e., the residual OC 384 

after DCB extraction). The δ13C for original soil samples ranged from –24.5‰ to –27.5‰, and 385 

the values for non-Fe-bound OC were –25.1‰ to –28.0‰. The δ13C for Fe-bound OC was 386 

calculated by combined isotope-mass balance (equation (1)) 387 

δ
13

CTOC×TOC=δ
13

C
labile

×OClabile + δ
13

C'Fe-OC×OC'Fe + δ
13

Cnon-Fe-OC×OCnon-Fe                         (1) 388 

where TOC is the concentration of total organic carbon, OClabile is the concentration of labile OC 389 

(extractable by bicarbonate buffer), OCnon-Fe is the concentration of non-Fe-bound OC (residual 390 

OC after Fe extraction), and OC’Fe is the concentration of Fe-bound OC (excluded the labile OC); 391 

δ13CTOC is δ13C for bulk OC, δ13Clabile is δ13C for labile OC, δ13C’Fe-OC is δ13C for Fe-bound OC, 392 

δ13Cnon-Fe-OC is δ13C for non-Fe-bound OC. However, it is difficult to directly resolve the δ13Clabile 393 

and δ13C’Fe-OC using this equation. We simplified it to equation (2): 394 
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δ
13

CFe-OC=
(δ

13

CTOC×TOC-δ
13

C
non-Fe-OC

×OC
non-Fe

)

OCFe
                                                                                       (2) 395 

where δ13CFe-OC is δ13C for Fe-bound OC (including the labile OC), δ13CTOC is δ13C for bulk OC, 396 

δ13Cnon-Fe-OC is δ13C for non-Fe-bound OC, TOC is the concentration of total organic carbon, 397 

OCnon-Fe is the concentration of non-Fe-bound OC, and OCFe is the concentration of Fe-bound 398 

OC. The δ13C for Fe-bound OC was heaviest for the TKF (California) soil with a value of –399 

23.0‰, and the lightest for the GS (Florida) forest at –27.0‰. Across all study sites, Fe-bound 400 

OC was relatively enriched in 13C (1.5±1.2‰ heavier) compared to the non-Fe-bound OC.  401 

However, there is also a contribution of labile OC to the Fe-bound OC, where labile OC is the 402 

OC extracted during the dithionite-absent extraction described earlier). The δ13C value for labile 403 

OC can be calculated using equation (3): 404 

δ
13

Clabile=
(δ

13

CTOC×TOC-δ
13

C
non-labile

×OC
non-labile

)

OClabile
                                                                                       (3) 405 

where δ13Clabile is δ13C for labile OC, δ13CTOC is δ13C for bulk OC, δ13Cnon-labile is δ13C for non-406 

labile OC, OCnon-labile is the concentration of non-labile OC, and OClabile is the concentration of 407 

labile OC. Calculated values of δ13Clabile range from -23.4% to -30.3%, and were lighter than the 408 

values for δ13CFe-OC. Although it is not reliable to quantitatively calculate the δ13C for Fe-bound 409 

OC subtracting the influences of labile OC, these results indicate that the true value for δ13CFe-OC 410 

should be even somewhat heavier than the results presented in Fig. 6.  411 

 Our results demonstrate that Fe-bound OC was enriched in 13C compared to the non-Fe-412 

bound OC in forest soils, which is consistent with results for sediments, where Fe-bound OC was 413 

1.7±2.8‰ heavier than non-Fe-bound OC (Lalonde et al., 2012) (Fig. 6A). Previous studies 414 

showed that 13C-enriched organic matter in sediments was enriched with O and N (due to the 415 

presence of compounds such as proteins and carbohydrate groups), while the microbial biomass-416 

derived lipid fraction was relatively 13C-depleted (Wang et al., 1998; Zelles et al., 1992). 417 

Similarly, compound-specific isotopic analyses have shown that oxygen- and nitrogen-rich 418 

constituents, such as cellulose, hemi-cellulose and amino acids, are 13C-enriched compared to 419 

hydrocarbons (Glaser, 2005), and these 13C-enriched oxygen- and nitrogen-rich compounds can 420 

associate with Fe oxide extensively through inner-sphere coordination interactions (Parikh et al., 421 

2014). The value of ∆13
FeOC-nonFeOC (= δ13CFe-OC - δ13Cnon-Fe-OC) (difference in δ13C for Fe-bound 422 

OC and non-Fe-bound OC) was inversely correlated with the molar ratio of OC:Fe (r=-0.53, 423 

p=0.05, Fig. 6B). These relationships suggest that the enrichment in 13C was to some degree 424 
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related to the OC:Fe ratio. As discussed previously (section 3.2), lower OC:Fe ratios indicate an 425 

increased contribution from sorptive interactions of OC with Fe minerals as compared to 426 

incorporation of OC within iron oxides and OC, and these sorptive interactions between oxygen- 427 

and nitrogen-rich organic compounds and Fe oxide results in the enrichment of 13C of Fe-bound 428 

OC vs. non-Fe-bound OC. Previous studies have attributed the stability of relatively labile and 429 

reactive compounds, such as amino acids and sugars, to their interactions with minerals (Schmidt 430 

et al., 2011), and our results demonstrated the importance of sorption to Fe minerals in increasing 431 

the stability of relatively reactive labile compounds.  432 

 433 

Fig. 6 434 

 435 

Nitrogen (N)-containing functional groups are potentially important for the association 436 

between OC and Fe oxides, although the concentrations of N are much lower than C (Yang et al., 437 

2012; Barber et al., 2014). The bulk soil contained 0.05-0.45 % N, while the non-Fe-bound 438 

component (i.e. the residual solid after DCB extraction) contained 0.06-0.32 % N. 439 

Concentrations of Fe-bound N, calculated by difference, ranged up to 0.13 %. However, it is 440 

important to note that this number is based without a calibration for labile N that may be 441 

removed by the dithionite-free DCB extraction (data not available). There were significant 442 

correlations between C and N concentrations for both bulk soils (r=0.847, p<0.001: 443 

Supplementary Material, Fig. S4) and the non-Fe-bound residual components (r=0.858, p<0.001: 444 

Supplementary Material, Fig. S4), with molar C/N ratios of 14.2±2.6 and 13.7±2.3 for bulk and 445 

non-Fe-bound OC, respectively. These C/N values are essentially identical to a previously 446 

observed molar C/N ratio = 14.3 for a large set of world-wide soils samples (Cleveland et al., 447 

2007), and a molar C/N ratio = 14.4 for OC-rich samples in China (Tian et al., 2010). This result 448 

suggests that C/N ratios for Fe-bound OC did not differ from that of non-Fe-bound OC, 449 

assuming that the labile carbon did not have a substantially different C/N ratio.  Therefore, in 450 

contrast to the 13C enrichment observed for Fe-bound OC, the interactions with Fe minerals did 451 

not affect the C/N ratio substantially.  452 

 453 

4. Conclusion 454 
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Overall, this study provided a comprehensive investigation into the amount and characteristics of 455 

Fe-bound OC in forest soils as well as the impact of soil physicochemical properties on Fe-456 

bound OC. On average, Fe-bound OC contributed to 37.8% of TOC in forest soils, composing an 457 

important component of C cycles in terrestrial ecosystem. The OC:Fe molar ratios in the forest 458 

soils studied ranged from 0.56 to 17.7, indicating the importance of both sorptive and 459 

incorporative interactions between Fe and OC. fFe-OC increased with latitude, and reached the 460 

peak value for soils with an annual mean temperature of 6.6˚C, as a result of the temperature 461 

dependence of Fe mineral phase and OC transformation. Combined studies of FTIR, NEXAFS, 462 

and 13C analysis revealed that Fe-bound OC was less aliphatic, more carboxylic, and more 463 

enriched in 13C, compared to non-Fe-bound OC. Assuming Fe-bound OC is relatively stable, Fe 464 

oxides serve as a storage reservoir on decadal time scales for hydrophilic and carboxylic OC, 465 

which would be otherwise relatively more available for microbial degradation. 466 
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Figure Captions 673 

Figure 1. Concentrations of total carbon (TC), total organic carbon (TOC) and Fe-bound OC in 674 

14 forest soils across the United States. Duplicate measurements were conducted for each of two 675 

plots in every forest site. Error bars represent standard deviation of measurements of four 676 

replicates for each forest site. 677 

Figure 2. A Concentration of reactive Fe and OC:Fe molar ratio in US forest soils. B 678 

Relationship between the fraction of Fe-bound OC in TOC (fFe-OC)/ OC:Fe molar ratio and 679 

reactive Fe concentration in US forest soils.  680 

Figure 3. Correlation between the TOC, reactive Fe, concentration of Fe-bound OC, fFe-TOC, 681 

OC:Fe and ecogeographical parameters including latitude, longitude, elevation (asl), 682 

precipitation (mean annual) and temperature (annual mean). 683 

Figure 4. Correlation of the fractions of iron-bound organic carbon (uncalibrated and calibrated 684 

for loss of labile OC) and labile organic carbon vs. fractions of sand, silt, and clay in forest soils.  685 

Figure 5. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 686 

analysis for representative forest soils before (black line) and after Fe extraction (red line). All 687 

the spectra are background-calibrated. Among the 14 forest soils sampled in this study, we used 688 

five different forest soils, with fFe-OC ranging 5.6-57.8%. 689 

Figure 6. A. δ13C of total organic carbon and non-iron bound organic carbon for 14 U.S. forest 690 

sites. B. Correlation between ∆13
FeOC-nonFeOC and molar ratio of OC:Fe.  691 
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 701 

 702 

Table 1 Information for the 14 forest sites studied (Obrist et al., 2011, 2012, 2015) 

Forest ID Abbr. Location Soil Order 
(US) 

Soil Classa 
(FAO) 

Climate Zone Precip.b  
(mm y-1) 

Tempc 
(ºC) 

LAT(
°)d 

LONG
(°)e 

Elevation 
(m asl) 

Ashland AL Ashland, 
Missouri 

Alfisols Luvisols & 
Greyzems 

Humid 
Continental  

1023 13.9 38.73 -92.20 210 

Bartlett BL Bartlett, 
New 
Hampshire 

Spodosols Podzols & 
Lithosols 

Humid 
Continental 

1300 4.5 44.0 -71.29 272 

Marysville MS Marysville, 
California 

Mollisols Luvisols Mediterranean 
climate 

775 16.9 39.25 -121.28 386 

Gainesville GS Gainesville, 
Florida 

Spodosols Podzols Humid 
Subtropical 

1228 21.7 29.74 -82.22 50 

Oak Ridge OR Oak Ridge, 
Tennessee 

Ultisols Acrisols Humid 
Subtropical 

1350 14.5 35.97 -84,28  

Little Valley 
(post-fire) 

LVF Little 
Valley,  
Nevada 
 

Entisols Arenosols Highland 
Climate 

551 5.0 39.12 -119.93 2010 

Little Valley 
 

LV Little 
Valley, 
Nevada 
 

Entisols Arenosols Highland 
Climate 

550 5.0 39.12 -119.93 2011 

Truckee 
(post-fire) 

TKF Truckee, 
California 

Alfisols Luvisols Highland 
Climate 

569 6.0 39.37 -120.1 1768 

Truckee TK Truckee, 
California 

Alfisols Luvisols Highland 
Climate 

568 5.9 39.37 -120.1 1767 

Niwot Ridge NR Niwot 
Ridge, 
Colorado 

Alfisols Cambisols Highland 
Climate 

800 1.3 40.03 -105.55 3050 

Hart HT Hart, 
Michigan 

Spodosols Podzols Humid 
Continental 

812 7.6 43.67 -86.15 210 

Howland HL Howland, 
Maine 

Spodosols Luvisols Humid 
Continental 

1040 6.7 45.20 -68.74 60 

Thompson I TSI Ravensdale, 
Washington 

Inceptisols Cambisols Highland 
Climate 

1141 9.8 47.38 -121.93 221 

Thompson 
II 

TSII Ravensdale, 
Washington 

Inceptisols Cambisols Highland 
Climate 

1140 9.8 47.38 -121.93 220 

a: Food and Agriculture Organization; b: annual precipitation; c: annual mean temperature; d latitude; e: longitude.  
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Fig. 2 719 
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Fig. 3 733 
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Fig. 4 741 
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Fig. 6 764 
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