

2.0

time (s)

Figure S1. Example of a concentration time series with a constant slope representing diffusive CH₄ flux or continuous flux of micro-bubbles (panel A) and example of a concentration time series including a CH₄ bubble event visible by a sudden increase of slope over a short duration (panel B).

time (s)

2.0

1 2. CO₂ flux calculation with the gradient method

- 2 CO₂ fluxes across the air-water interface were estimated according to the boundary layer equation
- 3 approach, equation

 $F = k_{CO_2} \cdot (c_{water} - c_{atm})$

4

(1).

(1)

(3)

- $\begin{array}{lll} F & CO_2 \ flux \ (mmol \ m^{-2} \ h^{-1}) \\ k_{CO_2} & gas \ transfer \ velocity \ (m \ h^{-1}) \\ c_{water} & CO_2 \ concentration \ in \ the \ surface \\ water \ (mmol \ m^{-3}) \\ c_{atm} & theoretical \ CO_2 \ concentration \ of \\ the \ surface \ water \ in \ equilibrium \\ with \ the \ atmospheric \ CO_2 \\ concentration \ (mmol \ m^{-3}) \end{array}$
- 5 c_{water} and c_{atm} were calculated with Henry's law from the CO₂ mixing ratios measured in the surface
- 6 water and the atmosphere using Henry's law constants (Sander, 1999) corrected for surface water
- 7 temperature. The gas transfer velocity k_{CO_2} was calculated from the gas transfer velocity normalized
- 8 to a Schmidt number of 600 (k_{600}) according to equation (2) (Crusius and Wanninkhof, 2003).

9
$$k_{CO_2} = k_{600} \cdot \left(\frac{Sc_{CO_2}}{600}\right)^{-b}$$
 (2)
 k_{CO_2} gas transfer velocity (m h⁻¹)
 k_{600} gas transfer velocity normalized
to a Schmidt number of 600
(m h⁻¹)
 Sc_{CO_2} Schmidt number for CO₂
corrected for temperature (-)
600 Schmidt number of CO₂ at 20 °C

600 Schmidt number of CO₂ at 20
B
$$\frac{1}{2}$$
 for wind speed > 3 m s⁻¹
 $\frac{2}{3}$ for wind speed ≤ 3 m s⁻¹

- 10 k_{600} depends on the wind speed at a height of 10 m according to the empirical relationship defined
- 11 by Cole and Caraco (1998) (equation 3). Sc_{CO_2} was calculated as a function of water temperature
- 12 (equation 5; Wanninkhof, 1992).
- 13

14 $\begin{aligned} k_{600} &= 0.0207 + 0.00215 \cdot U_{10}^{1.7} \\ k_{600} & \text{gas transfer velocity normalized to a} \\ \text{Schmidt number of 600 (m h}^{-1}) \\ U_{10} & \text{wind speed at 10 m height (m s}^{-1}) \end{aligned}$

15 $Sc_{CO_2} = 1911.1 - 118.11 \cdot T + 3.4527 \cdot T^2 - 0.04132 \cdot T^3$ (4) Sc_{CO_2} Schmidt number for CO₂ corrected for temperature (-) T water temperature (°C)

- 16 Wind speed at a height of 10 m was estimated from the wind speed measurements at the weather
- 17 station at a height of 2.5 m according to equation (5) (Singh et al., 2007).

Figure S2: CO₂ concentrations in the surface water of the pond (gray symbols), CO₂ fluxes calculated with the gradient method (black symbols), photosynthetically active radiation and wind speed (both 5 min averages) during two periods in July (panel A) and September (panel B) 2014.

Figure S3: To estimate the response time of silicone-covered NDI CO₂ sensors, about 10 L of water were filled in a bucket and acidified to pH 4 by adding 1 M HCl. Subsequently CO₂ and air were bubbled through the solution from a gas cylinder and using an air pump, respectively, to adjust dissolved CO₂ concentrations and mix the water. Headspace samples (5 mL water, 7.5 mL gas phase) were taken and analyzed by gas chromatography as described in the Methods section. After 124 minutes CO₂ supply was stopped but air continuously pumped for another hour. The results suggest that equilibration was > 90% after one hour with increasing concentration and somewhat more delayed with decreasing concentrations.

Figure S4: Studied pond with algal mat in the beginning of August 2014 (above) and without algal mat in the end of September 2014 (below).

Figure S5: Close-up of algal mat in the beginning of August 2014 (above).

Table S1. Plant species composition of the floating mat, the surrounding treed area and the chamber measurement plots m1 to m3 (section **Error! Reference source not found.**); c: common, s: scattered, r: rare, -: absent; species nomenclature according to Hellquist and Crow (1999a), (1999b), Newmaster and Ragupathy (2012).

species	abundance					
				plot		
	floating mat	treed area	m1	m2	m3	
Sphagnum angustifolium (Russ.) C. Jens.	С	С	С	С	с	
Sphagnum magellanicum Brid.	С	С	-	-	-	
Sphagnum fuscum (Schimp.) Klinggr.	-	S	-	-	-	
Sphagnum wulfianum Girg.	-	S	-	-	-	
<i>Larix laricina</i> (DuRoi) K. Koch	-	C-S	-	_	-	
Picea mariana (Mill.) BSP.	-	C-S	-	-	-	
Pinus strobus L.	-	R	-	_	-	
Eleocharis smallii Britt.	-	S	-	-	-	
Eriophorum vaginatum L.	S	S	-	_	-	
Eriophorum virginicum L.	S	S	-	-	-	
Dulichium arundinaceum (L.) Britt.	r	-	-	-	-	
Rhynchospora alba (L.) Vahl	С	-	S	C-S	S	
<i>Carex aquatilis</i> Wahlenb.	S	-	r	-	S	
Carex oligosperma Michx.	S	-	-	_	-	
Carex magellanica Lam.	S	-	-	-	-	
Carex disperma Dew.	-	S	-	-	-	
Myrica gale L.	r	s-r	-	_	-	
Betula pumila L.	-	S	-	_	-	
Sarracenia purpurea L.	S	-	-	r	-	
Drosera rotundifolia L.	r	-	-	_	-	
Populus sp.	-	S	-	-	-	
Rhododendron groenlandicum (Oeder) Kron & Judd	r	С	-	_	-	
Kalmia polifolia Wang.	S	S	-	r	-	
Kalmia angustifolia L.	-	R	-	-	-	
Andromeda glaucophylla Link	S	S	-	r	-	
Vaccinium oxycoccos L.	S	S	-	-	r	
Vaccinium myrtilloides Hook.	-	S	-	-	-	
Vaccinium macrocarpon Ait.	-	S	-	-	-	
Vaccinium corymbosum L.	-	S	-	-	-	
Vaccinium uliginosum L.	-	R	-	-	-	
Chamaedaphne calyculata (L.) Moench	S	C-S	S	S	S	
Aronia melanocarpa (Michx.) Ell.	-	S	-	-	-	
Cypripedium parviflorum Salisb.	-	R	-	-	-	
Cypripedium reginae Walt.	-	R	-	-	-	

Variable	instrument	measuring height or depth ^ª	orienta tion	temporal resolution	accuracy
air temperature (°C)	Temperature/RH Smart Sensor, S-THB-M002, Onset	+ 2.0 m	north	5 min	± 0.21 °C
relative humidity (%)	Temperature/RH Smart Sensor, S-THB-M002, Onset	+ 2.0 m	north	5 min	± 2.5 %
wind speed (m s ⁻¹)	Wind Speed Smart Sensor, S-WSA-M002, Onset	+ 2.5 m	west- southw est	5 min	± 1.1 m s ^{−1} or 4 % (whichever is greater)
wind direction (°)	Wind Direction Smart Sensor, S-WDA-M002, Onset	+ 2.5 m	east- northe ast	5 min	± 5°
photosynthetically active radiation (µmol m ⁻² s ⁻¹)	Photosynthetic Light (PAR) Smart Sensor, S- LIA-M002, Onset	+ 2.3 m	south	5 min	± 5 μmol m ⁻² s ⁻¹ or 5 % (whichever is greater)
precipitation (mm)	.2mm Rainfall Smart Sensor, S-RGB-M002, Onset	+ 1.0 m	west- northw est	5 min	±1%
water temperature pond (°C)	CTD-Diver, Schlumberger	– 0.2 m	-	5 min	± 0.1 °C
temperature floa- ting mat (°C)	Air/Water/Soil Temp Sensor, TMC6-HD, Onset	– 5 and – 10 cm	-	5 min	± 0.25 °C
air pressure (kPa)	Enclosed Path CO ₂ / H ₂ O Analyzer, LI-7200, LI-COR	+ 5.0 m	-	30 min	±4%

Table S2. Environmental variables measured at the study site with the corresponding instruments, measuring height, orientation, temporal resolution and accuracy.

^a: indicated by positive (height) or negative sign (depth)

Table 3	S3.	Distance	from	the	floating	mat	and	water	depth	of the	chamber	measurement
plots o	f th	e pond.										

plot	distance from the floating mat (m)	water depth (m)
p1	4.55	0.73
p2	3.76	0.83
p3	3.15	0.77
p4	1.91	0.62
р5	0.80	0.52
р6	0.73	0.42

System	Location	CH₄ flux	es (mm	nol m ⁻² h ⁻²	¹)	time	reference	
		mini mum	me dian	mean	maxi mum	horizon		
Peatlands peatland site, Wylde Lake Bog	Ontario, Canada	0.00	0.32	0.71	28.13	July to Sept.	this study	
Bog	Ontario, Canada			0.07		July and Aug.	Dinsmore et al. (2009)	
Fen	Michigan, USA			0.02		April to Oct.	Ballantyne et al. (2014)	
fen hummock fen lawns and hollows	Quebec, Canada			0.07 0.09		two years	Trudeau et al. (2013)	
2 fens, 1 bog	Ontario, Canada			0.04		June to Oct.	Hamilton et al. (1994)	
poor fen	Quebec, Canada	0.00	0.11		0.38	May to Sept.	Strack et al. (2006)	
bog hummocks bog lawns and ponds	Ontario, Canada			0.01 0.26		May to Oct.	Moore et al. (2011)	
<i>floating mats</i> floating mat in Wylde Lake Bog	Ontario, Canada	0.06	0.64	1.52	14.98	July to Sept.	this study	
floating mat on thermokarst pond in bog	Siberia, Russia			0.14		one year	Flessa et al. (2008)	
floating mats in bog Sphagnum Phragmites australis Menyanthes trifoliata	central Japan			0.18 0.76 1.17		April to Oct.	Sugimoto and Fujita (1997)	
Ponds pond in Wylde Lake Bog area: 847 m ² depth: 0.5 m	Ontario, Canada	0.00	0.14	0.22	2.00	July to Sept.	this study	
Beaver pond depth: 0.8 m	Ontario, Canada			0.01		July and Aug.	Dinsmore et al. (2009)	
2 fen pools area: 65 and 200 m ² depth: 0.4 and 0.9 m	Quebec, Canada			0.50 and 0.23		2 years	Trudeau et al. (2013)	
24 bog and fen ponds area: 32 to 41620 m ² depth: 0.1 to 2.0 m	Ontario, Canada			0.38		June to Oct.	Hamilton et al. (1994)	
fen pond area: 10000 m ² max. depth: 3.2 m	northern Finland			0.48		May to Sept.	Huttunen et al. (2002)	
5 bog pools area: 128 to 2563 m ² depth: 0.4 to 2.0 m	Quebec, Canada	0.00 to 0.01		0.01 to 0.20	0.04 to 0.41	1.5 years	Pelletier et al. (2014)	
fen pond area: 5000 m ² depth: 1 m	Siberia, Russia	0.03	0.06	0.11	0.31	July to Sept.	Repo et al. (2007)	

Table S4. CH_4 fluxes from the studied peatland, floating mat and pond in comparison to CH_4 fluxes reported from northern peatlands, floating mats and ponds in literature.

Table S5. Daytime maximum net ecosystem exchange (NEE) and ecosystem respiration (ER) of the studied peatland and floating mat in comparison to respective values from temperate peatlands reported in literature.

System	Location	maximum	NEE and E	time	reference		
		minimu	median	mean	maxi	horizon	
		m			mum		
peatland site,	Ontario, Canada	-36.96	-16.98	-18.73	-8.10	July to	this study
Wylde Lake Bog		2.61	11.98	13.59	36.93	Sept.	
floating mat in	Ontario,	-11.46	-4.81	-4.40	0.71	July to	this study
Wylde Lake Bog	Canada	0.53	6.77	6.41	13.45	Sept.	
Bog	Ontario, Canada			-29.7		May to	Larmola et
				15.3		Sept.	al. (2013)
Fen	Michigan, USA			-7.56		April to	Ballantyne
				8.64		Oct.	et al. (2014)

Table S6. CO_2 fluxes from the studied pond in comparison to CO_2 fluxes from ponds in northern peatlands reported in literature.

System	location	CO ₂ flux	CO_2 fluxes (mmol m ⁻² h ⁻¹)				reference
		mini mum	medi an	mean	maxi mum	horizon	
pond in Wylde Lake Bog area: 847 m ² depth: 0.5 m	Ontario, Canada	-0.75	1.16	1.32	4.59	July to Sept.	this study
Beaver pond depth: 0.8 m	Ontario, Canada			13.48		July and Aug.	Dinsmore et al. (2009)
24 bog and fen ponds area: 32 to 41620 m ² depth: 0.1 to 2.0 m	Ontario, Canada			6.96		June to Oct.	Hamilton et al. (1994)
peatland pond area: 10000 m ² max. depth: 3.2 m	northern Finland			0.50		May to Sept.	Huttunen et al. (2002)
5 bog pools area: 128 to 2563 m ² depth: 0.4 to 2.0 m	Quebec, Canada	0.04 to 0.34		0.32 to 0.80	0.53 to 1.98	1.5 years	Pelletier et al. (2014)
fen pond area: 5000 m ² depth: 1 m	Siberia, Russia	0.85	1.42	1.52	2.94	July to Sept.	Repo et al. (2007)

References

Ballantyne, D.M., Hribljan, J.A., Pypker, T.G., Chimner, R.A.: Long-term water table manipulations alter peatland gaseous carbon fluxes in Northern Michigan. Wetlands Ecology and Management 22, 35–47, 2014.

Cole, J.J., Caraco, N.F.: Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF₆. Limnology and Oceanography 43, 647–656, 1998.

Crusius, J., Wanninkhof, R.: Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography 48, 1010–1017, 2003.

Dinsmore, K.J., Billett, M.F., Moore, T.R.: Transfer of carbon dioxide and methane through the soil-water-atmosphere system at Mer Bleue peatland, Canada. Hydrological Processes 23, 330–341, 2009.

Flessa, H., Rodionov, A., Guggenberger, G., Fuchs, H., Magdon, P., Shibistova, O., Zrazhevskaya, G., Mikheyeva, N., Kasansky, O., Blodau, C.: Landscape controls of CH₄ fluxes in a catchment of the forest tundra ecotone in northern Siberia. Global Change Biology 14, 2040–2056, 2008.

Hamilton, J.D., Kelly, C.A., Rudd, J.W.M., Hesslein, R.H., Roulet, N.T.: Flux to the atmosphere of CH₄ and CO₂ from wetland ponds on the Hudson Bay lowlands (HBLs). Journal of Geophysical Research 99, 1495–1510, 1994.

Hellquist, C.B., Crow, G.E.: Aquatic and Wetland Plants of Northeastern North America, A Revised and Enlarged Edition of Norman C. Fassett's A Manual of Aquatic Plants, Volume II Angiosperms Monocotyledons. Madison, 1999a.

Hellquist, C.B., Crow, G.E.: Aquatic and Wetland Plants of Northeastern North America, A Revised and Enlarged Edition of Norman C. Fassett's A Manual of Aquatic Plants, Volume I Pteridophytes, Gymnosperms, and Angiosperms Dicotyledons. Madison, 1999b.

Huttunen, J.T., Väisänen, T.S., Heikkinen, M., Hellsten, S., Nykänen, H., Nenonen, O., Martikainen, P.J.: Exchange of CO_2 , CH_4 and N_2O between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forests. Plant and Soil 242, 137– 146, 2002. Larmola, T., Bubier, J.L., Kobyljanec, C., Basiliko, N., Juutinen, S., Humphreys, E.R., Preston, M., Moore, T.R.: Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology 19, 3729–3739, 2013.

Moore, T.R., De Young, A., Bubier, J.L., Humphreys, E.R., Lafleur, P.M., Roulet, N.T.: A Multi-Year Record of Methane Flux at the Mer Bleue Bog, Southern Canada. Ecosystems 14, 646– 657, 2011.

Newmaster, S.G., Ragupathy, S.: Flora Ontario – Integrated Botanical Information System (FOIBIS). University of Guelph. URL http://www.uoguelph.ca/foibis/ (accessed April 24th, 2015), 2012.

Pelletier, L., Strachan, I.B., Garneau, M., Roulet, N.T.: Carbon release from boreal peatland open water pools: Implication for the contemporary C exchange. Journal of Geophysical Research: Biogeosciences 119, 207–222, 2014.

Repo, M.E., Huttunen, J.T., Naumov, A. V., Chichulin, A. V., Lapshina, E.D., Bleuten, W., Martikainen, P.J.: Release of CO₂ and CH₄ from small wetland lakes in western Siberia. Tellus 59B, 788–796, 2007.

Sander, R.: Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry. Max-Planck Institute of Chemistry, Mainz, 1999.

Singh, S., Bhatti, T.S., Kothari, D.P.: Wind Power Estimation Using Artificial Neural Network. Journal of Energy Engineering 133, 46–52, 2007.

Strack, M., Waller, M.F., Waddington, J.M.: Sedge succession and peatland methane dynamics: A potential feedback to climate change. Ecosystems 9, 278–287, 2006.

Sugimoto, A., Fujita, N.: Characteristics of methane emissions from different vegetations on a wetland. Tellus 49B, 382–392, 1997.

Trudeau, N.C., Garneau, M., Pelletier, L.: Methane fluxes from a patterned fen of the northeastern part of the La Grande river watershed, James Bay, Canada. Biogeochemistry 113, 409–422, 2013.

Wanninkhof, R.: Relationship Between Wind Speed and Gas Exchange Over the Ocean. Journal of Geophysical Research 97, 7373–7382, 1992.