1	Greenhouse gas emissions and reactive nitrogen releases from rice production
2	with simultaneous incorporation of wheat straw and nitrogen fertilizer
3	Longlong Xia ^{a,b} , Yongqiu Xia ^a , Shutan Ma ^{a,b} , Jinyang Wang ^a , Shuwei Wang ^{a,b} , Wei
4	Zhou ^{a,b} , Xiaoyuan Yan ^{a*}
5	^{a.} State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science,
6	Chinese Academy of Sciences, Nanjing 210008, China.
7	^{b.} University of Chinese Academy of Sciences, Beijing 100049, China.
8	
9	*Corresponding author: Xiaoyuan Yan
10	State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science,
11	Chinese Academy of Sciences, Nanjing 210008, P. R. China
12	Phone number: +86 025 86881530, Fax: +86 025 86881000
13	Email address: yanxy@issas.ac.cn
14	
15	
16	
17	
18	
19	
20	
21	
22	

23 Abstract

24 The impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas 25 (GHG) emissions and reactive nitrogen (Nr) releases from rice production in intensive agricultural 26 regions are not well understood. A field experiment was established in a rice-wheat cropping 27 system in the Taihu Lake region (TLR) of China since 2013 to evaluate the GHG intensity (GHGI), 28 Nr intensity (NrI) and environmental costs of concurrent inputs of wheat straw and N fertilizer to 29 rice paddies. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240) and 300 kg N ha⁻¹ (RN300, 30 31 traditional N applied rate in the TLR). Wheat straws were fully incorporated into soil before rice 32 transplantation in all treatments. The results showed that the response of rice yield to N application rate successfully fitted a quadratic model. Nitrous oxide (N2O) emissions were 33 34 increased exponentially as N fertilization rates increased, while methane (CH₄) emissions increased slightly with wheat straw rates increased. The estimated soil organic carbon 35 sequestration rate varied from 129.58 (RN0) to 196.87 kg C ha⁻¹ yr⁻¹ (RN300). Seasonal average 36 GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO₂-equivalent (CO₂-eq) kg⁻¹ 37 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg⁻¹ (RN300). CH₄ emissions dominated 38 39 GHGI with proportion of 70.2-88.6%, while ammonia (NH₃) volatilization dominated NrI with 40 proportion of 53.5-57.4% in all fertilization treatments. The damage costs to environment incurred 41 by GHG and Nr releases from current rice production (RN300) accounted for 8.8% and 4.9% of 42 farmer's incomes, respectively. Cutting the traditional application rate of N fertilizer from 300 to 240 kg N ha⁻¹ improved rice yield and nitrogen use efficiency by 2.14% and 10.30%, respectively, 43 44 whilst simultaneously reduced GHGI by 13%, NrI by 23% and total environmental costs by 16%.

45	Moreover, the reduction of 60 kg N ha ^{-1} improved farmer's income by 639 ¥ ha ^{-1} , which would
46	provide them with an incentive to change their traditional N application rate. Our study suggests
47	that GHG and Nr releases, especially the CH_4 emission and NH_3 volatilization, from rice
48	production in the TLR could be further curbed, considering the current incorporation pattern of
49	straw and N fertilizer.
50	Key words: Taihu Lake region, greenhouse gas intensity, Nr intensity, rice production, straw
51	incorporation
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

67 1 Introduction

68 Rice is the staple food for the majority of the world's population. However, while 69 industriously feeding the world's population, rice production is an important source of greenhouse 70 gas (GHG) emissions and reactive nitrogen (Nr) releases (Yan et al., 2009; Chen et al., 2014). 71 Rice production in China involves heavy methane (CH₄) emissions due to current water regime 72 management and straw incorporation practices (Yan et al., 2009). Besides, the lower nitrogen use 73 efficiency for rice cultivation in China (approximately 31%) aggravates the release of various Nr 74 species, thus threatening ecosystem functions (Galloway et al., 2008; Zhang et al., 2012). Such a 75 dilemma highlights the need for the simultaneous evaluation of GHG emissions and Nr losses for 76 rice production in China. And riceRice cultivation in intensive agricultural regions, characterized 77 by high inputs of N fertilizer and crop residues, should be prioritized for the implementation of 78 such evaluation (Ju et al., 2009; Chen et al., 2014).

79 Taihu Lake region (TLR) is one of the most productive areas for rice production in China, 80 largely owing to the popularity of intensive cultivation (Zhao et al., 2012a; Zhao et al., 2012b). Currently, rice yield of this region in some fields can reach up to 8000 kg ha^{-1} or even higher (Ma 81 et al., 2013; Zhao et al., 2015). However, these grain yields are achieved with a cost to 82 environment (Ju et al., 2009). TLR generally receives 550-600 kg N ha⁻¹ yr⁻¹, with the 83 rice-growing season accounting for nearly 300 kg N ha⁻¹ (Zhao et al., 2012b). Asides from these 84 85 excessive N inputs, TLR also experiences high amounts of crop residue incorporation, which is 86 highly encouraged by local governments (Xia et al., 2014). However, direct straw incorporation 87 before rice transplantation triggers substantial CH₄ emissions (Ma et al., 2009; Ma et al., 2013). 88 Besides such substantial releases of Nr and GHGs in a direct way, indirect releases during the

production of various agricultural materials used for farming operations in the TLR, are also not ignorable, due to higher input rates of these materials caused by intensive cultivation (Zhang et al., 2013; Cheng et al., 2014). This warrants the need for life-cycle assessment of GHG emissions and Nr releases with respect to rice production in this region.

93 Considerable environmental costs can be caused by the direct and indirect releases of GHGs 94 and Nr from rice production in the TLR, for instance, in the form of global warming, water 95 eutrophication, or soil acidification (Ju et al., 2009; Xia and Yan, 2011; Xia and Yan, 2012). 96 Previous studies have proven that environmental costs assessment could provide guidance for 97 emerging policy priorities in mitigating certain GHG or Nr species, after quantifying both their 98 release amounts and damage costs to ecosystems (Gu et al., 2012). However, the life-cycle 99 assessment of total GHG and Nr releases, and the environmental costs they incur from rice 100 production in the TLR under the current conditions of high inputs of N fertilizer and crop straw, 101 are scarce.

In the present study, we conducted two years of simultaneous measurements of CH_4 and N_2O emissions from a rice-wheat cropping system in the TLR to evaluate the impacts of simultaneous inputs of crop straw and N fertilizer on (1) net global warming potential (NGWP) and GHG intensity (GHGI), (2) total Nr losses and Nr intensity (NrI), (3) environmental costs incurred by GHG and Nr releases of rice production, from perspective of life-cycle assessment.

107 2 Materials and methods

108 2.1 Experimental site

The field experiment was conducted in a paddy rice field at Changshu Agroecological
Experimental Station (31°32′93″N, 120°41′88″E) in Jiangsu province, which is located in the TLR

111 of China where the cropping system is primarily dominated by summer rice (Oryza sativa L,). 112 and winter wheat (Triticum aestivum L.), rotation. The climate of the study area is subtropical 113 monsoon, with a mean air temperature of 16.1°C and mean annual precipitation of 990 mm, of 114 which 60-70% occurs during the rice-growing season. The daily mean temperature and 115 precipitation during two rice-growing seasons from 2013 to 2014 are shown in Fig.1. The paddy 116 soil is classified as an Anthrosol, which develops from lacustrine sediments. The topsoil (0-20cm) has a pH of 7.68 (H₂O). The bulk density is 1.16 g cm⁻³, the organic C content is 20.1 g C kg⁻¹, the 117 total N is 1.98 g kg⁻¹, the available P is 11.83 mg kg⁻¹ and the available K is 126 mg kg⁻¹. 118 119 2.2 Experimental design and field management

The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240) and 300 kg N ha⁻¹ (RN300, traditional N applied rate in the TLR). Consistent with local practices, wheat straws were harvested, chopped and fully incorporated into soil before rice transplantation in all treatments (Table 1). All of the treatments are laid out in a randomized block design with three replicates, and each plot covered an area of 3 m × 11 m (33 m²).

Rice is transplanted in the middle of June and harvested at the beginning of November. N fertilizer (in the form of urea) was split into three parts during the rice-growing season: 40% as basal fertilizer; 30% as tilleringtiller fertilizer; and 30% as panicle fertilizer. Phosphorus (in the form of calcium superphosphate) and potassium (in the form of potassium chloride) were applied as basal fertilizer at rates of 30 kg P_2O_5 ha⁻¹ and 60 kg K₂O ha⁻¹, respectively. All basal fertilizers were thoroughly incorporated into the soil through plowing, while topdressing fertilizers were applied evenly to the soil surface. According to local practices, the water regime of Formatted: Font: 11 pt, Font color: Auto, English (U.S.)

133	'flooding-midseason drainage-flooding-moist but non-waterlogged by intermittent irrigation' was	
134	adopted. Details of the specific agricultural management practices for rice production are provided	
135	in Table 1.	
136	2.3 Gas fluxes and topsoil organic carbon sequestration rate	
137	The CH_4 and nitrous oxide (N ₂ O) fluxes during the rice-growing seasons of 2013 and 2014	
138	were measured using a static chamber and gas chromatography technique. Details of the	
139	procedures used for sampling and analysis the gases were described in Xia et al. (2014).	
140	ConsideringGenerally, it takes long-term observations over years to decades before the fact	
141	that the soil organic carbon sequestration rate (SOCSR)SOC change is detectable (Yan et al.,	
142	2011). The SOC content changes of this short-term field experiment could not couldn't be correctly	
143	measured directly, due to the high variability of SOC during the preliminary several years of the	
144	experiment. Therefore, we used the following relationship between the straw input rate (kg C ha^{-1}	
145	yr^{-1}) and SOCSR (kg C ha ⁻¹ yr^{-1}), obtained viathrough an on-going long-term straw application	
146	experiment in the same region, to calculate the SOCSR in this study:	
147	SOCSR = Straw input rate $\times 0.0603 + 31.39$ (R ² = 0.92); (1)	
148	This on-gonging long-term field experiment is also taking place at the Changshu	Formatted: Font color: Text 1 Formatted: Font color: Text 1
149	Agroecological Experimental Station (since 1990), which includes three straw application levels:	
150	0, 4.5 t, and 9.0 t dry-weight ha^{-1} yr ⁻¹ -and the N application rate for rice cultivation in these	
151	treatments is 180 kg N ha ⁻¹ . The estimated SOCSR (from 1990 to 2012) for these three treatments	
152	was 10.65, 194.96 and 254.83 kg C ha ⁻¹ yr ⁻¹ (Xia et al., 2014)., The equation (1) was established	Formatted: Font color: Text 1
153	based on above straw input rates and the estimated SOCSR. We used the average straw input	
154	ratesthe results of 22-year observation. Same agricultural management practices were applied to	Formatted: Font color: Text 1

155	the two rise growing sessons to estimate the SOCSP. The on going long term experiment and the	Formatted: Font color: Text 1
155	The two fice growing seasons to estimate the SOCSR. The on-going long-term experiment and the	Formatted: Font color: Text 1
156	experiment inof this study received similar. Under the same agricultural managements. Details of	Formatted: Font color: Text 1
150	experiment mon uns study received similar. Onder the same agricultural managements. Details of	 Formatted: Font color: Text 1
157	the on-going long term experiment are described in Xia et al. (2014)., soil and climatic conditions,	
158	cropping systems and straw types, it is reasonable to believe that the rate of straw C stabilizing	
159	into SOC (i.e. conversion efficiency of crop residue C into SOC) are similar between these two	
160	experiments (Mandal et al., 2008). It is reported that the conversion rates of crop straw to SOC in	
161	two main wheat/maize production regions in China, which have similar climatic conditions and	
162	agricultural practices, were very close, at 40.524 versus 40.607 kg SOC-C t^{-1} dry-weight straw	
163	(Lu et al., 2009). Therefore, we hold the opinion that the above SOCSR calculation method is	
164	appropriate, and the uncertainty incurred by this method unlikely affects the main conclusions of	
165	this study.	Formatted: Font: 10.5 pt, Font color: Text 1
166	2.4 Net global warming potential and greenhouse gas intensity	
166 167	2.4 Net global warming potential and greenhouse gas intensity The net global warming potential (NGWP, kg CO_2 eq ha ⁻¹) and greenhouse gas intensity	
166 167 168	2.4 Net global warming potential and greenhouse gas intensity The net global warming potential (NGWP, kg CO_2 eq ha ⁻¹) and greenhouse gas intensity (GHGI, kg CO_2 eq kg ⁻¹) of rice production in the TLR was calculated using the following	
166 167 168 169	 2.4 Net global warming potential and greenhouse gas intensity The net global warming potential (NGWP, kg CO₂ eq ha⁻¹) and greenhouse gas intensity (GHGI, kg CO₂ eq kg⁻¹) of rice production in the TLR was calculated using the following equations: 	
166 167 168 169 170	2.4 Net global warming potential and greenhouse gas intensity The net global warming potential (NGWP, kg CO ₂ eq ha ⁻¹) and greenhouse gas intensity (GHGI, kg CO ₂ eq kg ⁻¹) of rice production in the TLR was calculated using the following equations: $NGWP = \sum_{i=1}^{m} AI_{ico_2} + CH_4 \times 25 + N_2O \times 44/28 \times 298 - SOCSR \times 44/12;$ (2)	
166 167 168 169 170 171	2.4 Net global warming potential and greenhouse gas intensity The net global warming potential (NGWP, kg CO ₂ eq ha ⁻¹) and greenhouse gas intensity (GHGI, kg CO ₂ eq kg ⁻¹) of rice production in the TLR was calculated using the following equations: $NGWP = \sum_{i=1}^{m} AI_{ico_2} + CH_4 \times 25 + N_20 \times 44/28 \times 298 - SOCSR \times 44/12;$ (2) GHGI = NGWP/rice yield; (3)	
166 167 168 169 170 171 172	2.4 Net global warming potential and greenhouse gas intensity The net global warming potential (NGWP, kg CO ₂ eq ha ⁻¹) and greenhouse gas intensity (GHGI, kg CO ₂ eq kg ⁻¹) of rice production in the TLR was calculated using the following equations: $NGWP = \sum_{i=1}^{m} AI_{ico_2} + CH_4 \times 25 + N_20 \times 44/28 \times 298 - SOCSR \times 44/12;$ (2) GHGI = NGWP/rice yield; (3) Here, AI_{ico_2} denotes the GHG emissions from the production and transportation of agricultural	
 166 167 168 169 170 171 172 173 	2.4 Net global warming potential and greenhouse gas intensity The net global warming potential (NGWP, kg CO ₂ eq ha ⁻¹) and greenhouse gas intensity (GHGI, kg CO ₂ eq kg ⁻¹) of rice production in the TLR was calculated using the following equations: $NGWP = \sum_{i=1}^{m} AI_{ico_2} + CH_4 \times 25 + N_20 \times 44/28 \times 298 - SOCSR \times 44/12;$ (2) GHGI = NGWP/rice yield; (3) Here, AI_{ico_2} denotes the GHG emissions from the production and transportation of agricultural inputs, which are calculated by multiplying their application rates by their individual GHG	
 166 167 168 169 170 171 172 173 174 	2.4 Net global warming potential and greenhouse gas intensity The net global warming potential (NGWP, kg CO ₂ eq ha ⁻¹) and greenhouse gas intensity (GHGI, kg CO ₂ eq kg ⁻¹) of rice production in the TLR was calculated using the following equations: $NGWP = \sum_{i=1}^{m} AI_{ico_2} + CH_4 \times 25 + N_2O \times 44/28 \times 298 - SOCSR \times 44/12;$ (2) GHGI = NGWP/rice yield; (3) Here, AI_{ico_2} denotes the GHG emissions from the production and transportation of agricultural inputs, which are calculated by multiplying their application rates by their individual GHG emission factors, such as synthetic fertilizers, diesel oil, electricity and pesticides (Liang, 2009;	
 166 167 168 169 170 171 172 173 174 175 	2.4 Net global warming potential and greenhouse gas intensity The net global warming potential (NGWP, kg CO ₂ eq ha ⁻¹) and greenhouse gas intensity (GHGI, kg CO ₂ eq kg ⁻¹) of rice production in the TLR was calculated using the following equations: $NGWP = \sum_{i=1}^{m} AI_{ico_2} + CH_4 \times 25 + N_2O \times 44/28 \times 298 - SOCSR \times 44/12;$ (2) GHGI = NGWP/rice yield; (3) Here, AI_{ico_2} denotes the GHG emissions from the production and transportation of agricultural inputs, which are calculated by multiplying their application rates by their individual GHG emission factors, such as synthetic fertilizers, diesel oil, electricity and pesticides (Liang, 2009; Zhang et al., 2013). CH_4 (kg CH_4 ha ⁻¹), N ₂ O (kg N ha ⁻¹) and SOCSR (kg C ha ⁻¹ yr ⁻¹) represent	

177 respectively.

178 2.5 Total Nr losses and Nr intensity

179	The total Nr losses (kg N ha ⁻¹) and Nr intensity (NrI, g N kg ⁻¹) were ca	lculated using the
180	following equations:	
181	Total Nr losses = $\sum_{i=1}^{m} AI_{iN_r} + (NH_3 + N_2O + N_{Leaching} + N_{Runoff})_{rice}$;	(4)
182	NH_3 volatilization = 0.17× N fertilizer rate + 0.64;	(5)
183	N runoff = $5.39 \times exp$ (0.0054× N fertilizer rate);	(6)
184	N leaching = $1.44 \times \exp(0.0037 \times N \text{ fertilizer rate});$	(7)
185	$NrI = (1000 \times Total Nr losses) / rice yield;$	(8)

Here, $AI_{i_{Nr}}$ denotes the Nr lost (mainly through N₂O and NO_x emissions) from the production and 186 transportation of agricultural inputs (Liang, 2009; Zhang et al., 2013), while 187 $(NH_3+N_2O+N_{Leaching}+N_{Runoff})_{rice}' \ represents \ the \ NH_3 \ volatilization, \ N_2O \ emissions, \ N \ leaching$ 188 189 and runoff during the rice-growing season. We conducted a meta-analysis of published literature to 190 establish Nr empirical models to stimulate the Nr losses, such as NH₃ volatilization (Equation 5), 191 N leaching and runoff (Equation 6 and 7), from different treatments. Specific details regarding this 192 literature survey are provided in Appendix A. 2.6 Total environmental costs incurred by GHG and Nr releases and farmer's 193

194 income

The total environmental costs (¥ ha⁻¹) incurred by GHG and Nr releases and farmer's income
from rice production in the TLR was calculated based on the following equations:

197 Environmental costs =
$$\sum_{i=1}^{n} (Nr_iA \times DC_i) + CO_2A \times DC_{CO2};$$
 (9)

198 Farmer's income = rice yield \times rice price – input costs; (10)

199 Nr_iA (kg N) represents the release amounts of certain Nr species (i), and DC_i (¥ kg⁻¹ N) denotes 200 the damage cost (DC) per kg of certain Nr (i). CO₂A (ton) and DC_{CO2} (¥ ton⁻¹) represent the CO₂ 201 emissions amount and global warming cost of CO₂, respectively. N₂O is both a GHG and an Nr 202 species, but its environmental cost was calculated as a GHG here. The environmental costs mainly 203 refer to the global warming incurred by GHG emissions, soil acidification incurred by NH₃ and 204 NO_x emissions, and aquatic eutrophication caused by NH₃ emissions, N leaching and runoff (Xia 205 and Yan, 2012).

- 206 2.7 Nitrogen use efficiency
- 207 Nitrogen use efficiency (NUE) is calculated by the following equation (Yan et al., 2014):

208 $NUE = (U_N - U_0)/F_N;$

Here, U_N is the plant N uptake (kg ha⁻¹) measured in aboveground biomass at physiological maturity in the N fertilization treatments, while U_0 is the N uptake measured in aboveground biomass in the treatment without N fertilizer addition (RN0). The N uptake in straw and grain was analysed via concentrated sulfuric acid digestion and the Kjeldahl method (Zhao et al., 2015).

(11)

213 2.8 Statistical analysis

Differences in seasonal CH₄, N₂O emissions and rice yield of the two rice-growing seasons from 2013 to 2014 affected by fertilizer treatments, year and their interaction were examined by using a two-way analysis of variance (ANOVA) (Table 2). The grain yield, seasonal CH₄ and N₂O emissions, SOCSR and GHGI of the different treatments were tested by analysis of variance and mean values were compared by least significant difference (LSD) at the 5% level. All these analyses were carried out using the SPSS (Version 19.0, USA).

220 3 Results and discussion

221 3.1 Rice yield and NUE

222 The two-way ANOVA analyses indicated that the rice grain yields were significantly affected 223 by the year and fertilizer treatment (Table 2). The farmer's practice plot (RN300) had an average 224 rice grain yield of 8395 kg ha⁻¹, with an NUE of 31.35%, over the two growing seasons from 225 2013 to 2014. Compared with RN300, reducing the N fertilizer rate by 20% (RN240) slightly 226 improved the grain yield and NUE to 8576 kg ha⁻¹ and 34.58%, respectively. Further N reduction, 227 without additional agricultural managements, could decrease the rice yield by 8.15% (RN180) and 228 15.18% (RN120) (Table 3). The response of rice yield to the synthetic N application rate in our 229 study successfully fitted a quadratic model (Fig.2), as has been reported in previous studies (Xia 230 and Yan, 2012; Cui et al., 2013a). Reducing N application to a reasonable rate, therefore, is 231 considered essential to reduce environmental costs, without sacrificing grain yield (Chen et al., 2014). Lowering the N input adopted by local farmer (300 kg N ha⁻¹) by 20% could still enhance 232 233 the grain yield and NUE, without threatening food security in this study. However, a further 234 reduction of N 40% (RN180) would largely undermine the rice yield (Table 3). 235 Further reduction in N fertilizer may be achieved with improvements of agricultural 236 managements, Ju et al. (2009) reported that, based on knowledge-based N managements, such as

optimizing the N fertilizer source, rate, timing and place (in accordance with crop demand), rice grain yield in the TLR was not significantly affected by a 30-60% N saving, while various Nr losses would endure a two-fold curbing. Similarly, Zhao et al. (2015) found that the NUE could be improved from 31% to 44%, even under a N reduction of 25% for rice production in the TLR, through the implementation of integrated soil-crop system managements. In the present study, the NUE was improved by 10% via a 20% N reduction, but it still falls behind the NUE in the studies 243 which received knowledge-based managements. Previous studies have proven that straw 244 incorporation exerted little positive impacts on grain yield. For instance, a meta-analysis 245 conducted by Singh et al. (2005) have found that incorporation of crop straw produced no 246 significant trend in improving crop yield in rice-based cropping systems. Moreover, based on a 247 long-term straw incorporation experiment established since 1990 at Changshu Agroecological 248 Experimental Station, Xia et al. (2014) have reported that long-term incorporation of wheat straw 249 only increased the rice yield by 1%. Therefore, in the present study, the effects of straw 250 incorporation on rice yield were considered as inappreciable.

251

3.2 CH₄, N₂O emissions and SOSCR

252 Over the two rice-growing seasons from 2013 to 2014, all treatments produced similar 253 patterns of CH₄ fluxes, albeit with large inter-annual variation (Fig.3a). The seasonal average CH₄ emissions from all plots showed no significant difference, ranging from 289.53 kg CH_4 ha⁻¹ in the 254 RN180 plot to 334.61 kg CH_4 ha⁻¹ in the RN120 plot (Table 4), much higher than observations 255 256 conducted in the same region (Zou et al., 2005; Ma et al., 2013). This phenomenon can be 257 attributed to the larger amounts of straw incorporation in this study (Table 1). Relative to the RN300 plot, CH₄ emissions from the RN240 plot decreased by 8% and 10%, during the 258 259 rice-growing season of 2013 and 2014, respectively, although this effect was not statistically 260 significant (Table 4).

261 Many studies have shown a clear linear relationship between CH₄ emissions and the amounts 262 of applied organic matter (OM). Such an obvious linear relationship generally occurs under the following conditions: first, the OM inputs are low (generally less than 3 Mg dry matter ha⁼¹) (Zou 263 2005; Ma et al., 2013); second, the applied OM rates among different treatments are 264

265	statistically different (Shang et al., 2011; Xia et al., 2014).) (Shang et al., 2011; Xia et al., 2014). It
266	is possible that the linear response of CH4 emissions to OM inputs can become flat or even
267	unobvious (Fig.S1), when OM is applied at higher rates (in this study, the applied rates of straw in
268	all N fertilization treatments were higher than 4.4 Mg dry matter ha ^{-1}) and these rates among
269	treatments were not statistically different. Besides, the experimental error caused by small
270	differences in water conditions among different treatments may also have promoted the unclear
271	response of CH4 emissions to straw inputs in this study (Xia et al., 2014).
272	the OM applied rates among different treatments were insignificant different (Table S1). It is
273	unsurprising that no obvious relationship between CH ₄ emissions and N fertilizer application rates
274	was observed in this study (Fig.S1), because the effects of N fertilization on CH4 production,
275	transportation and oxidation are complex. For instance, N fertilization can provide methanogens
276	with more carbon substrates in the rhizosphere of plants by stimulating the growth of rice biomass,
277	thus promoting CH_4 production and transportation (Zou et al., 2005; Banger et al., 2012). N
278	enrichment could also enhance the activities of methanotrophs, therefore enhancing CH_4 oxidation
279	(Xie et al., 2010; Yao et al., 2012). Moreover, ammonium-based fertilizer could compete with CH_4
280	oxidation, due to the similar size and structure between NH_4^+ and CH_4 (Linquist et al., 2012a).
281	The N ₂ O fluxes were sporadic and pulse-like, and these fluxes showed large variations
282	between different seasons, and the majority of the N_2O peaks occurred after the application of N
283	fertilizer (Fig.3b). The two-way ANOVA analyses indicated that the seasonal N_2O emissions were
284	significantly affected by the year, the fertilizer treatment, and their interactions during the
285	rice-growing seasons (Table 2). The average N_2O emission, during the two rice-growing seasons,
286	ranged from 0.05 kg N ha ^{-1} for the RN0 to 0.35 kg N ha ^{-1} for the RN300 (Table 4), which

287 increased exponentially as the N fertilizer rate increased -; this highlights that the reduction of N 288 fertilizer rate is an effective approach to reduce the N₂O emissions (Zou et al., 2005; Zhang et al., 289 2012). The average N_2O emission factors varied between 0.03% and 0.1%, with an average of 290 0.07%, which is comparable with previous studies (0.05%-0.1%) conducted in the same region 291 (Ma et al., 2013; Zhao et al., 2015).

292 The rice paddies have witnessed an increase in the SOC stock as a result of straw incorporation (Table 4). The estimated topsoil (0-20cm) SOCSR varied from 0.13013 t C ha⁻¹ 293 yr^{-1} for the RN0 plot to 0.197 t C ha⁻¹ yr^{-1} for the RN300 plot-(Table 4)... The current SOCSR for 294 rice production in the TLR (0.197 t C ha⁻¹), falling within the SOCSR range of 0.13-2.20 t Cha⁻¹ 295 yr⁼¹ estimated by Pan et al. (2004) for paddy soils in China, is alsois comparable to the estimation 296 of 0.17 t C ha⁻¹ yr⁻¹ from Ma et al. (2013) in a study based on a paddy field experiment with OM 297 298 incorporation in the same region. Moreover, The magnitude of the provincial average SOCSR of Jiangsu province has been estimated to be 0.16 0.21 t C ha⁼¹ yr⁼¹ from SOC increase is variable 299 300 depending on the periodstraw incorporation method, the degree of 1980 to 2000 (tillage, the 301 cropping systems and etc. (Yan et al., 2011; Huang & Sun, 2006, Liao et al., 2009), which is also 302 similar2013). Liu et al. (2014) suggested that straw incorporation in rice-based cropping systems 303 requires an overall consideration, due to the direct incorporation promoting substantial CH₄ 304 emissions. When converting to CO_2 -eq, the SOCSR only offsets the CH_4 emissions by 6.2-9.2% in 305 this study (Table 4). This proportion is expected to our estimation. increase provided that 306 appropriate straw incorporation method (e.g., compost straw before incorporation) and 307 conservative-tillage are adopted. The adoption of conservative-tillage system with straw return is 308 proven to have advantages of increasing SOC stocks while reducing CH₄ emissions (Zhao et al.,

309 <u>2015a; Zhao et al., 2015b).</u>

310 3.3 NGWP and GHGI

The average NGWP for all treatments varied from 8656 to 11550 kg CO_2 eq ha⁻¹ (Table 4). 311 312 CH_4 emissions dominated the NGWP in all treatments, with the proportion ranging from 70.23% 313 to 88.56%, while synthetic N fertilizer production was the secondary contributor (Table 4). In 314 addition, SOC sequestration offset the positive GWP by 5.18-6.18% in the fertilization treatments. 315 Compared to conventional practice (RN300), the NGWP in the 20% reduction N practice (RN240) 316 decreased by 10.64%. Therein, 6.28% came from CH₄ reduction and 4.31% from N production 317 savings (Table 4). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 (RN0) kg CO₂ eq kg⁻¹, which is higher than previous estimation of 0.24-0.74 kg CO₂ eq kg⁻¹ for rice production 318 319 in other rice-upland crop rotation systems (Qin et al., 2010; Ma et al., 2013). Moreover, the GHGI 320 of current rice production in the TLR (RW300) was estimated to be 1.45 times that of the national average value estimated by Wang et al. (2014a), at 1.38 versus 0.95 kg CO_2 eq kg⁻¹. 321 322 Such phenomenon was attributed to the following reasons. First, compared to above studies, current higher amounts of direct straw incorporation (2.9-6.2 Mg dry matter ha⁻¹), before rice 323 transplantation in the TLR, triggered substantial CH₄ emissions (290-335 kg CH₄ ha⁻¹). Crop 324 325 residue incorporation is regarded as a win-win strategy to benefit food security and mitigate 326 climate change, due to the fact that it possesses a large potential for carbon sequestration (Lu et al., 327 2009). However, the GWP of straw-induced CH₄ emissions was reported to be 3.2-3.9 times that

of the straw-induced SOCSR, which indicates direct straw incorporation in paddy soils worsens rather than mitigates climate changes, in terms of GWP (Xia et al., 2014). The SOC sequestration induced by straw incorporation only offset the positive GWP by 5.2-6.2% in this study. Sensible

331	methods of straw incorporation should therefore be developed to reduce the substantial CH ₄
332	emissions without compromising the build-up of SOC stock in the TLR. Second, the high N
333	application rate (300kg N ha ⁻¹) in the TLR combined with the large emission factor of N fertilizer
334	manufacture, 8.3 kg CO_2 -eq kg ⁻¹ N (Zhang et al., 2013), promoted the sector of N fertilizer
335	production to be the secondary contributor to the GHGI (Table 4), while such sector wasn'twas
336	not involved in above-mentioned studies. Compared to local farmer's practices (RN300), reducing
337	the N rate by 20% (RN240) lowered the GHGI by 13%, under the condition of straw incorporation
338	although this effect was not statistically significant (Table 4). Compared to RN240, however,
339	further reduction of N rate (RN180 or RN120) increased the GHGI, largely due to the fact that rice
340	yield was considerably undermined under excessive N reduction. Therefore, the joint application
341	of reasonable N reduction and judicious method of straw incorporation would be promising in
342	reducing the GHGI for rice production in the TLR, in consideration of the current situation of
343	simultaneous high inputs of N fertilizer and wheat straw.

344 3.4 Various Nr losses and NrI

345 The results of the meta-analysis indicated that N2O emissions, as well as N leaching and 346 runoff, increase exponentially with an increase in N application rate (Fig.4b-d, P < 0.01), while the response of NH₃ volatilization to N rates fitted the linear model best (Fig.4a, P < 0.01). 347 348 Established models can explain the variation in the estimation of various Nr losses by 50-57%. The estimated total Nr losses for all treatments varied from 39.3 to 91.7 kg N ha⁻¹ in the 349 350 fertilization treatments (Table 5), accounting for 30.1-32.8% of N application rates. NH₃ 351 volatilization dominated the NrI, with the proportion ranging from 53.5% to 57.4%, mainly 352 because of the current fertilizer application method (soil surface broadcasting) and high

353	temperatures in the field (Zhao et al., 2012b; Li et al., 2014). N runoff was the second most
354	important contributor, with the proportion ranging from 25.9% to 29.7% (Table 5). Using $^{15}\mathrm{N}$
355	micro-plots combined with three-year field measurements, Zhao et al. (2012b) reported that the
356	total Nr loss from rice production in the TLR, under an N rate of 300 kg N ha ^{-1} , was 98 kg N ha ^{-1} ,
357	which is comparable with our estimation of 91.69 kg N ha^{-1} in the RN300 plot. Similarly, Xia and
358	Yan (2011) estimated the Nr loss for life-cycle rice production in this region to be around 90 kg N
359	ha ⁻¹ . The high proportion (30-33%) of the applied N fertilizer released as Nr, for current rice
360	production in the TLR, highlighted the needs to adopt reasonable N managements (Ju et al., 2009).
361	The NrI of rice production in different plots varied between 2.14 g N kg ⁻¹ (RN0) and 10.92 g
362	N kg ⁻¹ (RN300), which increased significantly as the N fertilizer rate increased (Table 5). The NrI
363	for rice production in the TLR was estimated to be 10.92 g N kg ⁻¹ (RN300), which is 68% higher
364	than the national average value estimated by Chen et al. (2014), largely due to the higher N
365	fertilizer inputs in the TLR. Under the condition of straw incorporation, reducing the N application
366	rate by 20% pulled the NrI down to 8.42 g N kg ^{-1} (RN240) (Table 5). Additional N reduction
367	could further lower the NrI, but the rice yield would be compromised largely (Table 3). Previous
368	studies have proven that direct incorporation of crop straw exert unobvious effects on various Nr
369	releases (Xia et al., 2014). Because crop straws usually possess high values of C/N ratio and the
370	majority of N contented in the residue <u>crop straw</u> is not easily degraded by microorganisms in
371	short-term period-(Huang et al., 2004). Therefore the <u>, and</u> straw incorporation could promote the N
372	contained in the residues-this fraction of N to be stabilized stabilize in soil in a long-term period,
373	rather than directly-releasing as various Nr (Huang et al., 2004; Xia et al., 2014). For instance, a
374	meta-analysis, integrating 112 scientific assessments of the crop residue incorporation on the N_2O

Formatted: Font color: Text 1

375	emissions, has reported that the practice exerted no statistically significant effect on the N_2O	
376	releases (Shan and Yan, 2013). Therefore, the effects of wheat straw incorporation on various Nr	
377	losses were considered as negligible in this study. Although no specific relationship was found	
378	between the NrI and GHGI in all treatments in this study (Table 4 and Table 5), attention should	
379	be paid to the interrelationship between them. For instance, N fertilizer production and application	
380	is an intermediate link between GHGI and NrI (Chen et al., 2014). For the NrI, N fertilization	
381	promotes various Nr releases, exponentially or linearly (Fig.4), while N production and	
382	application made a secondary contribution to the GHGI (Table 4). Such interrelationships ought to	
383	be taken into account fully for any mitigation options pursued, in order to reduce the GHG	
384	emissions and Nr discharges from rice production simultaneously (Cui et al., 2013b; Cui et al.,	
385	2014).	Formatted: Fon Font color: Red
386	3.5 Economic evaluations of GHG emissions and Nr releases and their mitigation	
386 387	3.5 Economic evaluations of GHG emissions and Nr releases and their mitigation potential	
386 387 388	3.5 Economic evaluations of GHG emissions and Nr releases and their mitigation potential The total environmental costs associated with the GHG emissions and Nr releases varied	
386 387 388 389	3.5 Economic evaluations of GHG emissions and Nr releases and their mitigation potential The total environmental costs associated with the GHG emissions and Nr releases varied from 1214 \cong ha ⁻¹ for the RN0 to 2399 \cong ha ⁻¹ for the RN300, which approximately accounted for	
386 387 388 389 390	3.5 Economic evaluations of GHG emissions and Nr releases and their mitigation potential The total environmental costs associated with the GHG emissions and Nr releases varied from $1214 \ \text{H} \ \text{ha}^{-1}$ for the RN0 to $2399 \ \text{H} \ \text{ha}^{-1}$ for the RN300, which approximately accounted for $10.44-13.47\%$ of the farmer's income and $27.05-32.47\%$ of the input costs, respectively (Table 6).	
386 387 388 389 390 391	3.5 Economic evaluations of GHG emissions and Nr releases and their mitigation potential The total environmental costs associated with the GHG emissions and Nr releases varied from $1214 \neq ha^{-1}$ for the RN0 to $2399 \neq ha^{-1}$ for the RN300, which approximately accounted for 10.44-13.47% of the farmer's income and $27.05-32.47%$ of the input costs, respectively (Table 6). CH ₄ emission and NH ₃ volatilization were the dominant contributors to the total environmental	
386 387 388 389 390 391 392	3.5 Economic evaluations of GHG emissions and Nr releases and their mitigation potential The total environmental costs associated with the GHG emissions and Nr releases varied from $1214 \neq ha^{-1}$ for the RN0 to $2399 \neq ha^{-1}$ for the RN300, which approximately accounted for 10.44-13.47% of the farmer's income and $27.05-32.47%$ of the input costs, respectively (Table 6). CH ₄ emission and NH ₃ volatilization were the dominant contributors to the total environmental costs, respectively (Table 4 and Fig.5). The total damage costs to environment accounted for 13.5%	
386 387 388 389 390 391 392 393	3.5 Economic evaluations of GHG emissions and Nr releases and their mitigation potential The total environmental costs associated with the GHG emissions and Nr releases varied from 1214 ¥ ha ⁻¹ for the RN0 to 2399 ¥ ha ⁻¹ for the RN300, which approximately accounted for 10.44-13.47% of the farmer's income and 27.05-32.47% of the input costs, respectively (Table 6). CH ₄ emission and NH ₃ volatilization were the dominant contributors to the total environmental costs, respectively (Table 4 and Fig.5). The total damage costs to environment accounted for 13.5% of farmer's income under the current rice production in the TLR (RN300). Cutting the N rate from	
386 387 388 389 390 391 392 393 394	3.5 Economic evaluations of GHG emissions and Nr releases and their mitigation potential The total environmental costs associated with the GHG emissions and Nr releases varied from $1214 \ \pm ha^{-1}$ for the RN0 to $2399 \ \pm ha^{-1}$ for the RN300, which approximately accounted for $10.44 \cdot 13.47\%$ of the farmer's income and $27.05 \cdot 32.47\%$ of the input costs, respectively (Table 6). CH ₄ emission and NH ₃ volatilization were the dominant contributors to the total environmental costs, respectively (Table 4 and Fig.5). The total damage costs to environment accounted for 13.5% of farmer's income under the current rice production in the TLR (RN300). Cutting the N rate from 300 to $240 \ kg \ N \ ha^{-1}$ slightly improved the farmer's income by 3.64% , while further N reduction	
386 387 388 389 390 391 392 393 394 395	3.5 Economic evaluations of GHG emissions and Nr releases and their mitigation potential The total environmental costs associated with the GHG emissions and Nr releases varied from 1214 ¥ ha ⁻¹ for the RN0 to 2399 ¥ ha ⁻¹ for the RN300, which approximately accounted for 10.44-13.47% of the farmer's income and 27.05-32.47% of the input costs, respectively (Table 6). CH ₄ emission and NH ₃ volatilization were the dominant contributors to the total environmental costs, respectively (Table 4 and Fig.5). The total damage costs to environment accounted for 13.5% of farmer's income under the current rice production in the TLR (RN300). Cutting the N rate from 300 to 240 kg N ha ⁻¹ slightly improved the farmer's income by 3.64%, while further N reduction would undermine the economic return of farmer's (Table 6).	

396 GHG and Nr releases from rice production in the TLR are expected to possess a large

18

Formatted: Font: AdvPS6F00, 10 pt, Font color: Red

397	potential for mitigation, due to the current situation of direct straw incorporation and higher N
398	fertilizer inputs. Compared to traditional practice, a reduction of N application rate from 300 to
399	240 kg N ha ^{-1} could alleviate 12.52% for GHGI (Table 4), 22.94% for NrI (Table 5), and 15.76%
400	for environmental costs (Table 6). Further reduction in GHG and Nr releases (especially for CH ₄
401	emissions and NH ₃ volatilization) is possible, with the implementation of knowledge-based
402	managements (Chen et al., 2014; Nayak et al., 2015). For the mitigation of Nr releases, switching
403	the N fertilizer application method from surface broadcasting to deep incorporation could largely
404	lower the NH ₃ volatilization from paddy soils (Zhang et al., 2012; Li et al., 2014). Moreover, other
405	optimum N managements, such as applying controlled-release fertilizers and nitrification or urease
406	inhibitors, could also effectively increase the NUE and reducing the overall Nr losses (Chen et al.,
407	2014). For the mitigation of GHG emissions, rather than being directly incorporated before rice
408	transplantation, crop residues should be preferentially decomposed under aerobic conditions or
409	used to produce biochar through pyrolysis, which could effectively reduce CH4 emissions
410	(Linquist et al., 2012b; Xie et al., 2013). Moreover, these pre-treatments are also beneficial for
411	carbon sequestration and food security (Woolf et al., 2010; Linquist et al., 2012b).
412	Most previous studies have merely focused on the quantification of GHG and Nr releases
413	from food production from the perspective of environment assessments (Zhao et al., 2012b; Ma et

al., 2013; Zhao et al., 2015). The perspective of economic evaluation is seldom implemented,
which goes against encouraging farmer to participate in the abatement of GHG and Nr releases on
their own initiative (Xia et al., 2014). The current pattern of rice production in the TLR incurs
great costs to the environment, which accounted for 13.47% of the net economic return that farmer
ultimately acquire (Table 6). Such an evaluation facilitates the translation of highly specialized

419	scientific conclusions into monetary-based information that is more familiar and accessible for
420	farmer, and therefore likely encouraging them to adopt eco-friendly agricultural managements
421	(Wang et al., 2014b). Profitability is generally considered the main driver for farmer to change
422	their management approach. Compared to traditional N application rate, a reduction of 20% would
423	make environmental costs savings of 14%, whilst simultaneously improving the economic return
424	of farmer's by 648 \pm ha ⁻¹ (Table 6). This represents an incentive for farmer to optimize their N
425	fertilizer application rates, provided that such information is available to them.
426	Considering the fact that no specific carbon- and Nr-mitigation incentive programs, like the
427	'Carbon Farming Initiative' in Australia (Lam et al., 2013), has been launched in China, an
428	ecological compensation incentive mechanism (national subsidy program) should be established
429	by governments. This would provide farmer with a tangible incentive, thus guiding them towards
430	gradually adopting knowledge-based managements, that could effectively curb GHG emissions
431	and Nr losses, but likely exert little positive effects on improving farmer's net economic return
432	(Xia et al., 2014). Examples include the composing of crop straws aerobically, or their use to
433	produce biochar before incorporation (Xie et al., 2013), and encouraging the deep placement of N
434	fertilizer (Wang et al., 2014b), as well as the application of enhanced-efficiency fertilizers during
435	the rice-growing season (Akiyama et al., 2010).
436	4 Conclusions

437 Our results demonstrated that producing per unit of rice yield released higher GHG and Nr in 438 the TLR, than that in other rice-upland cropping systems, which largely attributed to the current 439 situation of direct straw incorporation and excessive nitrogen fertilizer inputs. CH_4 emissions and 440 NH₃ volatilization dominated the GHG and Nr releases, respectively. Reducing the N application

441	rate by 20% from the tradition level (300 kg N ha^{-1}) could effectively decrease the GHG
442	emissions, Nr releases and the damage costs to the environment, while increased the rice yield and
443	improved farmer's income as well. Agricultural managements, such as making straw decompose
444	aerobically before incorporation and optimizing the application method of N fertilizer, could
445	further reduce the GHG and Nr releases (especially CH ₄ emissions and NH ₃ volatilization) from
446	rice production in the TLR. Further studies are needed to evaluate the comprehensive effects of
447	these managements on GHG emissions, Nr releases and farmer's economic returns.
448	Acknowledgements
449	This study was financially supported by the CAS Strategic Priority Research Program (Grant
450	No. XDA05020200) and the National Science and Technology Pillar Program (2013BAD11B00).
451	We gratefully acknowledge the technical assistance provided by the Changshu Agroecological
452	Experimental Station of the Chinese Academy of Sciences
432	Experimental station of the ennese readenty of selences.
453	Supplementary material
453 454	Supplementary material Supplementary material (Appendix A) associated with this article can be found, in the online
453 454 455	Supplementary material Supplementary material (Appendix A) associated with this article can be found, in the online version.
 453 454 455 456 	Supplementary material Supplementary material (Appendix A) associated with this article can be found, in the online version. References
453 454 455 456 457	 Supplementary material Supplementary material (Appendix A) associated with this article can be found, in the online version. References Akiyama, H., Yan, X., Yagi, K.: Evaluation of effectiveness of enhanced-efficiency fertilizers as
 453 453 454 455 456 457 458 	 Supplementary material Supplementary material (Appendix A) associated with this article can be found, in the online version. References Akiyama, H., Yan, X., Yagi, K.: Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N₂O and NO emissions from agricultural soils: meta-analysis,
 453 453 454 455 456 457 458 459 	 Supplementary material Supplementary material (Appendix A) associated with this article can be found, in the online version. References Akiyama, H., Yan, X., Yagi, K.: Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N₂O and NO emissions from agricultural soils: meta-analysis, Global Change Biol., 16, 1837-1846, 2010.
 452 453 454 455 456 457 458 459 460 	 Supplementary material Supplementary material (Appendix A) associated with this article can be found, in the online version. References Akiyama, H., Yan, X., Yagi, K.: Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N₂O and NO emissions from agricultural soils: meta-analysis, Global Change Biol., 16, 1837-1846, 2010. Banger, K., Tian, H., Lu, C.: Do nitrogen fertilizers stimulate or inhibit methane emissions from
 452 453 454 455 456 457 458 459 460 461 	 Supplementary material Supplementary material (Appendix A) associated with this article can be found, in the online version. References Akiyama, H., Yan, X., Yagi, K.: Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N₂O and NO emissions from agricultural soils: meta-analysis, Global Change Biol., 16, 1837-1846, 2010. Banger, K., Tian, H., Lu, C.: Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields, Global Change Biol., 18, 3259-3267, 2012.

463	Greenhouse Gas Emissions applying Life Cycle Assessment as a Methodology. Tokyo,
464	Laboratory for Land Resource Sciences, Department of Biological and Environmental
465	Engineering, Graduate School for Agriculture and Life Sciences, The University of Tokyo
466	32, 1999.
467	Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., Wang, Z., Zhang, W., Yan, X., Yang, J.:
468	Producing more grain with lower environmental costs, Nature, 514, 486-489, 2014.
469	Cheng, K., Yan, M., Nayak, D., Pan, G., Smith, P., Zheng, J., Zheng, J.: Carbon footprint of crop
470	production in China: an analysis of National Statistics data, J. Agr. Sci., 153, 422-431,
471	2014.
472	Cui, Z., Yue, S., Wang, G., Meng, Q., Wu, L., Yang, Z., Zhang, Q., Li, S., Zhang, F., Chen, X.:
473	Closing the yield gap could reduce projected greenhouse gas emissions: a case study of
474	maize production in China, Global Change Biol., 19, 2467-2477, 2013a.
475	Cui, Z., Yue, S., Wang, G., Zhang, F., Chen, X.: In-season root-zone N management for mitigating
476	greenhouse gas emission and reactive N losses in intensive wheat production, Environ. Sci.
477	Technol., 47, 6015-6022, 2013b.
478	Cui, Z., Wang, G., Yue, S., Wu, L., Zhang, W., Zhang, F., Chen, X.: Closing the N-use efficiency
479	gap to achieve food and environmental security, Environ. Sci. Technol., 48, 5780-5787,
480	2014.
481	Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli,
482	L.A., Seitzinger, S.P., Sutton, M.A.: Transformation of the nitrogen cycle: recent trends,

- 483 questions, and potential solutions, Science, 320, 889-892, 2008.
- 484 Grassini, P., Cassman, K.G.: High-yield maize with large net energy yield and small global

485	warming intensity, Proc. Natl. Acad. Sci. U.S.A., 109, 1074-1079, 2012.
486	Gu, B., Ge, Y., Ren, Y., Xu, B., Luo, W., Jiang, H., Gu, B., Chang, J.: Atmospheric reactive
487	nitrogen in China: Sources, recent trends, and damage costs, Environ. Sci. Technol., 46,
488	9420-9427, 2012.
489	Huang, T., Gao, B., Christie, P., Ju, X.: Net global warming potential and greenhouse gas intensity
490	in a double-cropping cereal rotation as affected by nitrogen and straw management,
491	Biogeosciences, 10, 13191-13229, 2013 Y., Zou, J., Zheng, X., Wang, Y., Xu, X.: Nitrous
492	oxide emissions as influenced by amendment of plant residues with different C: N ratios,
493	Soil Biol. Biochem., 36, 973-981, 2004.
494	
495	Huang, Y., Zou, J., Zheng, X., Wang, Y., Xu, X.: Nitrous oxide emissions as influenced by
496	amendment of plant residues with different C: N ratios, Soil Biol. Biochem., 36, 973-981,
497	2004Huang, Y., Sun, W.: Changes in topsoil organic carbon of croplands in mainland China
498	over the last two decades, Chinese Sci. Bull., 51, 1785-1803, 2006.
499	
500	Ju, X., Xing, G., Chen, X., Zhang, S., Zhang, L., Liu, X., Cui, Z., Yin, B., Christie, P., Zhu, Z.:
501	Reducing environmental risk by improving N management in intensive Chinese
502	agricultural systems, Proc. Natl. Acad. Sci. U.S.A., 106, 3041-3046, 2009.
503	Lam, S.K., Chen, D., Mosier, A.R., Roush, R.: The potential for carbon sequestration in Australian
504	agricultural soils is technically and economically limited, Sci. Rep., 3, 2013.
505	Li, X., Xia, L., Yan, X.: Application of membrane inlet mass spectrometry to directly quantify
506	denitrification in flooded rice paddy soil, Biol. Fertil. Soils, 50, 891-900, 2014.

507	Liang L.: Environmenta	l impact assessment	t of circular	agriculture	based on life cycle

508	assessment: Methods and case studies, PhD thesis, China Agricultural University, 2009 (in
509	Chinese with an English abstract).
510	Liao, Q., Zhang, X., Li, Z., Pan, G.X., Smith, P., Jin, Y., Wu, X.: Increase in soil organic carbon-
511	stock over the last two decades in China's Jiangsu Province, Global Change Biol., 15,-
512	
513	Linquist, B., Groenigen, K.J., Adviento-Borbe, M.A., Pittelkow, C., Kessel, C.: An agronomic
514	assessment of greenhouse gas emissions from major cereal crops, Global Change Biol., 18,
515	194-209, 2012a.
516	Linquist, B., Adviento-Borbe, M., Pittelkow, C., van Kessel, C., van Groenigen, K.: Fertilizer
517	management practices and greenhouse gas emissions from rice systems: A quantitative
518	review and analysis, Field Crops Res., 135, 10-21, 2012b.
519	Lu, F., Wang, X., Han, B., Ouyang, Z., Duan, X., Zheng, H., Miao, H.: Soil carbon sequestrations
520	by nitrogen fertilizer application, straw return and no-tillage in China's cropland, Global
521	Change Biol., 15, 281-305, 2009.
522	Ma, J., Ma, E., Xu, H., Yagi, K., Cai, Z.: Wheat straw management affects CH_4 and N_2O
523	emissions from rice fields, Soil Biol. Biochem., 41, 1022-1028, 2009.
524	Ma, Y., Kong, X., Yang, B., Zhang, X., Yan, X., Yang, J., Xiong, Z.: Net global warming potential
525	and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop
526	system management, Agric. Ecosyst. Environ., 164, 209-219, 2013.
527	Mandal, B., Majumder, B., Adhya, T., Bandyopadhyay, P., Gangopadhyay, A., Sarkar, D., Kundu,
528	M., Choudhury, S.G., Hazra, G., Kundu, S.: Potential of double-cropped rice ecology to

529	conserve organic carbon under subtropical climate, Global Change Biol., 14, 2139-2151,
530	<u>2008.</u>
531	Nayak, D., Saetnan, E., Cheng, K., Wang, W., Koslowski, F., Cheng, Y., Zhu, W.Y., Wang, J., Liu,
532	J., Moran, D.: Management opportunities to mitigate greenhouse gas emissions from
533	Chinese agriculture, Agric. Ecosyst. Environ., 209, 108-124, 2015.
534	Pan, G., Li, L., Wu, L., Zhang, X.: Storage and sequestration potential of topsoil organic
535	
536	Qin, Y., Liu, S., Guo, Y., Liu, Q., Zou, J.: Methane and nitrous oxide emissions from organic
537	and conventional rice cropping systems in Southeast China, Biol. Fertil. Soils, 46,
538	825-834, 2010.
539	Shan, J., Yan, X.Y.: Effects of crop residue returning on nitrous oxide emissions in
540	agricultural soils, Atmos. Environ., 71, 170-175, 2013.
541	Shang, Q., Yang, X., Gao, C., Wu, P., Liu, J., Xu, Y., Shen, Q., Zou, J., Guo, S.: Net annual global
542	warming potential and greenhouse gas intensity in Chinese double rice-cropping systems:
543	a 3-year field measurement in long-term fertilizer experiments, Global Change Biol., 17,
544	2196-2210, 2011.
545	Singh, Y., Singh, B., Timsina, J.: Crop residue management for nutrient cycling and improving
546	soil productivity in rice-based cropping systems in the tropics, Adv. Agron., 85, 269-407,
547	2005.
548	Wang, W., Guo, L., Li, Y., Su, M., Lin, Y., De Perthuis, C., Ju, X., Lin, E., Moran, D.: Greenhouse
549	gas intensity of three main crops and implications for low-carbon agriculture in China,
550	Climatic Change, 128, 57-70, 2014a.

551	wang, w., Kosiowski, F., Nayak, D.R., Smith, P., Saethan, E., Ju, X., Guo, L., Han, G., de
552	Perthuis, C., Lin, E., Moran, D.: Greenhouse gas mitigation in Chinese agriculture:
553	Distinguishing technical and economic potentials, Global Environ. Chang., 26, 53-62,
554	2014b.
555	Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S.: Sustainable biochar to
556	mitigate global climate change, Nat. Commun., 1, 56, 2010.
557	Xia, L., Wang, S., Yan, X.: Effects of long-term straw incorporation on the net global warming
558	potential and the net economic benefit in a rice-wheat cropping system in China, Agric.
559	Ecosyst. Environ., 197, 118-127, 2014.
560	Xia, Y., Yan, X.: Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for
561	economically-optimal nitrogen rates, Biogeosciences, 8, 3159-3168, 2011.
562	Xia, Y., Yan, X.: Ecologically optimal nitrogen application rates for rice cropping in the Taihu
563	Lake region of China, Sustain. Sci., 7, 33-44, 2012.
564	Xie, B., Zheng, X., Zhou, Z., Gu, J., Zhu, B., Chen, X., Shi, Y., Wang, Y., Zhao, Z., Liu, C.:
565	Effects of nitrogen fertilizer on CH ₄ emission from rice fields: multi-site field observations,
566	Plant Soil, 326, 393-401, 2010.
567	Xie, Z., Xu, Y., Liu, G., Liu, Q., Zhu, J., Tu, C., Amonette, J.E., Cadisch, G., Yong, J.W., Hu, S.:
568	Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and
569	soil organic carbon dynamics in two paddy soils of China, Plant Soil, 370, 527-540, 2013.
570	Yan, X., Akiyama, H., Yagi, K., Akimoto, H.: Global estimations of the inventory and mitigation
571	potential of methane emissions from rice cultivation conducted using the 2006
572	Intergovernmental Panel on Climate Change Guidelines, Global Biogeochem. Cycles, 23,

** 7

573	2009.
574	Yan, X., Cai, Z., Wang, S., Smith, P.: Direct measurement of soil organic carbon content change in
575	the croplands of China, Global Change Biol., 17, 1487-1496, 2013.
576	Yan, X., Ti, C., Vitousek, P., Chen, D., Leip, A., Cai, Z., Zhu, Z.: Fertilizer nitrogen recovery
577	efficiencies in crop production systems of China with and without consideration of the
578	residual effect of nitrogen, Environ. Res. Lett., 9, 095002, 2014.
579	Yao, Z., Zheng, X., Dong, H., Wang, R., Mei, B., Zhu, J.: A 3-year record of N ₂ O and CH ₄
580	emissions from a sandy loam paddy during rice seasons as affected by different nitrogen
581	application rates, Agric. Ecosyst. Environ., 152, 1-9, 2013.
582	Zhang, F., Cui, Z., Chen, X., Ju, X., Shen, J., Chen, Q., Liu, X., Zhang, W., Mi, G., Fan, M.:
583	Integrated nutrient management for food security and environmental quality in China, Adv.
584	Agron., 116, 1-40, 2012.
585	Zhang, W., Dou, Z., He, P., Ju, X., Powlson, D., Chadwick, D., Norse, D., Lu, Y., Zhang, Y., Wu,
586	L.: New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in
587	China, Proc. Natl. Acad. Sci. U.S.A., 110, 8375-8380, 2013.
588	Zhao, M., Tian, Y., Ma, Y., Zhang, M., Yao, Y., Xiong, Z., Yin, B., Zhu, Z.: Mitigating gaseous
589	nitrogen emissions intensity from a Chinese rice cropping system through an improved
590	management practice aimed to close the yield gap, Agric. Ecosyst. Environ., 203, 36-45,
591	2015.
592	Zhao, X., Zhou, Y., Min, J., Wang, S., Shi, W., Xing, G.: Nitrogen runoff dominates water nitrogen
593	pollution from rice-wheat rotation in the Taihu Lake region of China, Agric. Ecosyst.
594	Environ., 156, 1-11, 2012a.

595	Zhao, X., Zhou, Y., Wang, S., Xing, G., Shi, W., Xu, R., Zhu, Z.: Nitrogen balance in a highly
596	fertilized rice-wheat double-cropping system in southern China, Soil Sci. Soc. Am. J., 76,
597	1068-1078, 2012b.
598	Zhao, X., Liu, S.L., Pu, C., Zhang, X.Q., Xue, J.F., Zhang, R., Wang, Y.Q., Lal, R., Zhang, H.L.,
599	Chen, F.:Methane and nitrous oxide emissions under no-till farming in China: a
600	meta-analysis. Global Change Biol., 22, 1372-1384, 2015a.
601	Zhao, X., Zhang, R., Xue, J.F., Pu, C., Zhang, X.Q., Liu, S.L., Chen, F., Lal, R., Zhang, H.L.:
602	Management-induced changes to soil organic carbon in China: A meta-analysis. Adv.
603	<u>Agron., 134, 1-49, 2015b.</u>
604	Zou, J., Huang, Y., Jiang, J., Zheng, X., Sass, R.L.: A 3-year field measurement of methane and
605	nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue,
606	and fertilizer application, Global Biogeochem. Cycles, 19, 2005.
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	

- ----

Table 1. Field experimental treatments and agricultural management practices during

627	the rice-growing season	s of 2013 and 2014 in the TLR
-----	-------------------------	-------------------------------

Treatment ^a	RN0	RN120 RN180		RN240	RN300	
Chemical fertilizer						
application rate	0:30:60	120:30:60	180:30:60	240:30:60	300:30:60	
$(N:P_2O_5:K_2O, kg ha^{-1})$						
Split N application ratio		4:3:3	4:3:3	4:3:3	4:3:3	
Straw application rate	2 04/2 28 ^b	4 40/4 65	4 02/5 19	5 22/5 97	5 91/6 17	
(Mg dry matter ha ⁻¹)	3.94/2.88	4.49/4.65	4.93/5.18	5.33/5.87	5.81/6.17	
Water regime ^c	F-D-F-M	F-D-F-M	F-D-F-M	F-D-F-M	F-D-F-M	
Density $(10^4 \text{ plants ha}^{-1})$	2.5	2.5	2.5	2.5	2.5	

^aRN0, RN120, RN180, RN240 and RN300 represent nitrogen application rates of 0, 120, 180, 240,

300 kg N ha⁻¹, respectively.

630 ^b3.94/2.88 denote that straw application rates during the rice-growing seasons of 2013 and 2014

632	^c F, flooding; D, midseason drainage; M, moist but non-waterlogged by intermittent irrigation.
633	
634	
635	
636	
637	

are 3.94 and 2.88 Mg dry matter ha^{-1} , respectively.

Table 2. Two-way ANOVA for the effects of fertilizer (F) application and year (Y) on CH₄ and

Eastan	$CH_4 (kg ha^{-1})$		N_2	N_2O (kg N ha ⁻¹)			Yield (kg ha ⁻¹)			
Factor	ui -	SS	F	Р	SS	F	Р	SS	F	Р
F	4	8739	0.79	0.55	0.33	12.46	< 0.01	39297547	32.96	< 0.01
Y	1	4492	1.62	0.22	0.11	16.41	< 0.01	2810414	9.43	< 0.01
F×Y	4	2532	0.23	0.92	0.18	7.1	< 0.01	750639	0.63	0.65
Model	9	15763	0.63	0.77	0.62	10.52	< 0.01	42858600	15.97	< 0.01
Error	16	20			0.13			5962260		

N₂O emissions, and rice grain yields in rice paddies.

Table 3. Rice yield and NUE for the two rice-growing seasons from 2013 to 2014 in

654	the TLR
-----	---------

Year	Treatment ^a	Yield (kg ha ⁻¹)	NUE (%)
2013	RN0	4829 ± 207	
	RN120	7079 ± 645	23.40
	RN180	7655 ± 601	28.12
	RN240	8273 ± 569	33.61
	RN300	8029 ± 101	30.63
2014	RN0	5919 ± 131	
	RN120	7598 ± 1077	23.86
	RN180	7768 ± 570	21.19
	RN240	8880 ± 435	35.54
	RN300	8761 ± 369	32.07

Two-year average	RN0	$5374\pm617d^b$	
	RN120	$7339 \pm 843c$	23.63
	RN180	7711 ± 527bc	24.66
	RN240	$8576\pm562a$	34.58
	RN300	$8395 \pm 468ab$	31.35

^aDefinitions of the treatment codes are given in the footnotes of Table 1.

 b Mean±SD; different letters within the same column indicate a significant difference at p < 0.05.

Year	Treatment ^a	CH ₄ emission	N ₂ O emission	SOCSR	N fertilizer Irrigation production		Others	NGWP	GHGI
		kg CH_4 ha ⁻¹	kg N ha $^{-1}$	kg C ha ⁻¹ yr ⁻¹		kg $\rm CO_2$ eq ha ⁻¹			$kg \operatorname{CO}_2 eq kg^{-1}$
2013	RN0	306.07 ± 41^{b}	0.08 ± 0.01	129.58	1170	0	217	8601	1.78
	RN120	317.26 ± 92	0.10 ± 0.01	154.07	1170	996	265	9845	1.39
	RN180	287.8 ±12	0.13 ± 0.01	171.54	1170	1494	277	9568	1.25
	RN240	273.27 ± 36	0.14 ± 0.06	185.50	1170	1992	291	9670	1.17
	RN300	305.13 ± 90	0.16 ± 0.03	196.87	1170	2490	285	10927	1.36
2014	RN0	307.22 ± 47	0.02 ± 0.05	129.58	1256	0	240	8711	1.47
	RN120	351.96 ± 28	0.09 ± 0.02	154.07	1256	996	276	10805	1.42
	RN180	291.25 ± 18	0.24 ± 0.04	171.54	1256	1494	280	9795	1.26

Table 4. The NGWP and GHGI for the two rice-growing seasons from 2013 to 2014 in the TLR

	RN240	317.65 ± 28	0.34 ± 0.12	185.50	1256	1992	303	10972	1.24
	RN300	343.8 ± 61	0.53 ± 0.21	196.87	1256	2490	301	12169	1.39
Two-year	RN0	306.65 ± 39a	$0.05\pm0.05b$	129.58c	1213	0	229	8656	$1.61 \pm 0.25a$
average	RN120	$334.61\pm 64a$	$0.09 \pm 0.02 b$	154.07bc	1213	996	271	10322	$1.40\pm0.16b$
	RN180	$289.53 \pm 14a$	$0.18 \pm 0.07 ab$	171.54ab	1213	1494	279	9679	$1.25\pm0.09 bc$
	RN240	$295.46\pm38a$	$0.24 \pm 0.14 ab$	185.50ab	1213	1992	297	10321	$1.20 \pm 0.08 \text{cd}$
	RN300	$324.47\pm72a$	$0.35 \pm 0.25a$	196.87a	1213	2490	293	11550	1.38 ± 0.21 bc

^aDefinitions of treatment codes are given in the footnotes of Table 1.

^bMean±SD; different letters within same column indicate a significant difference at p<0.05.

	NH ₃	N	Ν	N ₂ O	NO _X	Total Nr	NJ	
Treatment ^a	volatilization	runoff	leaching	emission	emission	losses	INTI	
			kg N	ha ⁻¹			g N kg ^{-1}	
RN0	0.64	5.39	1.44	0.07	3.96	11.50	2.14	
RN120	21.04	10.30	2.24	0.12	5.62	39.32	5.36	
RN180	31.24	14.25	2.80	0.21	6.44	54.93	7.12	
RN240	41.44	19.70	3.50	0.27	7.26	72.17	8.42	
RN300	51.64	27.24	4.37	0.38	8.07	91.69	10.92	

Table 5. The seasonal average various Nr losses and NrI for the two rice-growing

seasons from 2013 to 2014 in the TLR

^aDefinitions of treatment codes are given in the footnotes of Table 1.

 Table 6. The seasonal average economic evaluation for rice production of the two

Formatted: Font: 10.5 pt

Tractor or t ^a	Viold in some ^b	T	Earman'a in a cur a ^d	Environmental costs ^e		
Treatment	i leid income	input costs	Farmer's income	GHG emissions	Nr releases	
RN0	16125	4493	11632	1143	71	
RN120	22020	6104	15916	1363	376	
RN180	23130	6542	16588	1278	535	
RN240	25725	7277	18448	1362	700	
RN300	25185	7385	17800	1525	874	

^aDefinitions of treatment codes are given in the footnotes of Table 1.

growing seasons from 2013 to 2014 in the TLR (unit: $\frac{1}{2}$ ha⁻¹)

^bYield income = rice yield \times rice price.

^cInput costs denote the economic input of purchasing various agricultural materials and hiring labours.

^dFarmer's income = Yield income – input costs.

^eEnvironmental costs denoted the sum of the acidification costs, eutrophication costs and global warming costs incurred by GHG emissions and Nr releases. The cost prices of GHG and Nr releases are as followed: GHG emission, $132 \ \text{¥ t} = \frac{1}{4} CO_2 eq$ (Xia et al., 2014); NH₃ volatilization, 13.12 \ kg = \frac{1}{4} N; N leaching, 6.12 \ kg = $\frac{1}{4}$ N; N runoff, 3.64 \ kg = $\frac{1}{4}$ N; NO_x emission, 8.7 \ kg = $\frac{1}{4}$ N

1	Formatted: Font color: Text 1, English (U.K.)
1	Formatted: Font color: Text 1, English (U.K.), Superscript
1	Formatted: Font color: Text 1, English (U.K.)
١	Formatted: Font color: Text 1, English (U.K.)
Ĭ	Formatted: Font color: Text 1, English (U.K.)
Ì	Formatted: Font color: Text 1, English (U.K.)

(Xia and Yan, 2011).

Figure captions

Fig. 1. Seasonal variations in the daily precipitation and the temperature during the two rice–growing seasons of (a) 2013 and (b) 2014.

Fig.2. Relationship between N fertilizer application rate and seasonal average rice grain yield over the two rice-growing seasons of 2013 and 2014 in the TLR. The vertical bars represent standard errors (n = 6).

Fig.3. Seasonal variations in (a) CH_4 and (b) N_2O fluxes during the two rice-growing seasons from 2013 to 2014 in the TLR. The arrow indicates N fertilizer application. The vertical bars represent standard errors (n = 3).

Fig.4. Relationship between N fertilizer application rate and (a) NH₃ emissions,
(b) N runoff, (c) N leaching and (d) N₂O emissions for rice production in the TLR.
These relationships were obtained through a meta-analysis.

Fig.5. Seasonal average total environmental costs incurred by GHG emissions and Nr losses for rice production in TLR.

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5