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 26 

Various Nr losses empirical models established through meta-analysis of 27 

published papers. We conducted a detailed review of published literature to simulate 28 

various Nr losses response to N fertilization for rice production in the TLR. An 29 

exhaustive survey of literature published in peer-reviewed journals was launched 30 

using the Google Scholar, ISI web of knowledge and China Knowledge Resource 31 

Integrated database to identify articles published before April 2015. This survey 32 

focused on field observation of various Nr losses from rice production in the TLR, 33 

including NH3 volatilization, N leaching and runoff, and N2O emission. Several 34 

criteria were established to ensure studies included in dataset being representative. 35 

First, field measurements must be carried out during rice cultivation in the TLR. 36 

Second, observation methods of various Nr should be authoritative and widely-agreed. 37 

For example, N2O emission must be measured using static chamber technique (Xia et 38 

al., 2014), NH3 volatilization must be observed by dynamic chamber method or 39 

micrometeorological method (Zhao et al., 2015) and N leaching and runoff must be 40 

measured using lysimeter method or suction cap (Xue et al., 2014, Zhao et al., 2009). 41 

Third, observation duration must be covered main Nr discharge period. NH3 42 

volatilization and N2O emission must be measured for at least 2 weeks after N 43 

fertilization.  44 

The Nr releases induced by biological N fixation (BNF) and crop residue 45 

incorporation were not calculated in our study, due to the following reasons. First, 46 

compared to the synthetic N fertilizer application rate, the Nr input rate through BNF 47 

is minor (Ti et al., 2012). Secondly, the effects of BNF and crop residue incorporation 48 

on Nr release are not significant. The high C/N ratio of crop residue generally 49 

promotes the N contained in the residues to stabilize in soil rather than releasing as 50 
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various Nr. For example, a meta-analysis that integrated 112 scientific assessments of 51 

the crop residue return on the N2O emissions has found that the practice exerted no 52 

statistically significant effect on the N2O release (Shan and Yan, 2013). And the 53 

effects of BNF on Nr release, such as N2O emission, are not considered in the new 54 

IPCC emission inventory guidelines any more (IPCC, 2013).  55 

 56 

Environmental costs incurred by GHG and Nr releases. The environmental costs 57 

that our study considered referred to global warming incurred by GHG emissions, soil 58 

acidification incurred by NH3 and NOX emissions and aquatic eutrophication caused 59 

by NH3 emission and N leaching and runoff, mainly referred to Xia and Yan (2011) 60 

and Xia and Yan (2012) that based on method adopted by Moomaw and Birch (2005). 61 

We did not consider the direct human health damage incurred by GHG and Nr 62 

releases due to the fact that the human health damage caused by GHG and Nr releases 63 

is quite difficult to quantify directly, which is determined by people’s willingness to 64 

pay and whether the location where GHG and Nr released also has high density of 65 

population (Gu et al. 2012).66 
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 68 

Fig.S1. Relationship between CH4 emissions and (a) straw incorporation rate 69 

and (b) N fertilizer application rate for rice production in rice-wheat cropping 70 

system in the TLR 71 
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