2

3

Grant, R.F.¹, Neftel, A.² and Calanca, P.²

4 ¹ Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada T6G 2E3

² Agroscope Institute for Sustainability Sciences ISS, Reckenholzstrasse 191, P.O. Box CH – 8046
Zürich, Switzerland

7

8

ABSTRACT

9 Large variability in N₂O emissions from managed grasslands may occur because most emissions originate in surface litter or near-surface soil where variability in soil water content (θ) and temperature 10 (T_s) is greatest. To determine whether temporal variability in θ and T_s of surface litter and near-surface 11 12 soil could explain that in N₂O emissions, a simulation experiment was conducted with *ecosys*, a 13 comprehensive mathematical model of terrestrial ecosystems in which processes governing N_2O emissions were represented at high temporal and spatial resolution. Model performance was verified by 14 comparing N₂O emissions, CO₂ and energy exchange, and θ and T_s modelled by *ecosys* with those 15 measured by automated chambers, eddy covariance (EC) and soil sensors at an hourly time-scale during 16 several emission events from 2004 to 2009 in an intensively managed pasture at Oensingen, 17 Switzerland. Both modelled and measured events were induced by precipitation following harvesting 18 and subsequent fertilizing or manuring. These events were brief (2 - 5 days) with maximum N₂O 19 effluxes that varied from $< 1 \text{ mg N m}^{-2} \text{ h}^{-1}$ in early spring and autumn to $> 3 \text{ mg N m}^{-2} \text{ h}^{-1}$ in summer. 20 Only very small emissions were modelled or measured outside these events. In the model, emissions 21 22 were generated almost entirely in surface litter or near-surface (0 - 2 cm) soil, at rates driven by N availability with fertilization vs. N uptake with grassland regrowth, and by O₂ supply controlled by litter 23 and soil wetting relative to O₂ demand from microbial respiration. In the model, NO_x availability 24 25 relative to O₂ limitation governed both the reduction of more oxidized electron acceptors to N₂O and the 26 reduction of N₂O to N₂, so that the magnitude of N₂O emissions was not simply related to surface and

27 near-surface θ and T_s. Modelled N₂O emissions were found to be sensitive to defoliation intensity and timing which controlled plant N uptake and soil θ and T_s prior to and during emission events. Reducing 28 LAI remaining after defoliation to one-half that under current practice and delaying harvesting by 5 days 29 raised modelled N₂O emissions by as much as 80% during subsequent events and by an average of 43% 30 annually. Modelled N₂O emissions were also found to be sensitive to surface soil properties. Increasing 31 near-surface bulk density by 10% raised N₂O emissions by as much as 100% during emission events and 32 33 by an average of 23% annually. Relatively small spatial variation in management practices and soil surface properties could therefore cause the large spatial variation in N_2O emissions commonly found in 34 field studies. The global warming potential from annual N₂O emissions in this intensively managed 35 grassland largely offset those from net C uptake in both modelled and field experiments. However 36 37 model results indicated that this offset could be adversely affected by suboptimal land management and soil properties. 38

- 39
- 40

INTRODUCTION

The contribution of managed grasslands to reducing atmospheric greenhouse gas (GHG) 41 concentrations through net uptake of CO₂ (Ammann et al., 2005) may be at least partially offset by net 42 emissions of N₂O (Conant et al., 2005, Fléchard et al., 2005). These emissions may be substantial, with 43 44 N₂O emission factors of as large as 3% measured in intensively managed grasslands with fertilizer rates of 25 - 30 g N m⁻² y⁻¹ (Imer et al., 2013; Rafique et al., 2011) These emissions are highly variable 45 temporally and spatially because they are determined by complex interactions among short-term weather 46 events (warming, precipitation), land management practices (N amendments, defoliation), and soil 47 properties (e.g. bulk density, water retention). The N₂O driving these emissions in managed grasslands is 48 49 thought to be generated within the upper 2 cm of the soil profile (van der Weerden et al., 2013) and in surface litter left by grazing or harvesting (Pal et al., 2013) so that diurnal heating and precipitation 50 events that cause rapid warming and wetting of the litter and soil surface may cause large but brief 51 52 emission events. These events are thought to be driven by increased demand for electron acceptors by nitrification and denitrification, and reduced supply of O₂ by which these demands are preferentially 53 met, and therefore increased demand for alternative acceptors NO₃, NO₂ and N₂O by autotrophic 54 nitrifiers and heterotrophic denitrifiers. 55

56 The magnitude of N_2O emission events in managed grasslands generally increases with the 57 amount of N added as urine, manure or fertilizer, and with the intensity of defoliation by grazing or 58 cutting (Ruzjerez et al. 1994). Thus Imer et al. (2013) found a negative correlation between LAI and N₂O emissions at intensively managed grasslands in Switzerland. The increase in emissions with 59 defoliation has been attributed to increased urine and manure deposition and soil compaction with 60 defoliation by grazing, and to slower uptake of N and water by slower-growing plants with defoliation 61 by harvesting (Jackson et al., 2015). Both N additions and defoliation are thought to raise these 62 emissions by increasing the supply of NH_4^+ and NO_3^- to autotrophic nitrifiers and heterotrophic 63 denitrifiers. This increase raises the demand for alternative e⁻ acceptors by these microbial populations if 64 the supply of O₂, the preferred e- acceptor, fails to meet demand, as may occur when soil water content 65 (θ) after defoliation rises with precipitation or reduced transpiration. This supply is governed by physical 66 67 and hydrological properties (porosity, water retention) of the near-surface soil. Consequently land use 68 practices and soil properties must be considered when estimating N₂O emissions from managed grasslands. 69

70 Recognition of the effects of precipitation events, N amendments and soil properties on N_2O emissions has led to empirical models in which annual emission inventories are calculated directly from 71 annual precipitation and N inputs (Lu et al., 2006), or monthly emission events are calculated from 72 monthly precipitation, air temperature T_a , and θ (Fléchard et al., 2007). However the soil depth at which 73 most emitted N₂O is generated (0 – 2 cm) is much shallower than that at which θ used in these models is 74 measured (5 – 10 cm) (Fléchard et al., 2007), and the soil temperature T_s at this depth may differ from T_a 75 This is particularly so for grasslands in which N additions are necessarily left on the soil surface without 76 incorporation. Thus large N₂O emissions may be caused by surface wetting from precipitation on dry 77 78 soils following fertilizer application, so that deeper θ is sometimes found to be of little explanatory value in empirical models (Fléchard et al., 2007). Furthermore the response of denitrification to θ has been 79 found in experimental studies to rise sharply with T_s , likely through the combined effects of T_s on 80 81 increasing demand and reducing supply of O₂ at microbial microsites (Craswell, 1978). The interaction between T_s and θ on N₂O emissions is clearly apparent in the meta-analysis of N₂O emissions from 82 European grasslands by Fléchard et al. (2007). This interaction has been represented in empirical models 83 by fitting interdependent threshold values of T_s and θ above which emissions have been measured in 84 field experiments (Smith and Massheder, 2014). However a more robust simulation of this interaction on 85

N₂O emissions should be built from basic biological and physical processes that are independent of sitespecific measurements.

Process models used to simulate N₂O emissions from managed grasslands must therefore 88 89 explicitly represent the effects of short-term weather events on near-surface T_s and θ , as well as the effects of N additions and defoliation on near-surface NH₄⁺ and NO₃⁻. These models must also 90 explicitly represent the effects of mineral N, T_s and θ , and of soil physical and hydrological properties, 91 92 on the demand for vs. supply of O_2 and alternative e⁻ acceptors NO_3^- , NO_2^- and N_2O , and on the oxidation-reduction reactions by which these e acceptors are reduced. However earlier process models 93 have usually simulated N₂O emissions as T_s -dependent functions of nitrification and denitrification 94 rates, modified by texture-dependent functions of water-filled pore space (WFPS) (e.g. Li et al., 2005). 95 In some models additional empirical functions of T_s (Chatskikh et al., 2005), or of T_s and WFPS 96 (Schmid et al., 2001), are used to calculate the fraction of nitrification that generates N_2O , and the 97 fraction of heterotrophic respiration $R_{\rm h}$ that drives denitrification (Schmid et al., 2001), thereby avoiding 98 the explicit simulation of O2 and its control on N2O emissions. A more detailed summary of functions of 99 mineral N, T_s and WFPS currently used to model N₂O emissions is given in Fang et al. (2015). 100 These functions have many model-dependent parameters and function independently of each other, so 101 that key interactions among reduced C and N substrates, T_s and θ on N₂O production may not be 102 simulated. In none of these approaches are the oxidation-reduction reactions by which N_2O is generated 103 104 or consumed explicitly represented. Furthermore the effects of defoliation and surface litter on N₂O 105 emissions have not been considered in earlier process models.

106 Process models used to simulate N₂O emissions must also accurately represent the key processes 107 of C cycling that drive those of N cycling from which N_2O is generated and consumed. These include gross and net primary productivity (GPP and NPP) which drive mineral N uptake and assimilation with 108 plant growth. GPP and consequent plant growth also drive autotrophic respiration (R_a) , the below-109 110 ground component of which contributes to soil O₂ demand. NPP drives litterfall and root exudation, 111 which in turn drive heterotrophic respiration (R_h) that also contributes to litter and soil O₂ demand, and thereby to demand for alternative e^{-} acceptors which drive N₂O generation. Heterotrophic respiration 112 113 also drives key N transformations such as mineralization/immobilization, thereby controlling availability of these alternative e⁻ acceptors. Land use practices such as defoliation from grazing or harvesting, and 114

soil properties such as porosity and water retention, alter these key C cycling processes, and thereby
 N₂O emissions. Therefore these emissions are best simulated by comprehensive ecosystem models.

In the mathematical model *ecosys*, the effects of weather and N amendments on T_s , θ , and mineral N, and hence on the demand for vs. supply of O₂, NO₃⁻, NO₂⁻ and N₂O, and thereby on N₂O emissions, are simulated by explicitly coupling the transport processes with the oxidation – reduction reactions by which these e⁻ acceptors are known to be generated, transported and consumed in soils (Grant and Pattey, 1999, 2003, 2008; Grant et al., 2006; Metivier et al., 2009). The development of model algorithms for these processes was guided by two key principles:

- (1) all algorithms in the model must represent physical, biochemical and biological processes
 studied in basic research programs (e.g. convective-diffusive transport, oxidation-reduction
 reactions) so that these algorithms can be parameterized independently of the model
- (2) this parameterization must be conducted at spatial and temporal scales smaller than those of
 prediction (in this case seasonal N₂O fluxes) so that site-specific effects on predicted values are
 not incorporated into the algorithms, limiting their robustness.

These principles are designed to avoid as much as possible the use of site- and model-specific algorithms that may lack application in sites and models other than those for which they were developed. Although models based on these principles appear complex, they can be better constrained than simpler models because they are parameterized from independent experiments. The resulting detail that application of these principles brings to the model enables better constrained tests of model output against more comprehensive and diverse site data than are possible with simpler models.

In an extension of earlier work with *ecosys*, we propose that temporal and spatial variation in N₂O emissions from an intensively managed grassland can be largely explained from the modelled effects of N amendments (fertilizer, manure), plant management (e.g. harvest intensity and timing), soil properties (e.g. bulk density) and weather (T_s , precipitation events) on the demand for vs. supply of O₂, NO₃⁻, NO₂⁻ and N₂O in surface litter and near-surface soil (0 – 2 cm). Testing this explanation requires frequent measurements to characterize the large temporal variation in N₂O emissions found in managed ecosystems. Such measurements were recorded from 2004 to 2009 using automated chambers in intensively managed grass-clover grassland at Oensingen, Switzerland, and used here to test ourmodelled explanation of these fluxes.

- 144
- 145

MODEL DEVELOPMENT

147

146

General Overview

The hypotheses for N_2O oxidation-reduction reactions and their coupling with gas transport in 148 ecosys are represented in Fig. 1 and described further below with reference to equations and definitions 149 150 listed in Appendices A, C, D, E, H of the Supplement (indicated by square brackets in the text below, 151 e.g. [H1] refers to Eq. 1 in Appendix H), as well as in earlier papers (Grant and Pattey, 1999, 2003, 2008; Grant et al., 2006; Metivier et al., 2009). These hypotheses are part of a larger model of soil C, N 152 and P transformations (Grant et al., 1993a,b), coupled to one of soil water, heat and solute transport in 153 154 surface litter and soil layers, which are in turn components of the comprehensive ecosystem model 155 ecosys (Grant, 2001).

156

157

Mineralization and Immobilization of Ammonium by All Microbial Populations

Heterotrophic microbial populations *m* (obligately aerobic bacteria, obligately aerobic fungi, 158 facultatively anaerobic denitrifiers, anaerobic fermenters, acetotrophic methanogens, and obligately 159 160 aerobic and anaerobic non-symbiotic diazotrophs) are associated with each organic substrate i (i =animal manure, coarse woody plant residue, fine non-woody plant residue, particulate organic matter, or 161 humus). Autotrophic microbial populations n (aerobic NH_4^+ and NO_2^- oxidizers, hydrogenotrophic 162 methanogens and methanotrophs) are associated with inorganic substrates. These populations grow with 163 energy generated from coupled oxidation of reduced dissolved C (DOC) by heterotrophs, or of mineral 164 N (NH₄⁺ and NO₂⁻) by nitrifiers, and reduction of e- acceptors O₂ and NO_x. These populations decay 165 according to first-order rate constants with provision for internal recycling of limiting nutrients (N, P). 166 During growth, each functional component i (i = nonstructural, labile, resistant) of these populations 167 seeks to maintain a set C:N ratio by mineralizing NH_4^+ ([H1a]) from, or by immobilizing NH_4^+ ([H1b]) 168 or NO₃⁻ ([H1c]) to, microbial nonstructural N. Nitrogen limitations during growth may cause C:N ratios 169 170 to rise above set values, and greater recovery of microbial N from structural to nonstructural forms to

exchange of N between organic and inorganic states, and hence affect the availability of alternative e

acceptors for nitrification and denitrification.

- 174
- 175

Oxidation of DOC and Reduction of Oxygen by Heterotrophs

176 Constraints on heterotrophic oxidation of DOC imposed by O_2 uptake are solved in four steps: 177 1) DOC oxidation under non-limiting O_2 is calculated from active biomass, DOC concentration, and an 178 Arrhenius function of T_s [H2],

- 2) O₂ reduction to H₂O under non-limiting O₂ (O₂ demand) is calculated from 1) using a set respiratory
 quotient [H3],
- 3) O₂ reduction to H₂O under ambient O₂ is calculated from radial O₂ diffusion through water films of 181 182 thickness determined by soil water potential [H4a] coupled with active uptake at heterotroph surfaces 183 driven by 2) [H4b]. O₂ diffusion and active uptake is calculated for each heterotrophic population 184 associated with each organic substrate, allowing [H4] to calculate lower O₂ concentrations at 185 microbial surfaces associated with more biologically active substrates (e.g. manure, litter). Localized zones of low O₂ concentration (hotspots) are thereby simulated when O₂ uptake by any aerobic 186 187 population is constrained by O_2 diffusion to that population. O_2 uptake by each heterotrophic 188 population also accounts for competition for O₂ uptake with other heterotrophs, nitrifiers, roots and 189 mycorrhizae, calculated from its O_2 demand relative to those of other aerobic populations. 190 4) DOC oxidation to CO₂ under ambient O₂ is calculated from 2) and 3) [H5]. The energy yield of DOC oxidation drives the uptake of additional DOC for construction of microbial biomass $M_{i,h}$ according to 191
- 192 construction energy costs of each heterotrophic population [A21]. Energy costs of denitrifiers are
- larger than those of obligately aerobic heterotrophs, placing denitrifiers at a competitive disadvantage
- for growth and hence DOC oxidation that declines with greater use of e^- acceptors other than O_2 .
- 195
- 196

Oxidation of DOC and Reduction of Nitrate, Nitrite and Nitrous Oxide by Denitrifiers

197 Constraints imposed by NO₃⁻ availability on DOC oxidation by denitrifiers are solved in five
198 steps:

1) NO₃⁻ reduction to NO₂⁻ under non-limiting NO₃⁻ is calculated from electrons demanded by DOC
 oxidation to CO₂ but met by O₂ reduction to H₂O because of diffusion limitations to O₂ supply, and
 hence transferred to NO₃⁻ [H6],

202	2) NO_3^- reduction to NO_2^- under ambient NO_3^- is calculated from 1), accounting for relative
203	concentrations and affinities of NO_3^- and NO_2^- [H7],
204	3) NO ₂ ⁻ reduction to N ₂ O under ambient NO ₂ ⁻ is calculated from demand for electrons not met by NO ₃ ⁻
205	reduction in 2), accounting for relative concentrations and affinities of NO_2^- and N_2O [H8],
206	4) N ₂ O reduction to N ₂ under ambient N ₂ O is calculated from demand for electrons not met by NO ₂ ⁻
207	reduction in 3) [H9],
208	5) additional DOC oxidation to CO_2 enabled by NO_x reduction in 2), 3) and 4) is added to that enabled
209	by O ₂ reduction from [H5], the energy yield of which drives additional DOC uptake for construction
210	of $M_{i,n}$. This additional uptake offsets the disadvantage incurred by the larger construction energy
211	costs of denitrifiers.
212	
213	Oxidation of Ammonia and Reduction of Oxygen by Nitrifiers
214	Constraints on nitrifier oxidation of NH ₃ imposed by O ₂ uptake are solved in four steps:
215	1) substrate (NH ₃) oxidation under non-limiting O_2 is calculated from active biomass, NH ₃ and CO_2
216	concentrations, and an Arrhenius function of T_s [H11],
217	2) O ₂ reduction to H ₂ O under non-limiting O ₂ is calculated from 1) using set respiratory quotients [H12],
218	3) O_2 reduction to H_2O under ambient O_2 is calculated from radial O_2 diffusion through water films of
219	thickness determined by soil water potential [H13a] coupled with active uptake at nitrifier surfaces
220	driven by 2) [H13b]. O ₂ uptake by nitrifiers also accounts for competition for O ₂ uptake with
221	heterotrophic DOC oxidizers, roots and mycorrhizae,
222	4) NH_3 oxidation to NO_2 - under ambient O_2 is calculated from 2) and 3) [H14]. The energy yield of NH_3
223	oxidation drives the fixation of CO_2 for construction of microbial biomass $M_{i,n}$ according to
224	construction energy costs of nitrifier populations.
225	
226	Oxidation of Nitrite and Reduction of Oxygen by Nitrifiers
227	Constraints on nitrifier oxidation of NO_2^- to NO_3^- imposed by O_2 uptake [H15 - H18] are solved
228	in the same way as are those of NH_3 [H11 - H14]. The energy yield of NO_2^- oxidation drives the fixation
229	of CO ₂ for construction of microbial biomass $M_{i,o}$ according to construction energy costs of each nitrifier
230	population.
231	

232	Oxidation of Ammonia and Reduction of Nitrite by Nitrifiers
233	Constraints on nitrifier oxidation of NH_3 imposed by NO_2^- availability are solved in three steps:
234	1) NO ₂ ⁻ reduction to N ₂ O under non-limiting NO ₂ ⁻ is calculated from electrons demanded by NH ₃
235	oxidation but not accepted for O_2 reduction to H_2O because of diffusion limitations to O_2 supply, and
236	hence transferred to NO_2^- [H19],
237	2) NO ₂ ⁻ reduction to N ₂ O under ambient NO ₂ ⁻ and CO ₂ is calculated from 1) [H20], competing for NO ₂ ⁻
238	with denitrifiers [H8] and nitrifiers [H18],
239	3) additional NH_3 oxidation to NO_2^- enabled by NO_2^- reduction in 2) [H21] is added to that enabled by
240	O_2 reduction from [H14]. The energy yield from this oxidation drives the fixation of additional CO_2
241	for construction of $M_{i,n}$.
242	
243	Uptake of Ammonium and Reduction of Oxygen by Roots and Mycorrhizae
244	1) NH_4^+ uptake by roots and mycorrhizae under non-limiting O_2 is calculated from mass flow and radial
245	diffusion between adjacent roots and mycorrhizae [C23a] coupled with active uptake at root and
246	mycorrhizal surfaces [C23b]. Active uptake is subject to inhibition by root nonstructural N:C ratios
247	[C23g] where nonstructural N is the active uptake product, and nonstructural C is the CO_2 fixation
248	product transferred to roots and mycorrhizae from the canopy.
249	2) O ₂ reduction to H ₂ O is calculated from 1) plus oxidation of root and mycorrhizal nonstructural C
250	under non-limiting O ₂ using a set respiratory quotient [C14e],
251	3) O_2 reduction to H_2O under ambient O_2 is calculated from mass flow and radial diffusion between
252	adjacent roots and mycorrhizae [C14d] coupled with active uptake at root and mycorrhizal surfaces
253	driven by 2) [C14c]. O_2 uptake by roots and mycorrhizae also accounts for competition with O_2
254	uptake by heterotrophic DOC oxidizers, and autotrophic nitrifiers, calculated from their O ₂ demands
255	relative to those of other populations.
256	4) oxidation of root and mycorrhizal nonstructural C to CO_2 under ambient O_2 is calculated from 2) and
257	3) [C14b],
258	5) NH_4^+ uptake by roots and mycorrhizae under ambient O_2 is calculated from 1), 2), 3) and 4) [C23b].
259	
260	Cation Exchange and Ion Pairing of Ammonium

A Gapon selectivity coefficient is used to solve cation exchange of NH_4^+ vs. Ca^{2+} [E10] as affected by other cations [E11] – [E15] and CEC [E16]. A solubility product is used to equilibrate soluble NH_4^+ and NH_3 [E24] as affected by pH [E25] and other solutes [E26 – E57].

265 Soil Transport and Surface - Atmosphere Exchange of Gaseous Substrates and Products

Exchange of all modelled gases γ ($\gamma = O_2$, CO_2 , CH_4 , N_2 , N_2O , NH_3 and H_2) between aqueous 266 267 and gaseous states is driven by disequilibrium between aqueous and gaseous concentrations according to 268 a T_s -dependent solubility coefficient, constrained by a transfer coefficient based on air-water interfacial area that depends on air-filled porosity [D14 – D15] (Fig. 1). These gases undergo convective-dispersive 269 270 transport through soil in gaseous [D16] and aqueous [D19] states driven by soil water flux and by gas concentration gradients. Dispersive transport is controlled by gaseous diffusion [D17] and aqueous 271 dispersion [D20] coefficients calculated from gas- and water-filled porosity. Exchange of all gases 272 273 between the atmosphere and both gaseous and aqueous states at the soil surface are driven by atmosphere - surface gas concentration differences and by boundary layer conductance above the soil 274 surface, calculated from wind speed and from structure of vegetation and surface litter [D15]. 275

276

277

FIELD EXPERIMENT

278 279

Site description

The Oensingen field site is located in the central Swiss lowlands (7° 44'E, 47° 17'N) at an altitude 280 of 450 m. The climate is temperate with an average annual rainfall of about 1100 mm and a mean air 281 temperature of 9.5 °C. The soil is classified as a Eutri-Stagnic Cambisol developed on clayey alluvial 282 283 deposits, key properties of which are given in Table 1. Prior to the experiment, the field site was managed as a ley-arable rotation. In December 2000, the field was ploughed and left in fallow until 284 11 May 2001. The field was then sown with a grass-clover mixture typical for permanent grassland 285 286 under intensive management. The field was ploughed again on 19 December 2007, left in fallow until 5 May 2008, when it was tilled and re-sown with the same grass-clover mix as in 2001. The period 287 288 of study extended from sowing in 2001 to the end of 2009, during which the field was cut between 289 three and five times per year and harvested as hay, silage or fresh grass, fertilized two to three times 290 per year with manure as liquid cattle slurry and two to three times per year with mineral fertilizer as

ammonium nitrate (NH_4NO_3) pellets, for an average annual N application of 23 g N m⁻². All key management operations during this period are summarized in Table 2.

- 293
- 294

Soil, plant and meteorological measurements

Soil θ and T_s were recorded continuously using TDR (Time Domain Reflectometry, ThetaProbe 295 ML2x, Delta-T Devices, Cambridge, UK) and thermocouples at 5, 10, 30 and 50 cm for θ and at 2, 5, 296 10, 30 and 50 cm for T_s . Leaf area index (LAI) was measured weekly with an optical leaf area meter 297 298 (LI-2000, Li-Cor, Lincoln, NB, USA). Plants were collected every 2 to 4 weeks and the samples were dried for 48 h at 80°C, weighed and analyzed for C, N, P and K by using an elemental analyzer. Hourly 299 300 climatic data were recorded continuously with an automated meteorological station, including air temperature (°C), rainfall (mm), relative humidity (%), global radiation (W m⁻²) and windspeed (m 301 s^{-1}). 302

303 304

Nitrous oxide flux measurements

N₂O fluxes were measured with a fully automated system consisting of up to eight stainless steel 305 chambers (30 cm × 30 cm × 25 cm) (Flechard et al., 2005, Felber et al., 2014) fixed on PVC frames 306 permanently inserted 10-cm deep into the soil. The positions of the chambers were changed about every 307 two months. During measurements, the lids of the chambers were sequentially closed for 15 min. every 308 2 hours to allow N₂O accumulation in the chamber headspace. During closure the chamber atmosphere 309 was recirculated at a rate of 1000 ml min.⁻¹ through polyamide tube lines (4-mm ID) to analytical 310 instruments installed in a temperature-controlled field cabin adjacent to the field plots (10 m) and then 311 back to the chamber headspace. Until autumn 2006 concentrations of N₂O, CO₂ and H₂O in the head 312 space were measured once per minute with an INNOVA 1312 photoacoustic multi-gas analyzer 313 (INNOVA Air Tech Instruments, Ballerup, Denmark; www.innova.dk). Interferences in the 314 measurements caused by overlaps in the absorption spectra of the different gases and by temperature 315 effects were corrected with a calibration algorithm described in detail by Flechard et al (2005). In 316 autumn 2006 the system was changed to the gas filter correlation technique for N_2O (Model 46C, 317 Thermo 279 Environmental Instruments Inc., Sunnyvale, CA, USA). This system was calibrated every 8 318 319 hours using certified standard gas mixtures (Messer Schweiz AG, Lenzburg, Switzerland) (Felber et al. 2014). 320

321

322 These measurements were used to calculate N₂O fluxes from the rate of change in concentration 323 by using a linear or non-linear approach determined by the HMR R-package (Pedersen et al., 2010). The 324 first three of the fifteen 1-min. measurements were omitted from the flux calculation to exclude gas exchange during closing that did not result from changes in emission/production in the soil. This 325 326 procedure caused a mean increase of about 30% in the fluxes compared to values published in Fléchard et al. (2005) and Ammann et al. (2009), which were evaluated using linear regression. Fluxes from all 327 chambers were averaged over 4-hourly intervals and resulting values attributed to the mid-points of the 328 329 intervals. Standard errors of these averages were calculated from all fluxes measured during each interval, and thus included both spatial and temporal variation. The fluxes measured from 2002 to 2003 330 were summarized in Fléchard et al. (2005). Those from 2004 to 2007 were re-evaluated from values 331 described in Ammann et al. (2009). Those from 2008 and 2009 were reprocessed from the EU-Project 332 NitroEurope-IP database using the HMR algorithm. 333

- 334
- 335

CO₂ and Energy Flux Measurements

CO₂ and energy fluxes were measured by an eddy covariance (EC) system consisting of three-336 337 axis sonic anemometers (models R2 and HS, Gill instruments, Lymington, UK) and an open-path infrared CO₂/H₂O gas analyzer (model LI-7500, Li-Cor, Lincoln, USA). The EC system used in this 338 339 study is described in Ammann et al. (2007). The EC tower was located in the centre of the field (52m x 146m), whereas the chambers were located in the south east corner. For most meteorological 340 341 conditions, the chambers were not within the footprint of the EC towers, although for the main wind directions 80% or more of the footprint was within the field (Neftel et al. 2008). The management of 342 343 the entire field was uniform throughout the experiment.

344

345

346

MODEL EXPERIMENT

Ecosys was initialized with the biological properties of plant functional types (PFTs) representing the ryegrass and clover planted at Oensingen. These properties were identical to those in an earlier study (Grant et al., 2012) except for a perennial rather than annual growth habit. These PFTs competed for common resources of radiation, water and nutrients, based on their vertical distributions of leaf area and root length driven by uptake and allocation of C, N and P in each PFT. *Ecosys* was also initialized with the physical and chemical properties of the Eutri-Stagnic Cambisol at Oensingen (Table 1). The model was then run from model dates 1 Jan. 1931 to 31 Dec. 2000 under repeating sequences of land management practices and continuous hourly weather data (radiation, T_a , RH, wind speed and precipitation) recorded at Oensingen from 1 Jan. 2001 to 31 Dec. 2007 (i.e. 10 cycles of 7 years). This run was long enough for C, N and energy cycles in the model to attain equilibrium under the Oensingen site conditions well before the end of the spinup run. The modelled site was plowed on 19 Dec. 2000, terminating all PFTs.

359 The model run was then continued from model dates 1 Jan. 2001 to 31 Dec. 2009 under continuous hourly weather data recorded at Oensingen from 1 Jan. 2001 to 31 Dec. 2009 with the 360 same PFTs and land management practices as those at the field site listed in Table 2. For each manure 361 application in the model, an irrigation of 4 mm was added to account for the water in the slurry. For 362 363 each harvest in the model, the fraction of canopy LAI to be cut (usually 0.85 - 0.95) was calculated from measurements of LAI before and after the corresponding harvest in the field. In ecosys, leaves of 364 365 each PFT are aggregated into a common canopy which is dynamically resolved into a selected number of layers (10 in this case) of equal LAI for calculating irradiance interception. The leaf 366 367 fraction to be cut was removed from successive leaf layers from the top of the combined canopy downwards until the cumulative removal attained the set fraction, so that the LAI cut from each PFT 368 369 depended on the leaf area of the PFT in these layers. Of the phytomass cut with the LAI, 0.76 was 370 removed as harvest and the remainder was added to surface litter, as determined in the intensively 371 managed grassland at Oensingen by Amman et al. (2009). N₂O emissions modelled from 2004 through 2009 were compared with those measured by the automated chambers by regressing log-372 373 transformed 4-hour averages of modelled on measured values during each year of the study, and also 374 by regressing total emissions modelled vs. measured during emission events following each fertilizer 375 or manure application. These comparisons were supported by ones with thermistor and TDR 376 measurements of T_s , θ , and with EC measurements of CO₂ and energy exchange.

- 377
- 378

Model Sensitivity Studies

Modelled N₂O emissions may be affected by three general sources of uncertainty in model inputs: land management practices, soil properties and model parameters. To examine the possible effects of some different land management practices on N₂O emissions, the model run from 2001 to 2009 (field) was repeated with (1) increased harvest intensity in which canopy LAI remaining after each harvest was reduced to one-half of those in the first run (1/2), and (2) increased harvest intensity with each harvest delayed by 5 days (1/2 + 5d). These alternative practices caused canopy regrowth and hence N uptake to be slower during emission events following subsequent manure and fertilizer applications.

387

To examine the possible effects of spatial variability in soil properties on N_2O emissions, the model run from 2001 to 2009 (field) was repeated with bulk density (BD) of the upper 3 cm in the soil profile (Table 1) increased by 5% or 10%. These larger BDs reduced soil porosity in the upper 3 cm of the soil, thereby slowing gas exchange with the atmosphere, particularly when the soil was wet (Fig. 1). All other soil properties used in the model remained unchanged (Table 1).

393

To examine an effect of uncertainty in model parameterization, the model run from 2001 to 394 2009 (field) was repeated with the values of two key parameters governing N₂O emissions, the 395 Michaelis-Menten constants for reduction of O_2 (K_{O_2} in [H4]) or of NO₃⁻ and NO₂⁻ (K_{NO_x} in [H7], 396 [H8] and [H20]), halved or doubled from those used in the model. Halving or doubling K_{O_2} hastened 397 or slowed the reduction of O₂ by nitrifiers and denitrifiers and hence slowed or hastened the transfer 398 399 of electrons to reduce NO₂⁻ and NO₃⁻ during nitrification and denitrification. Halving or doubling K_{NO_x} hastened or slowed the reduction of NO₂⁻ by nitrifiers and of NO₃⁻ and NO₂⁻ by denitrifiers All 400 other parameters in the model remained unchanged. 401

- 402
- 403
- 404
- 405 406

LAI Modelled vs. Measured from 2002 to 2009

RESULTS

Accurate modelling of ecosystem C cycling and hence N₂O emissions requires accurate 407 408 modelling of plant growth as determined by land management practices. LAI modelled and measured from 2002 to 2009 rose rapidly from low values remaining in spring and after each harvest (Table 1) 409 to $4 - 6 \text{ m}^2 \text{ m}^{-2}$ before the next harvest, except during 2003 (Fig. 2). Regrowth of LAI in *ecosys* was 410 driven by plant nonstructural C, N and P pools replenished from storage reserves remobilized after 411 412 harvests, and from products of current C, N and P uptake, those of C being governed by irradiance 413 interception calculated from regrowing LAI. Regrowth in the model was less rapid than that measured 414 in 2009 (Fig. 2) because more frequent cutting forced more frequent replenishment of plant

415 nonstructural C, N and P pools which gradually depleted storage reserves and hence slowed
416 subsequent regrowth. Hence rates of regrowth modelled after harvests were affected by harvest timing

- and intensity, as represented by the fractions of LAI removed at harvest.
- 418
- 419

N2O Fluxes Modelled vs. Measured from 2004 to 2009

During peak emissions, standard deviations of N₂O fluxes measured within each 4-hourly 420 421 interval were found to be as much as 85% relative to mean values. These deviations were largely attributed to small-scale spatial variation in land management (manure and fertilizer application, 422 surface litter from harvesting) and in soil properties (bulk density, water retention), which was not 423 represented in the model run, rather than to temporal variation in environmental conditions (θ , T_s) 424 which was represented in the model run. Therefore only a limited fraction of variation in the 425 426 measured values was amenable to correlation with modelled values. Consequently slopes and coefficients of determination (R²) from regressions of modelled on measured log-transformed fluxes 427 varied from 0.5 to 1.0 and from 0.1 to 0.5 respectively, while intercepts remained close to zero (Table 428 3a). However ratios of mean squares for regression vs. error (F) were highly significant (P < 0.001) in 429 all years of the study, indicating some agreement in the timing and magnitude of modelled and 430 431 measured emission events. Improved agreement would require that more detailed information about 432 land management and soil properties at each chamber site be provided to the model.

433 434

Daily-Aggregated N₂O Fluxes Modelled vs. Measured from 2004 to 2009

Daily aggregations of both measured and modelled N₂O emissions indicated that emission
events during the study period were confined to intervals of no longer than 5 days when precipitation
followed manure or fertilizer applications (Fig. 3). Outside of these intervals emissions remained very
small except for a period of emissions modelled, but not measured, after manure application in
autumn 2006 (Fig. 3c) and measured, but not modelled, before fertilizer application in spring 2008
(Fig. 3e).

441

The largest emissions followed manure applications in July and August, but their magnitudes did not vary with the amount of manure N applied. For example, emissions during an event in August 2009 (244 vs. 185 mg N m⁻² measured vs. modelled in Fig. 3f) were greater than those during an event in July 2007 (86 vs. 112 mg N m⁻² measured vs. modelled in Fig. 3d) which in turn were greater than those during an event in July 2005 (54 vs. 96 mg N m⁻² measured vs. modelled in Fig.2b). However manure N application preceding the event in August 2009 (4.5 g N m⁻²) was less than that in July 2007 (6.7 g N m⁻²) which in turn was less than that in July 2005 (8.5 g N m⁻²) (Table 2), so that smaller applications were followed by greater emissions, precluding a simple emission factor for manure N application.

451

The magnitude of emission events following fertilizer application also varied. For example, emissions during an event in late August 2007 (105 vs. 82 mg N m⁻² measured vs. modelled in Fig. 3d) were greater than those during events in September 2004 (24 vs. 2 mg N m⁻² measured vs. modelled in Fig 2a) and 2005 (6 vs. 11 mg N m⁻² measured vs. modelled in Fig. 3b), although the fertilizer N applications of 3.0 g N m⁻² preceding each event were the same (Table 2). These differences in emissions indicated important differences in ecological controls imposed by environmental conditions (θ and T_s) and plant management during each event.

459

The standard deviations of ~85% relative to the mean values of fluxes measured within each 4-460 hourly interval during emission events was used to estimate an uncertainty in daily-aggregated fluxes 461 462 of ca. 30%. Uncertainty in daily fluxes measured during emission events was smaller than the severalfold differences among the events indicating that the magnitude of these events likely differed 463 significantly. Regressions of modelled on measured magnitudes of emission events following each 464 fertilizer or manure application from 2004 to 2009 gave better agreement than did those of the 4-465 466 hourly averaged fluxes (Table 3b), indicating that modelling the precise timing of fluxes during these events remains a challenge. 467

468

469 Relationships between N₂O Fluxes and Environmental Conditions during Selected Emission 470 Events

Environmental conditions measured and modelled from harvest to the end of the two largest emission events following manure applications in July 2007 (Fig. 3d) and August 2009 (Fig. 3f) were examined in greater detail to investigate relationships among near-surface T_s , θ , aqueous gas concentrations, and surface fluxes of energy, CO₂ and N₂O (Figs. 4 and 5). In July 2007, several small precipitation events wetted and cooled the soil between harvesting on DOY 187 and manure application on DOY 194 (Fig. 4a,b). The soil then dried during several days without precipitation and

warmed with reduced shading from defoliation (Fig. 2) until DOY 200, after which the soil wetted 477 478 with further precipitation and cooled with increased shading from plant regrowth (Fig. 4a,b). The 479 higher θ measured during this period (Fig. 4b) may have been caused by difficulties in maintaining 480 calibration of the TDR probes over long periods in the high-clay soil at Oensingen (Table 1). This 481 higher θ was not likely caused by overestimated evapotranspiration because modelled LE fluxes, 482 reduced by low LAI after harvesting but increasing with subsequent regrowth, were close to those 483 measured (Fig. 4c), suggesting that total water uptake was accurately modelled. Comparison of modelled and measured θ was further complicated by soil cracking which altered infiltration at low θ . 484 The effects of θ -dependent macroporosity on preferential flow are explicitly modelled in *ecosys*, but 485 486 have not yet been tested in detail.

487

488 CO₂ influxes were also reduced by low LAI after cutting, but recovered to pre-cut levels by the 489 end of the emission event (Fig. 4d), driving rapid regrowth of LAI (Fig. 2). Large CO₂ effluxes 490 measured and modelled after manure application indicated rapid R_h and hence O₂ demand that 491 persisted for several days.. Influxes measured in the field were reduced from those in the model for 492 several days after manure application, suggesting temporary interference of CO₂ fixation by the 493 manure application which was not accounted for in the model.

494

495 Litterfall from plant growth [C18, C19] and cutting, as well as from manure application caused 496 a litter layer of 1 - 2 cm to develop on the soil surface in the model. During the N₂O emission event from DOY 200 to DOY 205 in 2007 (Fig. 3d), several precipitation events (Fig. 4a) wetted the 497 modelled surface litter and near-surface soil (layers 1 and 2 in Table 1) (Fig. 4e) without increasing θ 498 at 5 cm (Fig. 4b). This surface wetting slowed gas exchange with the atmosphere, sharply reducing 499 aqueous O_2 concentrations $[O_{2(s)}]$ (Fig. 4f) and thereby raising aqueous N_2O concentrations $[N_2O_{(s)}]$ 500 501 (Fig. 4g). Between precipitation events, drying of the surface litter and near-surface soil in the model allowed recovery of $[O_{2(s)}]$ and forced declines in $[N2O_{(s)}]$. These rises and declines in $[N2O_{(s)}]$ drove 502 rises and declines in N₂O emissions that tracked those measured in the chambers (Fig. 4h). These 503 504 emissions rose immediately with the onset of precipitation on DOY 200 (Fig. 4a) before wetting 505 occurred at 5 cm (Fig. 4b), indicating that emissions were driven by surface wetting (Fig. 4e) 506 combined with rapid O₂ demand (Fig. 4d). The net generation of N₂O modelled in each soil zone, 507 calculated from [H8] + [H20] – [H9], indicated that 0.21 of surface emissions originated in the surface 508 litter and the remainder in the 0 - 1 cm soil layer as indicated by higher $[N_2O_{(s)}]$ (Fig. 4g), while the 509 deeper soil layers were a very small net sink of N₂O. Rises and declines in $[N_2O_{(s)}]$ also drove rises 510 and declines in N₂ emissions that persisted until DOY 205, after which more rapid mineral N uptake 511 with recovering plant growth, driven by rising LAI (Fig. 2) and hence CO₂ influxes (Fig. 4d), caused 512 both emissions to return to background levels (Fig. 4h).

513

514 In 2009, a period of low precipitation with soil drying and warming occurred between harvesting in late July and manure application on DOY 218 in early August, followed by heavy 515 precipitation with soil wetting and cooling on DOY 220 (Fig. 5a,b). LE effluxes and CO₂ influxes 516 declined sharply with LAI after cutting, and did not recover to pre-cut levels by the end of the 517 subsequent emission event on DOY 224 (Fig. 5c,d), indicating a slow recovery of plant growth. 518 Slurry application caused brief surface wetting on DOY 218 (Fig. 5e) and heavy precipitation on 519 DOY 220 caused prolonged soil wetting at the surface (Fig. 5e) and at 5 cm (Fig. 5b). Wetting caused 520 declines in $[O_{2(s)}]$ (Fig. 5f) and thereby rises in $[N_2O_{(s)}]$ (Fig. 5g) that were sustained over 3 days. 521 These rises drove particularly rapid N₂O emissions in the model which were consistent in magnitude 522 523 with those measured in the chambers (Fig. 5h). Diurnal variation modelled with soil warming and cooling (Fig. 5a) was not apparent in the measurements, although modelled values remained within 524 the large uncertainty of the measured values during the emission event. These large emissions were 525 enabled in the model by slow plant uptake of manure N (Table 2) caused by the slow recovery of 526 527 plant CO₂ uptake and hence growth after cutting (Fig. 5d). The rises in $[N_2O_{(s)}]$ also drove rises in modelled N₂ emissions (Fig. 5h). Emissions declined with surface litter drying on DOY 223 (Fig. 5e) 528 which allowed surface $[O_{2(s)}]$ to rise (Fig. 5f) and $[N_2O_{(s)}]$ to fall (Fig. 5g) while θ at 5 cm remained 529 high (Fig. 5b), again indicating that N₂O emissions were largely determined by ecological controls in 530 the surface litter and soil. The net generation of N₂O modelled in each soil zone indicated that 0.48 of 531 532 surface emissions originated in the surface litter, 0.48 in the 0 - 1 cm soil layer and 0.05 in the 1 - 3cm soil layer, while the deeper soil layers were a very small net sink of N₂O, as indicated by near-533 534 surface gradients of $[N_2O_{(s)}]$ (Fig. 5g).

535

Greater N₂O emissions were modelled and measured during the event in August 2009 than in July 2007 (Fig. 5h vs. Fig. 4h), in spite of smaller N addition (Fig. 3f vs. Fig. 3d; Table 2) and similar θ and T_s modelled and measured at 5 cm (Fig. 5a,b vs. Fig. 4a,b). These greater emissions were 539 attributed in the model to (1) earlier and heavier precipitation after manure application (2 days after application in Fig. 5a vs. 6 days in Fig. 4a), and (2) slower recovery of CO₂ fixation after defoliation, 540 541 indicated by slower rises in diurnal amplitude of CO₂ fluxes (Fig. 5d vs. Fig. 4d). Heavier precipitation in 2009 vs. 2007 drove sustained vs. intermittent surface and near-surface wetting (Fig. 542 543 5e vs. Fig. 4e) and hence sustained vs. intermittent declines in $[O_{2(s)}]$ and rises in $[N_2O_{(s)}]$ (Fig. 5f,g. vs. Fig. 4f,g). Slower recovery of CO₂ fixation after cutting in 2009 vs. 2007 slowed removal of added 544 545 NH_4^+ and NO_3^- from soil. This slower removal, combined with the shorter period between manure application and precipitation, left larger NO_3^- concentrations ([NO_3^-]) in litter and surface soil to drive 546 N₂O production following precipitation [H7]. These model findings indicated the importance to N₂O 547 emissions of surface and near-surface θ after precipitation, and of plant management (intensity and 548 timing of defoliation in relation to N application) and its effect on subsequent plant CO₂ fixation and 549 550 N uptake.

551

552

Effects of Intensity and Timing of Defoliation on N2O Emission Events

Increasing harvest intensity and delaying harvest dates slowed LAI regrowth modelled after 553 harvests (Fig. 6). The effects of this slowing on N₂O emissions during selected events modelled after 554 subsequent fertilizer and manure applications were examined under diverse θ and T_s (Figs. 7, 8). 555 Following manure application on DOY 194 in 2006 (Table 2), slower LAI regrowth from increasing 556 and delaying defoliation slowed the recovery of CO_2 fixation (Fig. 7a) and of NH_4^+ uptake (Fig. 7b), 557 allowing more nitrification of manure N and hence greater surface [NO₃⁻] (Fig. 7c). Slower LAI 558 regrowth (Fig. 6) also reduced shading and ET, raising T_s (Fig. 7d) and θ (Fig. 7e). N₂O emissions 559 modelled under field management remained small because of soil drying, in spite of high T_{s} , 560 561 consistent with measurements (Fig. 3c, Fig. 7f). Increases in emissions modelled with slower LAI regrowth, particularly from delayed harvesting (Fig. 7f), were attributed to slower N uptake (Fig. 7b) 562 and hence larger [NO₃⁻] in litter and surface soil (Fig. 7c), and to warmer and wetter soil (Fig. 7d,e) 563 564 which increased O₂ demand while reducing O₂ supply.

565

Following a similar manure application on DOY 194 in 2007 (Table 2; Fig. 6), slower LAI regrowth from increasing and delaying defoliation also caused reductions in CO₂ fixation (Fig. 7g), which slowed NH_4^+ and NO_3^- uptake (Fig. 7h), allowing more nitrification of manure N and hence greater [NO₃⁻] (Fig. 7i). Lower LAI also caused increases in T_s (Fig. 7j) and θ (Fig. 7k). Emissions 570 modelled and measured under field management in 2007 (Fig. 71) were greater than those in 2006

(Fig. 7f), in spite of lower T_s (Fig. 7j vs. Fig. 7d), because near-surface wetting from several

precipitation events (Fig. 4a,e) reduced $[O_{2(s)}]$ and increased $[N_2O_{(s)}]$ (Fig. 4f,g). Emissions modelled with increased and delayed harvesting rose from those with field harvesting as the emission event progressed (Fig. 7l) because elevated $[NO_3^-]$ from the manure application persisted longer during the

- 575 event (Fig. 7i).
- 576

Following fertilizer application on DOY 259 in 2005 (Table 2), modelled and measured 577 emissions remained small after soil wetting (Fig. 8f) because lower T_s (Fig. 8d) slowed soil 578 respiration after wetting, manifested as smaller measured and modelled CO₂ effluxes (Fig. 8a), and so 579 slowed demand for e⁻ acceptors. Under these conditions, increasing and delaying defoliation had little 580 effect on modelled N₂O emissions (Fig. 8f), while CO₂ fixation (Fig. 8a) and N uptake (Fig. 8b) were 581 only slightly reduced and surface NO₃⁻ only slightly increased (Fig. 8c). Following the same fertilizer 582 application on DOY 240 in 2007, modelled and measured emissions were greater than those in 2005 583 (Fig. 81) because soils were warmer (Fig. 8j) with more rapid respiration (Fig. 8g), and because 584 fertilizer application and subsequent wetting occurred sooner after cutting (Table 2). Consequently 585 recovery of CO₂ fixation was less advanced (Fig. 8g), reducing cumulative N uptake (Fig. 8h) and 586 leaving larger [NO₃⁻] to drive N₂O generation during the event (Fig. 8h). However reducing LAI 587 remaining after each harvest did not raise N₂O emissions after this application (Fig. 81), because 588 589 slower LAI regrowth from earlier harvests had reduced primary productivity and consequently litterfall and hence the mass of the surface litter from which much of the emitted N₂O was generated. 590 Consequently more intense harvests could cause surface litter later in the year to decline to levels at 591 which N₂O generation modelled in the litter was reduced. 592

593

594

Annual Productivity, N₂O Emissions and the Effects of Defoliation Intensity and Timing

In the model, plant management practices affected LAI regrowth (Fig. 6), CO₂ fixation, N uptake, and hence soil $[NO_3^-]$ and N₂O emissions (Figs. 7,8). These effects were summarized at an annual time scale in Table 4. Modelled and EC-derived gross primary productivity (GPP) remained close to 2000 g C m⁻² y⁻¹ during most years except with low precipitation in 2003 and replanting in 2008, indicating a highly productive ecosystem with rapid C cycling and hence rapid demand for e⁻ acceptors (Table 4). Larger modelled vs. measured GPP caused larger modelled vs. measured NEP in 601 2003, 2005 and 2007. Harvest removals in the model varied with NEP except during replanting in 602 2008, but tended to exceed those recorded in the field, particularly with low EC-derived NEP in 2005 603 and 2006. Modelled values were determined in part by the assumed constant harvest efficiency of 0.76. Including C inputs from manure applications, modelled and estimated net biome productivity 604 605 (NBP) were positive except during replanting in 2008, indicating that this intensively managed 606 grassland was a C sink unless replanted. Average annual NBP modelled vs. measured from 2002 to 2009 was 30 vs. 58 g C m⁻², with the lower modelled value attributed to greater modelled harvest 607 removals, particularly in 2006. 608

609

Slower LAI regrowth from increasing and delaying defoliation (Fig. 6) reduced modelled GPP, *R*_e and hence NEP by 5 - 10% during years with greater productivity. However increasing and
delaying defoliation did not much affect harvest removals because reduced NEP was offset by greater
harvest intensity, so that NBP was reduced except with replanting in 2008.

614

Annual N₂O emissions were estimated from chamber measurements for each year of the study 615 by scaling the mean measured fluxes to annual values. These values are presented in Table 4 as upper 616 boundaries for annual emissions because flux measurements from which means were calculated were 617 more frequent during emission events. A lower boundary for annual emissions was also estimated in 618 Table 4 by replacing missing flux measurements with zero. Average lower and upper boundaries for 619 annual emissions estimated from 2002 to 2009 were 0.220 and 0.355 g N m⁻² respectively vs. an 620 average annual emission in the model of 0.260 g N m^{-2} (Table 4). Modelled emissions were nearer to 621 upper boundaries during years with lower measured emissions (2003, 2004, 2006), and to lower 622 boundaries during years with higher measured emissions (2007, 2008, 2009). There was no significant 623 624 correlation between annual N inputs and measured or modelled emissions. Although annual emissions in the model were close to 1% of annual N inputs during most years, they were greater in 2008 and 625 626 2009 in spite of smaller N inputs because of the large emission events modelled after summer applications of fertilizer and manure (Fig. 3e,f; Fig. 5h). Annual N inputs (Table 4), supplemented by 627 3-6 g N m⁻² y⁻¹ modelled from symbiotic fixation by clover [F1 – F26]), were only slightly larger 628 than annual N removals with harvesting, supplemented by losses of 2 - 3 g N m⁻² y⁻¹ from all other 629 630 gaseous and aqueous emissions (N₂ from denitrification, NH₃ from volatilization, NO₃⁻ from leaching). Consequently residual soil NO₃, while present in the model, did not accumulate during the 631

study period, and so did not drive increasing N₂O emissions with sustained N applications. Modelled and measured annual N₂O emissions, if expressed in C equivalents (~130 g C g N⁻¹), largely offset net C uptake expressed as NBP (Table 4).

635

636 Increasing harvest intensity and delaying harvest dates had little effect on annual N₂O 637 emissions modelled during the first two years after planting in 2001 and 2008, but raised them 638 substantially thereafter (2003 – 2007) (Table 4). During this period, annual emissions rose by an 639 average of 24% with increased harvest intensity, and by an average of 43% with increased harvest 640 intensity combined with delayed harvest dates. These increases were attributed to reduced N uptake, 641 and to increased T_s and θ (Figs. 7, 8).

- 642
- 643

Effects of increased bulk density on N₂O emissions

Increasing near-surface (0 - 3 cm) soil BD by 5% or 10% at the beginning of 2001 in the model 644 reduced $[O_{2(s)}]$ after rainfall events and slowed recovery of $[O_{2(s)}]$ during subsequent drying as shown 645 following the manure application in July 2007 (Fig. 9a) and the fertilizer application in late August 646 2007 (Fig. 9c). These reductions caused increases in modelled N₂O effluxes that varied during 647 648 emission events (Fig. 9b,d). Effluxes modelled with increases of 10% in near-surface BD were at times double those modelled without (e.g. DOY 201 and 240 in Fig. 9), indicating that relatively small 649 changes in soil surface properties could at times cause large changes in emissions. The effects of 650 increased BD on modelled T_s , θ , CO₂ exchange, crop production and N uptake during these events 651 652 were small (results not shown). Increasing near-surface BD by 10% raised annual N₂O emissions by 653 amounts that increased with annual precipitation from ca. 10% in drier years (e.g. 2003) to ca. 50% in 654 wetter (e.g. 2006) (Table 5).

- 655
- 656

Effects of Changes in K_{O_2} and K_{NO_x} on N₂O emissions

Lowering K_{02} to one-half that used in *ecosys* reduced annual N₂O emissions modelled from 2004 to 2009 by 16% to an average of 0.218 g N m⁻² y⁻¹, near the average lower boundary of the measured values (Table 5). Raising K_{02h} to double that used *ecosys* increased these emissions by 28% to an average of 0.334 g N m⁻² y⁻¹, near the average upper boundary of the measured values. Lowering K_{NO_x} to one-half that used in *ecosys* increased annual N₂O emissions modelled from 2004 to 2009 by 30% to an average of 0.338 g N m⁻² y⁻¹, near the average upper boundary of the measured values 663 (Table 5). Raising K_{NO_x} to double that used *ecosys* reduced these emissions by 27% to an average of 664 0.189 g N m⁻² y⁻¹, near the average lower boundary of the measured values. In years with lower annual 665 emissions (2003, 2004, 2006 in Table 4), the lower K_{O_2} or higher K_{NO_x} gave modelled values that were 666 closer to measured values. However in years with higher annual emissions (2008 and 2009 in Table 4), 667 the higher K_{O_2} or lower K_{NO_x} gave modelled values that were closer.

- 668
- 669
- 670
- 671 672

Modelled vs. Measured N₂O Emissions

DISCUSSION

673 Most N₂O emission events measured from 2004 to 2009 were simulated within the range of measurement uncertainty, estimated to be about 30% of mean daily values (Fig. 3). However some 674 deviations between modelled and measured N₂O emissions were apparent, such as the larger 675 emissions modelled in autumn 2006 (Fig. 3c) and the smaller emissions modelled in spring 2008 (Fig. 676 3e). These deviations may be attributed to uncertainties in both the measurements and the model. In 677 678 the automated measurement system, the static chambers were rotated about every two months among fixed positions in a corner of the field. During these periods, surface conditions in the chamber could 679 680 deviate from the mean field conditions represented in the model. However we do not have an 681 explanation for the very small emissions measured after the three manure slurry applications 2006. The chambers had been removed before the applications and were reinstalled within two hours, 682 during which the cut grass was removed so that the surface litter in the chambers may have been 683 684 reduced from that outside. In the model, emissions following manure or fertilizer applications were 685 sensitive to the amount of surface litter as noted earlier. The absence of emission events measured 686 after slurry applications in 2006 was unusual (Fig. 3) given the large precipitation that year (Table 4), 687 demonstrating that large variability at small spatial scales inevitably affects these measurements. Such 688 variability adversely affects agreement between modelled and measured emissions (Table 3).

689

690During spring 2008 sustained emissions of about 5 mg N m⁻² d⁻¹ were measured by the691chambers in the absence of any manure or fertilizer applications (Fig. 3e). These emissions were692related to the ploughing of the field to a depth of 25cm in December 2007 (Table 2) which hastened693soil organic matter decomposition, and hence N mineralization that increased mineral N substrate for

694 nitrification and denitrification, and possibly microbial nitrifier and denitrifier populations. These increases must remain conjectural as the Oensingen study did not include stratified analysis of N₂O 695 696 production factors (e.g. microbial biomass, potential denitrification) within the chamber soils. Although ecosys simulates hastened SOM decomposition with tillage (Grant et al., 1998), large 697 698 amounts of above- and below-ground plant litter with relatively high C:N ratios were incorporated in the model with tillage in December 2007 which slowed net N mineralization and hence accumulation 699 700 of mineral N products in the model during spring 2008. Consequently modelled N₂O emissions remained small until mineral N was raised by fertilizer applications in July (Fig. 3c). 701

702

703

Modelling Controls on N₂O Emissions by Litter and Near-Surface θ and T_s

In the model, almost all the N₂O emissions originated in the surface litter and in the near-704 surface (0-1 cm) soil layer, so that emissions were strongly controlled by litter and near-surface θ 705 and T_s (Figs. 3 – 4). This model finding is consistent with the experimental finding of Pal et al. (2013) 706 from ¹⁵N enrichment studies that approximately 70% of N₂O measured during emission events in a 707 708 managed grassland originated in the surface litter. Similarly van der Weerden et al. (2013) inferred from diurnal variation in T_s and N₂O emissions measured after urine amendments on a managed 709 710 grassland that N₂O production was at or near the soil surface (0 - 2 cm). Also Fléchard et al. (2007) inferred in a meta-analysis of N₂O emissions from grasslands in Europe that θ measured at 5 cm was 711 not in some cases an adequate scaling factor for N₂O source strength because N₂O production and 712 713 emission took place at or near the soil surface. Ecosys simulated little net production, and even a 714 small net consumption, of N₂O in soil below 2 cm during emission events, as may be inferred from 715 peak $[N_2O_{(s)}]$ modelled in the 0 – 1 cm soil layer and much lower $[N_2O_{(s)}]$ modelled in the 1 – 3 cm 716 soil layer below (Figs. 3g and 4g). This model finding was consistent with the experimental finding of Neftel et al. (2000) that N₂O concentrations below near-surface soil layers in a managed grassland 717 remained below atmospheric values during emission events, from which they inferred that any N₂O 718 719 generated at depths greater than ~3 cm would not likely reach the soil surface. Thus attempts to relate N₂O emissions to T_s and θ measured at greater depths than 3 cm in grasslands are unlikely to be 720 informative if these differ from near-surface values. These emissions should rather be related to 721 722 conditions in the litter and near-surface soil, which need to be better characterized in future studies.

723

724 Consequently modelled N₂O emissions were highly sensitive to surface wetting and drying (e.g. Fig. 4e,h) modelled from precipitation vs. ET (e.g. Fig. 4a,c), or to surface warming and cooling (e.g. 725 726 Fig. 8j,l) modelled from surface energy balance (e.g. Fig. 4c). The sensitivity to surface wetting and drying was modelled from the effects of θ on air- vs. water-filled porosity and hence on diffusivity of 727 gases in gaseous [D17] and aqueous [D20] phases, and on gaseous volatilization - dissolution transfer 728 729 coefficients and hence gas exchange between gaseous and aqueous phases [D14, D15]. These 730 transfers controlled O_2 supply, and hence demand for alternative e^- acceptors as the O_2 supply fell 731 below O₂ demand, which drove N₂O generation from denitrification [H6 – H8] and nitrification [H19]. The control of O₂ supply on e⁻ acceptors used in nitrification thereby simulated the effect of 732 WFPS on the fraction of N_2O generated during nitrification identified by Fang et al. (2015) as 733 necessary to modelling N_2O emissions, while avoiding the model-specific parameterization needed in 734 735 simpler models. The sensitivity to surface wetting in *ecosys* enabled sharp rises in N₂O emissions to be modelled from surface litter and near-surface soil after small precipitation events during DOY 200 736 - 201 in 2007 (Fig. 4a,h), and after slurry application during DOY 218 in 2009 (Fig. 5a,h), even when 737 the soil at 5 cm remained dry (Fig. 4b; Fig. 5b). Such rises were consistent with the experimental 738 739 findings of Fléchard et al. (2007) that precipitation on dry soil can cause substantial N₂O emissions 740 after fertilizer application in grasslands.

741

The sensitivity to surface warming and cooling was modelled from the effects of T_s on 742 diffusivity of gases in gaseous [D17] and aqueous [D20] phases, and on solubility of gases and hence 743 744 exchange of gases between gaseous and aqueous phases [D14, D15], both parameterized from basic physical relationships independently from the model. These transfers controlled $[O_{2(s)}]$ in the surface 745 litter and soil (Figs. 3f and 4f), and hence O₂ uptake by aerobic heterotrophs [H4] and autotrophs 746 [H13] through a Michaelis-Menten constant [H4b, H13b]. The sensitivity to surface warming and 747 748 cooling was also modelled from the effects of T_s on SOC oxidation [H2] and hence O₂ demand by aerobic heterotrophs [H3], and on NH_4^+ and NO_2^- oxidation [H11, H15] and hence O_2 demand by 749 aerobic autotrophs [H12, H16]. These effects were driven by a single Arrhenius function used for all 750 751 biological transformations [A6] parameterized from basic research conducted independently from the 752 model. Under sustained high surface θ , this combination of physical and biological processes drove 753 large diurnal variation in N₂O emissions modelled with diurnal surface warming and cooling during emission events (e.g. DOY 221 in Fig. 5h, DOY 243 in Fig. 8l), as observed experimentally by van 754

755 der Weerden et al. (2013). By explicitly simulating the diverse processes that determine N_2O 756 emissions, *ecosys* could model the large sensitivity of emissions to T_s without the use of 757 unrealistically large parameters for temperature sensitivity inferred from controlled temperature studies of N₂O emissions (e.g. Dobbie and Smith, 2001). This large sensitivity to T_s has been 758 759 inadequately represented in simpler models, causing underestimation of large emissions measured from warm soils (e.g. Saggar et al., 2004). At a seasonal time scale, higher T_s could cause large 760 761 increases in N₂O emissions modelled with comparable θ after the same fertilizer application (Fig. 8) 762 vs. Fig. 8f). However the effects of T_s on N₂O emissions were dominated by those of θ during surface 763 wetting and drying (e.g. Figs. 4h, 7l).

764

765 Values of both θ and T_s thus determined O₂ demand not met by O₂ uptake which drove demand 766 for alternative e⁻ acceptors by heterotrophic denitrifiers [H6] and autotrophic nitrifiers [H19]. This demand drove the sequential reduction of NO_3^- , NO_2^- and $N_2O_2^-$ to NO_2^- , N_2O and N_2 respectively by 767 768 heterotrophic denitrifiers [H7, H8, H9], and the reduction of NO₂⁻ to N₂O by autotrophic nitrifiers [H20]. The consequent production of N₂O (Fig. 4g, Fig. 5g) and N₂ drove emissions of both N₂O and 769 770 N₂ (Fig. 4h, Fig. 5h) through volatilization [D14, D15] and through gaseous and aqueous diffusion [D16, D19]. Ratios of N₂O and N₂ emissions in *ecosys* (Fig. 4h, Fig. 5h) were not parameterized as 771 done in other models, but rather were determined by relative affinities determined from basic research 772 773 [H8, H9], and by environmental conditions. When demand from heterotrophic denitrifiers for 774 alternative e⁻ acceptors was small relative to their availability, the preferential reduction of more 775 oxidized e⁻ acceptors generated larger emissions of N₂O [H7, H8] relative to N₂ [H9]. Such 776 conditions occurred during the early part of an emission event when surface $[NO_3]$ rose with nitrification of fertilizer or manure NH_4^+ after application (e.g. DOY 200 – 201 in Fig. 4h). However 777 778 when demand for alternative e⁻ acceptors was large relative to their availability, this same reduction 779 sequence forced more rapid reduction of N₂O to N₂ and hence smaller emissions of N₂O relative to 780 N_2 . Such conditions occurred during the later part of emission events when surface $[NO_3]$ declined 781 with plant uptake (e.g. DOY 202 – 205 in Fig. 4h and DOY 222 in Fig. 5h), or when greater surface wetting reduced O₂ supply (e.g. DOY 220 in Fig. 5h). This greater demand for alternative e⁻ acceptors 782 783 with wetting provided a process-based explanation for declines in N_2O emissions frequently found at higher θ in field studies (e.g. Rafique et al., 2011) without explicit parameterization of N₂O:N₂ ratios. 784

785

Nitrification and denitrification were also driven by the concentrations of NH_4^+ [H11], NO_3^- 786 787 [H7], NO₂⁻ [H8, H15, H20] and N₂O [H9] relative to Michaelis-Menten constants evaluated from 788 basic research. The concentrations of NH₄⁺ and NO₃⁻ in *ecosys* were increased by N additions from manure and fertilizer N applications (Table 2), and by net mineralization soil organic N from 789 790 oxidation of litterfall, manure and SOM [A26] as indicated by soil CO₂ effluxes. These concentrations were reduced by root uptake of NH_4^+ and NO_3^- [C23] and consequent plant N assimilation with 791 792 growth, indicated by more rapid CO_2 fixation with time after cutting (Figs 3 – 4 and Figs. 6 - 7). In the model, more rapid CO₂ fixation drove more rapid production of nonstructural C, and hence more 793 794 rapid exchange of nonstructural C and N between canopy and roots [C50], and so hastened root active N uptake by increasing R_a driving root growth [C14b], and by hastening removal of N uptake 795 796 products and hence reducing their inhibition of active uptake [C23g]. The diversity of controls on key substrates for N₂O generation suggests that robust simulations of N₂O emissions require 797 798 comprehensive ecosystem models in which these controls are fully represented.

799

800

Modelling Effects of Defoliation Intensity and Timing on N₂O Emissions

The control of NH_4^+ and NO_3^- availability by root N uptake indicated that plant management 801 practices determining uptake would thereby affect N₂O emissions. In the model, increasing harvest 802 intensity and delaying harvest dates both slowed N uptake (Fig. 7b,h and Fig. 8b,h) by slowing the 803 recovery of LAI (Fig. 6) and CO₂ fixation (Fig. 7a,g and Fig. 8a,g). Both thereby increased [NO₃⁻] 804 805 (Fig. 7c,i and Fig. 8c,i), T_s (Fig. 7d,j and Fig. 8d,j) and θ (Fig. 7e,k and Fig. 8e,k), raising N₂O 806 effluxes modelled during most emission events (Fig. 7f,l and Fig. 8f,l), and hence annually (Table 4). This model finding was consistent with the field observations of Jackson et al. (2015) that increased 807 N₂O emissions after defoliation in grasslands were caused by reduced uptake of N and water by 808 slower-growing plants. 809

810

The effects of defoliation on N₂O emissions during modelled emission events were similar to, or greater than, those of T_s and θ (e.g. Fig. 7f,1), consistent with the experimental finding of Imer et al. (2013) that plant management, as represented by its effects on LAI, had a larger effect on N₂O fluxes than did the environment, as represented by T_a , at an intensively managed grassland in Switzerland. Reducing LAI remaining after harvest by one-half and delaying harvest by 5 days had little effect on modelled harvest removals (Table 4), suggesting that N₂O emissions from managed grasslands are more sensitive to plant management practices than are yields. Intensity and timing of harvests should therefore be selected to avoid slow regrowth of LAI following N additions by avoiding excessive defoliation and by allowing as much time as possible between defoliation and subsequent fertilizer or manure application. Neftel et al. (2010) reported enhanced N_2O emissions after cuts in managed grassland and hypothesized that a simple mitigation option would be to optimize the timing of the fertilizer applications. To our knowledge this option has not been systematically investigated.

- 823
- 824

Modelling Effects of Soil Bulk Density on N₂O Emissions

The small increases in near-surface BD included in this study were typical of those arising from 825 826 natural variation in soil properties or from compaction by vehicular traffic during field management operations. In the model, these increases reduced soil porosity and hence gaseous diffusivity [D17] 827 which slowed O₂ uptake from the atmosphere [D15] and O₂ transfer through the soil profile [D16]. 828 Consequent reductions in near-surface $[O_{2(s)}]$ (Fig. 9a,c) slowed O_2 reduction by denitrifiers [H4] and 829 nitrifiers [H13], forcing more rapid e^{-1} transfer to NO₃⁻ by denitrifers [H6] and to NO₂⁻¹ by nitrifiers 830 831 [H19] and hence more rapid emissions of N₂O following applications of manure (Fig. 9b) and fertilizer (Fig. 9d). 832

833

In a study of soil compaction effects on N_2O emissions from a fertilized agricultural field in a climate similar to that at Oensingen, Bessou et al. (2010) found that increasing the BD of the upper 30 cm of the soil profile by *ca*. 15% raised annual N_2O emissions measured with automated chambers by at least 50% during each of two growing seasons. This rises were similar to that modelled with a smaller increase in BD of the upper 3 cm during the wettest year of this study (Table 5). During emission events, Bessou et al. (2010) measured peak fluxes from compacted soil that were double those from uncompacted, as also modelled here (Fig. 9b,d).

841

The detailed algorithms from which *ecosys* was constructed enabled increases in N₂O emissions from surface compaction to be simulated from specified changes to surface BD, a measureable site characteristic, without further model parameterization. The marked increases in N₂O emissions modelled with these increases in BD (Table 5) indicated that some of the large spatial variation in these emissions commonly found in field measurements could arise from relatively small variation in physical properties of near-surface soil. In future studies of N₂O emissions, near-surface soil properties could be determined at each measurement site to establish the extent to which variationin these properties are associated with those in emissions.

- 850
- 851

Modelling Effects of *K*_{O2} and *K*_{NOx} on N₂O Emissions

The value of K_{O_2} used in *ecosys* (=2 μ M) was taken from the upper range of values determined 852 experimentally for intact cells of heterotrophic bacteria by Longmuir (1954). Halving or doubling K_{O_2} 853 854 changed modelled N₂O emissions (Table 5) by amounts similar to uncertainty in measured emissions expressed as lower and upper boundaries of likely values (Table 4), although the doubled value of K_{O_2} 855 856 was larger than those derived from experiments. The value of K_{NO_x} used in *ecosys* (=100 µM) was within the range of values determined experimentally by Yoshinari et al. (1977). As for K_{O_2} , halving or 857 doubling K_{NO_x} changed modelled N₂O emissions (Table 5) by amounts similar to uncertainty in 858 measured emissions expressed as lower and upper boundaries of likely values (Table 4). The halved 859 value of K_{NO_x} was closer to those measured by Betlach and Tiedje (1981) and Khalil et al. (2007) while 860 the doubled value was closer to that measured by Klemedtsson et al. (1977). These changes indicate 861 that key parameters used in process models must be capable of being constrained by accurate 862 863 evaluation in independent experiments.

- 864
- 865
- 866

CONCLUSIONS

867

N₂O emissions modelled in this managed grassland originated in the surface litter and upper 2 cm of the soil profile. The shallow origin of these emissions enabled *ecosys* to simulate the response of measured emissions to changes in near-surface θ and T_s during brief emission events when rainfall followed manure or mineral fertilizer applications. Measurements of θ and T_s used to estimate N₂O emissions from managed grasslands should therefore be taken in surface litter and near-surface soil (0 -2 cm), rather than deeper in the soil profile (5 – 10 cm) as is currently done.

874

 N_2O fluxes modelled during emission events were greater when grassland regrowth and hence mineral N uptake was slower following harvest and subsequent N application. The control of N_2O emissions by grassland N uptake indicated that N_2O emissions from managed grassland could be increased by harvesting practices and fertilizer timing that resulted in slower regrowth during periods
when emission events are most likely to occur. N₂O fluxes modelled during emission events rose
sharply with small increases in surface BD, indicating the importance of avoiding surface compaction
in fields to which large amounts of N are applied.

882

The basic and comprehensive approach to model development in *ecosys* allowed diverse responses of N₂O emissions to changes in weather (T_s , θ), land management and soil properties to be modelled from specified changes to readily measured inputs with parameters constrained by basic experiments conducted independently of the model rather than derived from site-specific observations. This approach enabled concurrent, well-constrained tests of model performance against a diverse set of field measurements, and so is expected to confer robustness to the modelling of these emissions under different climates, soils and land uses in future studies.

- 890
- 891
- 892

ACKNOWLEDGEMENTS

- 893 Computational facilities for *ecosys* were provided by the University of Alberta and by the
- 894 Compute Canada high performance computing infrastructure. A PC version of *ecosys* with GUI can be
- 895 obtained by contacting the corresponding author at <u>rgrant@ualberta.ca</u>. The authors also acknowledge
- contributions from valuable discussions with Christoph Amman concerning measurement methodology.

897	REFERENCES
898	
899	Ammann, C., Fléchard, C., Leifeld, J., Neftel, A. and Fuhrer, J.:. The carbon budget of newly
900	established temperate grassland depends on management intensity. Agriculture, Ecosystems and
901	Environment 121, 5–20, 2007
902	Ammann, C., Spirig, C., Leifeld, J. and Neftel, A.: Assessment of the nitrogen and carbon budget of two
903	managed temperate grassland fields. Agriculture, Ecosystems and Environment 133, 150-162,
904	2009
905	Bessou, C., Mary, B., Léonard, B., Ro u s s e l. M., Gréhan, E. and Gabrielle, B.: Modelling soil
906	compaction impacts on nitrous oxide emissions in arable fields. Euro. J. Soil Sci., 61, 348–363,
907	2010.
908	Betlach, M.R. and Tiedje, J.M.: Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous
909	oxide during bacterial denitrification. Appl. Environ Microbiol., 42, 1074-1084, 1981.
910	Chatskikh, D.D., Olesen, J.E., Berntsen, J., Regina, K. and Yamulki, S.: Simulation of effects of soils,
911	climate and management on N_2O emission from grasslands, Biogeochem. 76, 395-419, 2005
912	Conant, R.T, Paustian, K., Del Grosso, S.J. and Parton, W.J.: Nitrogen pools and fluxes in grassland
913	soils sequestering carbon. Nutr Cycl Agroecosyst 71, 239–248, 2005.
914	Craswell, E. T.: Some factors influencing denitrification and nitrogen immobilization in a clay soil, Soil
915	Biol. Biochem. 10, 241-245, 1978
916	Dobbie, K.E. and Smith, K.A.: The effect of temperature, water-filled pore space, and land use on N ₂ O
917	emissions from an imperfectly drained gleysol. Eur. J. Soil Sci. 52: 667-673, 2001
918	Fang, Q.X., Ma, L., Halvorson, A.D., Malone, R.W., Ahuja, L.R., Del Grosso, S.J. and Hatfield, J.L.:
919	Evaluating four nitrous oxide emission algorithms in response to N rate on an irrigated corn
920	field. Environmental Modelling & Software 72, 56-70, 2015.
921	Felber, R., Leifeld, J., Horak J and Neftel, A.: Nitrous oxide emission reduction with greenwaste
922	biochar: comparison of laboratory and field experiments Euro. J. Soil Sci. 65, 128-138 doi:
923	10.1111/ejss.12093, 2014.
924	Fléchard, C.R., Neftel, A., Jocher, M., Ammann, C. and Fuhrer, J.: Bi-directional soil/atmosphere N ₂ O
925	exchange over two mown grassland systems with contrasting management practices. Glob
926	Change Biol 11, 2114–2127, 2005.

31

927	Fléchard, C.R., Ambus, P., Skiba, U., Rees, R.M., Hensen, A., van Amstel, A., van den Pol-van
928	Dasselaar, A., Soussana, JF., Jones, M., Clifton-Brown, J., Raschi, A., Horvath, L., Neftel, A.,
929	Jocher, M., Ammann, C., Leifeld, J., Fuhrer, J., Calanca, P., Thalman, E., Pilegaard, K., Di
930	Marco, C., Campbell, C., Nemitz, E., Hargreaves, K.J., Levy, P.E., Ball, B.C., Jones, S.K., van
931	de Bulk, W.C.M., Groot, T., Blom, M., Domingues, R., Kasper, G., Allard, V., Ceschia, E.,
932	Cellier, P., Laville, P., Henault, C., Bizouard, F., Abdalla, M., Williams, M., Baronti, S.,
933	Berretti F. and Grosz, B.: Effects of climate and management intensity on nitrous oxide
934	emissions in grassland systems across Europe, Agric. Ecosyst. Environ. 121, 135-152, 2007.
935	Grant, R.F."A review of the Canadian ecosystem model ecosys. pp. 173-264 in: Modeling Carbon and
936	Nitrogen Dynamics for Soil Management. Shaffer M. (ed). CRC Press. Boca Raton, F, 2001.
937	Grant, R.F. Baldocchi, D.D. and Ma, S.: Ecological controls on net ecosystem productivity of a
938	Mediterranean grassland under current and future climates. Agric. For Meteorol. 152: 189–200,
939	2012.
940	Grant, R.F., Juma, N.G. and McGill, W.B.: Simulation of carbon and nitrogen transformations in soils. I.
941	Mineralization. Soil Biol. Biochem. 27, 1317-1329, 1993a
942	Grant, R.F., Juma, N.G. and McGill, W.B.: Simulation of carbon and nitrogen transformations in soils.
943	II. Microbial biomass and metabolic products. Soil Biol. Biochem. 27,1331-1338, 1993b
944	Grant, R.F., Izaurralde, R.C., Nyborg, M., Malhi, S.S., Solberg, E. D. and Jans-Hammermeister, D.:
945	Modelling tillage and surface residue effects on soil C storage under current vs. elevated CO ₂
946	and temperature in ecosys pp. 527-547 in Soil Processes and the Carbon Cycle. Lal, R., Kimble
947	J.M., Follet, R.F. and Stewart, B.A.(eds). CRC Press. Boca Raton, FL, 1998.
948	Grant, R.F. and Pattey, E.: Mathematical modelling of nitrous oxide emissions from an agricultural field
949	during spring thaw. Global Biogeochem. Cycles. 13, 679-694, 1999
950	Grant, R.F. and Pattey E.: Modelling variability in N_2O emissions from fertilized agricultural fields. Soil
951	Biol. Biochem. 35, 225-243, 2003.
952	Grant, R.F. and Pattey, E.: Temperature sensitivity of N ₂ O emissions from fertilized agricultural soils:
953	mathematical modelling in ecosys. Global Biogeochem. Cycles 22, GB4019,
954	doi:10.1029/2008GB003273, 2008.
955	Grant, R.F., Pattey, E.M., Goddard, T.W., Kryzanowski, L.M. and Puurveen, H.: Modelling the effects
956	of fertilizer application rate on nitrous oxide emissions from agricultural fields. Soil Sci Soc.
957	Amer. J. 70, 235-248, 2006.

- Imer, D., Merbold, L., Eugster, W. and Buchmann, N.: Temporal and spatial variations of soil CO₂, CH₄
 and N₂O fluxes at three differently managed grasslands. Biogeosci. 10, 5931–5945, 2013.
- Jackson, R.D., Oates, L.G., Schacht, W.H., Klopfenstein, T.J., Undersander, D.J., Greenquist, M.A.,
- Bell, M.M. and Gratton, C.: Nitrous oxide emissions from cool-season pastures under managed
 grazing. Nutr Cycl Agroecosyst 101, 365–376, 2015.
- Khalil, K., Renault, P.,. Guérin, N. and Mary, B.: Modelling denitrification including the dynamics of
 denitrifiers and their progressive ability to reduce nitrous oxide: comparisonwith batch
 experiments. Euro. J. Soil Sci. 56:491–504, 2005.
- Klemedtsson, L., Svensson, B.H., Lindberg, T. and Rosswall, T.: The use of acetylene inhibition of
 nitrous oxide reductase in quantifying denitrification in soils. Swedish J. Agric. Res. 7, 179–185,
 1977.
- Longmuir, I.S.: Respiration rate of bacteria as a function of oxygen concentration. Biochem. 51, 81-87,
 1954.
- Li, Y., Chen, D., Zhang, Y., Edis, R. and Ding, H.: Comparison of three modeling approaches for
 simulating denitrification and nitrous oxide emissions from loam-textured arable soils, Global
 Biogeochem. Cycles 19, GB3002, doi:10.1029/2004GB002392, 2005
- Leifeld, J., Ammann, C. Neftel, A. and Fuhrer, J.: A comparison of repeated soil inventory and carbon
 flux budget to detect soil carbon changes after conversion from cropland to grasslands. Global
 Change Biol. 17, 3366-3375, 2011
- Lu, Y., Huang, Y., Zou, J. and Zheng, X.: An inventory of N₂O emissions from agriculture in China
 using precipitation-rectified emission factor and background emission, Chemosphere 65, 1915 1924, 2006.
- Metivier, K.A., Pattey, E. and Grant, R.F.: Using the ecosys mathematical model to simulate temporal
 variability of nitrous oxide emissions from a fertilized agricultural soil. Soil Biol. Biochem. 41,
 2370–2386, 2009.
- Neftel, A., Blatter, A., Schmid, M., Lehmann, B. and Tarakanov, S.V.: An experimental determination
 of the scale length of N₂O in the soil of a grassland. J. Geophys. Res. 105, 12095–12103, 2000.
- Neftel, A, Ammann, C., Fischer, F., Spirig, C., Conen, F., Emmenegger, L , Tuzson, B and Wahlen, S.:
 N₂O exchange over managed grassland: Application of a quantum cascade laser spectrometer for
 micrometeorological flux measurements Agric. For. Meteorol. 150, 775–785, 2010.

- Neftel, A. Spirig, C. and Ammann, C.: Application and test of a simple tool for operational footprint
 evaluations. Environ. Poll. 152, 644-652, 2008
- Pal, P., Clough, T.J., Kelliher, F.M. and. Sherlock, R.R: Nitrous oxide emissions from in situ deposition
 of 15N-labeled ryegrass litter in a pasture soil. J. Environ. Qual. 42, 323–331, 2013
- Pedersen, A.R., Petersen, S.O. and Schelde, K.: A comprehensive approach to soil-atmosphere trace-gas
 flux estimation with static chambers. European Journal of Soil Science, 61, 888–902, 2010.
- Rafique, R., Hennessy, D. and Kiely, G.: Nitrous oxide emission from grazed grassland under different
 management systems. Ecosystems 14: 563–582, 2011.
- Ruzjerez, B.E., White, R.E. and Ball, P.R.: Long-term measurement of denitrification in three
 contrasting pastures grazed by sheep. Soil Biol Biochem 26:29–39, 1994.
- Saggar, S., Andrew, R.M., Tate, K.R., Hedley, C.B., Rodda, N.J. and Townsend, J.A.: Modelling nitrous
 oxide emissions from dairy-grazed pastures. Nutr. Cycl. Agroecosyst 68:243–255, 2004
- Saxton, K.E., Rawls, W.J., Romberger, J.S. and Papendick, R. I.: Estimating generalized soil-water
 characteristics from texture. Soil Sci. Soc. Amer. J. 50(4), 1031-1036, 1986.
- Saxton, K.E. and Rawls, W.J.: Soil water characteristic estimates by texture and organic matter for
 hydrologic solutions. Soil Sci. Soc. Am. J. 70, 1569–1578, 2006.
- Schmid, M., Neftel, A., Riedo, M. and Fuhrer, J.:. Process-based modelling of nitrous oxide emissions
 from different nitrogen sources in mown grassland. Nutr. Cycl. Agroecosyst. 60, 177-187, 2001.
- Smith, K.A. and Massheder, J.: Predicting nitrous oxide emissions from N-fertilized grassland soils in
 the UK from three soil variables, using the B-LINE 2 model. Nutr Cycl Agroecosyst 98, 309–
 326, 2014.
- van der Weerden, T.J., Clough, T.J. and Styles, T.M.: Using near-continuous measurements of N₂O
 emission from urine-affected soil to guide manual gas sampling regimes. New Zealand J. Agric.
 Res. 56, 60-76, 2013.
- Yoshinari. T., Hynes, R. and Knowles, R.: Acetylene inhibition of nitrous oxide reduction and
 measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9, 177-183,
 1014 1977.
- 1015
- 1016
- 1017
- 1018

Depth	BD¶‡	TOC	TON	FC [†]	WP [†]	$\mathbf{K_{sat}}^{\dagger}$	pН	Sand [‡]	Silt [‡]	Clay [‡]	CF
m	Mg m ⁻³	g kg ⁻¹	g kg ⁻¹	$m^{3}m^{-3}$	$m^{3} m^{-3}$	mm h ⁻¹		g kg ⁻¹	g kg ⁻¹	g kg ⁻¹	$m^{3} m^{-3}$
0.01	1.21	27.2	2.9	0.38	0.22	3.4	7	240	330	430	0
0.03	1.21	27.2	2.9	0.38	0.22	3.4	7	240	330	430	0
0.07	1.21	27.2	2.9	0.38	0.22	3.4	7	240	330	430	0
0.13	1.24	27.2	2.9	0.39	0.23	3.4	7	240	330	430	0
0.28	1.28	20.2	2.1	0.40	0.24	2.4	7	180	380	440	0
0.6	1.28	11.6	1.1	0.40	0.24	1.4	7	180	380	440	0
0.7	1.28	11.6	1.1	0.40	0.24	1.4	7	180	380	440	0
0.9	1.28	9	0.9	0.40	0.24	1.4	7	180	380	440	0
1.5	1.28	6	0.6	0.40	0.24	1.4	7	180	380	440	0.1

1019 **Table 1**. Key soil properties of the Eutri-Stagnic Cambisol at Oensingen as used in *ecosys*.

1020 1.5 1.28 6 0.6 0.40 0.24 1.4 7 180 380 440 0.1abbreviations BD: bulk density, TOC and TON: total organic C and N, FC: field capacity, WP: wilting

1021 point, K_{sat}: saturated hydraulic conductivity, CF: coarse fragments.

¹⁰²² [‡] BD, TOC and texture were determined from soil cores taken in 2001 and 2006. Details are given in
¹⁰²³ Leifeld et al. (2011).

[†] FC, WP and K_{sat} were estimated from BD, TOC and texture according to Saxton et al. (1996) and Saxton and Rawls (2006).

1026

1027

1028

Year	Plant Management		Soil Management						
	Date Management		Date	Management	Amount (g m ⁻²)				
					${\sf NH_4}^+$	NO ₃	ON	OC	
2001			07 May	tillage					
			10 May	tillage					
	11 May	planting	15 June	mineral fertilizer	1.5	1.5			
	1 July	harvest	12 July	mineral fertilizer	1.5	1.5			
	8 Aug.	harvest	16 Aug.	mineral fertilizer	1.15	1.15			
	12 Sep.	harvest							
	31 Oct.	harvest							
2002			12 Mar.	mineral fertilizer	1.5	1.5			
	15 May	harvest	22 May	manure slurry	4.2		2.8	31.2	
	25 June	harvest	1 July	mineral fertilizer	1.75	1.75			
	15 Aug.	harvest	18 Aug.	manure slurry	5.9		5.3	49.6	
	18 Sep.	harvest	30 Sep.	mineral fertilizer	1.5	1.5			
	07 Dec.	harvest							
2003			18 Mar.	manure slurry	5.9		5.3	61.1	
	30 May	harvest	02 June	mineral fertilizer	1.5	1.5			
	04 Aug.	harvest	18 Aug.	manure slurry	6.3		1.9	19.0	
	13 Oct.	harvest							
2004			17 Mar.	manure slurry	5.0		1.5	19.5	
	11 May	harvest	17 May	mineral fertilizer	1.5	1.5			
	25 June	harvest	01 July	manure slurry	5.5		0.5	9.9	
	28 Aug.	harvest	31 Aug.	mineral fertilizer	1.5	1.5			
	03 Nov.	harvest							
2005			29 Mar.	manure slurry	6.7		3.1	42.0	
	10 May	harvest	17 May	mineral fertilizer	1.5	1.5			
	27 June	harvest	05 July	manure slurry	5.0		3.5	59.6	
	29 Aug.	harvest	16 Sep.	mineral fertilizer	1.5	1.5			
	24 Oct.	harvest							
2006	24 May	harvest							
	05 July	harvest	13 July	manure slurry	4.7		1.4	12.5	
	12 Sep.	harvest	27 Sep.	manure slurry	4.4		1.3	13.6	
	26 Oct.	harvest	30 Oct.	manure slurry	6.4		3.2	57.8	

Table 2. Plant and soil management operations at the Oensingen intensively managed grassland from 2001 to 2009.

2007			03 Apr.	manure slurry	5.2		4.6	75.1
	26 Apr.	harvest	03 May	mineral fertilizer	1.5	1.5		
	06 July	harvest	13 July	manure slurry	4.9		1.8	45.9
	23 Aug.	harvest	28 Aug.	mineral fertilizer	1.5	1.5		
	11 Oct.	harvest	24 Oct.	manure slurry	4.6		3.0	38.9
	19 Dec.	terminate	19 Dec.	plowing				
2008			01 May	tillage				
			04 May	tillage				
	05 May	planting						
	01 July	harvest	10 July	mineral fertilizer	1.5	1.5		
	29 July	harvest	07 Aug.	mineral fertilizer	1.5	1.5		
	08 Sep.	harvest	19 Sep.	manure slurry	2.9		0.5	8.6
	07 Nov.	harvest						
2009			07 Apr.	mineral fertilizer	1.5	1.5		
	01 May	harvest	12 May	manure slurry	4.4		1.6	26.0
	16 June	harvest	06 Aug.	manure slurry	3.3		1.2	19.0
	29 July	harvest						
	07 Sep.	harvest	15 Sep.	mineral fertilizer	6.5(urea)			
	20 Oct.	harvest						

Table 3: Intercepts (*a*), slopes (*b*) coefficients of determination (\mathbb{R}^2), ratios of mean squares for regression vs. error (F) and number of data pairs from regressions of (a) log-transformed 4-hour averages of N₂O fluxes (mg N m⁻² h⁻¹) modelled vs. measured during each year from 2004 to 2009, and (b) total N₂O fluxes (mg N m⁻²) modelled vs. measured during emission events following each fertilizer or manure application from 2004 to 2009 (see Fig. 3) at the Oensingen intensively managed grassland.

Year	a	b	\mathbf{R}^2	\mathbf{F}^{\dagger}	п
(a)		·			
2004	$1.25 \pm 0.88 \ge 10^{-5}$	0.49 ± 0.06	0.08	69	818
2005	$1.63 \pm 0.43 \times 10^{-5}$	0.59 ± 0.03	0.24	368	1173
2006	$4.28 \pm 0.44 \text{ x } 10^{-5}$	1.04 ± 0.08	0.14	155	948
2007	$1.21 \pm 0.33 \times 10^{-5}$	0.67 ± 0.02	0.35	989	1794
2008	$1.44 \pm 0.51 \ge 10^{-5}$	0.44 ± 0.03	0.08	157	1703
2009	$-0.03 \pm 0.25 \ge 10^{-5}$	0.71 ± 0.02	0.49	1574	1614
(b)					
2004 - 2009	$28 \pm 9 \text{ mg N m}^{-2}$	0.67 ± 0.13	0.54	27	23

[†] All values of F were highly significant (P < 0.001).

Table 4. Annual gross primary productivity (GPP), ecosystem respiration (R_e), net ecosystem productivity (NEP = GPP - R_e), harvest, net biome productivity (NBP) and N₂O emissions derived from EC or chambers and modelled (M) with current land management (Table 2), and with defoliation increased so that LAI remaining after harvesting was reduced by one-half (1/2), with defoliation increased and delayed by 5 days (1/2 + 5d),. Positive values indicate uptake, negative values emissions.

Year		2002	2003	2004	2005	2006	2007	2008	2009
Precip.(mm)		1478	817	1158	966	1566	1328	1188	1004
MAT (°C)		9.56	9.58	8.92	8.67	9.30	9.59	9.30	9.48
GPP	EC	2159	1773	2058	1766	1817	2102	1455	2119
$(g C m^{-2} y^{-1})$	M: current	2214	1836	2220	2111	1953	2539	1419	1852
	: 1/2	2064	1764	2054	1969	1865	2285	1305	1705
	: 1/2 + 5d	2014	1774	2076	1966	1771	2277	1225	1686
R _e	EC	-1490	-1558	-1541	-1565	-1577	-1684	-1450	-1657
$(g C m^{-2} y^{-1})$	M: current	-1560	-1421	-1704	-1679	-1680	-1935	-1366	-1373
	: 1/2	-1457	-1345	-1569	-1572	-1579	-1714	-1212	-1259
	: 1/2 + 5d	-1458	-1350	-1541	-1517	-1519	-1679	-1183	-1235
NEP	EC	669	215	517	201	240	418	5	462
$(g C m^{-2} y^{-1})$	M: current	654	415	516	432	273	604	53	479
	: 1/2	607	419	485	397	286	571	93	446
	: 1/2 + 5d	556	414	535	449	252	598	42	451
Harvest	field	462	241	401	247	232	448	293	532
$(g C m^{-2} y^{-1})$	M: current	570	314	525	460	421	690	308	487
	: 1/2	561	360	465	497	455	678	314	484
	: 1/2 + 5d	537	353	579	513	446	686	262	473
C inputs		81	80	29	102	84	160	9	45
NBP	field	288	54	145	56	92	130	-279	-25
(g C m ⁻² y ⁻¹)	M: current	165	181	20	74	-64	74	-246	37
	: 1/2	127	139	49	2	-85	53	-212	7
	: 1/2 + 5d	101	141	-15	38	-110	72	-211	23
N inputs		27.6	22.5	18.5	24.3	21.4	30.1	9.4	20.0
N ₂ O	chamber								
(g N m ⁻² y ⁻¹)	upper bound	-0.130	-0.050	-0.060	-0.230	-0.020	-0.280	-0.480	-0.510
	lower bound	-0.450	-0.180	-0.180	-0.320	-0.060	-0.350	-0.620	-0.680
	M: current	-0.302	-0.209	-0.183	-0.193	-0.220	-0.281	-0.326	-0.366
	: 1/2	-0.269	-0.215	-0.250	-0.249	-0.318	-0.312	-0.335	-0.318
	: 1/2 + 5d	-0.284	-0.234	-0.347	-0.352	-0.273	-0.348	-0.327	-0.395

Table 5. Annual N₂O emissions modelled with current field management (Table 2) and soil properties (Table 1) (current), with soil bulk density (BD) increased by 5% and 10% to a depth of 3 cm, and with the Michaelis-Menten constants for reduction of O₂ (K_{O_2}) and of NO₃⁻ and NO₂⁻ (K_{NO_x}) halved or doubled from those used in the model.

Year		2002	2003	2004	2005	2006	2007	2008	2009
Precip.(mm)		1478	817	1158	966	1566	1328	1188	1004
MAT (°C)		9.56	9.58	8.92	8.67	9.30	9.59	9.30	9.48
N ₂ O	current	-0.302	-0.209	-0.183	-0.193	-0.220	-0.281	-0.326	-0.366
(g N m ⁻² y ⁻¹)	BD + 5%	-0.352	-0.213	-0.218	-0.199	-0.309	-0.332	-0.358	-0.372
	BD + 10%	-0.334	-0.235	-0.231	-0.236	-0.336	-0.374	-0.424	-0.371
	<i>K</i> ₀₂ x 0.5	-0.250	-0.179	-0.154	-0.159	-0.160	-0.216	-0.276	-0.349
	<i>K</i> _{O2} x 2.0	-0.390	-0.263	-0.221	-0.247	-0.315	-0.385	-0.381	-0.468
	<i>K</i> _{NOx} x 0.5	-0.382	-0.261	-0.265	-0.267	-0.262	-0.378	-0.432	-0.457
	<i>K</i> _{NOx} x 2.0	-0.234	-0.163	-0.126	-0.132	-0.126	-0.208	-0.232	-0.288

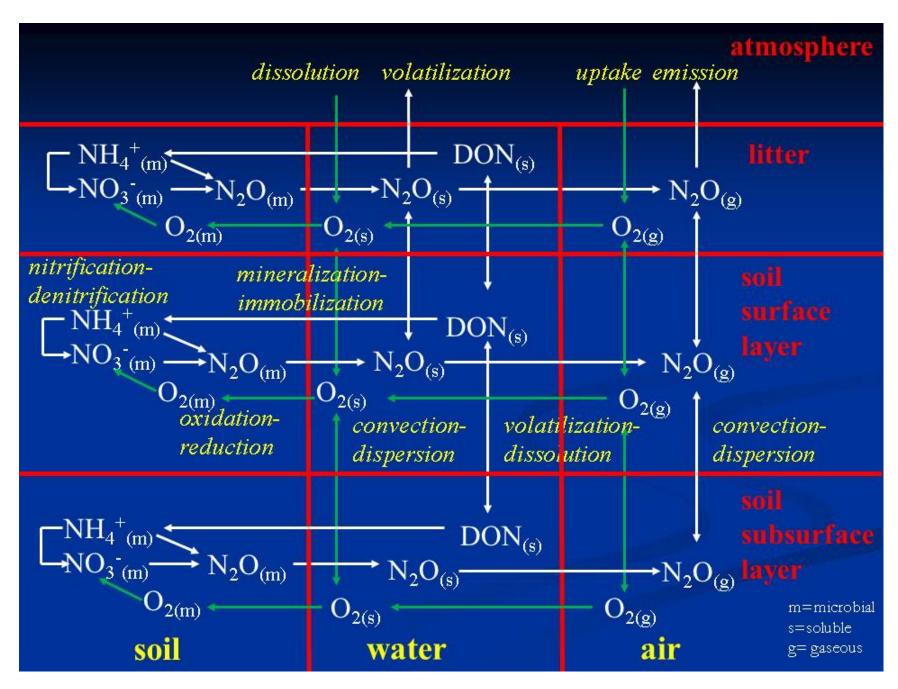
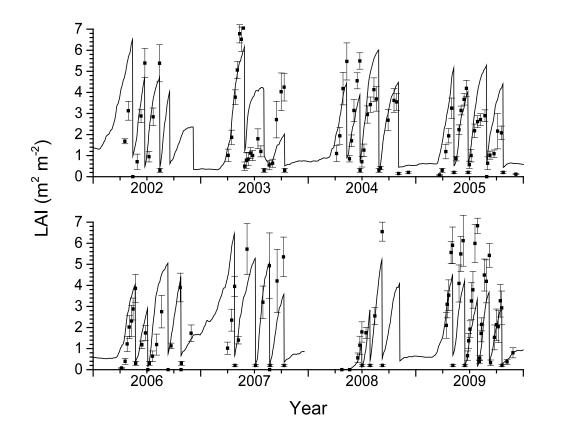
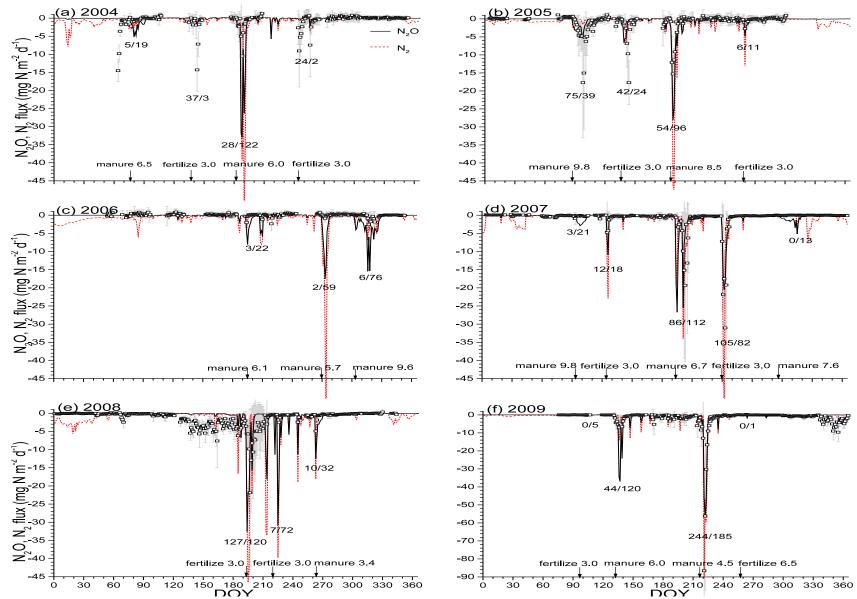
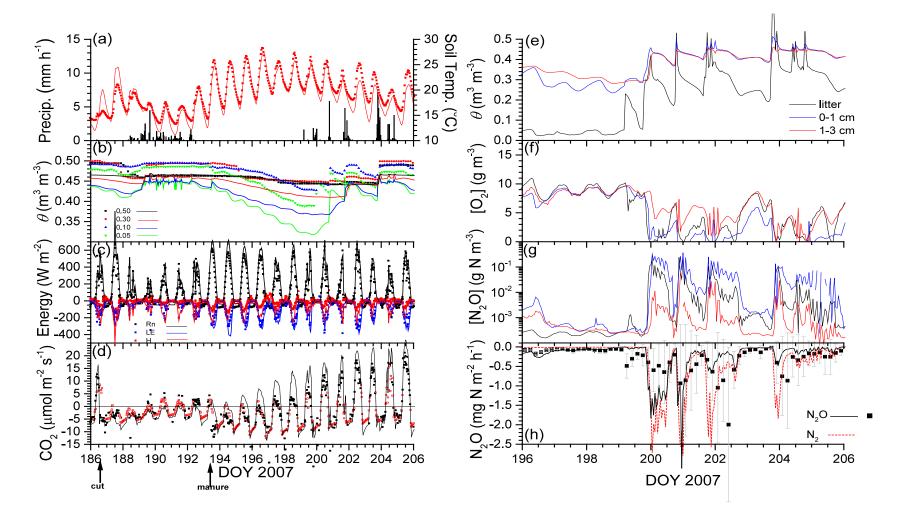
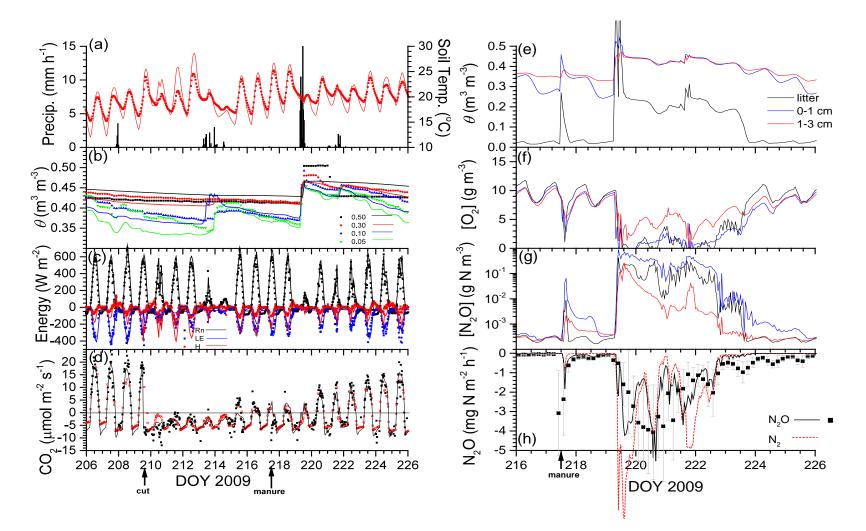
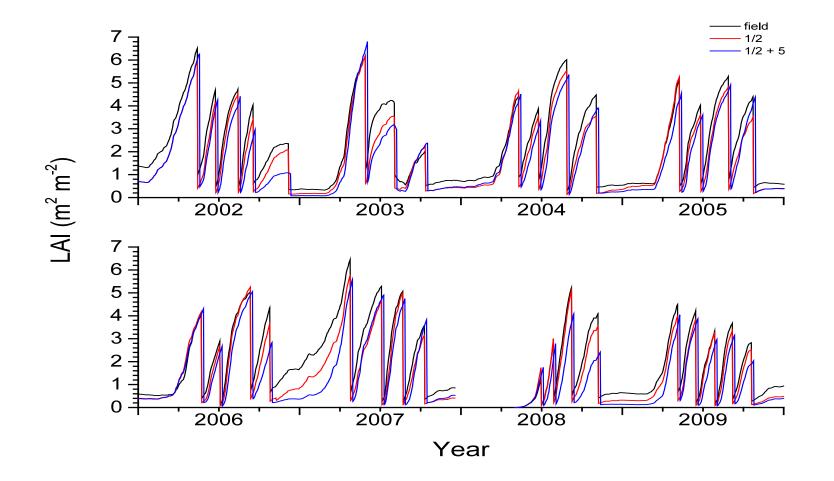
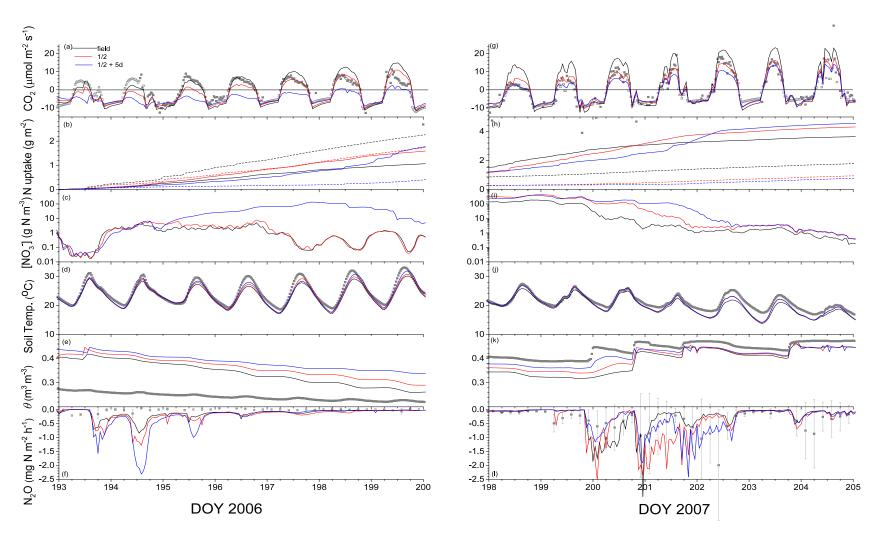


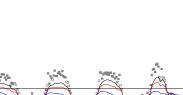
Fig. 1: Summary of key processes governing generation and emission of N₂O as represented in *ecosys*.


Fig. 2. LAI measured (symbols) and modelled (lines) from 2002 through 2009 at the Oensingen intensively managed grassland.


Fig. 3. Daily-aggregated N₂O emissions measured (symbols) and N₂O and N₂ emissions modelled (lines) from 2004 through 2009 at the Oensingen intensively managed grassland. Numbers above and beside each fertilizer or manure addition indicate total measured/modelled N₂O-N emitted during emission events (mg N m⁻²), and total N applied (g N m⁻²). Negative values indicate effluxes to the atmosphere.


Fig. 4. (a) Precipitation and soil temperature at 0.05 m, (b) soil water content (θ) at 0.05, 0.10, 0.30 and 0.50 m, (c) energy and (d) CO₂ fluxes measured (closed symbols), gap-filled (open symbols) and modelled (lines) during 20 days from harvest (cut) to the end of the emission event following manure application (manure) in July 2007. (e) θ , (f and g) aqueous concentrations of O₂ and N₂O modelled in the surface litter and at 0.01 and 0.02 m in the soil, and (h) N₂O and N₂ fluxes measured (symbols) and modelled (lines) during the last 10 days of this period when the emission event occurred. For fluxes, positive values represent influxes to the soil, negative values effluxes to the atmosphere.


Fig. 5. (a) Precipitation and soil temperature at 0.05 m, (b) soil water content (θ) at 0.05, 0.10, 0.30 and 0.50 m, (c) energy and (d) CO₂ fluxes measured (closed symbols), gap-filled (open symbols) and modelled (lines) during 20 days from harvest (cut) to the end of the emission event following manure application (manure) in August 2008. (e) θ , (f and g) aqueous concentrations of O₂ and N₂O modelled in the surface litter and at 0.01 and 0.02 m in the soil, and (h) N₂O and N₂ fluxes measured (symbols) and modelled (lines) during the last 10 days of this period when the emission event occurred. Positive flux values represent influxes to the soil, negative values effluxes to the atmosphere.

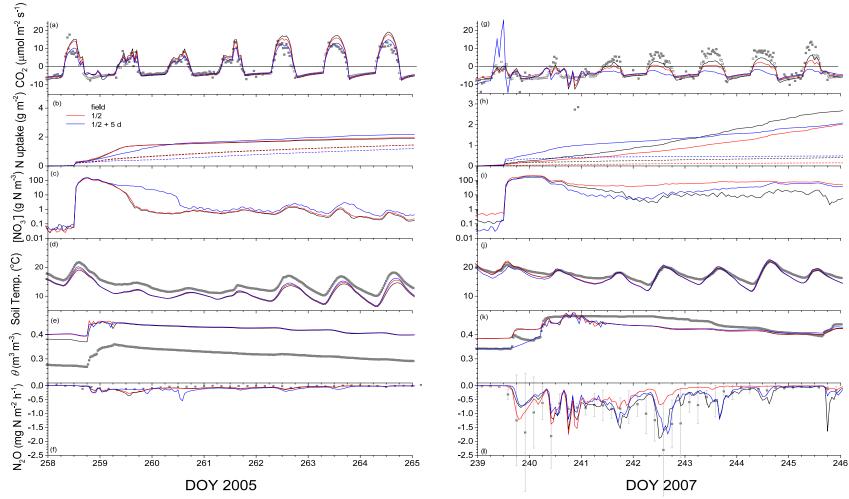
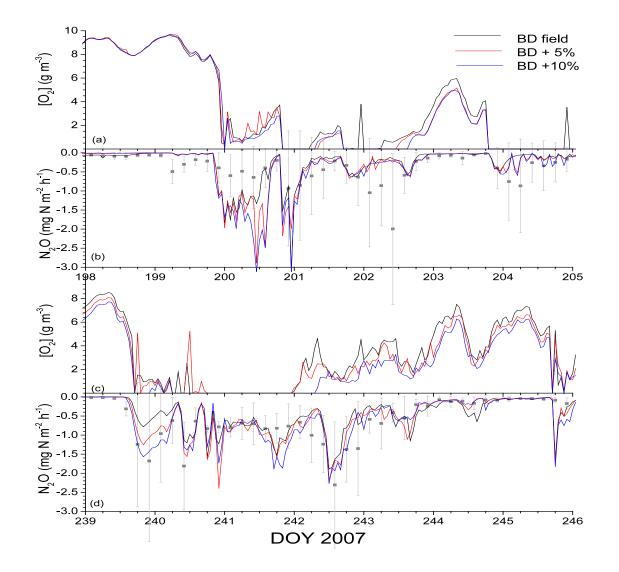


Fig. 6. LAI modelled from 2002 through 2009, with LAI after each cut reduced to one-half of that estimated from the field experiment without or with a delay of 5 days at the Oensingen intensively managed grassland.


Fig. 7. (a,g) CO₂ fluxes, (b,h) cumulative NH₄⁺ (dashed) and NO₃⁻ (solid) uptake since manure application, (c,i) aqueous NO₃⁻ concentrations at 0 - 1 cm, (d,j) T_s and (e,k) θ at 5 cm, and (f,l) N₂O fluxes measured (symbols) and modelled (lines) with LAI after each cut reduced to one-half of that estimated from the field experiment without or with a delay of 5 days during emission events following manure applications on DOY 194 in (a-f) 2006 and (g-l) 2007 (see Table 2). For fluxes, positive values represent influxes to the soil, negative values effluxes to the atmosphere.

(g)

Fig. 8 (a,g) CO₂ fluxes, (b,h) cumulative NH_4^+ (dashed) and NO_3^- (solid) uptake since fertilizer application, (c,i) aqueous $NO_3^$ concentrations at 0 - 1 cm, (d,j) T_s and (e,k) θ at 5 cm, and (f,l) N₂O fluxes measured (symbols) and modelled (lines) with LAI after each cut reduced to one-half of that estimated from the field experiment without or with a delay of 5 days during emission events following fertilizer applications on DOY 259 in 2005 (a-f) and DOY 240 in 2007 (g-l) (see Table 2). For fluxes, positive values represent influxes to the soil, negative values effluxes to the atmosphere.

Fig. 9. (a,c) Aqueous O_2 concentrations, and (b,d) N_2O fluxes measured (symbols) and modelled (lines) with bulk density (BD) from field measurements, and with BD raised by 5% or 10% following (a,b) manure application on DOY 194 and (c,d) fertilizer application on DOY 240 in 2007 (see Table 2). For fluxes, positive values represent influxes to the soil, negative values effluxes to the atmosphere.