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Answers to the referees: 1 

Referee #1 2 

P6L14, P7L8, P19L24-25, P22L14, P25L2, Table1 All the comments concerning 3 

typographic issues, units and references have been dealt with. 4 

P6L18-19 The properties indicated are from the topsoil. The study concerns just the topsoil 5 

(0-25 cm), and this was so far poorly specified in the paper as pointed out also by referee #2. 6 

This is now described in the text. 7 

P6L2 Aboveground byproducts are removed. Belowground byproducts are represented only 8 

by roots when the rhizome is harvested (e.g. potatoes or beetroots), and are incorporated back 9 

into the soil. This is now described in the text. 10 

P7L8 This has been corrected. 11 

P10L15-16 If the referee refers to the different kinetic fractionation of isotopes in maize 12 

compared to C3 plants due to the malate-aspartate pathway this should not influence the 
14

C 13 

signature because of 
13

C normalization. The 
13

C normalization is a standard procedure in 
14

C 14 

data reporting, and has been considered in the manuscript. The 
13

C data are used to take care 15 

of any fractionation due to chemical kinetic effects and to filter these effects out from the 
14

C 16 

signal. This is true also for the mechanism associated to the photosynthetic pathways. 17 

P13L7 Order of supplements has been rearranged. 18 

P13L21-22 Notations have been standardized. 19 

P17L4-18 The indicated section has been moved as suggested. 20 

Figure3 The letters refer to the different parameters, as indicated also on the y axis. Letters to 21 

indicate subpanels have been utilized as best practice, although they are not utilized in the 22 

text. We believe them to be useful for future references. This is now specified in the caption. 23 

Figure9 Caption is wrong, referring to a former version of the same figure. We apologize for 24 

the mistake. The panels are now referring to structure I (A), II (B), III (C), IV (D) and V (E). 25 

This has been modified. 26 

  27 
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Referee#2 1 

Regarding the choice of using recursive equations rather than ODEs, this is motivated by 2 

convenience in the implementation. This choice allowed us to run a single parameter set in a 3 

way that was much faster than by utilizing at each run an ODE solver, therefore helping 4 

greatly our study since this reduced the time for a single run of the calibration to few hours. 5 

The choice of running the equation in recursive steps helps also to simplify the 6 

implementation of the recent atmospheric 
14

C profile since 1950 (which is highly nonlinear 7 

and requires the model to run in steps anyway). One of the advantages of a model on the 8 

minimalistic side like ICBM is that there is an analytical solution, which has been given in the 9 

form of recurrence equation by Kätterer (2004). Since this solution is analytical and not an 10 

approximated numerical solution (and it is therefore independent from the parameter set), the 11 

results are consistent. 12 

The thickness of the soil considered is for sure a crucial parameter, and we forgot to describe 13 

this detail in the text. The depth considered was always 25 cm, since here we aimed at 14 

modelling the topsoil influenced by the cultivation practices. The mechanical ploughing in 15 

ZOFE is done down to that depth. This detail is now in the text. 16 

The depth is probably one of the main reasons for the difference in the MRT estimate of the 17 

"old" pool as compared to other studies, since we are not considering deep layers where SOC 18 

is stabilized by many processes and thousands of years old. Eventually also the definition of 19 

the pools, which is dependent on the model structure chosen, should be considered as a 20 

possible concurrent explanation. But in this case we believe the main point to consider is the 21 

depth, as pointed out by the referee, and it is now understandable by the reader. 22 

The cost function utilized was the default likelihood function in JAGS and/or WinBUGS 23 

framework (it refers to the likelihood of the parameters given the observations and it is 24 

Gaussian) as well as the default search algorithm (a basic Metropolis-Hastings search). This is 25 

not better specified in the text.  26 

The time series (observations) are shown entirely in Figures 6 and 7. 27 

 28 

 29 

 30 
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Specific comments: 1 

1 and 2) Thanks for the comments. This has been modified, and uncertainty is now reported 2 

also in the abstract. 3 

3) The time span and frequency of the measurements is irregular, as often the case in multi-4 

decadal experiments. The time series are configured therefore as irregular time series, and are 5 

treated accordingly. It is partially described in the text and in the relative references, but it is 6 

shown graphically in detail in Figures 6 and 7, where each measurement point is represented. 7 

The irregularity of time series is now explicit in the text. 8 

4) That is correct, “i” denotes the inputs to the “young” pool only, and this is now explained 9 

in the text.  10 

The idea of considering inputs directly in the "old" pool is interesting, but it might stem from 11 

a different understanding of the pool definition from the one in this manuscript. Since 12 

"young" and "old" are in these kinds of models defined essentially by their MRT, all the 13 

material is supposed to go through some sort of "humification" before passing to the "old" 14 

pool. This is valid even more for fast cycling material like exudates, but it seems valid also 15 

for fine roots in pores, for example. In this particular conceptual model, if some input C 16 

material is young this very basic property inherent to the material (its age) configures it 17 

automatically as grouped into the "young" pool. The development of SOC models with more 18 

mechanistic definition of the pools would allow among other things also for the incorporation 19 

and test of such hypothesis, and such development is indeed a fascinating idea although 20 

outside the scope of this manuscript. 21 

5) Figure has been modified (by increasing the limits on the y axis) 22 

6) This is indeed a comment straight to the point. The authors agree, and expect exactly the 23 

same thing and will proceed with testing also this hypothesis in the future. More specifically, 24 

though, adding more data is expected in any case to improve the resolution of the model, but 25 

one of the problems we would face is how to define vertical processes and to decide on their 26 

level of abstraction. The increased model complexity when adding one spatial dimension will 27 

drive the results in the opposite direction (reducing the definition and increasing parameter 28 

uncertainty), and the final result will be determine both by the added complexity (causing less 29 

definition) and the added information (causing more definition). And the way we will 30 

represent the spatial processes will also influence the result. In general, though, we expect 31 
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results in line with this statement. This view is now represented in the text, at the end of the 1 

discussion. 2 

7) Captions for Figure 6 and 7 have been made more explicit. The possibility of a vertically 3 

resolved model is now mentioned explicitly in the text (discussion section) as a possible 4 

future development. 5 
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Abstract 12 

Soil organic carbon (SOC) dynamics result from different interacting processes and controls 13 

on spatial scales from sub-aggregate to pedon to the whole ecosystem. These complex 14 

dynamics are translated into models as abundant degrees of freedom. This high number of not 15 

directly measurable variables and, on the other hand, very limited data at disposal result in 16 

equifinality and parameter uncertainty.  17 

Carbon radioisotope measurements are a proxy for SOC age both at annual to decadal (bomb 18 

peak based) and centennial to millennial time scales (radio decay based), and thus can be used 19 

in addition to total organic C for constraining SOC models. By considering this additional 20 

information, uncertainties in model structure and parameters may be reduced. 21 

To test this hypothesis we studied SOC dynamics and their defining kinetic parameters in the 22 

ZOFE experiment, a >60-years old controlled cropland experiment in Switzerland, by 23 

utilising SOC and SO
14

C time-series. To represent different processes we applied five model 24 

structures, all stemming from a simple mother model (ICBM): I) two decomposing pools, II) 25 

an inert pool added, III) three decomposing pools, IV) two decomposing pools with a 26 

substrate control feedback on decomposition, V) as IV but with also an inert pool. These 27 

structures were extended to explicitly represent total SOC and 
14

C pools.  28 

mailto:Lorenzo.Menichetti@agroscope.admin.ch
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The use of different model structures allowed us to explore model structural uncertainty and 1 

the impact of 
14

C on kinetic parameters. We considered parameter uncertainty by calibrating 2 

in a formal Bayesian framework. 3 

By varying the relative importance of total SOC and SO
14

C data in the calibration, we could 4 

quantify the effect of the information from these two data streams on estimated model 5 

parameters. The weighing of the two data streams was crucial for determining model 6 

outcomes, and we suggest including it in future modelling efforts whenever SO
14

C data are 7 

available. 8 

The measurements and all model structures indicated a dramatic decline in SOC in the ZOFE 9 

experiment after an initial land use change in 1949 from grass- to cropland, followed by a 10 

constant but smaller decline. According to all structures, the three treatments (control, mineral 11 

fertilizer, farmyard manure) we considered were still far from equilibrium. The estimates of 12 

mean residence time (MRT) of the C pools defined by our models were sensitive to the 13 

consideration of the SO
14

C data stream. Model structure had a smaller effect on estimated 14 

MRT, which ranged between 5.9±0.1 and 4.2±0.12 years and 78.9±0.13 and 98.89±0.15 years 15 

for young and old pool, respectively, for structures without substrate interactions. 16 

The simplest model structure performed the best according to information criteria, validating 17 

the idea that we still lack data for mechanistic SOC models. Although we could not exclude 18 

any of the considered processes possibly involved in SOC decomposition, it was not possible 19 

to discriminate their relative importance. 20 

 21 

1 Introduction 22 

The dynamics of soil organic carbon (SOC) are directly linked to major soil ecosystem 23 

services such as soil fertility, resistance to erosion, C sequestration and soil CO2 emissions 24 

(Lal, 2004). Understanding such dynamics is therefore of paramount importance for the 25 

challenges of the present century (IPCC, 2014). In particular, the precise quantification of 26 

SOC cycles would allow for a monetization of the respective ecosystem services, and is a 27 

crucial step to overcome the failure of this market (Alexander et al., 2015). 28 

However, the time scale of SOC decomposition, from years to millennia, makes it difficult to 29 

design experiments and requires gathering indirect answers through analysis of monitoring 30 

programs, long-term experiments and SOC turnover models. Most of these models, for 31 
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example among the most well-known RothC (Coleman et al., 1997), Century (Parton et al., 1 

1993) and Yasso (Liski et al., 2005), are built around multiple conceptual pools decomposing 2 

with first-order kinetics. This basic structure works well to simulate decadal to centennial 3 

time scales, but shows problems with longer (when considering more protected organic 4 

matter, e.g. Trumbore and Czimczik, 2008) or shorter (when considering microbial dynamics, 5 

e.g. Schimel and Weintraub, 2003) time scales. 6 

Formally, these models could be extended in complexity to represent more accurately all the 7 

processes involved in SOC decomposition that we are aware of. However, a purely 8 

mechanistic modelling approach often fails because the lack of data in respect to the 9 

complexity of the system limits the number of latent variables (all the variables that cannot be 10 

directly measured) that we can infer. A high system complexity, as characterised by multiple 11 

interactions between parameters, causes equifinality problems (Beven, 2006). Representing 12 

such interactions in a way that is both accurate and abstract enough to realistically consider 13 

the availability of data is termed the bias/variance dilemma (Briscoe and Feldman, 2011). 14 

This dilemma represents the most critical point in producing reliable estimates in SOC 15 

modelling. 16 

The struggle of contemporary SOC models becomes more evident when including SO
14

C 17 

data. When time series for both total SOC and SO
14

C are available, they may suggest 18 

contradictory dynamics (Shirato et al., 2013). This confirms the high uncertainty in defining 19 

contemporary SOC model structures and at the same time raises the question of how to use 20 

these two sources of information. 21 

Methods for the inclusion of radiocarbon measurements in SOC models are currently actively 22 

developedunder active development. While most SOC models consider 
14

C implicitly through 23 

the use of mass balance equations, some attempts have been made to consider 
14

C explicitly 24 

(Ahrens et al., 2014) as a separate set of C molecules. A similar approach has been proposed 25 

also for 
13

C by Ågren et al. (1996). The explicit approach offers more flexibility in the 26 

representation of processes that might influence SO
14

C at the price of a minimal increase in 27 

model complexity. Nevertheless, even with explicit consideration of 
14

C, modelling results are 28 

still not well determined (Ahrens et al., 2014). 29 

Yet a few studies have considered SO
14

C data within an uncertainty analysis framework. 30 

Braakhekke et al. (2014) and Ahrens et al. (2014) both considered model uncertainty, but 31 

focused on a single model structure. However, both parameter uncertainty and structural 32 
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uncertainty are significant problems endemic to environmental models (Beven, 2002). 1 

Moreover, in both these studies the model sensitivity to radiocarbon was limited to two cases, 2 

either including or excluding SO
14

C data. The inclusion of SO
14

C data can modify the model 3 

space substantially (Ahrens et al., 2014) and in a non-linear way. The weight assigned to 4 

SO
14

C and SOC is a crucial parameter influencing strongly the modelling results, and the 5 

effect of this parameter should, therefore, be studied more in detail. 6 

In order to consider the effect of 
14

C data with respect to structural uncertainty, we calibrated 7 

a set of SOC models over total SOC time series from the ZOFE long-term field experiment 8 

(Oberholzer et al., 2014). In addition, we made use of SO
14

C measurements in key positions 9 

of the time series. Model structures were built around ICBM, a basic two-pool SOC 10 

decomposition model (Andrén and Kätterer, 1997), and calibrated within a Markov chain 11 

Monte Carlo framework to take care of equifinality and parameter uncertainty. We considered 12 

the possibility of substrate interactions by introducing a control term on decomposition 13 

influenced by the amount of fresh substrate available. To consider the effect of total SOC and 14 

SO
14

C on the calibration, we assigned a relative weight to the two data streams and calibrated 15 

model structures across a gradient of such weights.  16 

The three research questions driving this work are:  17 

 How will the inclusion of 
14

C data influence the SOC parameters estimated from a multi-18 

pool model?  19 

 What are the reasons for the observed discrepancy between modelled total SOC and 20 

SO
14

C dynamics, and which are the most important ones?   21 

 Can we model SOC and SO
14

C jointly in a way that is minimalistic and flexible and yet 22 

effective? 23 

These research questions generated the following, partially concurrent, hypotheses:  24 

1. An underestimation of the age of slow C due to the presence of recalcitrant C (e.g. 25 

black C, Leifeld, 2008) or C protected through some other mechanisms is one possible reason 26 

for the observed discrepancy between SOC and SO
14

C modelled kinetics. Thus, representing 27 

such slow C in the model as inert or particularly slow pool will improve model performances. 28 

2. An interaction between substrate pools is a process often neglected in C models but 29 

which can contribute the observed discrepancy. Representing this process in the model can 30 

improve model performances. 31 



 10 

3. Is it possible to discriminate between the above mentioned processes? 1 

To answer our questions we compared the results from different model structures, each 2 

focusing on slightly different processes. By comparing different model structures we also 3 

aimed at understanding more realistically SOC kinetics in the ZOFE experiments by 4 

acknowledging some model structural uncertainty. 5 

 6 

2 Material and methods 7 

2.1 Experimental site 8 

The data utilized in this study have been collected in the Zürich Organic Fertilization 9 

Experiment (ZOFE, Oberholzer et al. 2014), located in Switzerland at the Agroscope 10 

premises in Reckenholz (Zürich), at 47°25’37” N, 8°31”6’ E. The experiment has been 11 

initiated in 1949 and comprises 12 different fertilization treatments, among which we selected 12 

three (Table 1): the control treatment (not receiving any fertilizer input), the mineral 13 

fertilization treatment (receiving yearly 139 N, 28 P, 167 K, 56 kg ha
-1

 from 1981 and 108 N, 14 

61 P, 318 K, 12 kg ha
-1

 in the period 1949-1980) and the farmyard manure (FYM) treatment 15 

(receiving yearly 91 N, 24 P, 65 K, 31 kg ha
-1

 from organic fertilizer and, bi-annually, 1 Mgt 16 

organic carbon from FYM). The site was low-intensity permanent grassland before 1949. The 17 

experiment is ploughed to an approximate depth of 25 cm, and therefore we considered for all 18 

the subsequent analyses only the portion 0-25 cm. Soil is a Luvisol (WRB, 2007), carbonate-19 

free, with 14% clay, 27% silt and 57% sand. Organic C content was 1.3% at the beginning of 20 

the experiment, and soil pH (H2O) was 6.5. The crop rotation has a period of 8 years, and 21 

includes winter wheat/intercrop-maize-potatoes-winter wheat/intercrop-maize-summer 22 

barley-ley-ley. Main products and aboveground parts of by-products of crops are were always 23 

removed. Belowground residues, for example in the case of beetroots or potatoes, where 24 

incorporated into the soil as were roots. 25 

2.2 Data collection and soil analyses 26 

The SOC dataset comes from Oberholzer et al. (2014). For modelling, the calibration errors 27 

for both SOC and SO
14

C has been expressed as coefficient of variation (CV). The CV of the 28 

SOC measurements has been measured independently in 2012 (data not published) and varied 29 

between 0.080 and 0.086 for the different treatments. The SO
14

C dataset comes from Leifeld 30 
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and Mayer (2015). The CV in 2012 varied in this case between 0.017 and 0.029, and has been 1 

extrapolated to the whole SO
14

C time series. All radiocarbon concentrations utilized here are 2 

expressed in pMC as described in Stuiver and Polach (1977). 3 

In the SO
14

C time series we assumed that the pre-bomb SOC was at equilibrium with the 4 

atmospheric isotopic value. Although the SO
14

C might slightly deviate from the 
14

C content 5 

of the atmosphere, the difference between any possible natural discrimination and the effect 6 

of the bomb peak is several orders of magnitude (Goslar et al., 2004) and we regard such a 7 

difference as negligible. In order to improve the calibration of the model in respect to the 8 

SO
14

C trend, we assumed a fourth SO
14

C point in year 1955 as corresponding to the 9 

atmospheric signature. All the time series referring to ZOFE are unevenly spaced, as often the 10 

case with multi-decadal experiments. 11 

We took the atmospheric 
14

C time series from the Schauinsland station (Levin, Ingeborg and 12 

Kromer, 2004; Levin et al., 2013), relatively close to our site (48 km). Radiocarbon values 13 

from May to August are commonly used to represent the vegetation’s signature (Levin , 14 

Ingeborg and Kromer 2004), but this implies the assumption of CO2 fixation only in late 15 

spring-summer. We calculated the difference in the time series with and without filtering out 16 

autumn-winter months, after a spline interpolation to regularize the time series, as 3.4 pMC 17 

(root mean squared error), representing a CV between 0.01 and 0.03. This we considered as 18 

negligible and used yearly averages instead. 19 

2.3 Calculation of C inputs 20 

The C inputs have been calculated with the C allocation coefficients proposed by Bolinder et 21 

al. (2007) and in case of potatoes by Walther et al. (1994). More details about the input 22 

calculations can be found in Oberholzer et al. (2014). 23 

Carbon allocation coefficients may differ between treatments. The potential error introduced 24 

by the nonlinear nature of the root/shoot factor (Bond-Lamberty et al., 2002) was considered 25 

negligible in our case due to conditions being close to optimal for plant growth at our site. 26 

The control treatment still stores as much SOC as treatments with full mineral fertilization 27 

(Oberholzer et al., 2014) and it was still considered to be far from causing extreme deviations 28 

from the selected root/shoot ratio. Another source of error in our estimate is inherent to 29 

extrapolating the original root-shoot relationship (Bolinder et al., 2007) to our soil. Such 30 

relationship was built on 168 samples reviewed from the literature of typical agricultural soils, 31 
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not different from our alluvial soil, and this error should therefore be small. Another possible 1 

error comes from the lack of estimates for C in form of root exudates. 2 

We considered the above uncertainties for the C allocation by introducing an error factor 3 

calibrated with a uniform prior distribution between 0.8 and 1.2.  4 

 5 

2.4 Five possible model structures for SOC  6 

The basic model (structure I) is the ICBM model developed by Andrén and Kätterer (1997). 7 

ICBM is a minimalistic model of the general SOC decomposition theory built around two 8 

SOC pools decomposing with first order kinetics. The simplicity of the model allows for a 9 

high degree of flexibility and makes it ideal for model structure explorations, hypotheses 10 

testing and model development.  11 

We used the model stepwise in its recursive form, as derived by Kätterer et al. (2004), in 12 

order to follow the highly nonlinear shape of the atmospheric 
14

C curve of the last century 13 

(Kurths et al., 1994). The dynamic system representing SOC is described by the following 14 

equations:  15 
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The SOC at time t is therefore calculated as:  20 

 )()()( ttt OYTot   (4) 21 

This system describes the evolution of two C pools, young (Y) and old (O) SOC, 22 

decomposing with rate Yk  and Ok . Their mean residence time (MRT) is defined by the 23 

reciprocal of the decomposition constants, or 
Yk

1
 and 

Ok

1
. The term i represenbts the inputs. 24 

The term φ describes the flux between the two pools, which is controlled by the humification 25 

coefficient 1h  that defines the amount of carbon that goes from Y to O. The term r aggregates 26 
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climatic and edaphic influence, and is calculated according to equations that follow in the 1 

text. The system of Eq. (1), (2), (3) and (4) can then be modified in order to represent 2 

different hypotheses. The model defined by the system of Eq. (1), (2), (3) and (4) is therefore 3 

calibrated for 4 unknown parameters, namely Yk , Ok , 1h   and the initial distribution of C 4 

between pools Y and O. 5 

A first modification (i.e. model structure II), already suggested by Juston (2012), adds a static 6 

pool representing SOC cycling at extremely slow decomposition rates. This pool is virtually 7 

inert and does not interact with the other pools or decomposes. Since the SOC age spectrum is 8 

likely distributed according to a logarithmic function of age (Bosatta and Ågren, 1999), this 9 

approximation may be reasonable for very slow SOC atoms. Eq. (4) can therefore be modified 10 

by adding an "inert" pool R as:  11 

 ROYTot ttt  )()()(  (5) 12 

This modification adds one parameter to the initial calibration to represent the initial value of 13 

R.  14 

A second modification, i.e. model structure III, introduces instead of a static third pool a 15 

decomposing third pool. The dynamics of the R pool in Eq. (5) now are similar to O in Eq. 16 

(2): 17 
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This modification adds two more unknown parameters to the initial model, namely Rk  and 2h  20 

(table 2).  21 

A third modification of structure I, i.e. model structure IV, modifies the basic set of equations 22 

with a single, aggregated term to account for the effect of ”young” substrates on microbial 23 

dynamics and therefore on decomposition rates. We modified Eq. (1) and (2) by adding a 24 

term α in the exponent of the decomposition function according to Wutzler and Reichstein 25 

(2013). Since the fluxes from the slower and older pool are small compared to the flux from 26 

the younger pool we approximated the system by neglecting the former in calculating α as 27 

already suggested by Wutzler and Reichstein (2013). The resulting equation defining α is:  28 
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where   represents a lumped term aggregating microbial limitations on decomposition 2 

(Wutzler and Reichstein 2013). The term α is introduced as a modifier for both Yk  and Ok . 3 

The denominator represents the maximum possible microbial uptake, which is the total flux 4 

from Y to O. When the flux from the young pool is below the value of   decomposition goes 5 

to zero, but when this flux increases above this value decomposition approaches Yk  and Ok .  6 

This model structure adds one more unknown parameter (Table 2). Finally, model structure II 7 

was extended by a substrate control as in structure IV to give structure V. All model 8 

structures were run in annual time steps. 9 

For model structures III and IV, with a substrate interaction term, an alternative MRT could 10 

be defined as 
k

1
. Although, since its discussion goes beyond the scope of this manuscript, 11 

we did not consider such definition for our results, we reported it in order to better explain the 12 

numerical effect of Eq. (8) on MRT.  13 

 14 

2.5 Model structure for SO14C 15 

Each model structure was extended by running a separate system of equations for SO
14

C. 16 

With the introduction of SO
14

C, the number of parameters increases (Table 2). We calculated 17 

the ratio of 
12

C
 /14

C from the pMC value according to the definitions given in Stuiver and 18 

Polach (1977), and calculated from this ratio the mass of 
14

C. We set the δ
13

C normalization 19 

factor at -26‰, close to that of a typical C3 soil. Most parameters were assumed to be the 20 

same as for SOC except for the initial distribution of the SO
14

C pools which was allowed to 21 

vary by using a normal prior distribution centered on the mean of SOC pools distribution and 22 

with a coefficient of variation of 0.1. 23 

The radiocarbon decay is considered by adding the term λ, corresponding to 
8265

1
 yr

-1
 24 

(Stuiver and Polach 1977), to all decomposition constants which then become poolk . 25 
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We did not consider a time lag between C assimilation and release into the SOC cycle 1 

because we are considering an agricultural system with annual plants. These plants have a 2 

physiological time lag of few hours (Kuzyakov and Gavrichkova, 2010) and eventual storage 3 

compounds are released at the end of the cultural cycle, which is in most cases less than one 4 

year. The years during rotation where leys are present are few (Oberholzer et al. 2014). With 5 

the annual resolution utilized in this study the time lag could therefore considered being 6 

negligible. 7 

The effect of the two data streams (SOC and SO
14

C) on the calibration of the model structures 8 

has been tested by introducing an arbitrary weighting term. This value, between 0 and 1, acts 9 

in the Bayesian calibration to modify the variance of the probability distributions representing 10 

the two time series. When the weighting term tends to one, the variance defining the SOC 11 

probability distribution tends to zero while for the SO
14

C probability distribution it tends to 12 

infinite (S1). This alters the weight of that particular time series on the joint posterior 13 

distribution of the calibrated values. The precision of the SO
14

C data stream tends to zero and 14 

so it does not influence the calibration. When the weighting tends to zero, the opposite 15 

applies. 16 

In order to better capture the effect of adding the information contained in the SO
14

C data 17 

stream in the calibration, we run all the calibrations over a gradient of such weights (with 18 

discrete values 0.05, 0.175, 0.350, 0.500, 0.650, 0.825, 0.950). 19 

Since the two data streams are not homogeneous, this weighting term is considered as an 20 

empirical evaluation of the sensitivity of the model. It is an effective method for assessing the 21 

relative effect of the information from either isotope and offers more detail compared to 22 

testing only for the two options (SOC only and SOC + SO
14

C) separately. 23 

 24 

2.6 Considering kinetic isotope effects in soil 25 

A possible differential loss of SO
14

C compared to SOC, caused by kinetic isotope effects 26 

(Tsai and Hu, 2013), is accounted for by the standard normalization of 
14

C values for δ
13

C. 27 

Since every process that possibly causes a variation of the 
13

C content from the moment that 28 

the CO2 was fixed might be assumed squared on 
14

C (Stuiver and Polach 1977), the 29 

normalization considers any process that can influence the C signature. This normalization 30 

relies on the assumption that the 
13

C/
14

C ratio in nature is stable, since every molecule 31 
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originates from atmospheric CO2 which is supposedly homogeneous in open air. The Suess 1 

effect, a change in the atmospheric isotopic composition triggered by the burning of fossil 2 

fuels (e.g. Francey et al., 1999), does not represent in this sense a problem since the 
14

C 3 

values are calibrated over atmospheric time series. Errors in the correction might be 4 

introduced by eventual local hot spots (e.g. industrial contaminations) for the atmospheric 5 

13
C/

14
C ratio. Our site, located at few kilometers from any major industry and hundreds of 6 

meters from any building, should be relatively free from local contamination sources and the 7 

closeness of the site to the measurement of atmospheric 
14

C time series should account for 8 

regional variations. Nevertheless, we considered the possible error associated with these 9 

assumptions by allowing the initial ratios of the 
14

C pools to vary slightly for 
14

C by assigning 10 

a normal prior distribution to them, centered on the SOC ratios with deviation corresponding 11 

to  1% of these values. 12 

 13 

2.7 Climatic and edaphic variables 14 

The parameter r in Eq. (1) and (2) in the original ICBM calibration (Andrén and Kätterer, 15 

1997) aggregates all the influences on SOC from soil type and climate. It was originally 16 

conceived as a constant, but it has been used also as a response variable connected with 17 

climatic and edaphic factors (Andrén et al., 2012). We decided to consider r according to the 18 

following equation:  19 

  )()()( tMoisttTempt rrr  (9) 20 

where Tempr  and Moistr  are the decomposition rate modifiers due to temperature and soil 21 

moisture, respectively and  is an error term. 22 

In this particular case we included proxies for soil temperature and soil moisture and we 23 

selected the two climatic functions from the CENTURY model (Parton et al., 2001; Bauer et 24 

al., 2008), since they adapted well to the data available for this experiment. The temperature 25 

function was adopted as following:  26 

   715097.0arctan465.0560.0)(  Tr TTemp  (10) 27 

while the moisture function was adopted as following:  28 
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where T is soil temperature (° C), PPT is the sum of stored water and precipitation, in our case 2 

approximated to total accumulated precipitation for the reference period due to the nature of 3 

our dataset and PET is the potential evapotranspiration (Primault, 1962). The term has been 4 

described with a uniform distribution between -0.5 and +0.5.  5 

Meteorological data were obtained from the Swiss Federal Research Station for Agroecology 6 

and Agriculture Zürich-Reckenholz (FAL), located at less than 100 m from the ZOFE 7 

experiment. 8 

In order to maintain comparability of results with the original ICBM model, r has been 9 

normalized with its mean value as 
r

r
r

t

tnorm

)(

)(  , therefore making it vary around 1. The 10 

normalization, together with the introduction of the   term in Eq. (9), reconciles the climatic 11 

functions with ICBM. The resulting variation of the normr  term is pictured in S23. Since we 12 

are comparing three treatments in the same field we do not need to take into account any 13 

difference in climate between the plots, and we can use the climatic parameter only to account 14 

for variability in the data that might be due to inter-annual climatic variation.  15 

 16 

2.8 Model calibration, initialization and prior assumptions 17 

Given the close interactions between the kinetic parameters a deterministic optimization 18 

algorithm might miss possible equifinality (Beven, 2008). We therefore relied on a 19 

Metropolis-Hastings algorithm (in the implementation of JAGS, Plummer 2003). The, with  20 

likelihood function utilized was the default one in JAGS, which according to a formal 21 

Bayesian statistical framework utilizes a Gaussian shape. 22 

We assumed that the parameters defining the SOC pools (namely poolk , poolh  and the initial 23 

pool distribution) were the same for all treatments. Every calibration has been run in 4 24 

separated Markov chains, and the convergence of the chains has been assessed visually 25 

through the use of Gelman’s plots (Brooks and Gelman, 1998). Each chain was calibrated 26 

with a first adaptation period of 10.000 runs of which 5000 have been discarded as burn-in 27 

period, and then 100.000 search runs. The chains always showed reasonable convergence. 28 
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Priors for the rates ( poolk ) have been considered as normally distributed, with mean value 1 

coming from Andrén and Kätterer (1997) and deviation set to half of the mean value. The 2 

mean of the prior for  Ok   has been set considering it as a fixed ratio of the value of Yk . Also 3 

this ratio (0.075) has been calculated from Andrén and Kätterer (1997). The priors for Yh  4 

have been considered normally distributed. Mean values to represent the different input 5 

qualities were calculated as averages of all the scenarios reported in Kätterer et al. (2011) as 6 

following. By assuming the composition of the young pool being similar to the inputs, we 7 

chose the prior value for Yh  for the control and the mineral fertilizer treatments as 0.185 8 

(which is the average for roots and shoots) while for the farmyard manure the chosen value 9 

was 0.265. We have chosen for this parameter stronger prior distributions by setting its 10 

deviation to 10% of the mean value. In the third model structure the Oh  prior has been set as 11 

an uniform distribution between 0 and Yh . 12 

Priors for the initial distribution of the SOC pools were considered uniformly distributed 13 

between 0 and 100% of initial SOC but constrained by the mass balance, i.e., the sum of SOC 14 

mass in all pools should add up to 100% of initial SOC. Priors for the initial distribution of 15 

the pools for SO
14

C were generated with a uniform distribution using the portion of total SOC 16 

pools as mean and variance set to 1% of this value. 17 

 18 

2.9 Model comparison and selection 19 

Following the same principle of simplicity maximization on which we built the whole study, 20 

we selected the Akaike information criterion (AIC) to estimate the information content of the 21 

model structures. The AIC has been calculated as:  22 

 









n

RSS
npAIC log2  (12) 23 

where p is the number of parameters, n is the number of samples and RSS is the residual sum 24 

of square of the model. 25 

The use of the RSS in Eq. (12) is a simplification, since it is a metric only proportional to the 26 

likelihood. The difference lies in the lack of one integration constant. Since the AIC is used in 27 

this study only for a relative comparison between model structures, we considered this 28 

approximation justifiable. The use of the AIC rather than RMSE for measuring model 29 
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performances can capture how the different model structures react to the introduction of the 1 

additional stream of information, i.e. SO
14

C, by acting as a structure-dependent normalization, 2 

allowing for a performance comparison between different structures. Also the best weighting 3 

parameter representing the partial weight of SOC and SO
14

C data has been selected according 4 

to the smallest AIC. 5 

The choice of the AIC is motivated by its simplicity (explicit also in the intention of his 6 

author, Akaike, 1974), and by the consideration that we are comparing models over exactly 7 

the same number of samples (Burnham and Anderson, 2004). But since the choice of any 8 

model performance indicator is highly subjective, we also calculated for all the models the 9 

deviance information criterion (DIC, Plummer, 2008) for comparison with the AIC.  10 

 11 

3 Results 12 

3.1 Effect of the SOC data stream on model performances 13 

In general the addition of the SO
14

C data always improved the performance of the calibrations 14 

until a certain optimal point. This effect was similar for any of the different model structures, 15 

and an eventual relative advantage of one structure above another in considering information 16 

from SO
14

C data was not evident. The improvement increased for every structure up to a 17 

partial weight of 0.35, and then worsened marginally when moving forward toward a higher 18 

weight of SO
14

C data (Fig. 1). However, the decrease in performances was dramatic when 19 

moving towards a bigger relative weight of SO
14

C data. 20 

The introduction of the SO
14

C data stream in general decreased the uncertainty of the 21 

parameters until an optimal weight for all the models without a substrate interaction 22 

(structures I, II and III), and the average coefficient of variation of the parameters followed a 23 

general pattern similar to the average AIC (S2S3). For the structures including substrate 24 

interaction (VI and V) the pattern was oscillating in a more complicated way, making it 25 

impossible to identify any consistent trend. The RMSE (Fig. 2) of the model structures was 26 

closely related to the AIC but with different relative values for the different structures. 27 

 28 
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3.2 Optimal model choice 1 

Overall, the "best" model structure indicated by the AIC to best describe our data was the 2 

basic ICBM, structure I (Fig. 1). This is particularly true for the FYM treatment (with highest 3 

SOC), which was the treatment best described by all our model structures.  4 

The average RMSE was similar for all model structures, but there were small differences. 5 

Unexpectedly, structure III did not present the lowest average RMSE among all structures 6 

(Fig. 2), although it has the highest number of parameters. Structure II was the one which 7 

performed the best in terms of RMSE.  8 

We compared these five structures also through DIC, which was 591.9 for structure I, 579.9 9 

for structure II, 593.8 for structure III, 603.1 for structure IV and 591.9 for structure V. Also 10 

the DIC indicated better performances of simpler structures and it indicated structure II as the 11 

best model. However, it did not indicate any difference between the second and third best 12 

choice (structure I and V) and differences were not as evident as when using AIC. 13 

 14 

3.3 SOC distribution and kinetics in the ZOFE experiment as estimated by 15 

different model structures 16 

The MRT (Fig. 83) of the old pool, according to structures I and II, were 954..099±0.10 and 17 

78.93±0.11 years, respectively, while the ones for the young pool were 5.91±0.109 and 18 

5.33±0.1 08years, respectively. Owing to the introduction of an additional term, modifying 19 

the kinetic in relation to the amount of young substrate, the results differ for structures IV and 20 

V. Here, MRT results were 14.879±0.895 and 16.768±0.545 years for the old pool and 21 

0.985±0.34 and 1.01±0.30 years for the young pool, respectively. Structure III determined 22 

pool definitions similar to structure I and II; and in this case the MRT was 98.985±0.10 years 23 

for the old and 4.22±0.10 years for the young pool. The third, “recalcitrant” pool in structure 24 

III revealed a MRT of 477.798±0.766 years. Simulation results are shown only for structure I 25 

(Fig. 67) and II (Fig. 78), and for structure II, III and V in S5, S6 and S7.  26 

The estimated size of the initial pools did not vary much among the selected model structures 27 

(Fig. 9). The amount of carbon in the young pool ranged from 15.37±1.64 Mg ha
-1

 (structure 28 

I) to 11.37±1.50 Mg ha
-1

 (structure III). The amount of carbon in the old pool ranged from 29 

22.70±1.59 Mg ha
-1

 (structure I) to 20.28±1.74 Mg ha
-1

 (structure IV) for structures 30 

considering only two pools, while it ranged from 25.25±1.39 Mg ha
-1

 (structure II) to 31 



 21 

23.00±1.70 Mg ha
-1

 (structure III) for structures considering three pools. As evident from 1 

Figs. 3, 4 and 5, these results are also strongly dependent on the choice of the weighting 2 

parameter between the SOC and the SO
14

C data streams. 3 

All the tested model structures, and within all the tested values of the weighting parameter, 4 

inferred a change right after the land use change in the ZOFE trial. In all treatments without 5 

amendments, the young pool decreased rapidly within a few years after conversion from 6 

grassland to FYM and mineral fertilization. In structures I this decrease was more dramatic, 7 

while more complex models (II, III, IV and V) could describe the observed trends as more 8 

gradual thanks to the additional number of parameters.  9 

3.4 Effect of the C data stream on the kinetics of SOC pools 10 

During calibration all model structures seemed to react to the SO
14

C data by reducing 11 

decomposition rates and humification coefficients, i.e., the introduction of SO
14

C decelerated 12 

the simulated C dynamicsC turnover. For structure I the effect of adding the SO
14

C data 13 

seemed to slow down the decomposition of both pools (Fig. 4). This decrease was associated 14 

with a decrease of the humification coefficient, hence reducing also the flux of material that 15 

goes from a faster to a slower pool. AtIn the same time the relative size of the slower pool 16 

decreased. For structure IV (Fig. 4) the addition of a substrate interaction term made the 17 

decrease in speed of C cycling speed associated with the introduction of SO
14

C data more 18 

dramatic and in some specific cases more difficult to interpret, but in general, following athe   19 

similar trend was similar. In structures with a third inert pool, II and V (Fig. 5), trends were 20 

replicating those with only two pools. Structure V presented a pattern very similar to structure 21 

IV. The inert pool proportion increased with the increase of the weight of SO
14

C data. Also 22 

results from structure III (S5) indicate a consistent reduction in the speed of C cycling with 23 

the introduction of the SO
14

C data in every parameter. In general we can affirm that the 24 

inclusion of the SO
14

C data decreased the size of the slower O pool while it increased the 25 

residence time of both Y and O pools. 26 

 27 

 28 
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4 Discussion 1 

4.1 Effect of the C data stream onModelling the kinetics of SOC pools 2 

During calibration all model structures seemed to react to the SO
14

C data by reducing 3 

decomposition rates and humification coefficients, i.e., the introduction of SO
14

C decelerated 4 

the simulated C dynamics. For structure I the effect of adding the SO
14

C data seemed to slow 5 

down the decomposition of both pools (Fig. 3). This decrease was associated with a decrease 6 

of the humification coefficient, hence reducing also the flux of material that goes from a faster 7 

to a slower pool. In the same time the relative size of the slower pool decreased. For structure 8 

IV (Fig. 3) the addition of a substrate interaction term made the decrease in speed associated 9 

with the introduction of SO
14

C data more dramatic and in some specific cases more difficult 10 

to interpret, but in general following a similar trend. In structures with a third inert pool, II 11 

and V (Fig. 4), trends were replicating those with only two pools. Structure V presented a 12 

pattern very similar to structure IV. The inert pool proportion increased with the increase of 13 

the weight of SO
14

C data. Also results from structure III (S5) indicate a consistent reduction 14 

in the speed of C cycling with the introduction of the SO
14

C data in every parameter. In 15 

general we can affirm that the inclusion of the SO
14

C data decreased the size of the slower O 16 

pool while it increased the residence time of both Y and O pools. 17 

None of our tested model structures could represent consistently both data streams at the same 18 

time. For the SO
14

C value measured in 1973, every model structure under-predicted the 19 

isotopic value of SOC particularly for the low input treatment. Conversely, the last SO
14

C 20 

point, measured in 2012, was consistently over-predicted by every model structure. This 21 

suggests that all our model structures are still failing to represent some key process related to 22 

SOC decomposition. 23 

The use of the radiocarbon bomb peak to constrain SOC turnover models, although in use 24 

since decades (Trumbore, 1989), has often raised similar controversies. The implicit inclusion 25 

of 
14

C data in C models through mass balance functions produced discrepancies between 26 

modelled and measured values in a recent study by Shirato et al. (2013). In another study 27 

(Rethemeyer et al., 2007) this approach was judged as a viable option. The explicit 28 

consideration of 
14

C pools did not offer in this sense any advantage over implicit models. 29 

Braakhekke et al. (2014), using a soil profile model, found that the addition of SO
14

C data as 30 

new constrain produced an increase in the uncertainty of the SOC stocks in the individual 31 

layers, while improved just marginally the total SOC stock estimate. Ahrens et al. (2014) 32 
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utilized SO
14

C data to constrain an isotopically explicit single layer model in a situation 1 

where data about SOC kinetics were scarce. In that case the problem of model initialization 2 

was partially solved with additional information coming from 
14

C, but the high uncertainty of 3 

the considered system did not make it possible to determine if one site was losing or gaining 4 

carbon, and the strong interaction between MRT and deviation from the steady state made 5 

evident a trade-off between estimates with and without using SO
14

C data. 6 

One of the possible reasons for the recorded discrepancies in the estimates from models 7 

conditioned with and without SO
14

C data might be the absence of microbial dynamics in SOC 8 

stabilization (Riley et al., 2014). Ahrens et al. (2015), with a rather mechanistic model, 9 

recently suggested that a control on biologically mediated depolymerization can explain alone 10 

some of the observed discrepancies. But the performances of structure IV and V on our 11 

dataset, lower in terms of AIC compared to the simpler structures I and II, did not allow us to 12 

confirm such a hypothesis. Another possible explanation for the discrepancy between models 13 

and measurements is the presence of recalcitrant and old organic carbon not well captured by 14 

our model structures. Structure II was selected by the AIC, while structure III, although not 15 

performing best with AIC due to the high number of parameters, presented a good RMSE. 16 

Compared to the basic structure I both these structures introduced an additional slow SOC 17 

pool. Some form of chemical recalcitrance cannot therefore yet be ruled out. 18 

In our study we focused on the optimal utilization of the information contained in SO
14

C data 19 

together with the minimization of model complexity. We found a relevant improvement of the 20 

overall model performances when also SO
14

C data were introduced but only until an optimal 21 

weight, while beyond that weight model performances decreased substantially. It is difficult 22 

to generalize our optimum as a general recommendation since it also depends on the density 23 

of the two data streams, but our results suggest that the relative weight of the two 24 

measurements is an additional parameter that must be considered and optimized whenever the 25 

SO
14

C data are used for model constraining. 26 

A generalizable and detailed mechanistic understanding of SOC stabilization is not yet 27 

available, and SOC models are still facing a deep parametrical and structural uncertainty. 28 

According to some authors (e.g. Beven, 2002) such uncertainty is inherent to the nature of 29 

ecosystem modelling, and needs to be accepted and considered in developing new 30 

methodologies. In this perspective we adopted a pragmatic approach to determine the optimal 31 

weighting factor, which turned out to be a crucial step with large impact on modelling results. 32 
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 1 

4.2 SOC dynamics in the ZOFE experiment as estimated by different model 2 

structures 3 

All the model structures indicated a rapid decrease in the young pool following the conversion 4 

from grassland to cropland. This means that the annual inputs under the new management 5 

were too small to replenish the C in the former young pool while most of the material is either 6 

decomposed or humified in the old pool. This is not unlikely since also by-products, like 7 

straw, are removed, and the inputs from the cropland management are greatly reduced 8 

compared to a low-intensity grassland (Rumpel et al., 2015), where a lot of the net primary 9 

productivity is either retained or returned in form of excrements. Furthermore, the disruption 10 

of the soil structure that formed under permanent grassland caused by the conversion may 11 

have released and subsequently mineralized largely undecomposed organic matter, such as 12 

particle or light fractions previously protected inside aggregates (Six and Paustian, 2014). 13 

After this re-equilibration of the young pool, the slower but constant decrease in the total SOC 14 

was explained by all the models with a slow but constant decrease in the old pool, missing the 15 

inputs previously received from a bigger young pool. All our model structures indicated that 16 

the considered treatments in the ZOFE experiment are all still far from a new SOC 17 

equilibrium. 18 

The error in the simulated SO
14

C might be due to an overestimation of the speed of the C 19 

cycle. Nevertheless the fact that more complex model structures (IV, V and III) did not 20 

present any advantage over simpler (I and II) structures makes it difficult to judge the weight 21 

of the two represented processes (stabilization of SOC, represented by an additional “inert” 22 

pool, or substrate feedbacks). The same discrepancy in predictions might also be caused by a 23 

systematic underestimation of the inputs. Except for the highest input treatment (FYM), the 24 

posterior probability distribution for the assumed input error term (S4) was always skewed 25 

toward the upper limit. This suggests some kind of systematic error concentrated in the lower 26 

end of the input range. Hence, the application of linear allometric functions to estimate carbon 27 

inputs from yields, as adopted here, must be treated with caution. The relatively symmetric 28 

distribution (and in general lower value) of the input error term for the FYM treatment in 29 

structures I, II and III points out that model structures not considering substrate interactions 30 

might be more robust in cases of input uncertainty. 31 
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Another possible reason for the error in model predictions might be the nature of the error in 1 

the SO
14

C series. This has been estimated by Leifeld and Mayer (2015) from the last time 2 

point and subsequently extrapolated to the whole time series, assuming therefore normality 3 

and homoscedasticity over time. These assumptions might not always hold in soil systems, 4 

and this would be particularly crucial in the case of the 1973 point in the control treatment. 5 

Further investigation, focused in particular to the belowground production in the ZOFE 6 

experiment, is needed for determining the reasons for such error. 7 

 8 

4.3 Initial SOC distribution and MRT of SOC pools in the ZOFE experiment as 9 

estimated by different model structures 10 

Our results for the kinetic parameters are in general in the same order of magnitude than what 11 

was reported in the literature (Andrén and Kätterer, 1997), although the introduction of the 12 

SO
14

C forced a deceleration of the C cycle.  13 

The estimation of MRT strongly depends on all the assumptions in the model structure, and 14 

the high uncertainty around what might be the "best" structure is pointed out by the 15 

disagreement of the different criteria used for selection, which highlights the fact that there is 16 

no true model (or that “all models are wrong”, Box, 1976). The combination of several 17 

structures, although difficult to perform in practice (Refsgaard et al., 2006), might therefore 18 

represent a reasonable option and deserves further attention. 19 

The MRT estimates (Fig. 83) depend on the introduction of a substrate control term in the 20 

model structure, but once this was accounted for it seemed quite robust. We must consider 21 

here that the introduction of a substrate control term as described by Eq. (8) modifies the 22 

definition of the decomposition constants, and therefore the MRT calculated accordingly. 23 

When introducing also the term   in the calculation of MRT this ranged between 2.78 8 and 24 

3.13 and 46.00 and 54.475 years for young and old pool respectively, so not far from what 25 

indicated by the other structures. A detailed discussion about the MRT definition is outside 26 

the scope of this study, but here we want to make clear that a direct comparison of the MRT 27 

between these two groups of structures according to a common definition would not be 28 

meaningful and the differences in the model structure must be accounted for. 29 

Model initialization seemed quite robust, with values substantially not differing between 30 

models with the same number of pools. 31 
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 1 

4.4 Balancing the bias/variance dilemma in SOC modelling 2 

As suggested by the multiple structures evaluated in this study, the conceptual nature of SOC 3 

pools makes their definition volatile. Each pool is a theoretical construction defined 4 

specifically by assumptions at the level of model structure as well as model calibration. 5 

Some attempts have been made to reconcile a definition of C pools with real measurements. 6 

For example the well-established forest model Yasso (Liski et al., 2005) bases its calibration 7 

on data from chemical litter fractionation, which gives the initialization values for the 8 

different C pools. But the fractionation behind Yasso might seem questionable in agricultural 9 

soils where inputs are often homogenized with the mineral fraction and less, if at all, 10 

identifiable. In more homogenized mineral topsoils the main obstacle to this approach is that 11 

available fractionation methods do not reflect precise stabilization processes (von Lützow et 12 

al., 2007). One of the most promising recent attempts to develop a non-theoretical 13 

quantification of SOC pools in agricultural/mineral soils is the one by Zimmermann et al. 14 

(2007), which tried to develop a measurement standard for RothC (Coleman et al., 1997) 15 

pools. All these methods share in common the risk that correlations between the 16 

measurements and the theoretical pools might be strongly localized (or difficult to reproduce, 17 

Poeplau et al., 2013). This is not surprising given the complexity of SOC stabilization 18 

mechanisms (Kleber et al., 2011). Indications are that stability should be considered as an 19 

intrinsic property of the soil ecosystem (Schmidt et al., 2011) and thus local. It is therefore 20 

problematic to generalize a fractionation methodology that reflects in detail SOC stabilization 21 

processes, which would in turn define SOC pools. 22 

Hence, we still need to aggregate the available information in a theory of SOC decomposition 23 

that is simple enough to be generalizable. This way the model structure represents the SOC 24 

decomposition processes in an aggregated (and simplified) way that is compatible with the 25 

amount of knowledge at disposal. The challenge of conciliating predictive power, and 26 

therefore practical value of our models, with accuracy is the formulation of the bias/variance 27 

trade-off as found in modern soil science. 28 

As suggested from our dataset, which although not perfect is already relatively rich in 29 

information and not far from the best possible conditions available for soil carbon modelling, 30 

the information available for inverse modelling discrimination still seems insufficient to 31 

validate models that are too mechanistic. A possible improvement could be the inclusion of 32 
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data from deep soil layers, and therefore the extension of the model to represent spatial 1 

processes. In general, we would expect a better resolving power of the data by adding new 2 

constrains to the model, although this would be also dependent on the additional assumptions 3 

needed to include another dimension. Testing this approach iswas however out of the scope of 4 

the present study, but foreseeable in the near future. 5 

 6 

5 Conclusions 7 

The SOC in the ZOFE experiment underwent a profound decrease after the initial land use 8 

change from grass- to cropland. This decrease was described in the first years by all our 9 

model structures as a fast re-equilibration of the young pool, which decreased rapidly after a 10 

reduction of the inputs and/or an increased mineralization and caused in consequence a slower 11 

but constant decrease in the older pools. In the long term, treatments not receiving organic 12 

fertilization were still losing C even more than 60 years after land use change. The estimates 13 

of the MRT in the ZOFE experiment were robust once accounted for differences inherent to 14 

the model structures. Comparable model structures (in particular I, II and III) were relatively 15 

in agreement, and the influence of the number of pools on MRT was instead quite limited. 16 

The introduction of SO
14

C data during calibration improved performances of all model 17 

structures and reduced the uncertainty of the parametrization. It also made clear the existence 18 

of a trade-off between representing the information from SO
14

C and SOC when utilizing a 19 

multi-pool SOC model structure. None of our five structures seemed able to reconcile 20 

consistently the two data streams. This suggests the presence of processes that were implicit 21 

in the SO
14

C data stream but not well described in our model structures, which caused the 22 

information from the SO
14

C to have a strong impact on the results. We therefore suggest the 23 

explicit consideration of a weight associated with each data stream as a routine procedure 24 

whenever SO
14

C data are considered as an additional model constrain. 25 

In our data set, the best model performances were achieved by the two simpler models, 26 

pointing out that the data available do not allow for a more detailed mechanistic SOC 27 

modelling. Although processes based on interactions of part of the substrate with the 28 

decomposition kinetics might explain the observations, recalcitrance inherent to the substrate 29 

(corresponding to the adoption of a slower additional decomposing C pool) remains a valid 30 

alternative in explaining the data. 31 
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6 Data availability 2 

All the data on which this study is based are published in previous studies and the sources are 3 

cited in the text. 4 
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Table 1: The treatments considered in this study. 
†
= kg ha

-1
 y

-1
, 

††
= Mg ha

-1
 y

-1
, 

♣
=from 1 

organic amendment. 
a
=1949-1980, 

b
=since 1981, 

c
=1949-1990, 

d
=since 1991. All soil values 2 

refer to 0-25 cm depth interval. *=average. 3 

Treatment  Annual input 
 Initial 

SOC
††

  

 Final 

SOC
††

 

   N
†
  P

†
  K

†
  Mg

†
 

Fertilizer 

C
†
 

Estimated  

total C
†
 

   

Control  0 0 0 0 0 580 38.75 24.28 

N2P2K2Mg  108
a
/139

b
 61

c
/38

d
 318

c
/167

d
 12

a
/56

b
 0 1350 38.75 27.05 

Farmyard 

Manure  
91

♣
 24

♣
 65

♣
 31 2500 3621 38.75 31.70 

 4 

Table 2: Summary of the model structures tested in this study (considered here in their basic 5 

forms for total C only and for the two isotopes together. 6 

  Struct. I Struct. II  Struct. III  Struct. IV  Struct. V 

Description  
Two 

pools 

Two pools 

+ Inert 

Three 

pools 

Two pools + 

substrate 

control 

Two pools 

+ substrate 

control + 

Inert 

Parameters  

(SOC) 
4 5 7 5 6 

Parameters  

(SOC+SO
14

C) 
4+1 5+2 7+3 5+1 6+2 

 7 

  8 
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 1 

  2 

Figure 1: Average of the AIC among all the three treatments for the five model structures with the variation of 3 

the relative weight of SO
14

C over total C. In this scale 1 means only total C, 0 means only SO
14

C. 4 

  5 
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 1 

 2 

Figure 2: Average of the RMSE among all the three treatments for the five model structures with the variation of 3 

the relative weight of SO
14

C over total C. In this scale 1 means only total C, 0 means only SO
14

C . 4 
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 1 

Figure 83: MRT of the young pool (A) and old pool (B) of SOC in the ZOFE trial as indicated by the model 2 

structures examined, with weighting factor = 0.35 (solid colored area) and weighting factor = 0.65 (shaded area). 3 

The solid lighter colored area denotes the MRT calculated (for structures IV and V) according to 
k

1
, while 4 

the darker colored area according to 
k

1
, Error bars, reported only for weighting factor = 0.35 for readability 5 

reasons, denote the error of the estimate calculated as standard deviation of the whole Markov chain and depends 6 

on the model structure, model assumptions and priors. 7 

8 
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 1 

Figure 34: Effect of the SO
14

C stream over the main SOC parameters in structures I and IV. In this scale 1 means 2 

only total C, 0 means only SO
14

C. Letters A to F denote subpanels referring to different parameters. The shaded 3 

areas represent the error of the calibrated parameter (calculated as standard deviation of the whole Markov 4 

chain). 5 

  6 
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  1 

Figure 45: Effect of the SO
14

C data over the main SOC parameters in structure II and V. In this scale 1 means 2 

only total C, 0 means only SO
14

C. Letters A to F denote subpanels referring to different parameters. The shaded 3 

areas represent the error of the calibrated parameter (calculated as standard deviation of the whole Markov 4 

chain). 5 

6 
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 1 

Figure 56: Effect of the SO
14

C data over the main SOC parameters in structure III. In this scale 1 means only 2 

total C, 0 means only SO
14

C. The shaded areas represent the error of the calibrated parameter (calculated as 3 

standard deviation of the whole Markov chain). 4 

5 
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 1 

Figure 67: Simulation of SOC pools (A, C and E) and 
14

C pools (B, D and F) in the ZOFE trial as described by 2 

model structure I, with weighting factor = 0.35, together with the measured data. Error bars represent the 3 

measured (black) and estimated (dark grey) standard error of the measurements. SOC (A,C,E) is in Mg ha
-1

, 4 

while SO
14

C (B, D, F) is in pMC. 5 

6 
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 1 

Figure 78: Simulation of SOC pools (A, C and E) and 
14

C pools (B, D and F) pools in the ZOFE trial as 2 

described by model structure II, with weighting factor = 0.35, together with the measured data. Error bars 3 

represent the measured (black) and estimated (dark grey) standard error of the measurements. SOC (A,C,E) is in 4 

Mg ha
-1

, while SO
14

C (B, D, F) is in pMC. 5 

6 
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 1 

Figure 8: MRT of the young pool (A) and old pool (B) of SOC in the ZOFE trial as indicated by the model 2 

structures examined, with weighting factor = 0.35 (solid colored area) and weighting factor = 0.65 (shaded area). 3 

The solid lighter colored area denotes the MRT calculated (for structures IV and V) according to 
k

1
, while 4 

the darker colored area according to 
k

1
, Error bars, reported only for weighting factor = 0.35 for readability 5 

reasons, denote the error of the estimate calculated as standard deviation of the whole Markov chain and depends 6 

on the model structure, model assumptions and priors. 7 

 8 
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 1 

Figure 9: Probability distribution of the initial size of the C pools (Y=Young, O=Old, R=Recalcitrant) in 2 

structure I (A), IV (B), II (C), IV (D) and V (DE), with weighting factor = 0.35. On the vertical axis is depicted 3 

the probability density of the parameter (dimensionless) and on the horizontal axis the value of the parameter (in 4 

Mg ha
-1

). Vertical lines are representing the mean value (thick lines) and the Venter estimated mode (thin lines) 5 

of the Markov chains.  6 
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