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Abstract 13 

Globally, reservoirs are a significant source of atmospheric CO2. However, precise 14 

quantification of greenhouse gas emissions from drinking water reservoirs on the regional or 15 

national scale is still challenging. We calculated CO2 fluxes for 39 German drinking water 16 

reservoirs during a period of 22 years (1991-2013) using routine monitoring data in order to 17 

quantify total emission of CO2 from drinking water reservoirs in Germany. 18 

All reservoirs were small net CO2 sources with a median flux of 167 g C m-2 y-1, which makes 19 

gaseous emissions a relevant process for the reservoirs carbon budgets. In total, German 20 

drinking reservoirs emit 44000 t of CO2 annually, which makes them a negligible CO2 source 21 

in Germany. Fluxes varied seasonally with median fluxes of 30, 11, and 46 mmol m-2 d-1 in 22 

spring, summer, and autumn respectively. Differences between reservoirs appeared to be 23 

primarily caused by the concentration of CO2 in the surface water rather than by the physical 24 

gas transfer coefficient. Consideration of short term fluctuations of the gas transfer coefficient 25 

due to variable wind had only a minor effect on the annual budgets. High CO2 emission only 26 

occurred in reservoirs with pH < 7 and total alkalinity < 0.2 mEq l-1. Annual CO2 emission 27 
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correlated exponentially with pH, making pH a suitable proxy for CO2 emission from German 1 

drinking water reservoirs. 2 

 3 

1 Introduction 4 

Reservoirs are a globally important source of the greenhouse gases (GHG) CO2 and CH4 (St 5 

Louis et al., 2000). Actually it is assumed that hydropower reservoirs globally emit 48 Tg C 6 

as CO2 and 3 Tg C as CH4 (Barros et al., 2011). Existing studies on GHG emissions from 7 

reservoirs focus on hydroelectric dams in boreal regions and the tropics and on dammed 8 

rivers. Drinking water reservoirs in the temperate zone typically have a low trophic state and 9 

GHG emissions are dominated by CO2. Recent results indicate that they are a small source of 10 

CO2 to the atmosphere and can rather be a CO2 sink during summer (Knoll et al., 2013). 11 

However, existing CO2 emission studies focus on few intensively studied reservoirs (Diem et 12 

al., 2012; Soumis et al., 2004; Tremblay et al., 2005). Global inventories probably give a 13 

realistic range of CO2 emissions from surface waters (Raymond et al., 2013), but precise 14 

quantification of GHG from drinking water reservoirs on the regional or national scale is still 15 

challenging (McDonald et al., 2013; Seekell et al., 2014). 16 

Upscaling is usually done by applying the thin boundary layer (TBL) approach (MacIntyre et 17 

al., 1995). CO2 exchange across the water surface is driven by diffusion and thus, regulated 18 

by the concentration gradient between water and atmosphere and the physical gas transfer 19 

coefficient K. K depends on the turbulence of the surface water. Although there is more and 20 

more evidence that K is also influenced by convection (Read et al., 2012), in most studies it is 21 

still derived from measured wind speed, using empirical equations (Cole and Caraco, 1998; 22 

Crusius and Wanninkhof, 2003). 23 

The concentration of CO2 in surface waters is usually not directly measured but calculated 24 

from two other measured parameters of the carbonate system, namely total inorganic carbon 25 

(TIC), pH, or total alkalinity (TA). Thus, minimum data requirements are two parameters of 26 

the carbonate system, water temperature, wind speed, and surface area. To obtain annual 27 

budgets of CO2 emission, both differences among reservoirs and temporal changes within a 28 

system have to be considered. In practice, there is a trade-off between high monitoring 29 

frequency and spatial coverage of numerous reservoirs because not all systems can be 30 

monitored with high temporal resolution. Usually CO2 concentration data are only available 31 

for a few days of the year. Calculation of annual budgets from such sporadic measurements 32 
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may introduce systematic errors because high wind situations probably contribute 1 

significantly to annual emissions (Morales-Pineda et al., 2014). By combining routine 2 

monitoring data of CO2 concentration from numerous German reservoirs with high temporal 3 

resolution wind speed data from public weather stations we check, whether the low temporal 4 

resolution of routine monitoring introduces a systematic bias in annual gas flux calculations. 5 

The central aim of this study was to estimate the annual emission of CO2 from Germany 6 

drinking water reservoirs using data from routine water quality monitoring from a wide range 7 

of reservoirs. By applying simple regression analysis we aimed to find out whether the CO2 8 

flux is primarily regulated by the gas transfer coefficient or by the CO2 concentration. In 9 

boreal surface waters, which are typically characterised by low alkalinity and high dissolved 10 

organic carbon (DOC) concentration, the CO2 concentration usually correlates well with the 11 

DOC concentration (Jonsson et al., 2003; Whitfield et al., 2011), showing that aquatic 12 

metabolism is a major driver of CO2 oversaturation. In other regions, CO2 in lakes seems to 13 

be driven by DIC input from the catchment (McDonald et al., 2013). In high alkalinity lakes 14 

in calcareous regions, CO2 oversaturation is primarily caused by carbonate weathering (López 15 

et al., 2011; Marcé et al., 2015). We used our dataset to get some information about the 16 

principle drivers of the CO2 flux from low DOC, low alkalinity waters, which are typical for 17 

temperate drinking water reservoirs. 18 

2 Material and Methods 19 

2.1 Data source 20 

We used a database containing routine water quality monitoring data from 39 German 21 

drinking water reservoirs. Data were supplied by the reservoir operators and compiled in a 22 

database in the framework of a research project about dissolved organic carbon in German 23 

drinking water reservoirs (TALKO project). Available data span a period of 22 years (1991-24 

2013). Typical datasets for single reservoirs contained 10-20 years, the minimum period for a 25 

single reservoir was 6 years with about monthly data. The data include both reservoirs and 26 

pre-dams, which are characterised by a constant water level. A first quality control of these 27 

data was performed using R statistic software. Typos, sign errors and rounding errors were 28 

fixed using R functions. The dataset was checked for obviously wrong data by defining 29 

minimum and maximum possible values. 30 

Hourly wind speed data were provided by the German Meteorological Service (Deutscher 31 

Wetterdienst) using the nearest weather station to each drinking water reservoir (Table S1). 32 
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The median distance between reservoir and corresponding weather station was 15 km (1 km – 1 

38 km). 2 

2.2 Calculations 3 

The TBL approach (MacIntyre et al., 1995; UNESCO/IHA, 2010) was adopted to estimate 4 

CO2 fluxes from the reservoirs surface. This method uses semi-empirical equations to 5 

calculate emission from concentrations of CO2 in the surface water and the CO2 exchange 6 

coefficient. The flux J [mmol CO2 m
-2 d-1] of gas from water to air (diffusive emissions) was 7 

calculated as the product of the gas exchange coefficient and the difference between gas 8 

concentrations in surface water and air (Equation 1): 9 

J = K x [CO2(water)-CO2(air)]        (1) 10 

Where 11 

- CO2(water) is the concentration of CO2 in surface water of the reservoir [µmol l-1] 12 

- CO2(air) is the concentration in air equilibrated water (calculated from the CO2 partial 13 

pressure in the air using Henry’s law). 14 

- K [m d-1] is the gas transfer velocity approximated from the wind speed and 15 

normalised to a Schmidt number of 600 (Crusius and Wanninkhof, 2003). 16 

All calculations were done assuming a water density of 1 kg l-1.  17 

2.2.1 Surface water concentration of CO2 18 

Because of the best data availability, we calculated CO2 from pH and TA, using the “seacarb” 19 

package of R (Lavigne et al., 2014). Input parameters were water temperature, salinity =0, 20 

depth=0, TA [mmol l-1], and pH. For comparison, data were also calculated with CO2SYS 21 

(Lewis and Wallace, 1998). Both tools gave the same results. 22 

2.2.2 Concentration in air equilibrated water 23 

We calculated the partial pressure of the gas in the water if it were in equilibrium with the 24 

atmosphere (CO2(air) [mmol l-1]) from the CO2 partial pressure (pCO2) in the ambient air 25 

samples using Henry’s law: 26 

 �������� = 
	 ÷	
�          (2) 27 

For pCO2 in the atmosphere (P [µatm]) we used hourly data of the atmospheric mixing ratio 28 

of CO2 [ppm] from the public monitoring station at Schauinsland (WMO World Data: Center 29 
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for Greenhouse Gases http://ds.data.jma.go.jp/gmd/wdcgg/wdcgg.html). This station is 1 

located in the southern part of the Black Forest mountain range close to the top of mount 2 

Schauinsland. It presents a reference site for the atmospheric background concentration in 3 

Germany. The mixing ratios were converted to partial pressure by considering the altitude of 4 

the particular reservoir: 5 


 = ��	 × 	
�� 	× 	�
�	���

�����	������ × 10 !	       (3) 6 

with mr being the CO2 mixing ration [ppm], Pnn = standard barometric pressure at sea level = 7 

1 atm, alt = altitude of reservoir [m], and the scale height being 8500m. KH [atm l mol-1] is 8 

Henry's solubility coefficient for the actual water temperature. 9 

2.2.3 Gas transfer velocities 10 

There are several empirical expressions to derive the gas exchange coefficient (K) as a 11 

function of wind speed and water temperature. We adopted the widely applied power function 12 

presented in (Crusius and Wanninkhof, 2003): 13 
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where 15 

- U10 is the wind speed at 10m height [m s-1], 16 

- SC is the Schmidt number for CO2 (Wanninkhof, 1992):	17 

"�#$� 	= 1911.1 − 118.11	 × ) + 3.4527	 × 	)
� − 0.04132	 × 	)0  (5) 18 

Where t is the water surface temperature [°C]. 19 

2.2.4 Calculation of seasonal budgets 20 

The temporal resolution of our data was heterogeneous. While gas transfer velocities could be 21 

calculated with hourly resolution, CO2 concentration data were typically available for 12 days 22 

per year (4 to 293). To merge the data, we adopted 2 approaches: 23 

a) “monthly” CO2 fluxes were calculated by temporal upscaling of our measured data. 24 

For each CO2 concentration data point we determined the mean wind speed for the 25 

same day and computed a daily mean flux for the day of sampling. For each month we 26 

computed the mean of all available flux data within that particular month.  If there 27 
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were no CO2 data available for a particular month, we rejected that month from our 1 

analysis. 2 

b) For “hourly” CO2 fluxes we assigned a CO2 concentration for each wind speed data 3 

point. We used the measured aquatic CO2 concentration with the smallest time 4 

difference to the particular wind data point. 5 

Seasonal mean fluxes were calculated as: first, the means for each month were computed; 6 

then the available monthly means were averaged within the following representative months: 7 

spring (March-Mai), summer (June-August), and autumn (September-November). For annual 8 

budgets the annual daily median flux was multiplied by 274 days, assuming that the CO2 9 

emissions are negligible during winter when reservoirs are ice covered. Summarised data for 10 

each reservoir are provided in Table S2. 11 

2.3 Statistical Methods 12 

The statistical relationships between CO2 evasion and different variables were calculated as 13 

Spearman’s linear correlations. Data were tested for log-normality by the Kolmogorov-14 

Smirnov test. To test for the significance of seasonal fluctuations we computed Tukey Honest 15 

significant differences in conjunction with ANOVA. All statistical analyses were done using 16 

R (R-Development-Core-Team, 2008). 17 

3 Results 18 

Surface CO2 concentrations were between 0.002 and 11991 µmol l-1. The annual median 19 

concentrations in single reservoirs were mostly below 100 µmol l-1, with a few reservoirs 20 

having very high concentrations up to 2.4 mmol l-1 (Figure 1a). The reservoirs were mostly 21 

oversaturated with respect to CO2. Under-saturation was observed between May and October 22 

in 25 reservoirs. The median CO2 concentration of all reservoirs was 72 µmol l-1 (Table 1). 23 

The reservoirs were typically exposed to low wind speeds, resulting in K values around 0.5 m 24 

d-1 (Figure 1b). The reservoirs could be grouped into low wind reservoirs, having a K below 1 25 

m d-1, and high wind reservoirs with k around 2 m d-1. 26 

If we consider all the seasons, we observed significant seasonal differences in CO2 27 

concentration (ANOVA test: F2,1426=6.06, p= 0.002), fluxes (ANOVA test: F2,234=3.72, 28 

p=0.02) and gas transfer coefficient (ANOVA test: F2,1426=8.48, p=0.0002). CO2 29 

concentrations were significantly higher in spring than in summer (Figure 2a, Figure S1a). 30 

The gas transfer coefficient (resp. wind speed) was significantly higher in fall compared to the 31 

other seasons (median 0.71 compared to 0.63 m d-1) (Figure 2b, Figure S1b). Consequently, 32 
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fluxes were significantly lower in summer than in spring (Figure 2c, Figure S1c). Median 1 

fluxes were 30, 11, and 46 mmol m-2 d-1 in spring, summer, and autumn respectively. Also the 2 

variability of the flux was higher in spring and autumn. 3 

We calculated annual CO2 fluxes for each reservoir with and without inclusion of hourly wind 4 

data. Both approaches gave similar results, but inclusion of high resolution wind data often 5 

resulted in higher fluxes (Figure 3). For 27 out of 39 reservoirs the median annual CO2 flux 6 

was higher, for 7 reservoirs it was unchanged (less than 10% difference) while in 5 cases 7 

fluxes calculated with hourly wind data were lower. The median CO2 flux, however, was 8 

hardly different between the two approaches (Table 1). An example dataset (Figure 4) shows 9 

the effect of short periods of high wind speed on the flux. In this case, the annual median flux 10 

was 71 and 132 g C m-2 y-1 without and with consideration of hourly wind speed data. The 11 

median under-estimation for all studied reservoirs when not using high resolution wind data 12 

was 22%. 13 

On an annual scale, all reservoirs were a CO2 source to the atmosphere (Figure 1c). By 14 

multiplying the annual mean flux with the surface area we get the total annual flux from each 15 

reservoir. The combined annual CO2 flux from all reservoirs in our database was 13287 t y-1 16 

with a combined surface are of 35.56 km2. If we assume a total surface area of all German 17 

drinking water reservoirs of 118 km2 (Köngeter et al., 2013), we can extrapolate a total CO2 18 

emission from all German drinking water reservoirs of 44091 t y-1. 19 

A simple regression analysis shows that the annual flux was regulated by the CO2 20 

concentration in the surface water rather than by the physical gas transfer (Figure 5). If we 21 

analyse each reservoir separately, however, we observed significant correlations of the flux 22 

both with CO2 concentration and K. In 37 cases the flux was significantly correlated with CO2 23 

and in 32 cases with K. The fact that there were correlations between K and flux for single 24 

reservoirs but not when all data are analysed together shows that the relation between K and 25 

flux was reservoir specific. 26 

Since the flux was correlated with the CO2 concentration and the CO2 concentration was 27 

calculated from pH and Alkalinity, the CO2 flux showed an exponential dependency on pH 28 

(Figure 6a). High CO2 fluxes only occurred in reservoirs with a median pH <6.5, which is the 29 

dissociation constant of H2CO3 (Stumm and Morgan, 1981). The pH dependency can be 30 

expressed by the following equation: 31 
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1 = 3.8573 + 	5769.11406	 × 	�
 
34�5.65657

8.9::;7       (6) 1 

We also observed a correlation with alkalinity with high median fluxes only occurring in 2 

reservoirs with alkalinity below 0.2 µEq l-1 (Figure 6b). On the other hand, there was no 3 

relation between DOC and CO2 flux (Figure 6c). There was a significant trend to smaller (by 4 

area) reservoirs having higher CO2 concentrations (Spearman rank correlation rho=-0.43, p= 5 

0.006). For CO2 fluxes there seemed to exist a similar relation, but the trend was statistically 6 

not significant (rho=-0.23, p=0.1664). 7 

4 Discussion 8 

4.1 CO2 emission from German drinking water reservoirs 9 

German drinking water reservoirs are net emitters of CO2 to the atmosphere. Our median CO2 10 

flux of 167 g C m-2 y-1 is high compared to the mean flux from hydroelectric reservoirs in the 11 

temperate zone in the reviews of (St Louis et al., 2000) (150 g m-2 y-1) and (Barros et al., 12 

2011) (120 g m-2 y-1). A possible explanation is the high impact of stream water quality on the 13 

drinking water reservoirs, caused by a typically low water residence time in the reservoirs. 14 

Streams are known to be oversaturated with CO2 (Raymond et al., 2013), with small streams 15 

typically having higher pCO2 (Hotchkiss et al., 2015). Because of better water quality, 16 

drinking water reservoirs are preferably located in upstream areas with higher stream pCO2. 17 

This is supported by our observation of higher CO2 concentrations occurring often in small 18 

reservoirs, confirming earlier results (Raymond et al., 2013). It has been shown that the 19 

gaseous CO2 loss is linked to hydrology and shorter residence time increases surface carbon 20 

loss (Striegl and Michmerhuizen, 1998). 21 

Compared to typical CO2 emission rates from temperate soils (745 ± 421 g C m-2 y-1, (Bond-22 

Lamberty and Thomson, 2010)) or a typical German forest site (-550 ± 91 g C m-2 y-1 23 

(Grünwald and Bernhofer, 2007)), however, the area specific fluxes from drinking water 24 

reservoirs are low. Considering further the small area of all German drinking water reservoirs 25 

(0.03 % of German surface area), CO2 emission from drinking water reservoirs is a negligible 26 

CO2 source in the national CO2 inventory. 27 

To investigate the significance of gaseous CO2 exchange for the reservoirs carbon budget, we 28 

estimated the total TIC content of reservoirs by multiplying the median TIC concentration 29 

with the water volume of the particular reservoir for those eight reservoirs for which TIC data 30 

were available. Total TIC inventories of reservoirs were between 1 t and 66 t resulting in 31 
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theoretical CO2 residence times of 2 to 302 days. Thus, the annual CO2 flux was of the same 1 

order of magnitude as the TIC content of the particular reservoirs, showing that the gaseous 2 

CO2 flux was a significant process in the reservoirs carbon budget. 3 

The observed seasonal pattern with low fluxes during summer is consistent with earlier 4 

observations (Halbedel and Koschorreck, 2013; Knoll et al., 2013) and can be explained by 5 

the seasonal stratification and depletion of CO2 in the surface water due to primary 6 

production, and increased surface concentration during autumnal mixing (Wendt-Potthoff et 7 

al., 2014). Taken together, spring and fall contributed 87% to the annual CO2 emissions. If the 8 

focus is on the annual budget, we recommend to increase measuring efforts during the high 9 

flux periods in spring and fall, on the cost of less intensive monitoring during summer. 10 

Another information gap is winter. In winter, German drinking water reservoirs are usually 11 

frozen, but the exact duration and timing of ice coverage is highly variable. CO2 emissions 12 

from non frozen reservoirs during winter would further contribute to annual emissions. To 13 

improve the accuracy of annual budgets, the exact duration of ice cover have to be known for 14 

each reservoir and year. Accumulation of CO2 under ice is probably of minor relevance, 15 

because water residence time in the reservoirs is low during high flow conditions in winter 16 

and especially during snowmelt. Furthermore, our data give no hint on high CO2 17 

concentrations during early spring. 18 

Our median K of 0.70 m d-1 is virtually identical to the global average for lakes and reservoirs 19 

estimated from global wind data (0.74 m d-1 (Raymond et al., 2013)). It is well known that the 20 

determination of K from wind speed is prone to some error, especially at low wind speed 21 

(Crusius and Wanninkhof, 2003). The location of the weather station represents another 22 

source of error. All the weather stations used for the reservoirs with high k-values are located 23 

in more wind exposed crests. Four of the “high K reservoirs” were caused by the weather 24 

station Zinnwald-Georgenfeld which is located at 877 m a.s.l. in the Ore Mountains. Since the 25 

reservoirs are located in valleys, CO2 fluxes in the “high K reservoirs” are probably over 26 

estimated. A way to circumvent this problem would be the determination of reservoir specific 27 

correction factors for the wind speed. Considering the uncertainty related to the 28 

representativeness of the wind data from public weather stations for the reservoirs, the use of 29 

a constant K might introduce only a minor error. Applying a constant K of 0.7 m d-1 results in 30 

a median CO2 emission from all reservoirs of 107 g m-2 y-1, which is 28% lower than the 31 

median flux calculated using monthly wind data. We interpret this as an estimate of the error 32 

caused by the non-representative location of weather stations. However, considering the 33 
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observed low dependency of the flux on K, uncertainty in the determination of K is probably 1 

not a serious problem for our upscaling approach. 2 

4.2 Effect of short term wind fluctuations 3 

We found a significant under-estimation of the total annual CO2 flux by 22% when only 4 

considering wind data from the day of which we also had CO2 concentration data. This was 5 

because we missed some high wind periods, especially in fall, which contributed significantly 6 

to the annual flux. Even if the local wind at the reservoir was not perfectly represented by the 7 

weather stations, this conclusion is justified, since the probability for storm events was 8 

probably comparable at the reservoir and corresponding weather station. 9 

Our mean error of 22% is most probably a conservative estimate because recently it has been 10 

shown that wind does not only directly influence K but due to enhanced surface mixing also 11 

affects the surface concentration of CO2 (Morales-Pineda et al., 2014). Storm events can also 12 

affect pCO2 by flushing CO2 from the catchment into the lake (Vachon and del Giorgio, 13 

2014). In our case the error was highly case specific. Some reservoirs even showed an 14 

opposite effect, most probably because low wind periods were more frequent. Thus, an 15 

analysis of typical wind patterns at a particular reservoir should allow to predict whether the 16 

inclusion of high frequency wind data have the potential to significantly improve the CO2 flux 17 

estimate for a particular site. 18 

Besides periodic changes in wind speeds and storms, there exists a typical diurnal wind 19 

pattern at the reservoirs in our study. Wind is increasing during the day and then calms down 20 

around sunset and during the night. This diurnal pattern is included in our simple approach, 21 

since we used the daily mean wind speed for the low resolution flux calculation. The use of 22 

wind data obtained during water sampling by hand-held wind meters, a common practice in 23 

many studies, most probably overestimates the daily CO2 flux, because low wind periods 24 

during the night are not considered. However, wind is not the only factor causing diurnal 25 

pattern. Recent research indicates that night-time cooling causes convective mixing near the 26 

surface and thus, may enhance gas fluxes during the night (Eugster et al., 2003; Read et al., 27 

2012). Neglecting this effect is probably the main reason for the commonly poor 28 

parametrisation of K at low wind-speed (Cole and Caraco, 1998) and would result in an 29 

under-estimation of the real flux. Our study does not consider the effect of convection on K 30 

and thus, our annual budgets are probably conservative estimates. The role of convection and 31 

a better parametrisation of K for upscaling deserve further research. 32 
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4.3 Regulation of the CO2 flux 1 

4.3.1 pCO2 versus K 2 

The difference in the CO2 flux between reservoirs was primarily caused by the concentration 3 

of CO2 in the surface water rather than by the physical exchange coefficient K. This was 4 

caused by the higher between reservoir variability of pCO2 compared to K. Thus, to quantify 5 

the annual flux in an unknown reservoir, high frequency monitoring of the CO2 concentration 6 

is more important than increasing the quality of the wind data. Since the surface CO2 7 

concentration in the reservoirs is probably predominantly determined by inflow water quality 8 

rather than reservoir internal processes, CO2 emissions are probably largely regulated by 9 

catchment processes (Stets et al., 2009). This confirms studies showing that the CO2 emission 10 

from lakes may be controlled by catchment productivity (Maberly et al., 2013) or carbonate 11 

weathering (Marcé et al., 2015). Catchment processes and inflow water quality are obviously 12 

more important than hydrodynamics in regulating the annual CO2 emission from German 13 

drinking water reservoirs. The major effect of reservoir internal processes seems to be the 14 

reduction of the CO2 flux during summer, caused by stratification and primary production 15 

(Halbedel and Koschorreck, 2013). However, the effect of this flux reduction in summer is at 16 

least partly compensated by enhanced fluxes in fall because then CO2 from the hypolimnion is 17 

mixed to the surface. Because of the highly dynamic nature of these mixing processes, high 18 

frequency monitoring of CO2 would increase the precision of the flux quantification 19 

especially in fall. 20 

Besides these seasonal fluctuations, the CO2 concentration can also fluctuate diurnally, driven 21 

by photosynthesis during the day. Thus, the daytime of sampling should have an influence on 22 

the quality of the CO2 data. We consider this effect less relevant in our case, since routine 23 

water samples are taken during normal working hours, when CO2 concentrations are probably 24 

intermediate. 25 

4.3.2 No correlation with DOC 26 

Our results confirm earlier studies that the aquatic pCO2 in temperate lakes and reservoirs 27 

does not depend on the DOC concentration (McDonald et al., 2013). This is in contrast to 28 

observations in boreal lakes and tropical waters (Borges et al., 2015), where often a 29 

correlation between DOC and pCO2 has been observed. One reason could be that our DOC 30 

concentrations (Table 1) are low compared to a global average of lakes (7.6 ± 0.2 mg l-1). 31 

Boreal lakes typically contain even higher DOC concentrations (Sobek et al., 2007). More 32 
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probable, however, is that any effect of DOC is masked by the influence of TIC import from 1 

the catchment and pH effects (López et al., 2011). There is no simple link between lake 2 

metabolism and annual CO2 flux. The net annual CO2 flux cannot be used to judge whether a 3 

reservoir is net heterotrophic or not, since the flux is both influenced by TIC transport and 4 

metabolism (Stets et al., 2009). 5 

4.4 pH as a proxy for the CO2 flux 6 

The CO2 concentration in the reservoirs clearly correlated with pH, confirming results from 7 

Knoll et al., who found that the pH was the best predictor of pCO2 in the Midwestern 8 

reservoirs they studied (Knoll et al., 2013). A similar correlation between diffusive CO2 flux 9 

and pH has been observed in 151 Danish lakes (Trolle et al., 2012), 948 Florida lakes 10 

(Lazzarino et al., 2009), and several reservoirs (Alshboul and Lorke, 2015; Halbedel and 11 

Koschorreck, 2013; Quiñones-Rivera et al., 2015; Soumis et al., 2004). Thus, pH dependency 12 

of the CO2 flux seems to be a general observation in temperate surface waters. These results 13 

also highlight the importance of precise pH measurements for accurate surface water GHG 14 

budgets (Herczeg and Hesslein, 1984). Because of its logarithmic nature, pH is especially 15 

prone to analytical error. This is critical when using routine monitoring data for CO2 16 

calculations. 17 

The pH is a result of alkalinity (mainly influenced by catchment geochemistry) and TIC 18 

(influenced both by catchment processes and aquatic metabolism) (Marcé et al., 2015; Müller 19 

et al., 2015). Especially between pH 5 and 7 even small changes in CO2 significantly alter the 20 

pH. This effect is less relevant in DOC rich boreal lakes, which are often acidic, and in 21 

eutrophic lakes, were primary production shifts the pH to high values. In acidic waters the 22 

situation is complicated by the fact that organic acids contribute to alkalinity (Abril et al., 23 

2015). This could be relevant in our high-emission reservoirs, which are all low in alkalinity 24 

(Figure 6b). Regardless the underlying mechanisms, the strong correlation with pH suggests 25 

the use of pH as a proxy for the CO2 flux for modeling or upscaling. We calculated the CO2 26 

flux from each reservoir from its mean pH (JpH) using equation 6 (Fig. S2). The resulting 27 

median CO2 flux of was virtually identical to the flux obtained from our monthly data (Table 28 

1). As a rule of thumb, relevant CO2 emissions do only occur in reservoirs with pH<7 and 29 

alkalinity below 0.2 µEq l-1. 30 

The surprisingly good fit to pH can be partly explained by the rather uniform and low 31 

alkalinity values. Larger differences in alkalinity would result in more variable pCO2 at 32 

similar pH values. Thus, the use of pH as a proxy for CO2 emissions might be applicable only 33 
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under low DOC, low alkalinity conditions as they are typical for German drinking water 1 

reservoirs. 2 
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Tables 1 

Table 1. Descriptive statistics of annual median data from all reservoirs K=gas transfer 2 

coefficient, Jhourly=CO2 flux calculated using high resolution wind data, Jmonthly=CO2 flux 3 

calculated using mean wind, JpH=CO2 flux calculated from mean pH of each reservoir (n=39, 4 

for DOC and pH annual means). 5 

 min max median mean SD 

CO2 [µmol l-1] 15 2365 72 283 523 

K [m d-1] 0.5 2.17 0.7 0.9 0.5 

Jhourly [g C m-2 y-1] 14 7386 167 765 1545 

Jmonthly [g C m-2 y-1] -3 6710 148 689 1518 

JpH [g C m-2 y-1] 20 6271 146 769 1442 

DOC [mg l-1] (n=19) 0.92 6.15 3 3.18 1.44 

pH 4.9 8.7 7.3 7.05 0.98 

 6 

  7 

Biogeosciences Discuss., doi:10.5194/bg-2015-648, 2016
Manuscript under review for journal Biogeosciences
Published: 18 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



19 
 

Figures 1 

 2 

Figure 1: Histograms of median annual data of the different reservoirs: a) CO2 concentration, 3 

b) K, c) CO2 flux. A Kolmogorov-Smirnov test showed that the data were not log-normal 4 

distributed. 5 
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 1 

Figure 2: Boxplots describing the seasonal fluctuation of CO2 concentration (a), K (b), and 2 

CO2 flux (c). Data points are the mean seasonal data for each reservoir (n=39). Extreme 3 

values (higher than 400 µmol l-1 and 400 mmol m-2d-1) are outside the plots. 4 
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Figure 3: Median annual CO2 flux for different reservoirs calculated on an hourly or monthly 2 

basis. The insert shows a magnification of the left part of the graph. 3 
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  1 

Figure 4: CO2 flux from Rappbode pre dam calculated with (line) and without (circles) using 2 

high frequency wind data. 3 
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 1 

Figure 5: Dependence of the annual median CO2 flux on the annual median CO2 2 

concentration (a) and K (b). 3 
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 1 

Figure 6: Dependence of the median CO2 flux on a) mean pH, b) alkalinity, and c) mean DOC 2 

concentration in the different reservoirs. Lines in a) show an exponential fit with 95% 3 

confidence interval (R2 = 0.85). 4 
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