

CO₂ emissions from German drinking water reservoirs estimated from routine monitoring data

3

4 H. Saidi^{1,2}, and M. Koschorreck¹

5

6 [1]{ UFZ - Helmholtz Centre for Environmental Research, Department of Lake Research,

- 7 Brückstr. 3a, D-39114 Magdeburg, Germany}
- 8 [2]{ National Research Council Institute of Ecosystem Study, Largo Tonolli 50, 28922
 9 Verbania Pallanza, Italy }
- 10
- 11 Correspondence to: M. Koschorreck (matthias.koschorreck@ufz.de)

12

13 Abstract

Globally, reservoirs are a significant source of atmospheric CO_2 . However, precise quantification of greenhouse gas emissions from drinking water reservoirs on the regional or national scale is still challenging. We calculated CO_2 fluxes for 39 German drinking water reservoirs during a period of 22 years (1991-2013) using routine monitoring data in order to quantify total emission of CO_2 from drinking water reservoirs in Germany.

19 All reservoirs were small net CO_2 sources with a median flux of 167 g C m⁻² y⁻¹, which makes 20 gaseous emissions a relevant process for the reservoirs carbon budgets. In total, German 21 drinking reservoirs emit 44000 t of CO₂ annually, which makes them a negligible CO₂ source in Germany. Fluxes varied seasonally with median fluxes of 30, 11, and 46 mmol $m^{-2} d^{-1}$ in 22 23 spring, summer, and autumn respectively. Differences between reservoirs appeared to be 24 primarily caused by the concentration of CO_2 in the surface water rather than by the physical 25 gas transfer coefficient. Consideration of short term fluctuations of the gas transfer coefficient due to variable wind had only a minor effect on the annual budgets. High CO₂ emission only 26 27 occurred in reservoirs with pH < 7 and total alkalinity < 0.2 mEq 1^{-1} . Annual CO₂ emission

- 1 correlated exponentially with pH, making pH a suitable proxy for CO₂ emission from German
- 2 drinking water reservoirs.
- 3

4 1 Introduction

5 Reservoirs are a globally important source of the greenhouse gases (GHG) CO2 and CH4 (St 6 Louis et al., 2000). Actually it is assumed that hydropower reservoirs globally emit 48 Tg C 7 as CO₂ and 3 Tg C as CH₄ (Barros et al., 2011). Existing studies on GHG emissions from 8 reservoirs focus on hydroelectric dams in boreal regions and the tropics and on dammed 9 rivers. Drinking water reservoirs in the temperate zone typically have a low trophic state and 10 GHG emissions are dominated by CO₂. Recent results indicate that they are a small source of CO₂ to the atmosphere and can rather be a CO₂ sink during summer (Knoll et al., 2013). 11 12 However, existing CO₂ emission studies focus on few intensively studied reservoirs (Diem et 13 al., 2012; Soumis et al., 2004; Tremblay et al., 2005). Global inventories probably give a 14 realistic range of CO₂ emissions from surface waters (Raymond et al., 2013), but precise 15 quantification of GHG from drinking water reservoirs on the regional or national scale is still 16 challenging (McDonald et al., 2013; Seekell et al., 2014).

Upscaling is usually done by applying the thin boundary layer (TBL) approach (MacIntyre et al., 1995). CO₂ exchange across the water surface is driven by diffusion and thus, regulated by the concentration gradient between water and atmosphere and the physical gas transfer coefficient K. K depends on the turbulence of the surface water. Although there is more and more evidence that K is also influenced by convection (Read et al., 2012), in most studies it is still derived from measured wind speed, using empirical equations (Cole and Caraco, 1998; Crusius and Wanninkhof, 2003).

24 The concentration of CO₂ in surface waters is usually not directly measured but calculated 25 from two other measured parameters of the carbonate system, namely total inorganic carbon 26 (TIC), pH, or total alkalinity (TA). Thus, minimum data requirements are two parameters of 27 the carbonate system, water temperature, wind speed, and surface area. To obtain annual 28 budgets of CO₂ emission, both differences among reservoirs and temporal changes within a 29 system have to be considered. In practice, there is a trade-off between high monitoring 30 frequency and spatial coverage of numerous reservoirs because not all systems can be 31 monitored with high temporal resolution. Usually CO₂ concentration data are only available 32 for a few days of the year. Calculation of annual budgets from such sporadic measurements

1 may introduce systematic errors because high wind situations probably contribute 2 significantly to annual emissions (Morales-Pineda et al., 2014). By combining routine 3 monitoring data of CO_2 concentration from numerous German reservoirs with high temporal 4 resolution wind speed data from public weather stations we check, whether the low temporal 5 resolution of routine monitoring introduces a systematic bias in annual gas flux calculations.

6 The central aim of this study was to estimate the annual emission of CO_2 from Germany 7 drinking water reservoirs using data from routine water quality monitoring from a wide range 8 of reservoirs. By applying simple regression analysis we aimed to find out whether the CO_2 9 flux is primarily regulated by the gas transfer coefficient or by the CO_2 concentration. In 10 boreal surface waters, which are typically characterised by low alkalinity and high dissolved 11 organic carbon (DOC) concentration, the CO₂ concentration usually correlates well with the 12 DOC concentration (Jonsson et al., 2003; Whitfield et al., 2011), showing that aquatic 13 metabolism is a major driver of CO_2 oversaturation. In other regions, CO_2 in lakes seems to 14 be driven by DIC input from the catchment (McDonald et al., 2013). In high alkalinity lakes 15 in calcareous regions, CO₂ oversaturation is primarily caused by carbonate weathering (López 16 et al., 2011; Marcé et al., 2015). We used our dataset to get some information about the principle drivers of the CO2 flux from low DOC, low alkalinity waters, which are typical for 17 18 temperate drinking water reservoirs.

19 2 Material and Methods

20 2.1 Data source

21 We used a database containing routine water quality monitoring data from 39 German 22 drinking water reservoirs. Data were supplied by the reservoir operators and compiled in a 23 database in the framework of a research project about dissolved organic carbon in German 24 drinking water reservoirs (TALKO project). Available data span a period of 22 years (1991-25 2013). Typical datasets for single reservoirs contained 10-20 years, the minimum period for a 26 single reservoir was 6 years with about monthly data. The data include both reservoirs and 27 pre-dams, which are characterised by a constant water level. A first quality control of these 28 data was performed using R statistic software. Typos, sign errors and rounding errors were 29 fixed using R functions. The dataset was checked for obviously wrong data by defining 30 minimum and maximum possible values.

Hourly wind speed data were provided by the German Meteorological Service (Deutscher
Wetterdienst) using the nearest weather station to each drinking water reservoir (Table S1).

- 1 The median distance between reservoir and corresponding weather station was 15 km (1 km -
- 2 38 km).

3 2.2 Calculations

4 The TBL approach (MacIntyre et al., 1995; UNESCO/IHA, 2010) was adopted to estimate 5 CO_2 fluxes from the reservoirs surface. This method uses semi-empirical equations to 6 calculate emission from concentrations of CO_2 in the surface water and the CO_2 exchange 7 coefficient. The flux J [mmol CO_2 m⁻² d⁻¹] of gas from water to air (diffusive emissions) was 8 calculated as the product of the gas exchange coefficient and the difference between gas 9 concentrations in surface water and air (Equation 1):

$$10 J = K x [CO_{2(water)} - CO_{2(air)}] (1)$$

11 Where

- 12 $CO_{2(water)}$ is the concentration of CO_2 in surface water of the reservoir [µmol l⁻¹]
- CO_{2(air)} is the concentration in air equilibrated water (calculated from the CO₂ partial
 pressure in the air using Henry's law).
- K [m d⁻¹] is the gas transfer velocity approximated from the wind speed and
 normalised to a Schmidt number of 600 (Crusius and Wanninkhof, 2003).
- 17 All calculations were done assuming a water density of 1 kg l^{-1} .

18 2.2.1 Surface water concentration of CO₂

Because of the best data availability, we calculated CO_2 from pH and TA, using the "seacarb" package of R (Lavigne et al., 2014). Input parameters were water temperature, salinity =0.

- 20 package of R (Lavigne et al., 2014). Input parameters were water temperature, salinity =0,
- 21 depth=0, TA [mmol l^{-1}], and pH. For comparison, data were also calculated with CO2SYS
- 22 (Lewis and Wallace, 1998). Both tools gave the same results.

23 2.2.2 Concentration in air equilibrated water

We calculated the partial pressure of the gas in the water if it were in equilibrium with the atmosphere ($CO_{2(air)}$ [mmol l⁻¹]) from the CO_2 partial pressure (p CO_2) in the ambient air samples using Henry's law:

$$27 \quad CO_{2(air)} = P \div K_H \tag{2}$$

For pCO_2 in the atmosphere (P [μ atm]) we used hourly data of the atmospheric mixing ratio of CO₂ [ppm] from the public monitoring station at Schauinsland (WMO World Data: Center

for Greenhouse Gases http://ds.data.jma.go.jp/gmd/wdcgg/wdcgg.html). This station is located in the southern part of the Black Forest mountain range close to the top of mount Schauinsland. It presents a reference site for the atmospheric background concentration in Germany. The mixing ratios were converted to partial pressure by considering the altitude of the particular reservoir:

$$6 \quad P = mr \times P_{nn} \times e^{\frac{-alt}{scale \, height}} \times 10^{-6} \tag{3}$$

- 7 with mr being the CO₂ mixing ration [ppm], P_{nn} = standard barometric pressure at sea level =
- 8 1 atm, alt = altitude of reservoir [m], and the scale height being 8500m. K_H [atm 1 mol⁻¹] is 9 Henry's solubility coefficient for the actual water temperature.

10 **2.2.3 Gas transfer velocities**

11 There are several empirical expressions to derive the gas exchange coefficient (K) as a 12 function of wind speed and water temperature. We adopted the widely applied power function 13 presented in (Crusius and Wanninkhof, 2003):

$$K = \left[0.168 + \left(0.228 \times U_{10}^{2.2}\right)\right] \times \left(\frac{SC_{CO2}}{600}\right)^{-\frac{2}{3}\sigma - \frac{1}{2}}$$
(4)

15 where

14

16 - U_{10} is the wind speed at 10m height [m s⁻¹],

18
$$SC_{CO2} = 1911.1 - 118.11 \times t + 3.4527 \times t^2 - 0.04132 \times t^3$$
 (5)

19 Where t is the water surface temperature [°C].

20 2.2.4 Calculation of seasonal budgets

The temporal resolution of our data was heterogeneous. While gas transfer velocities could be calculated with hourly resolution, CO₂ concentration data were typically available for 12 days per year (4 to 293). To merge the data, we adopted 2 approaches:

a) "monthly" CO₂ fluxes were calculated by temporal upscaling of our measured data.
 For each CO₂ concentration data point we determined the mean wind speed for the
 same day and computed a daily mean flux for the day of sampling. For each month we
 computed the mean of all available flux data within that particular month. If there

- were no CO₂ data available for a particular month, we rejected that month from our
 analysis.
- 3 4

5

b) For "hourly" CO₂ fluxes we assigned a CO₂ concentration for each wind speed data point. We used the measured aquatic CO₂ concentration with the smallest time difference to the particular wind data point.

6 Seasonal mean fluxes were calculated as: first, the means for each month were computed; 7 then the available monthly means were averaged within the following representative months: 8 spring (March-Mai), summer (June-August), and autumn (September-November). For annual 9 budgets the annual daily median flux was multiplied by 274 days, assuming that the CO₂ 10 emissions are negligible during winter when reservoirs are ice covered. Summarised data for 11 each reservoir are provided in Table S2.

12 2.3 Statistical Methods

The statistical relationships between CO₂ evasion and different variables were calculated as Spearman's linear correlations. Data were tested for log-normality by the Kolmogorov-Smirnov test. To test for the significance of seasonal fluctuations we computed Tukey Honest significant differences in conjunction with ANOVA. All statistical analyses were done using R (R-Development-Core-Team, 2008).

18 3 Results

Surface CO_2 concentrations were between 0.002 and 11991 µmol Γ^1 . The annual median concentrations in single reservoirs were mostly below 100 µmol Γ^1 , with a few reservoirs having very high concentrations up to 2.4 mmol Γ^1 (Figure 1a). The reservoirs were mostly oversaturated with respect to CO_2 . Under-saturation was observed between May and October in 25 reservoirs. The median CO_2 concentration of all reservoirs was 72 µmol Γ^1 (Table 1).

The reservoirs were typically exposed to low wind speeds, resulting in K values around 0.5 m d^{-1} (Figure 1b). The reservoirs could be grouped into low wind reservoirs, having a K below 1 m d^{-1} , and high wind reservoirs with k around 2 m d^{-1} .

If we consider all the seasons, we observed significant seasonal differences in CO₂ concentration (ANOVA test: $F_{2,1426}$ =6.06, p= 0.002), fluxes (ANOVA test: $F_{2,234}$ =3.72, p=0.02) and gas transfer coefficient (ANOVA test: $F_{2,1426}$ =8.48, p=0.0002). CO₂ concentrations were significantly higher in spring than in summer (Figure 2a, Figure S1a). The gas transfer coefficient (resp. wind speed) was significantly higher in fall compared to the other seasons (median 0.71 compared to 0.63 m d⁻¹) (Figure 2b, Figure S1b). Consequently,

fluxes were significantly lower in summer than in spring (Figure 2c, Figure S1c). Median
 fluxes were 30, 11, and 46 mmol m⁻² d⁻¹ in spring, summer, and autumn respectively. Also the
 variability of the flux was higher in spring and autumn.

4 We calculated annual CO₂ fluxes for each reservoir with and without inclusion of hourly wind 5 data. Both approaches gave similar results, but inclusion of high resolution wind data often resulted in higher fluxes (Figure 3). For 27 out of 39 reservoirs the median annual CO_2 flux 6 7 was higher, for 7 reservoirs it was unchanged (less than 10% difference) while in 5 cases 8 fluxes calculated with hourly wind data were lower. The median CO_2 flux, however, was 9 hardly different between the two approaches (Table 1). An example dataset (Figure 4) shows 10 the effect of short periods of high wind speed on the flux. In this case, the annual median flux was 71 and 132 g C m⁻² y⁻¹ without and with consideration of hourly wind speed data. The 11 12 median under-estimation for all studied reservoirs when not using high resolution wind data 13 was 22%.

On an annual scale, all reservoirs were a CO_2 source to the atmosphere (Figure 1c). By multiplying the annual mean flux with the surface area we get the total annual flux from each reservoir. The combined annual CO_2 flux from all reservoirs in our database was 13287 t y⁻¹ with a combined surface are of 35.56 km². If we assume a total surface area of all German drinking water reservoirs of 118 km² (Köngeter et al., 2013), we can extrapolate a total CO_2 emission from all German drinking water reservoirs of 44091 t y⁻¹.

A simple regression analysis shows that the annual flux was regulated by the CO_2 concentration in the surface water rather than by the physical gas transfer (Figure 5). If we analyse each reservoir separately, however, we observed significant correlations of the flux both with CO_2 concentration and K. In 37 cases the flux was significantly correlated with CO_2 and in 32 cases with K. The fact that there were correlations between K and flux for single reservoirs but not when all data are analysed together shows that the relation between K and flux was reservoir specific.

Since the flux was correlated with the CO_2 concentration and the CO_2 concentration was calculated from pH and Alkalinity, the CO_2 flux showed an exponential dependency on pH (Figure 6a). High CO_2 fluxes only occurred in reservoirs with a median pH <6.5, which is the dissociation constant of H₂CO₃ (Stumm and Morgan, 1981). The pH dependency can be expressed by the following equation:

(6)

1 $I = 3.8573 + 5769.11406 \times e^{-\frac{pH-4.94948}{0.63378}}$

We also observed a correlation with alkalinity with high median fluxes only occurring in reservoirs with alkalinity below 0.2 μ Eq l⁻¹ (Figure 6b). On the other hand, there was no relation between DOC and CO₂ flux (Figure 6c). There was a significant trend to smaller (by area) reservoirs having higher CO₂ concentrations (Spearman rank correlation rho=-0.43, p= 0.006). For CO₂ fluxes there seemed to exist a similar relation, but the trend was statistically not significant (rho=-0.23, p=0.1664).

8 4 Discussion

9 4.1 CO₂ emission from German drinking water reservoirs

German drinking water reservoirs are net emitters of CO_2 to the atmosphere. Our median CO_2 10 11 flux of 167 g C m⁻² y⁻¹ is high compared to the mean flux from hydroelectric reservoirs in the temperate zone in the reviews of (St Louis et al., 2000) (150 g m⁻² y⁻¹) and (Barros et al., 12 2011) (120 g m⁻² y⁻¹). A possible explanation is the high impact of stream water quality on the 13 drinking water reservoirs, caused by a typically low water residence time in the reservoirs. 14 15 Streams are known to be oversaturated with CO_2 (Raymond et al., 2013), with small streams 16 typically having higher pCO₂ (Hotchkiss et al., 2015). Because of better water quality, 17 drinking water reservoirs are preferably located in upstream areas with higher stream pCO₂. 18 This is supported by our observation of higher CO₂ concentrations occurring often in small 19 reservoirs, confirming earlier results (Raymond et al., 2013). It has been shown that the 20 gaseous CO_2 loss is linked to hydrology and shorter residence time increases surface carbon 21 loss (Striegl and Michmerhuizen, 1998).

Compared to typical CO₂ emission rates from temperate soils (745 \pm 421 g C m⁻² y⁻¹, (Bond-Lamberty and Thomson, 2010)) or a typical German forest site (-550 \pm 91 g C m⁻² y⁻¹ (Grünwald and Bernhofer, 2007)), however, the area specific fluxes from drinking water reservoirs are low. Considering further the small area of all German drinking water reservoirs (0.03 % of German surface area), CO₂ emission from drinking water reservoirs is a negligible CO₂ source in the national CO₂ inventory.

To investigate the significance of gaseous CO_2 exchange for the reservoirs carbon budget, we estimated the total TIC content of reservoirs by multiplying the median TIC concentration with the water volume of the particular reservoir for those eight reservoirs for which TIC data were available. Total TIC inventories of reservoirs were between 1 t and 66 t resulting in

- 1 theoretical CO_2 residence times of 2 to 302 days. Thus, the annual CO_2 flux was of the same
- 2 order of magnitude as the TIC content of the particular reservoirs, showing that the gaseous
- 3 CO₂ flux was a significant process in the reservoirs carbon budget.

4 The observed seasonal pattern with low fluxes during summer is consistent with earlier 5 observations (Halbedel and Koschorreck, 2013; Knoll et al., 2013) and can be explained by the seasonal stratification and depletion of CO_2 in the surface water due to primary 6 7 production, and increased surface concentration during autumnal mixing (Wendt-Potthoff et 8 al., 2014). Taken together, spring and fall contributed 87% to the annual CO_2 emissions. If the 9 focus is on the annual budget, we recommend to increase measuring efforts during the high 10 flux periods in spring and fall, on the cost of less intensive monitoring during summer. 11 Another information gap is winter. In winter, German drinking water reservoirs are usually 12 frozen, but the exact duration and timing of ice coverage is highly variable. CO₂ emissions 13 from non frozen reservoirs during winter would further contribute to annual emissions. To 14 improve the accuracy of annual budgets, the exact duration of ice cover have to be known for 15 each reservoir and year. Accumulation of CO₂ under ice is probably of minor relevance, 16 because water residence time in the reservoirs is low during high flow conditions in winter 17 and especially during snowmelt. Furthermore, our data give no hint on high CO_2 18 concentrations during early spring.

Our median K of 0.70 m d⁻¹ is virtually identical to the global average for lakes and reservoirs 19 estimated from global wind data (0.74 m d⁻¹ (Raymond et al., 2013)). It is well known that the 20 21 determination of K from wind speed is prone to some error, especially at low wind speed 22 (Crusius and Wanninkhof, 2003). The location of the weather station represents another 23 source of error. All the weather stations used for the reservoirs with high k-values are located 24 in more wind exposed crests. Four of the "high K reservoirs" were caused by the weather 25 station Zinnwald-Georgenfeld which is located at 877 m a.s.l. in the Ore Mountains. Since the 26 reservoirs are located in valleys, CO₂ fluxes in the "high K reservoirs" are probably over 27 estimated. A way to circumvent this problem would be the determination of reservoir specific 28 correction factors for the wind speed. Considering the uncertainty related to the 29 representativeness of the wind data from public weather stations for the reservoirs, the use of a constant K might introduce only a minor error. Applying a constant K of 0.7 m d⁻¹ results in 30 a median CO₂ emission from all reservoirs of 107 g m⁻² y⁻¹, which is 28% lower than the 31 32 median flux calculated using monthly wind data. We interpret this as an estimate of the error 33 caused by the non-representative location of weather stations. However, considering the

- 1 observed low dependency of the flux on K, uncertainty in the determination of K is probably
- 2 not a serious problem for our upscaling approach.

3 4.2 Effect of short term wind fluctuations

- We found a significant under-estimation of the total annual CO₂ flux by 22% when only considering wind data from the day of which we also had CO₂ concentration data. This was because we missed some high wind periods, especially in fall, which contributed significantly to the annual flux. Even if the local wind at the reservoir was not perfectly represented by the weather stations, this conclusion is justified, since the probability for storm events was probably comparable at the reservoir and corresponding weather station.
- 10 Our mean error of 22% is most probably a conservative estimate because recently it has been 11 shown that wind does not only directly influence K but due to enhanced surface mixing also 12 affects the surface concentration of CO₂ (Morales-Pineda et al., 2014). Storm events can also 13 affect pCO₂ by flushing CO₂ from the catchment into the lake (Vachon and del Giorgio, 14 2014). In our case the error was highly case specific. Some reservoirs even showed an 15 opposite effect, most probably because low wind periods were more frequent. Thus, an 16 analysis of typical wind patterns at a particular reservoir should allow to predict whether the 17 inclusion of high frequency wind data have the potential to significantly improve the CO2 flux 18 estimate for a particular site.
- 19 Besides periodic changes in wind speeds and storms, there exists a typical diurnal wind 20 pattern at the reservoirs in our study. Wind is increasing during the day and then calms down 21 around sunset and during the night. This diurnal pattern is included in our simple approach, 22 since we used the daily mean wind speed for the low resolution flux calculation. The use of 23 wind data obtained during water sampling by hand-held wind meters, a common practice in 24 many studies, most probably overestimates the daily CO₂ flux, because low wind periods 25 during the night are not considered. However, wind is not the only factor causing diurnal 26 pattern. Recent research indicates that night-time cooling causes convective mixing near the 27 surface and thus, may enhance gas fluxes during the night (Eugster et al., 2003; Read et al., 28 2012). Neglecting this effect is probably the main reason for the commonly poor 29 parametrisation of K at low wind-speed (Cole and Caraco, 1998) and would result in an 30 under-estimation of the real flux. Our study does not consider the effect of convection on K 31 and thus, our annual budgets are probably conservative estimates. The role of convection and 32 a better parametrisation of K for upscaling deserve further research.

1 4.3 Regulation of the CO₂ flux

2 4.3.1 pCO₂ versus K

3 The difference in the CO_2 flux between reservoirs was primarily caused by the concentration 4 of CO_2 in the surface water rather than by the physical exchange coefficient K. This was 5 caused by the higher between reservoir variability of pCO₂ compared to K. Thus, to quantify 6 the annual flux in an unknown reservoir, high frequency monitoring of the CO₂ concentration 7 is more important than increasing the quality of the wind data. Since the surface CO_2 8 concentration in the reservoirs is probably predominantly determined by inflow water quality 9 rather than reservoir internal processes, CO_2 emissions are probably largely regulated by 10 catchment processes (Stets et al., 2009). This confirms studies showing that the CO₂ emission 11 from lakes may be controlled by catchment productivity (Maberly et al., 2013) or carbonate 12 weathering (Marcé et al., 2015). Catchment processes and inflow water quality are obviously 13 more important than hydrodynamics in regulating the annual CO₂ emission from German 14 drinking water reservoirs. The major effect of reservoir internal processes seems to be the 15 reduction of the CO₂ flux during summer, caused by stratification and primary production 16 (Halbedel and Koschorreck, 2013). However, the effect of this flux reduction in summer is at 17 least partly compensated by enhanced fluxes in fall because then CO_2 from the hypolimnion is 18 mixed to the surface. Because of the highly dynamic nature of these mixing processes, high 19 frequency monitoring of CO₂ would increase the precision of the flux quantification 20 especially in fall.

Besides these seasonal fluctuations, the CO_2 concentration can also fluctuate diurnally, driven by photosynthesis during the day. Thus, the daytime of sampling should have an influence on the quality of the CO_2 data. We consider this effect less relevant in our case, since routine water samples are taken during normal working hours, when CO_2 concentrations are probably intermediate.

26 4.3.2 No correlation with DOC

Our results confirm earlier studies that the aquatic pCO_2 in temperate lakes and reservoirs does not depend on the DOC concentration (McDonald et al., 2013). This is in contrast to observations in boreal lakes and tropical waters (Borges et al., 2015), where often a correlation between DOC and pCO_2 has been observed. One reason could be that our DOC concentrations (Table 1) are low compared to a global average of lakes (7.6 ± 0.2 mg l⁻¹). Boreal lakes typically contain even higher DOC concentrations (Sobek et al., 2007). More

1 probable, however, is that any effect of DOC is masked by the influence of TIC import from 2 the catchment and pH effects (López et al., 2011). There is no simple link between lake 3 metabolism and annual CO_2 flux. The net annual CO_2 flux cannot be used to judge whether a 4 reservoir is net heterotrophic or not, since the flux is both influenced by TIC transport and 5 metabolism (Stets et al., 2009).

6 4.4 pH as a proxy for the CO₂ flux

7 The CO₂ concentration in the reservoirs clearly correlated with pH, confirming results from 8 Knoll et al., who found that the pH was the best predictor of pCO₂ in the Midwestern 9 reservoirs they studied (Knoll et al., 2013). A similar correlation between diffusive CO₂ flux 10 and pH has been observed in 151 Danish lakes (Trolle et al., 2012), 948 Florida lakes 11 (Lazzarino et al., 2009), and several reservoirs (Alshboul and Lorke, 2015; Halbedel and 12 Koschorreck, 2013; Quiñones-Rivera et al., 2015; Soumis et al., 2004). Thus, pH dependency 13 of the CO₂ flux seems to be a general observation in temperate surface waters. These results 14 also highlight the importance of precise pH measurements for accurate surface water GHG 15 budgets (Herczeg and Hesslein, 1984). Because of its logarithmic nature, pH is especially 16 prone to analytical error. This is critical when using routine monitoring data for CO₂ 17 calculations.

18 The pH is a result of alkalinity (mainly influenced by catchment geochemistry) and TIC 19 (influenced both by catchment processes and aquatic metabolism) (Marcé et al., 2015; Müller 20 et al., 2015). Especially between pH 5 and 7 even small changes in CO₂ significantly alter the 21 pH. This effect is less relevant in DOC rich boreal lakes, which are often acidic, and in 22 eutrophic lakes, were primary production shifts the pH to high values. In acidic waters the 23 situation is complicated by the fact that organic acids contribute to alkalinity (Abril et al., 24 2015). This could be relevant in our high-emission reservoirs, which are all low in alkalinity 25 (Figure 6b). Regardless the underlying mechanisms, the strong correlation with pH suggests 26 the use of pH as a proxy for the CO_2 flux for modeling or upscaling. We calculated the CO_2 27 flux from each reservoir from its mean pH (J_{pH}) using equation 6 (Fig. S2). The resulting 28 median CO₂ flux of was virtually identical to the flux obtained from our monthly data (Table 29 1). As a rule of thumb, relevant CO_2 emissions do only occur in reservoirs with pH<7 and 30 alkalinity below 0.2 μ Eq 1⁻¹.

The surprisingly good fit to pH can be partly explained by the rather uniform and low alkalinity values. Larger differences in alkalinity would result in more variable pCO₂ at similar pH values. Thus, the use of pH as a proxy for CO₂ emissions might be applicable only

- 1 under low DOC, low alkalinity conditions as they are typical for German drinking water
- 2 reservoirs.

3 Acknowledgements

- 4 This work was financially supported by the BMBF (project TALKO, BMBF 02WT1290A)
- 5 and by the European Community (COST action ES1201 (NETLAKE)). We thank Michael
- 6 Opitz for providing the Talko database and Rafael Marcé for constructive comments on an
- 7 earlier version of the manuscript.

8 Author contribution

- 9 H. Saidi analysed the data and wrote the manuscript. M. Koschorreck designed the study and
- 10 wrote the manuscript.

1 References

- 2 Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F.,
- 3 Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., and Borges, A. V.:
- 4 Technical Note: Large overestimation of pCO_2 calculated from pH and alkalinity in acidic,
- 5 organic-rich freshwaters, Biogeosciences, 12, 67-78, 2015.
- Alshboul, Z. and Lorke, A.: Carbon Dioxide Emissions from Reservoirs in the Lower JordanWatershed, PLoS ONE, 10, e0143381, 2015.
- 8 Barros, N., Cole, J., Tranvik, L., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., Del Giorgio,
- 9 P. A., and Roland, F.: Carbon emission from hydroelectric reservoirs linked to reservoir age 10 and latitude, Nat Geosci, 4, 593-596, 2011.
- Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data,
 Biogeosciences, 7, 1915-1926, 2010.
- Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N.,
 Omengo, F. O., Guerin, F., Lambert, T., Morana, C., Okuku, E., and Bouillon, S.: Globally
 significant greenhouse-gas emissions from African inland waters, Nat Geosci, 8, 637-642,
 2015.
- 17 Cole, J. J. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a low-wind 18 oligotrophic lake measured by the addition of SF6, Limnol. Oceanogr., 43, 647-656, 1998.
- Crusius, J. and Wanninkhof, R.: Gas transfer velocities measured at low wind speed over alake, Limnol. Oceanogr., 48, 1010-1017, 2003.
- Diem, T., Koch, S., Schwarzenbach, S., Wehrli, B., and Schubert, C. J.: Greenhouse gas emissions (CO₂, CH₄, and N₂O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines, Aquat. Sci., 74, 619-635, 2012.
- Eugster, W., Kling, G., Jonas, T., McFadden, J. P., Wuest, A., MacIntyre, S., and Chapin, F.
 S.: CO₂ exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake:
 Importance of convective mixing, J Geophys Res-Atmos, 108, 2003.
- Grünwald, T. and Bernhofer, C.: A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt, Tellus B, 59, 387-396, 2007.
- Halbedel, S. and Koschorreck, M.: Regulation of CO₂ emissions from temperate streams and
 reservoirs, Biogeosciences, 10, 7539-7551, 2013.
- Herczeg, A. L. and Hesslein, R. H.: Determination of Hydrogen-Ion Concentration in
 Softwater Lakes Using Carbon-Dioxide Equilibria, Geochim Cosmochim Acta, 48, 837-845,
 1984.
- Hotchkiss, E. R., Hall Jr, R. O., Sponseller, R. A., Butman, D., Klaminder, J., Laudon, H.,
 Rosvall, M., and Karlsson, J.: Sources of and processes controlling CO₂ emissions change
 with the size of streams and rivers, Nature Geosci, 8, 696-699, 2015.
- Jonsson, A., Karlsson, J., and Jansson, M.: Sources of carbon dioxide supersaturation in clearwater and humic lakes in northern Sweden, Ecosystems, 6, 224-235, 2003.

- 1 Knoll, L. B., Vanni, M. J., Renwick, W. H., Dittman, E. K., and Gephart, J. A.: Temperate
- 2 reservoirs are large carbon sinks and small CO₂ sources: Results from high-resolution carbon
- 3 budgets, Global Biogeochem Cy, 27, 52-64, 2013.
- Köngeter, J., Heimerl, S., Kohler, B., Ebert, M., and Libisch, C.: Talsperren in Deutschland
 [reservoirs in Germany], Springer Vieweg, Wiesbaden, 2013.
- Lavigne, H., Epitalon, J. M., and Gattuso, J. M.: seacarb: seawater carbonate chemistry with
 R. R package. 2014.
- Lazzarino, J. K., Bachmann, R. W., Hoyer, M. V., and Canfield, D. E.: Carbon dioxide
 supersaturation in Florida lakes, Hydrobiol., 627, 169-180, 2009.

Lewis, E. and Wallace, D. W. R.: Program developed for CO₂ system calculations. Carbon
 dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of
 Energy, Oak Ridge, Tennessee, 1998.

López, P., Marcé, R., and Armengol, J.: Net heterotrophy and CO₂ evasion from a productive
 calcareous reservoir: Adding complexity to the metabolism-CO₂ evasion issue, J Geophys
 Res-Biogeo, 116, 2011.

Maberly, S. C., Barker, P. A., Stott, A. W., and De Ville, M. M.: Catchment productivity controls CO₂ emissions from lakes, Nat Clim Change, 3, 391-394, 2013.

MacIntyre, S., Wanninkhof, R., and Chanton, J. P.: Trace gas exchange across the air - water
interface in freshwater and coastal marine environments. In: Biogenic trace gases: measuring
emissions form soil and water, Matson, P. A. and Harriss, R. C. (Eds.), Methods in Ecology,
Blackwell, Oxford, 1995.

Marcé, R., Obrador, B., Morgui, J. A., Riera, J. L., Lopez, P., and Armengol, J.: Carbonate
 weathering as a driver of CO₂ supersaturation in lakes, Nat Geosci, 8, 107-111, 2015.

McDonald, C. P., Stets, E. G., Striegl, R. G., and Butman, D.: Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States, Global Biogeochem Cy, 27, 285-295, 2013.

Morales-Pineda, M., Cózar, A., Laiz, I., Úbeda, B., and Gálvez, J. A.: Daily, biweekly, and
 seasonal temporal scales of pCO₂ variability in two stratified Mediterranean reservoirs, J
 Geophys Res-Biogeo, 119, 509-520, 2014.

Müller, B., Meyer, J. S., and Gächter, R.: Alkalinity regulation in calcium carbonate-buffered
 lakes, Limnol. Oceanogr., 10.1002/lno.10213, 2015.

Quiñones-Rivera, Z. J., Finlay, K., Vogt, R. J., Leavitt, P. R., and Wissel, B.: Hydrologic,
 metabolic and chemical regulation of water-column metabolism and atmospheric CO₂
 exchange in a large continental reservoir during spring and summer, J. Great Lakes Res., doi:
 http://dx.doi.org/10.1016/j.jglr.2015.05.005, 2015. in press, 2015.

R-Development-Core-Team: R: A language and environment for statistical computing. R
 Foundation for Statistical Computing. Vienna, Austria, 2008.

- 38 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M.,
- 39 Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Durr, H., Meybeck, M.,

Ciais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, Nature, 503,
 355-359, 2013.

- 3 Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., MacIntyre, S., Lenters, J. D., Smyth,
- 4 R. L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C., Brookes, J. D.,
- Laas, A., and Wu, C. H.: Lake-size dependency of wind shear and convection as controls ongas exchange, Geophys Res Lett, 39, 2012.
- Seekell, D. A., Carr, J. A., Gudasz, C., and Karlsson, J.: Upscaling carbon dioxide emissions
 from lakes, Geophys Res Lett, 41, 7555-7559, 2014.
- Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., and Cole, J. J.: Patterns and
 regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes, Limnol.
 Oceanogr., 52, 1208-1219, 2007.
- Soumis, N., Duchemin, E., Canuel, R., and Lucotte, M.: Greenhouse gas emissions from
 reservoirs of the western United States, Global Biogeochem Cy, 18, 2004.
- St Louis, V. L., Kelly, C. A., Duchemin, E., Rudd, J. W. M., and Rosenberg, D. M.: Reservoir
 surfaces as sources of greenhouse gases to the atmosphere: A global estimate, Bioscience, 50,
 766-775, 2000.
- Stets, E. G., Striegl, R. G., Aiken, G. R., Rosenberry, D. O., and Winter, T. C.: Hydrologic
 support of carbon dioxide flux revealed by whole-lake carbon budgets, J Geophys ResBiogeo, 114, 2009.
- Striegl, R. G. and Michmerhuizen, C. M.: Hydrologic influence on methane and carbon
 dioxide dynamics at two north-central Minnesota lakes, Limnol. Oceanogr., 43, 1519-1529,
 1998.
- 23 Stumm, W. and Morgan, J. J.: Aquatic chemistry. Wiley, New York, 1981.
- Tremblay, A., Therrien, J., Hamlin, B., Wichmann, E., and LeDrew, L. J.: Greenhouse gas
 emissions from boreal reservoirs and natural aquatic ecosystems. In: Greenhouse Gas
 Emissions Fluxes and Processes, Tremblay, A., Varfalvy, L., Roehm, C., and Garneau, M.
 (Eds.), Springer, Berlin, 2005.
- Trolle, D., Staehr, P. A., Davidson, T. A., Bjerring, R., Lauridsen, T. L., Sondergaard, M., and
 Jeppesen, E.: Seasonal Dynamics of CO₂ Flux Across the Surface of Shallow Temperate
 Lakes, Ecosystems, 15, 336-347, 2012.
- UNESCO/IHA: GHG Measurement Guidlines for Freshwater Reservoirs, UNESCO, 138 pp.,
 2010.
- Vachon, D. and del Giorgio, P. A.: Whole-Lake CO₂ Dynamics in Response to Storm Events
 in Two Morphologically Different Lakes, Ecosystems, 17, 1338-1353, 2014.
- Wanninkhof, R.: Relationship between Wind-Speed and Gas-Exchange over the Ocean, J
 Geophys Res-Oceans, 97, 7373-7382, 1992.
- 37 Wendt-Potthoff, K., Kloß, C., Schultze , M., and Koschorreck, M.: Anaerobic processes in
- two-pre-dams of a drinking water reservoir, Int. Rev. Hydrobiol., 99, 350-362, 2014.

- 1 Whitfield, C. J., Aherne, J., and Baulch, H. M.: Controls on greenhouse gas concentrations in
- 2 polymictic headwater lakes in Ireland, Sci Total Environ, 410, 217-225, 2011.
- 3
- 4

1 Tables

- 2 Table 1. Descriptive statistics of annual median data from all reservoirs K=gas transfer
- 3 coefficient, $J_{hourly}=CO_2$ flux calculated using high resolution wind data, $J_{monthly}=CO_2$ flux
- 4 calculated using mean wind, J_{pH}=CO₂ flux calculated from mean pH of each reservoir (n=39,
- 5 for DOC and pH annual means).

	min	max	median	mean	SD
$CO_2 \ [\mu mol \ l^{-1}]$	15	2365	72	283	523
K [m d ⁻¹]	0.5	2.17	0.7	0.9	0.5
$J_{hourly} [g \ C \ m^{-2} \ y^{-1}]$	14	7386	167	765	1545
$J_{monthly} [g \ C \ m^{\text{-2}} \ y^{\text{-1}}]$	-3	6710	148	689	1518
$J_{pH} [g C m^{-2} y^{-1}]$	20	6271	146	769	1442
DOC [mg l ⁻¹] (n=19)	0.92	6.15	3	3.18	1.44
рН	4.9	8.7	7.3	7.05	0.98

6

1 Figures

3 Figure 1: Histograms of median annual data of the different reservoirs: a) CO₂ concentration,

b) K, c) CO₂ flux. A Kolmogorov-Smirnov test showed that the data were not log-normal
distributed.

1

Figure 2: Boxplots describing the seasonal fluctuation of CO_2 concentration (a), K (b), and CO_2 flux (c). Data points are the mean seasonal data for each reservoir (n=39). Extreme values (higher than 400 µmol l⁻¹ and 400 mmol m⁻²d⁻¹) are outside the plots.

1

2 Figure 3: Median annual CO₂ flux for different reservoirs calculated on an hourly or monthly

3 basis. The insert shows a magnification of the left part of the graph.

Figure 4: CO₂ flux from Rappbode pre dam calculated with (line) and without (circles) using
high frequency wind data.

2 Figure 5: Dependence of the annual median CO_2 flux on the annual median CO_2 3 concentration (a) and K (b).

2 Figure 6: Dependence of the median CO₂ flux on a) mean pH, b) alkalinity, and c) mean DOC

3 concentration in the different reservoirs. Lines in a) show an exponential fit with 95%

4 confidence interval ($R^2 = 0.85$).