Interactive comment on "Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status" by B. Ťupek et al.

B. Ťupek et al.

boris.tupek@luke.fi
Received and published: 16 February 2016

Author's reply to Prof G. I. Ågren (Referee):
!Referee: referee's comments \#Authors: author's reply
GENERAL COMMENTS
!Referee: This is an interesting paper.
\#Authors: Thank you, we appreciate all your comments, considered them carefully, and reply below to each of them! In addition the PDF version of our reply and the marked up manuscript with highlighted changes is provided in the supplement of our comment.
!Referee:Three structurally quite different soil carbon models give very similar predictions of forest soil carbon stocks when they are driven by the same litter inputs and differ also similarly from observations. The critical question is why they fail in their predictions for 22% of the test sites. The authors attribute the failure to weaknesses in how the models handle soil nutrient status. This might well be the case, but such a failure can come from two quite different sources. On one hand, is the litter input correctly calculated?
\#Authors: Yes the litter input is calculated correctly, as we are aware that the correct calculation of the litter input is essential for the simulation of the soil carbon sequestration and the estimation method has large influence on the sequestered soil carbon. E.g. see SOC and litter relations in supplement figure FS6 and results lines 306-310.
!Referee:The procedure used to generate litter input is not transparent.
\#Authors: We are aware that our description of the novel approach of litter input estimation may not be transparent in general concept in Sect. 2.1.1 "Biomass and litterfall estimates", therefore we added detailed descriptions for reproducing the methods to appendices (Appendices A, B, and C, Tables A1, B1, and C1, and Figures A1, B1, and S9). At first, the novel method could seem complicated compared to the estimation by using only the allometric biomass models. However, the measurements of actual state forest could not be applied directly to biomass models in order to derive the long-term litter inputs due to differences in stand age classes and our method to remove the effect of the actual stand development was crucial for estimating long-term mean litter input correctly.
!Referee:The calculation is based on fAPAR (the fraction of absorbed photosynthetically active radiation) but the maximum/potential value of absorbed radiation seems to be ignored. However, both the potential production and fAPAR vary with the nutrient status of the stand. In the end, it seems to me that the procedure generates tree biomasses and thus litter production only depending on latitude;
\#Authors: We are sorry that you partly misunderstood whether the maximum/potential value of absorbed radiation was taken into account. What we meant to describe was that fAPAR was based on the field data, the maximum observed fAPAR was certainly taken into account, and it was specific for latitude and nutrient status, and served as a prerequisite for the estimated 70th percentile of f APAR (fAPAR70). The nutrient status was in our data represented by a productivity class (H100, height of the dominant trees at the age of 100 years in meters). Both latitude and the H100 data were used in estimation of the fAPAR70 values (Appendix A1 lines 508-513, Table A1 and Fig. A1). We think that adding panels showing the relation between modeled fAPAR70 and H100 data into Fig. A1 will clear the confusion about relation between fAPAR and site productivity/nutrient status (see attached updated Fig. A1).
!Referee: this will ignore the large regional differences in nitrogen deposition that play an important role in tree productivity, likely leading to an underestimate of litter production in high deposition areas.
\#Authors: Figure 2 in this reply shows that productivity class (H100) of deciduous, pine, and spruce forests used in this study for the long-term litter input modelling was well correlated with Nitrogen deposition data (panels a, b, and c). However if using the actual state forests measurements directly, with only the allometric biomass models approach, the forest stage development masked the relationship between the nutrient status and the litterfall estimates (actual state forest litter in panels d, e, and f). In our approach with the stage development set to a 70th percentile of the maximum production potential, the litterfall estimates (long-term mean litter) reflected well the differences in Nitrogen deposition (panels g, h, and i).
!Referee: On the other hand, it is clear that soil nitrogen modifies the carbon use efficiency of decomposers; increasing nitrogen availability increases CUE, which increases soil carbon stocks (Ågren et al. 2001, Franklin, et al. 2003). In all three models, inclusion of either of these two factors would improve the model performance at the high nutrient sites.
\#Authors: We added your comment into discussion, by reformulating sentence on lines 343-345, complementing on studies of Fernandez-Martinez et al. 2014, and Manzoni et al. 2012. "Larger net soil carbon accumulation in nutrient rich sites could be attributed to the relative differences in litterfall components (relatively more leaves and branches with higher N content than fine roots), and to higher N availability and carbon use efficiency of decomposers, reduction of respiration per unit of C uptake (Ågren et al. 2001, Manzoni et al. 2012, Fernandez-Martinez et al., 2014)." Manzoni, S., Taylor, P., Richter, A., Porporato, A. and Ågren, G. I.: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils, New Phytol., 196, 79-91, 2012.
\#Authors: We also added citation of Franklin et al. (2003) after the sentence on line 347. "The soils with large N deposition were also highly productive and showed high to exceptionally high SOC stocks (Fig. 2, Fig. 3, soil groups 7 and 8). This was in agreement with fertilization and modelling study of Franklin et al. (2003) showing an increase in soil C accumulation with N addition."

SPECIFIC COMMENTS

!Referee: 1. Line 78. effects should be affects
\#Authors: Effects was changed to affects
!Referee: 2. Line 221. It is not clear what is meant by "the 2012Q model". Should it be 2011 or 2013? \#Authors: We changed it to 2011, because 2011 was the calibration of the model and 2013 was an application on larger regions, no calibration.
!Referee: 3. Line 343. Why should decreased microbial demand for nitrogen lead to increased soil carbon?
\#Authors: We reformulated sentence on lines 343-345 as described in general comments
!Referee: 4. Line 387. Why should inorganic nutrient uptake by mycorrhiza lead to underestimated SOC stocks on medium-highly productive sites?
\#Authors: In lines 386-388 based on finding of Orwin et al. (2011) we suggest that not accounting for the available nutrients from the organic (not inorganic) uptake by models contributes to their underestimation of SOC stocks on sites with higher nutrient status. We reformulated the sentence.
"Expanding on the CENTURY model structure, the MySCaN model incorporating the organic nutrient uptake by mycorrhizal fungi estimated positive effect on SOC accumulation, relatively larger in poor than in fertile sites (Orwin et al.,2011). Therefore, not accounting for the organic nutrient uptake by mycorrhizal fungi by the Yasso07, Q, and CENTURY models probably led to the underestimation of SOC stocks in sites with higher nutrient status."
Orwin, K. H., Kirschbaum, M. U., St John, M. G. and Dickie, I. A.: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment, Ecol. Lett., 14, 493-502, 2011.
!Referee: Cited literature Franklin, O., et al. (2003)."Pine forest floor carbon accumulation in response to N and PK additions - Bomb 14C modelling and respiration studies." Ecosystems 6: 644-658. Ågren, G. I., et al. (2001). "Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition." Oecologia (Heidelb.) 128: 94-98.
\#Authors: Thank you for providing these references.

\#Authors: Figure captions

Figure 1. or Figure A1 in our BGD paper. Actual state fraction of absorbed radiation (fAPAR, estimated as in Härkönen et al., 2010) (actual fAPAR) and steady state fAPAR (modeled fAPAR70) which was set to 70th percentile of maximum fAPAR for given species, latitudinal degree, and site productivity class. Panels a), b), and c) show relation between fAPAR and latitude $\left({ }^{\circ}\right)$ for forest stands dominant by Scots pine, Norway spruce and deciduous species, whereas panels d), e), and f) show relation between
fAPAR and site productivity class (H100, height of dominant trees at 100 years in meters).

Figure 2. Scatterplots between the Nitrogen deposition (kg N ha-1 $\mathrm{y}-1$) and a$), \mathrm{b}$), c) site productivity class (H100, which is the height of the dominant trees at the age of 100 years in meters) , d), e), f) actual state forest litterfall (t C ha-1 $\mathrm{y}-1$), and g), h), i) long-term mean "steady state" forest litterfall (C ha-1 y-1) for deciduous species, Scots pine, and Norway spruce dominated stands.

Please also note the supplement to this comment: http://www.biogeosciences-discuss.net/bg-2015-657/bg-2015-657-AC1supplement.pdf

Interactive comment on Biogeosciences Discuss., doi:10.5194/bg-2015-657, 2016.

Fig. 1.
C7

Fig. 2.

Interactive comment on "Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status" by B. Ťupek et al.

B. Ťupek et al.
boris.tupek@luke.fi
Received and published: 25 February 2016

Dr Leonid L. Golubyatnikov's (Referee's) comments are highlighted by bold font. \# Symbol and font used to indicate Author's reply.
Authors evaluated soil organic carbon stock for Swedish forest using models Yasso07, Q, CENTURY and compared the model results with the Swedish forest soil inventory data. They described the obtained results very accurate and comprehensively.
\#Thank you for your comments! We appreciate and considered them all, and below we reply to each in detail. Based on your comments we have presented 1 new biomass/
litterfall figure and redrawn 2 original biomass modelling figures (attached at the end); and reformulated text by following your remarks and clarifying Sections "2.1.1 Biomass and litterfall estimates" and " 5 Conclusions" of our Biogeosciences Discussion (BGD) paper (the marked up version is in the supplement of this comment).

Remarks:

1. Is phrase "i.e. samples with SOC stock below 0.01 and 99.9 percentile" (line 103) correct?
\# We reformulated the sentence "SOC stock below 0.01 and above 99.9 percentile"
2. It's not necessary to reintroduce the abbreviations (for example, line 102).
\# We removed "(SOC)" from line 102, "(CEC)" from lines 198, 283, 287,"(SFSI)" from line 321,"(SMHI)" from line 533
3. Units for turnover rate are necessary (lines 159-164).
\# We added short description of TR on the line 153 where it was first introduced "(TR, the fraction of living biomass that is shed onto the ground per year, unitless)"
4. Section 2.2 duplicates the information from lines 64-80.
\# We reformulated section 2.2 by removing information which was previously mentioned in the introduction. The sentence on lines 226-238 was reformulated: "The Yasso07 model (Tuomi et al., 2009; 2011) is one of the most widely applied SOC models. The sentence on lines 232-235 was deleted. The sentence on lines 247-248 was reformulated: "The CENTURY is also one of the most widely applied models."

Authors used linear functions for biomass of vegetation types. According to Tabl.C1 all (!!!) functions for aboveground biomass have R2<0.5 and only one function for belowground biomass has R2>0.5. Therefore, these functions do not reflect the realistic interdependences and increase the model mistakes.
\# We are sorry for your possible misunderstanding on the extent in which we used the linear functions for the long-term mean forest biomass and litter input modelling for the soil carbon models. What we meant to describe in Section "2.1.1 Biomass and litterfall estimates" and in Appendices A, B, and C was that we used these linear functions (1) only for the litter input from the understory vegetation, (2) only for the long-term mean conditions "steady state forest", and that (3) the understory vegetation types affected the total understory litterfall with different weights according to their proportion of the total understory litterfall (better models for largely abundant dwarf-shrubs shared most influence than poorer models of scarcer herbs, grasses and lichens).

Firstly, it is evident that the forest understory represented the minor part of the total litter input (Fig. 1 of this comment), and that the major part of the litter input originated from the tree stand biomass components which were modeled by the non-linear functions with R^{2} values close to 0.9 (Fig. 2 of this comment, redrawn Fig. B1, Appendix A and B, Tables A1 and B1). Therefore, when compared to the tree stand whose high model precisions governed the estimated total litter inputs for soil carbon models, and the understory had only small influence on the performances of soil carbon models.

Secondly, the variation of observed understory data for the plots close to estimated long-term mean conditions was largely reduced (as juvenile and declining forest phases were excluded) in comparison to the low proportion of explained variance for models presented in Table C1 for forest plots with high variance in understory data due to all stages of forest development. Our application of linear understory models for these plots resulted in much stronger fit between the observed and predicted values (Fig. 3 of this comment as redrawn Fig. S9, mean, min, and max R^{2} were 0.69, 0.38, and 0.91,respectively).

Thirdly, the contribution of understory types to total understory litterfall was largest for the major part of total understory litterfall originating from dwarf-shrubs and mosses

C3
(Fig. 1c). Dwarf-shrubs and mosses were predicted for the steady state forest with high R^{2} values between 0.7 and 0.9 (Fig. 3). The understory vegetation types with the lower R^{2} values (between 0.38 and 0.66 , for herbs, grass, and lichens, Fig. 3) contributed little to total understory litterfall (Fig. 1c). When aiming to evaluate the impact of understory models on performances of SOC models for steady state forests, as in our application, it is correct to consider the larger R^{2} values of Fig. 3 (especially totals with R^{2} values close to 0.9, as total understory biomass or litterfall modeled for each functional type separately or in one model highly correlated).Therefore, the influence of these poorer understory models was small on predictions of the understory litter and marginal on predictions of the total forest litterfall and simulated SOC stocks.

Note, that SFI observations of forest floor vegetation coverages were not available for 3230 SFI plots with soil data. For the comparison between the understory and the stand biomass based on measurements (Fig. 1), we estimated biomasses for 2440 plots SFI plots which contained the understory data. In order to remove the age class effect on the understory biomass, which was also removed in our BGD paper for plots with soil data by estimating the forest biomass only for steady state, we selected from the 2440 SFI plots only those plots whose estimated fraction of absorbed radiation ($f_{A P A R}$, Appendix A) was close to steady state $f_{A P A R}\left(f_{A P A R 70}\right)$ "steady state forest plots". In order to remove the effect of the actual stand development, which was crucial for estimating long-term mean litter input accurately, we developed functions based on $f_{A P A R}$ (Appendices A and B).

When regarding the nature of the understory coverage SFI data (visual observations), the lower precision (R^{2} values below 0.9) of estimated biomasses could be expected even with the most sophisticated ecological models, but the significant p-values of our model parameters with predicted and observed values showing approximately 1:1 relation indicated that the estimates were accurate. Our aim here was to produce accurate biomass/litterfall estimates representing the mean long-term conditions (defined by es-
timated steady state) for small regions (defined by degree of latitude and productivity class for dominant species) as attempts for high precision of the estimates applied for the period of the last few thousands of years are uncertain due to high variation of data and factors affecting plot history.

For an improved understanding of the biomass models we reformulated Section 2.1.1 and Appendix C (see the marked up version of our BGD paper in the supplement of this comment). We also replaced Fig. B1 and S9 by Fig. 2 and 3 of this comment and added the component biomass and litter contribution Fig. 1 into the supplement as Fig. S10.

We noticed the erroneous unit in the original caption of Fig. B1 where the units "tons ha ${ }^{-1}$ " in scatterplots of the non-linear models were instead described as "kg ha ${ }^{-1}$ ". We have redrawn Fig. B1 and S9 using "t C ha ${ }^{-1}$ " (Fig. 2) and added R^{2} values.

Interestingly your comments on validity of our understory models complemented on previous comments from Prof Göran Ågren who was interested whether our stand biomass models based on $f_{A P A R 70}$ accurately reflected Swedish regional differences in nutrient status and Nitrogen deposition (as possible reason for biased estimates of SOC stock on fertile sites). Note,that based on Prof Göran Ågren comments we have redrawn Fig. A1 and added new Fig. S11 in the supplement of the BGD paper. You are most welcome to interact with Prof Göran Ågren and us replying to him on the discussion page of our paper. http://www.biogeosciences-discuss.net/bg-2015-657/

It is not clear what authors wanted to show by this manuscript. From the presented results it follows that models of some processes do not accurately reflect these real processes. But it is evident and not new! Another conclusion of the article is also obvious: data for model essentially impact the model results.
\# In the view of the above mentioned general conclusions, we (1) clarified the novelty C5
of our study by highlighting the connection between the soil nutrient status and performance of widely applied soil carbon models (see reformulated Conclusions), and (2) mentioned that the use of the long-term mean litter input, instead of using litter from the actual state forest measurements, has mainly contributed for accurate modelling of SOC stocks (see reformulated Section 2.1.1). The second was obviously necessary for accurate analysis and it is not meant to be a conclusion of our study, therefore it was removed from conclusions (see reformulated Conclusions).

What we meant to describe in our Yasso07, Q, and CENTURY model intercomparison with Swedish soil carbon inventory data was that process based soil carbon models with the current formulation lacking nutrient status related controls of decomposition and soil carbon accumulation would underestimate for conditions where the high nutrient status predominate, in our application for medium-highly productive sites of Southern Sweden. Thus, the main message of our study is the modelling SOC stock bias related to the application of the Yasso07, Q, and CENTURY soil carbon models on productive sites in Sweden, which have not been published by other scientists and that is new to a wide community of modelers or other users of these models. As mentioned in our BGD paper and described further in detail in above discussion, our simulation is based on the widely used process based SOC models, accurate driving data including litter inputs, and massive SOC data points (Swedish inventory data, N=3230). Through the intercomparison of three different widely-used SOC models with massive data points, we identified that re-evaluating of the impact of nutrient status would improve the model development towards their accuracy on estimation of SOC stocks. Therefore, our study is very useful for developing accurate soil carbon and Earth system models, needed for accurate estimation of feedback of global warming on SOC stock temperature sensitivity and soil CO2 efflux, for the accurate national reporting of soil carbon stock changes for United Nations Framework Convention on Climate Change (UNFCCC), and implications of decisions mitigating the climate change effects on soil carbon stocks.

For an improved clarity of the main message we reformulated Conclusions (see the marked up version of our BGD paper in the supplement of this comment).

I think this manuscript can not be published

\# We are aware of your concerns about the low R2 values of our understory biomass models presented in Table C1, and about the clarity of the main message. However, as we thoroughly clarified above, the use of these models in our application is reasonably accurate and does not introduce bias on the estimated SOC stocks of soil carbon models and onto their relations to site nutrient status. In sections describing biomass models, we improved the description of the influence of litter input components onto total litter input and SOC stock results. In above response and in improved conclusions we also highlighted the main message of our study.

We hope that you could reconsider this statement after improvements made into the paper, and that if needed you would give us further comments suggesting necessary improvements.

FIGURE CAPTIONS:

Fig. 1. (Fig. S10.) The tree stand and understory forest (a) biomass, (b) litterfall, and (c) understory litterfall (all in $\mathrm{tC} \mathrm{ha}^{-1}$) for Swedish Forest Inventory plots with available understory coverage observations and in their actual state close to the estimated longterm mean conditions "steady state".
Fig. 2. (Fig. B1.) Scatter plots for the dry weight tree biomass components ($\mathrm{tCha}{ }^{-1}$) between "modelled" (estimated based on fraction of absorbed radiation, $f_{A P A R}$, and our $f_{A P A R}$ models) and "measured" (estimated based on basic tree stand dimensions and allometric biomass models). The r^{2} values represent the coefficient of determination indicating how close the modeled values fit the measured values.

C7

Fig. 3. (Fig. S9.) Scatter plots for the dry weight biomass ($\mathrm{tCha}{ }^{-1}$) of the functional types of understory vegetation for Swedish Forest Inventory plots in actual state being close to the estimated long-term mean conditions "steady state". On the x-axis is the biomass modelled by the understory vegetation dry weight biomass ($\mathrm{tC} \mathrm{ha}{ }^{-1}$) models and on the y-axes is the observed coverage multiplied by the coverage/biomass conversion functions. The abbreviations "abv", "belw", and "tot" mean aboveground, belowground and total. The last panel for "understory total" shows high agreement between the sums of each modeled functional types and the sums of all functional types. The r^{2} values represent the coefficient of determination indicating how close the modeled values fit the observed values.

Please also note the supplement to this comment: http://www.biogeosciences-discuss.net/bg-2015-657/bg-2015-657-AC2supplement.pdf

Fig. 1.

C9

Fig. 2.

Fig. 3.

Interactive comment on "Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status" by B. Ťupek et al.

B. Ťupek et al.
boris.tupek@luke.fi
Received and published: 9 April 2016

Referee's comments are highlighted by the bold font.
Author's replies are indicated by the italic font. The normal font indicates text of the manuscript.

Review of Tupek et al.
Summary:
Three soil models (Q, Yasso07 and CENTURY) are ran against Swedish forest soil inventory data to gauge how well they can estimate soil C stocks. The
soils were additionally broken down into 10 distinct groupings based on soil characteristics or 5 on site characteristics. Generally the models perform well enough but have problems with certain sites characterized by high fertility and are generally well-sorted for parent material.
Thank you for your comments! We appreciate and considered them all, and below we reply to each in detail. Based on your comments we have resimulated CENTURY SOC stocks with tuned parameters accounting for the variation of topsoil mineral N, C/N ratio of litterfall in relation to site N deposition and productivity class. We redrawn Fig. 3 and 4, supplement Fig. S5, S7, and S8, and added Fig. S10, S11, and S12. We reformulated text by following your remarks and according to improved performance of CENTURY model (as in the marked up version of the manuscript attached into the supplement of this comment).

I have some troubles with understanding the point of the paper.
The point of the paper was evaluating Yasso07, Q, and CENTURY model estimates of SOC stocks wheather they can follow the variation of measured SOC stocks when those were grouped according to site nutrient status (Fig. 3 of the BGD manuscript), and helping to understand why models performed well for $2 / 3$ of sites and failed for more fertile sites. We reformulated Conclusions.
The authors took three separate soil C models and ran them then compared them. That is fine but why not have examined how the special characteristics of CENTURY could have helped its performance?
We presented our model intercomparison keeping some special CENTURY characterisitcs constant, because we included the main driver of these models, litter input, and did not acount for all drivers in CENTURY as we expected them to have small effect on estimated SOC stocks. We have now confirmed by CENTURY sensitivity simulations that in comparison to litterfall including parameters of topsoil mineral N, and C / N ratio of the litterfall had small effect on SOC stocks (Fig.1).
The authors noted that CENTURY simulates its soil C to only 20 cm and they
noted that it should likely be increased by 40-50 \% like Yasso07, but then why not show on plots how that would look?
We did not scale CENTURY estimates because we were interested more in reproducing the pattern of the grouped measurements. Scaling the topsoil horizon SOC stock by adding 40% of estimated site specific SOC stock to account for the deep carbon in the current version of the manuscripts (described in section 2.2) helped CENTURY estimates to agree with measurements, thus in the current version of the manuscript we presented scaled CENTURY SOC stocks.
Similarly, CENTURY is capable of \mathbf{N} dynamics and the authors explicitly note that \mathbf{N} deposition at some sites seems to be important, so why not do a run with the N -cycle turned on? Then at least we could see how well the model does when its full capabilities are used. This strikes me as taking a Ferrari, deflating all of its tires, filling it with poor petrol and then racing against a Honda. Sure it's performance can be evaluated but it is hardly ideal conditions to see how fast it can really go.
We noticed that part of our BGD manuscripts discussion on line 464, in particular that "...the feedback of nitrogen input to plant productivity was not included in this study" was misleading and has to be reformulated into "...the feedback of nitrogen input to plant productivity was primarily included in this study indirectly, through estimated steady state litter input based on site productivity class which strongly correlated with Nitrogen deposition (Fig. A1 and S11)."
As litter input indirectly reflected N deposition, we focused on C part of CENTURY (that is common by modelling studies) by accounting for the main drivers of SOC stocks sequestration site specific litter input, climate, and soil texture and structure. Although in our BGD manuscript we did not presented the results of CENTURY soil sub-model in its full capabilities, in the current version of the manuscipt (Section 2.2) we further accounted for N part through the contribution of site specific parameters of topsoil mineral N (relative to N deposition, Throop et al. 2004), C/N ratio of the litterfall (relative to production, Merilä et al. 2015), and we also included effect of drainage
(relative to long-term soil moisture, Raich et al. 2000) (Fig. 2). We also found and corrected a mismatch between the site specific soil silt-, clay-, sand- contents and other input data (correctly used litterfall and climate) that caused under-performance of CENTURY in our BGD manuscript. After soil input data were matched correctly with the other input data, then the CENTURY SOC stock estimates improved into more pronounced spatial (between group) differences. The CENTURY estimates were markedly larger for the groups with higher clay contents and generally lower for the other groups (Fig. 2).
Throop, H. L., Holland, E. A., Parton, W. J., Ojima, D. S. and Keough, C. A.: Effects of nitrogen deposition and insect herbivory on patterns of ecosystem level carbon and nitrogen dynamics: results from the CENTURY model, Global Change Biol., 10, 1092-1105, 2004.
Merilä, P., Mustajärvi, K., Helmisaari, H., Hilli, S., Lindroos, A., Nieminen, T. M., Nöjd, P., Rautio, P., Salemaa, M. and Ukonmaanaho, L.: Above-and below-ground N stocks in coniferous boreal forests in Finland: Implications for sustainability of more intensive biomass utilization, For. Ecol. Manage., 311, 17-28, 2014.

I also worry about the litter inputs. I would have liked to see some way of independently evaluating the litter input contributions.
The main driver of the SOC stock accumulation, the forest plant's litterfall, was precisely estimated based on the ground measurements of Swedish forest inventory data and Scandinvian biomass and litterfall functions, and for the main Swedish regions agreed with Ortiz et al. (2013). The developed functions based on $f_{A P A R}$ were through removing the effect of the management (the present stand development) the main contributors for accurate estimation of the long-term mean litter input (newly added Fig. S11 in the supplement of the edited manuscript). The allometric biomass models used to derive our $f_{A P A R}$ biomass models were based on studies using extensive data from boreal forest of Scandinavia (lines 133-134). The biomass estimates of the published allometric functions and our $f_{A P A R}$ functions strongly correlated (R^{2}
values close to 0.9, Table B1 and Fig. B1). Litterfall estimation as a proportion of forest biomass was also based on studies from Scandinavia (lines 153-165) and our estimates of litterfall components of steady state forests (newly added Fig. S10 in the supplement of the edited manuscript) were within the range of reported values (Ågren et al. 2007, Mukkonen and Lehtonen 2004, Lehtonen et al. 2004, Viro 1955, Mälkönen 1974, 1977, Kleja et al. 2008, Leppälampi-Kujansuu et al. 2014, Liski et al. 2006, Ortiz et al. 2013). For an improved understanding of the $f_{A P A R}$ biomass models we reformulated Section 2.1.1, Appendices A and B, redrawn Fig. A1 and B1, and added supplement Fig. S10 and S11. The appendix Fig. A1 was redrawn in order to increase clarity of biomass/litterfall modelling based on the productivity class, and supplement Fig. S10 shows the range of litter input, Fig. S11 increases clarity of biomass/litterfall modelling on the Nitrogen deposition.

I recommend the authors do some further simulations to make this paper more interesting and to offer up a better analysis of how the model processes can contribute to estimated SOC stocks (thinking here the \mathbf{N} cycle in CENTURY). I usually don't like to ask for more simulations but in this case I think it is necessary to make the paper have wider appeal. If not a more specialized journal could be appropriate.
In the current version of the manuscipt (in supplement of this comment) we present results from the tuned CENTURY model that includes site specific parameters of topsoil mineral $N, C / N$ ratio of the litterfall, and drainage. However, tuning of CENTURY parameters to site specific topsoil mineral Nitrogen, C/N ratio of the litterfall, and drainage (Fig. 1 and Fig. 2) showed that this impact on SOC stocks estimates was small in comparison to sensitivity of SOC stock estimates to litterfall. The Fig. 1a showed that 30% increase in litterfall increased SOC stocks by $15 \mathrm{tC} \mathrm{ha}{ }^{-1}$, whereas tuning the parameters of C/N ratio of litterfall by 30% resulted only in SOC stock change up to 1 tC ha $^{-1}$ (Fig. 1b) and increasing mineral N by 30% increased estimates up to $2 \mathrm{tC} \mathrm{ha}^{-1}$ (Fig. 1c). Further increase of topsoil mineral N resulted to maximum

SOC stock increase around 5 tC ha $^{-1}$ compared to setting used in our BGD manuscript (Fig. 1c and 1d). The Fig. 1 and Fig. 2 showed that litterfall was the main driver of the estimated SOC stocks and therefore accurate SOC stocks depended on accurate biomass and litterfall estimation.
We added description of the CENTURY simulation with $N, C / N$ and drainage parameters into the manuscript (section 2.2.), added Fig. 1 to supplement as Fig. S12, and redrawn the figures containing CENTURY estimates. Although the main message of the edited manuscript remained similar to the previous version, we reformulated our findings regarding the improved performance of the CENTURY model and conclusions.

Specific comments:

1. The paper is generally not well written and would greatly benefit from English copyediting. I mention this as I often had to re-read sections to understand what was written. There are a few areas where I still don't understand what was being communicated.
English language of our BGD manuscript was revised by a native speaker. For the additional clarity we reformulated mainly sections 2.1.1 and conclusions. Manuscript in final form would undergo English copyediting services.
2. The section on fAPAR was hard to follow ('actual state'? I don't understand if this was an English problem or if this term was meant. It is a strange term to be used). In the end I was not sure how good this fAPAR method worked out. I can't see anywhere that this was explicitly tested against some sort of observations. Since the litter inputs are pretty important to drive the models with, shouldn't this be very well evaluated?
We reformulated section 2.1.1 for increased clarity between the actual and steady state forest, and the use of $f_{A P A R}$ models. We meant to use the term 'actual state'
referring to current state, existing at the present time, as used to describe phenomena in physics. However, our focus was not on the actual state, but on the long-term mean conditions what we referred as 'steady state'.
Our use of $f_{A P A R}$ models for steady state was motivated by the need to remove the effect of management from the Swedish Forest Inventory measurements and to produce biomass/litterfall estimates accurately representing the mean long-term conditions (defined by estimated steady state) for small regions (defined by degree of latitude and productivity class for dominant species) (see redrawn Fig. B1). The higher precision of the estimates applied for the period of the last few thousands of years would be uncertain due to high variation of factors affecting plot history. As shown by Fig. S11 the litterfall based on $f_{A P A R}$ models of steady state forests were sensitive to regional differences in N deposition that correlated to site productivity, and estimated litterfall components (Fig. S10) were in agreement of studies from Scandinavia.
3. How was the stump defined for the biomass? Usually I think of stem, coarse roots, and fine roots with the stump being what is left after a site is logged. How was it meant here?
\#The stump was defined and calculated as a difference between the felled part of the tree and roots that were attached to it (Pettersson and Ståhl 2006, lines 131-134).
Petersson, H. and Ståhl, G.: Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden, Scand. J. For. Res., 21, 84-93, 2006.
4. Line 264 - But the CENTURY simulation was run to equilibrium, right? Also how was equilibrium defined for the models?
The equilibrium state of a model was a state where the litter input equals decomposition and it is referred as the steady state soil carbon stock (described on lines 224-225 for Q, 235 for Yasso07, and 262-264 for CENTURY models).

5. Table 2, how is the productivity class derived?

We added following sentences into section 2.1.3 of edited manuscript:
The productivity class (H100, m) in our manuscript refers to a site index which can be converted to site productivity. Soil site index is based on dominant height at a certain age (100 years) and is determined according to a dominant height curve (Swedish Statistical Yearbook of Forestry 2014).
Swedish Statistical Yearbook of Forestry. Official Statistics of Sweden, 370 p., Skogsstyrelsen. 2014.

6. Table $\mathbf{2}$ - The depth of soil is assumedly cut off at 1 meter?

Yes, the SOC stock represented the soil assumedly cut off at 100 cm (Stendahl et al. 2010). We added this information into the header of Table 2.:

The soil was cut off at 1 meter.
7.Table 3 - Parameters (leftmost column)? What is meant here? How the model was parameterized? I found this confusing.
\#Parameters (leftmost column of Table 3) used in models represented different scales. Yasso07 parameters were global, Q parameters were regional (Scandinavian), and CENTURY parameters were combination of global and site specific for soil and C/N ratio of litterfall. We reformulated this line of Table 3 as:
Parametrization: Global, Scandinavian, Global and site specific.
8. Table 3 - CENTURY, is the soil depth adjustable from 0.2 ?Could it be increased to 1.0 to more simply make it comparable to the other models?
We added following sentence into the section 2.2. of edited manuscript:
In order to account for the deep soil carbon (Jobbágy and Jackson 2000), we scaled CENTURY estimates representing the topsoil horizon by adding 40% of estimated site specific SOC stock. Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and its
9. Figure 2 and text in main - Soil group 8 has only 8 samples within it. Is this reasonable to keep as a group?Given how many uncertainties develop as this regression tree is created (calculation of SOC, assignment to weather stations, measurement uncertainty, etc.) is it reasonable to let a group be only 0.24% of the total?
The soil group 8 that has only 8 samples was in our opinion distinct from the others as found by the rpart (Fig. 3). We added following sentences into the section 2.1.3:
We acknowledge the fact that this is a small distinct group based only on 8 observation. However, we don't have any reasons to exclude these datapoints as outliers.

FIGURE CAPTIONS:

Fig. 1. (Fig. S12) Sensitivity of simulated SOC stocks ($\mathrm{tC} \mathrm{ha}{ }^{-1}$) of CENTURY model to variation in litterfall (a), C/N ratio of litterfall (b), topsoil mineral $\mathrm{N}\left(\mathrm{gN} \mathrm{m}^{-2}\right)$ (c), and to variation of factors together (d). SOC stocks of CENTURY are output of spin up simulation up to 1000 years.

Fig. 2. Bean plot of density functions for 10 physicochemical groups of the soil carbon ($\mathrm{tCha}{ }^{-1}$) measurements (grey fill) and estimates simulated by the soil carbon models Yasso07, CENTURY, and CENTURY tuned (including site specific mineral N in topsoil, C / N ratio of litterfall, and drainage), Q with the litter input derived from the steady state forest. The thin lines are the density distributions. The thick lines are the group means and dashed lines are their confidence intervals. The n is number of samples. For description of group levels of SOC stocks, moisture, and fertility see Fig. 2 and Table S1. Note that in the edited manuscript (Fig. 3) we show CENTURY estimates including all used parameters (tuned), in order to keep balance with the results of Yasso07 and Q models.

Please also note the supplement to this comment:
http://www.biogeosciences-discuss.net/bg-2015-657/bg-2015-657-AC3-
supplement.pdf
Interactive comment on Biogeosciences Discuss., doi:10.5194/bg-2015-657, 2016.

Fig. 1.

C11

Fig. 2.

List of all the relevant changes of Ťupek et al.: Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status.

Based on the reviewers comments we have
(1) reformulated section on 2.1.1 clarifying $f_{A P A R}$ biomass models, the understory models, and their importance for litterfall estimation;
(2) redrawn figure Fig. Al showing the relation between $f_{A P A R}$ and productivity class, and added new supplement figures Fig. S10 showing the range of litterfall components in relation to biomass, and Fig. S11 showing the relation of estimated litterfall to N deposition;
(3) redrawn Fig. B1 showing the strong agreement between the published biomass models and our $f_{A P A R}$ biomass models (R^{2} values close to 0.9), redrawn Fig. S9 for accuracy of understory models;
(4) resimulated CENTURY SOC stocks with site specific parameters accounting for the variation of mineral N in topsoil, and C/N ratio of litterfall in relation to site N deposition and productivity class, and drainage in relation to long-term soil moisture, and reformulated section 2.2. describing the CENTURY SOC stock modelling;
(5) added supplement Fig. S12 showing the sensitivity of CENTURY SOC stocks to litterfall, mineral N in topsoil, and C/N ratio of litterfall;
(6) corrected a mismatch between the site specific soil texture and other input data (litterfall and weather that was used correctly), redrawn Fig. 3 and 4, and supplement Fig. S5, S7, and S8, and reformulated text in abstract, results, and discussion according to improved performance of the CENTURY model;
(7) clarified the conclusions focusing on the performance of Yasso07, Q, CENTURY model estimates against massive Swedish soil carbon data grouped according to levels of site nutrient status.

We thank the editor and the reviewers for their constructive comments that led us to an improvement of our manuscript!

Manuscript prepared for Biogeosciences with version 2015/09/17 7.94 Copernicus papers of the LATEX class copernicus.cls. Date: 9 April 2016

Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

B. Ťupek ${ }^{1}$, C. A. Ortiz ${ }^{2}$, S. Hashimoto ${ }^{3}$, J. Stendahl ${ }^{2}$, J. Dahlgren ${ }^{4}$, E. Karltun ${ }^{2}$, and A. Lehtonen ${ }^{1}$
${ }^{1}$ Natural Resources Institute Finland, P.O. Box 18, 01301 Vantaa, Finland
${ }^{2}$ Swedish University of Agricultural Sciences, P.O. Box 7014, 75007 Uppsala, Sweden
${ }^{3}$ Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
${ }^{4}$ Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183 Umeå, Sweden
Correspondence to: B. Ťupek (boris.tupek@luke.fi), A. Lehtonen (aleksi.lehtonen@luke.fi)

Abstract

Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystematmosphere carbon exchange by process based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead into a modelling bias in predictions of SOC stock change.

We aimed to evaluate SOC stock estimates of process based models (Yasso07, Q, and CENTURY) against the-soil sub-model v. 4) against massive Swedish forest soil inventory data-dataset (3230 samples) organized by recursive partitioning method into distinct soil groups with underlying SOC

The Yasso07 and Q models that used only climate and litterfall input data and ignored soit properties generally agreed with two third of meastrementsFor two thirds of measurements all models predicted accurate SOC stock levels regardless the detail of input data e.g. wheather they ignored or included soil properties. However, in fertile sites with high nitrogen N_{\sim} deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. Accounting for soil texture (clay, silt, and sand content) and structure (bulk density) in CENTURY model showed no improvement on carbon stock estimates, as CENTURY deviated in similar mannerIn comparison to Yasso07 and Q, including site specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.

Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well sorted parent material, indeed have had other predominat drivers of SOC stabilization lacking in the models presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic
matter mineralization has to be re-evaluated, since correct steady state SOC stocks are decisive for predicting future SOC change and soil CO_{2} efflux.

1 Introduction

In spite of the historical net carbon sink of boreal soils, 500 Pg of carbon since the last ice age (Rapalee et al., 1998; DeLuca and Boisvenue 2012; Scharlemann et al., 2014), boreal soils could become a net source of carbon to the atmosphere as a result of long-term climate warming (Kirschbaum 2000; Amundson 2001). They have the potential to release larger quantities of carbon than all anthropogenic carbon emissions combined (337 Pg) (Boden et al., 2010). In order to preserve the soil carbon pool and to utilize the soil carbon sequestration potential to mitigate anthropogenic CO_{2} emissions, mitigation strategies of climate forcing aim to improve soil organic matter management (Schlesinger 1999; Smith 2005; Wiesmeier et al., 2014).

Supporting soil management decisions requires an accurate quantification of spatially variable soil organic carbon (SOC) stock and SOC stock changes (Scharlemann et al., 2014). The initial level of SOC stock is essential in order to estimate SOC stock changes (Palosuo et al., 2012, Todd-Brown et al., 2014), especially when estimating carbon emissions due to land-use change e.g. afforestation of grasslands (Berthrong et al., 2009). Process-oriented soil carbon models like CENTURY, Roth-C, Biome-BCG, ORCHIDEE, JSBACH, ROMUL, Yasso07 and Q are important tools for predicting SOC stock change, but there are also risks for poor predictions (Todd-Brown et al., 2013, DeLuca and Boisvenue 2012). The models need further validation and improvement as they show poor spatial agreement on fine scale and moderate agreement on regional scale against SOC stock data (Toddsions the expected change will be small in relation to the SOC stock. Therefore, the uncertainty of measurements and/or model estimates could prevent conclusions on SOC stock changes (Palosuo et al., 2012; Ortiz et al., 2013; Lethonen et al., 2015a) especially for the soils with largest SOC stocks which are the most sensitive to carbon loss. Beside large uncertainties, the poor agreement between the modelled and measured SOC stocks (Todd-Brown et al., 2013) could also indicate missing biotic or abiotic drivers of long-term carbon storage (Schmidt et al., 2011; Averill et al., 2014).

For example ignoring the essential role of soil nutrient availability in ecosystem carbon use efficiency (Fernández-Martínez et al., 2014) could lead to missing important controls of plant litter production and soil organic matter stabilization mechanisms. Soil nutrient status is linked to the mobility of nutrients in the water solution (Husson et al., 2013), production, quality and microbial decomposition of plant litter (Orwin et al., 2011), and formation of the soil organic matter (SOM). The SOM affects soil nutrient status by recycling of macronutrients (Husson et al., 2013), and water retention and water availability (Rawls et al., 2003).

In spite of state of the art soil carbon modelling based on the amount and quality of plant litter "recalcitrance", affected by climate and/or soil properties as in the Yasso07, Q and CENTURY models, these type of process based models do not include mechanisms for SOM stabilization by a) the organic nutrient uptake by mycorrhizal fungi; b) humic organic carbon interactions with silt-clay minerals; and c) the inaccessibility of deep soil carbon and carbon in soil aggregates to soil biota (Orwin et al., 211; Sollins et al., 1996; Torn et al., 1997; Six et al., 2002; Fan et al., 2008; Dungait et al., 2012; Clemente et al., 2011). Although the models do not contain aforementioned mechanisms and controls for changes in SOM stabilization processes, they have been parameterized using a wide variety of datasets and can treat soil biotic, physicochemical and environmental changes implicitly. The Yasso07 model (Tuomi et al., 2009, 2011) is an advanced forest soil carbon model and it is used for Kyoto protocol reporting of changes in soil carbon amounts for the United Nations Framework Convention on Climate Change (UNFCCC) by European countries e.g. Austria, Finland, Norway, and Switzerland. The Q model (Ågren et al., 2007) is a mechanistic litter decomposition model developed in Sweden and used e.g. to compare results produced with Swedish national inventory data (Stendahl et al., 2010, Ortiz et al., 2011) and also with other models at national or global scales (Ortiz et al., 2013; Yurova et al., 2010). The CENTURY model (Parton et al., 1987, 1994, Adair et al., 2008)

Canada, Japan, and USA. Although individual parameters and functions vary, mathematical models such as Yasso07, Q and CENTURY have similar structures. For example, these models are driven by the decomposition rates of litter input and soil organic matter (SOM). Decomposing litter and SOM is divided into pools based on litter quality, and its transfer from one pool to another is apart from model functions and parameters affected by temperature (Q) and/or water (Yasso07), and/or soil texture and structure (CENTURY). The Q model does not include explicit moisture function, whereas for the Yasso07 and CENTURY models precipitation effects affects decomposition (Tuomi et al., 2009; Adair et al., 2008). On the other hand, the models do not explicitly or by default include mechanisms that reduce decomposition by excessive precipitation/moisture (Falloon et al., 2011).

We hypothesized that (1) soil carbon estimates of the Yasso07, Q, and CENTURY models would deviate for soils where SOC stabilization processes not implicitly accounted by the models are predominant, (2) the Yasso07 and Q models ignoring soil properties would fail on the nutrient rich sites of South-West coast of Sweden and on occasionally paludified clay and silt soils, and (3) the CENTURY model outperforms the Yasso07 and Q models due to fact that it includes soil properties as input variables.

We grouped Swedish forest soil inventory data into homogenous groups with specific soil physicochemical conditions using regression tree and recursive partitioning modelling methods. After that we ran the models into a steady state with a litter input which was derived from the Swedish forest inventory. Thereafter we compared the model estimates against data by groups that were obtained
from the regression tree model. In discussion we address the reasons why the models deviate and indicate directions of further improvements.

2 Material and methods

2.1 Measurements

We analysed data from the Swedish forest soil inventory (SFSI) which is a stratified national grid survey of vegetation and physicochemical properties of soils (SLU, 2011, Olsson et al., 2009). All analysis was done using R software for statistical computing and graphics (R core team 2014). The soil data were identical to dataset used in Stendahl et al. (2010). We restricted our sample plots to minerogenic soils since the Q, Yasso07, and CENTURY models were not developed for use on peat soils, and only to plots for forest land use with Swedish forest inventory data (SFI). We also excluded samples with total seil organic carben (SOC) SOC stock below 2.8 and above $470.5\left(\mathrm{tC} \mathrm{ha}^{-1}\right)$, i.e. samples with SOC stock below 0.01 and above 99.9 percentile. Measurement data originated from the 1993 to 2002 which constitute a full inventory, and from 2020 sample plots located around Sweden, and in total it including 3230 samples. For each sample plot the weather (years 19612011) and N deposition (years 1999-2001) data was retrieved from the nearest stations of Swedish Meteorological and Hydrological Institute (SMHI) network (Fig. 1). The plots which were linked by the closest distance to the given weather station had the same weather and N deposition data, and the number of soil samples per station ranged between 10 and 70. The mean total SOC stock of samples corresponding to weather stations ranged between 40 and $200\left(\mathrm{tC} \mathrm{ha}^{-1}\right)$, and the SOC stock level increased from the South to North of Sweden (Fig. 1).

Each sample plot contained categorical data from the field survey on the sorting of soil parent material, humus type, soil texture, and soil moisture. In our analysis we reduced categorical classes by basing them on the sorting of soil parent material and humus type (Table 1). We determined numeric values for silt, clay, and sand content from soil texture categories by Albert Atterberg's distribution of the different grain size fractions in tills and by Lindén's (2002) distributions for sediments (Table 1). We also determined numeric values of volumetric soil water content (SWC) from categorical field data classified according to the depth of the ground water level (WL) and the observations of Tupek et al. (2015) (Table 1).

As typical for soil carbon inventories, the variation of data was large (Table 2). For example, the mean total SOC stock of all samples was $93\left(\mathrm{tC} \mathrm{ha}^{-1}\right)$ while 1 st and 99 th percentiles were 17 and 309 (Table 2). The mean SOC stock was 33.3 and $66.8\left(\mathrm{tC} \mathrm{ha}^{-1}\right)$ for the humus horizon and the mineral soil. The mean values of cation exchange capacity (CEC) $23.9\left(\mathrm{mmol}_{c} \mathrm{~kg}^{-1}\right)$, the base saturation 36.4%, and the C / N ratio 16.5 indicated conditions of medium fertility, although the soils were mostly acidic (mean pH was 5.2). The mean prevailing soil water content (22.3) was typical for the well-drained forest soils. The mean annual temperatures ranged from below 0 to above $8{ }^{\circ} \mathrm{C}$,
and annual precipitation varied between 392 and 1154 mm (Table 2). Total SOC stock for all the samples generally increased for peat and peat like humus forms, for well sorted sediments, for soils with high fraction of silt and clay and with increasing soil moisture (Fig. S1).

2.1.1 Biomass and litterfall estimates

Forest stand biomass was estimated by allometric biomass functions for stem with bark, branch, foliage, stump, coarse-roots and fine-roots applied to basic tree dimensions (breast height diameter, total height of tree, number of trees) of SFI stands (Marklund 1988; Pettersson and Ståhl 2006; Repola 2008; Lehtonen et al., 2015b). In order to simulate "steady state" soil carbon stock we estimated long term mean forest biomass, referred to as "steady state forest" below.

We adopted an actual fraction of photosynthetically active absorbed radiation ($f_{A P A R} f_{A R A R}$, Fig. A1) as a relative indicator of a site's capacity to produce biomass (minimum $=0$, maximum $=$ 1). The $f_{A P A R} f_{A R A R}$ was calculated based on basic tree measurements as in Härkönen et al. (2010) and for the main tree species (pine, spruce, deciduous) it was well correlated with the stand basal area (Appendix A). The steady state forest $f_{A P A R} f_{A R A R}$ values were assumed to be in a range between the median and the maximum fraction of the actual state forest $f_{A P A R} f_{A R A R}$ for a given species, latitudinal degree, and site productivity class (Appendix A).

We modelled the steady state biomass by applying the fitted exponential functions between the measured forest biomass compenents (stem, branch, foliage, stump, coarse-roots, fine-roots) "actuat state" and the actual fraction of absorbed radiation ($f_{A P A R}$) (Appendix B) to the "steady state" forest $f_{A P A R T 0}$. The $f_{A P A R 70}$ We selected steady state $f_{A P A R}$ as the 70th percentile $\left(f_{A R A B T O}\right)$ out of a range from the 50 th to 95 th, because the modelled soil carbon distributions with a litter input from the $f_{A P A R Z Q}$ biomass best agreed with the measured soil carbon distributions (Fig. S2). The $f_{A R A B 70}$ was the estimated 70th percentile of the actual fraction of absorbed radiation specific for a given species, latitudinal degree, and site productivity class, (Fig. B1). We selected the 70th percentile out of a range from the 50 th to 95 th, beeause the modelled soil carbon distributions with a litter input from the $f_{A P A R T 0}$ biomass best agreed with the meastred soil carbon distributions (Fig. S2) . The ground

We modelled the steady state biomass by applying the fitted exponential functions between the actual state forest biomass components (stem, branch, foliage, stump, coarse-roots, fine-roots, estimated by tree stand measurements and the allometric biomass functions) and the actual fraction of absorbed radiation $\left(f_{A R A B}\right)$ (Appendix B) to the estimated $f_{A P A R Z}$ of the steady state forest. The understory vegetation of the steady state forest was estimated by applying our ground vegetation models (Appendix C) to the modelled steady state forest characteristics, and plot specific environmental conditions.

In order to derive the litter inputs, annual turnover rate (TR, the fraction of living biomass that is shed onto the ground per year, unitless) of biomass components were applied to the modelled
biomass components of the steady state forest. The needle litter TR was a linear function of latitude for pine and spruce and a constant for deciduous species (Ågren et al., 2007). The TR of branches and roots were from Mukkonen and Lehtonen (2004), Lehtonen et al. (2004) and the TR of stump and stem were from Viro (1955), Mälkönen $(1974,1977)$ as cited in Liski et al. (2006). For tree fine roots we assumed there was a difference between tree species and between southern and northern Sweden. For pine, spruce, and birch the fine roots TR were $0.811,0.868$, and 1.0 respectively as reported by Maidi (2001) and Kurz et al. (1996), and cited in Liski et al. (2006). Kleja et al. (2008) and Leppälampi-Kujansuu et al. (2014) reported different fine root TR for Southern (1 and 0.83) and Northern Finland (0.5). We interpolated TR according to the mean annual temperature gradient between TR of fine roots in the South and the North. The fine roots TR of $0.811,0.868$, and 1.0 in the warmest southernmost soil plots were thus reduced down to 0.5 in the coldest northernmost soil plots. The understory TR were applied as in Lehtonen et al. (manuscript).

The major part of the litter input originated from the tree stand biomass components which were modeled by the non-linear functions with R^{2} values close to 0.9 (Fig. B1, Tables A1 and B1). The linear understory vegetation models had low R^{2} values (Table C1). However, when the understory models (Appendix C) were applied only to plots close to steady state forest, as in our application, the R^{2} values of predicted and observed understory components were larger (Fig. S9). In comparison to major understory litterfall originating from reasonably well predicted dwarf-shrubs and mosses (Fig. S9 and S10), the influence of poorer understory models (for herbs, grass, and lichens) was small on predictions of the understory litter and marginal on predictions of the total forest litterfall (Fig. S10). The main improvement on the accuracy of total litter input was achieved by avoiding the confounding effect of actual forest state by modelling the biomass/litterfall estimates representing the mean long-term conditions (defined by estimated steady state $f_{A R A B 70}$) for small regions (defined by degree of latitude and productivity class for dominant species, Fig. A1). Thus the estimates accurately reflected the long-term spatial variability in dominant species, nutrient status and climate (Fig. S11) and lacked higher spatial and temporal precission; as attempts for high precision of the estimates applied for the period of the last few thousands of years would be uncertain due to high variation of factors affecting plot history.

2.1.2 Correlation analysis

Overall our data consists of 3230 soil samples and their carbon stocks linked to soil physicochemical variables, stand and ground vegetation biomass and litterfall components, and nearest weather station environmental variables. We performed the Spearman's rank correlation analysis between the total soil carbon stock and the other soil variables, site, climate and vegetation characteristics. As expected the total soil carbon stock most strongly correlated with the measured variables used for its calculation e.g. bulk density, depth of humus and mineral soil, carbon content, and stoniness. These
variables were excluded from further regression tree analysis which aimed to group data according to the processes of soil carbon stock development.

2.1.3 Regression trees

In order to organize SOC data into groups according to the physicochemical soil variables and to better understand the nature of measured data, we generated regression trees of SOC stocks by using recursive partitioning (RPART) (Therneau and Atkinson 1997). RPART is based on developing decision rules for predicting and cross validation of continuous output of soil carbon stocks (regression tree). The classification tree was built by finding a single variable which best splits the data into two groups. Each sub-group was recursively separated until no improvement could be made to the soil carbon stock estimated by using the split based regression model. The complex resultant regression tree model was cross validated for a nested set of sub trees by computing the estimate of soil carbon stock to trim back the full tree.

When building the regression tree models we excluded variables such as bulk density, carbon contents of soil layers, soil depth, and stoniness, since these measured variables were used for determining the total soil carbon stock. The selected variables for the RPART data mining were based on the correlations analysis (see 2.1.2-), the processes of soil organic matter formation (e.g. Husson et al., 2013) and decomposition, and represented the soil categorical variables (sorting of parent material, soil texture, long-term soil moisture and humus form), soil physicochemical variables (sand, clay, and silt content, long-term soil moisture, highly bound water, C / N ratio, $\mathrm{pH}, \mathrm{CEC}$ of organic, B, BC, and C horizons), climatic variables (annual mean air temperature, annual precipitation sum), and stand and site characteristics (tree species coverage of pine, spruce and deciduous, total foliar litter input, productivity class and N deposition). Alternatively we also ran regression and classification analysis by excluding all measured soil variables because soil variables are often unavailable for landscape level modelling.

The regression tree model separated the measured total SOC stocks ($\mathrm{tC} \mathrm{ha}^{-1}$) into 10 groups. The cation exchange capacity of the BC horizon ($\mathrm{CEC}, \mathrm{mmol}_{c} \mathrm{~kg}^{-1}$) divided all the samples into $2 / 3$ of lower SOC stock groups (means between 65 and $130 \mathrm{tCha}^{-1}$) and $1 / 3$ of larger groups (means between 86 and $269 \mathrm{tCha}^{-1}$) (Fig. 2a). The group of the smallest SOC stock consisted of 959 samples compared to 8 samples of the group with the largest SOC stocks.

We acknowledge that this is a small distinct group based only on 8 observation. However, we did not have any reasons to exclude these datapoints as outliers. Two-thirds of the samples with smaller SOC stocks were subdivided by CEC and the type sorting of soil parent material (sorted or unsorted). One-third of the samples with larger SOC stocks was subdivided by the C/N ratio, CEC, N deposition among others. Roughly generalized, groups from left to right or from 1 to 10 formed a gradient in levels of SOC stock, moisture, nutrient status, and production (Fig. 2, Table S1).

The alternative regression tree model was built with variables other than soil properties. The regression tree with the annual mean air temperature, the annual precipitation sum and the percentage of pine trees in the stand, and the nitrogen deposition separated measured SOC stocks ($\mathrm{tC} \mathrm{ha}{ }^{-1}$) into five groups (Fig. S3). Colder groups with smaller SOC stocks (means 67 and 85) also had less litter input (below $3 \mathrm{tCha}^{-1}$) and low productivity class (height of trees at 100 years of age, H100 $<20 \mathrm{~m}$) (Table S2). The productivity class (H100, m) in our manuscript refers to a site index which can be converted to site productivity. Soil site index is based on dominant height at a certain age (100 years) and is determined according to a dominant height curve (Swedish Statistical Yearbook of Forestry 2014). Nitrogen deposition only slightly impacted the higher productivity class of soils and litter input (Table S2).

2.2 Soil carbon stock modelling

The Q model (Rolff and Ågren, 1999) is a continuous mechanistic litter decomposition model describing change of soil organic matter over time. The decomposition rate for the branch, stem, needle, fine root, and woody litter fractions is controlled by the temperature, litter quality, microbial growth and litter invasion rate. The model has been calibrated for seven climatic regions of Sweden in order to account for Swedish temperature and precipitation gradients (Ortiz et al., 2011) (Table 3). The Q model was applied in several studies of SOC stock and change estimation in Sweden (e.g. Stendahl et al., 2010; Ortiz et al., 2013; Ågren et al., 2007). The Q model was run for seven Swedish climatic regions (Ortiz et al., 2011). The mean regional parameterization from the calibration of the 2012 2011 Q model was used for the plot simulations. Thus, the simulations in each region represent variations in climate and litter input and not parameter variations. The steady state soil carbon stocks are estimated in the model using the equation for steady state soil carbon stock which is derived from the decomposition functions with constant amounts and quality of litter input.

The Yasso07 model (Tuomi et al., 2009; 2011) is an advanced forest soil carbon modelone of the most widely applied SOC models. The model was calibrated based on almost 10000 measurements of litter decomposition from Europe, North and South America (Table 3). The required annual inputs of litterfall, its size and chemical composition, temperature and precipitation determine the decomposition and sequestration rates of soil organic matter. Yasso07 estimates SOC stock to a depth of 1 m (organic and mineral layers), change of SOC stock, and heterotrophic soil respiration. The Yasso07 model, which is used for soil carbon Kyoto protocol reporting by several European countries, i.e. Austria, Finland, Norway, and Switzerland, is one of the most widely applied SOC model. Species specific chemical composition of different litter compartments of Yasso07 were used according to Liski et al. (2009). The initial soil organic matter of Yasso07 was zero. The simulated soil carbon stock corresponding to a steady-state between the litter input and decomposition was achieved by a Yasso07 spin-up run of 10000 years. Yasso07 runs used litter inputs of the steady state forest biomasses (see 2.1.1-) and climate variables (annual air temperature, monthly tempera-
ture amplitude, and annual precipitation). The global parameter values of decomposition rates, flow rates, and other dependencies of Yasso07 soil carbon model were adopted from Tuomi et al. (2011) and the estimates of Yasso07 SOC stocks were used in comparison with measurements and other models. We did not use the SOC stocks simulated with the more recent Yasso07 parameters based on the litter decomposition data from the Nordic countries (Rantakari et al., 2012), because the SOC stocks simulated with the global parameter values produced better fit with SFSI measurements.

The CENTURY mathematical model originally developed for grassland systems (Parton et al. 1987; 1992) has been since modified for various ecosystems including boreal forests (Nalder and Wein 2006). The CENTURY is also one of the most widely applied modelsand it is used for soil carbon reperting to UNFCCC by Canada, Japan, and USA. The soil organic matter in the model consists of active, slow, and passive pools which have different TR (Table 3). The decomposition rates are modified by temperature and moisture, and in addition the decomposition rates of the slow and passive pools rely on lignin to N and C to N ratios, while the active pool decomposition rate relies on soil texture. The model simulates soil organic matter to a depth of 20 cm . The model simulates plant production and pools of living biomass, while TR for biomass pools determine the litterfall inputs to soil. To compare the performance of the soil sub-model with other soil carbon dynamics models, Q and Yasso07, we only used the CENTURY soil sub-model. We used the same litterfall inputs as used by the Q and Yasso07 simulations, which were estimated by our litterfall modelling (see 2.1.1-). The litter inputs reflected N deposition and site productivity (Fig. S11). For CENTURY we adopted general parameters from the parameter file "tree.100", parameters of site "AND H_J_ANDREWS" for conifers, and site "CWT Coweeta" for deciduous trees. The nitrogen dynamics in our CENTURY model application were held constant. N dynamics in CENTURY sub-model included tuning site specific parameters of topsoil mineral N relative to N deposition (Throop et al. 2004) and reduction of C/N ratio of the litterfall up to 15% for most productive sites (Merilä et al. 2014). We also accounted for site specific soil drainage by varying its parameter between 1 and 0.6 relative to long-term soil water content ranging between 10 and 50% (Raich et al. 2000). The CENTURY SOC stocks simulation were run with steady state forest litter inputs, site specific C/N ratios of litterfall, site specific soil parameters (specific bulk density, sand, silt, and clay content, mineral N in topsoil, and drainage) and climate variables (monthly air temperature, and monthly precipitation). In order to account for the deep soil carbon (Jobbágy and Jackson 2000), we scaled CENTURY estimates representing the topsoil horizon by adding 40% of estimated site specific SOC stock. The simulated steady state SOC stocks were estimated by a spinup run of 5000 years. The number of years to reach steady state (equilibrium between the litter input and decomposition) was sought empirically on 100 random sites, and differs from Yasso07 because funning CENTURY was computationally more demandingand Q models.

3 Results

The distributions of Yasso07, Q, and CENTURY model estimates of total SOC stocks ($\mathrm{tC} \mathrm{ha}{ }^{-1}$) were in agreement for $2 / 3$ of the measured data with lower SOC stock (Fig. 3, distributions of groups 1,2 , and 4). The remaining $1 / 3$ of data was underestimated by models. This $1 / 3$ of data was separated into 7 physicochemical soil groups (means of groups in range from 104 to exceptionally large $269 \mathrm{tC} \mathrm{ha}^{-1}$, see Fig. 3, distributions of groups 3, and 5-10). The linear regression of mean levels of all 10 physicochemical soil groups (weighted by the number of samples in each group) between the modelled and measured SOC stocks showed smaller underestimation of Yasso07 compared to the CENTURY CENTURY compared to Yasso07 and Q models (Fig. 4). The weighted root mean square error (RMSE) was $31.6-27.5\left(\mathrm{tC} \mathrm{ha}^{-1}\right)$ for Yasso07 and 41.7 CENTURY and 31.6 and 38.8 for CENTURY Yasso07 and Q respectively. The proportion of explained variance was larger for $\mathrm{Q}\left(r^{2}=0.58\right)$ than for Yasso07 and CENTURY ($r^{2}=0.42$ and 0.390 .32) (Fig. 4). The deviation of the distributions of CENTURY SOC stocks, simulated using soil bulk density, sand, silt, and clay content, were similar as for lower than those of Yasso07 and Q estimates for 10 physicochemical soil groups (Fig. 3). Accounting for site specific soil texture (clay, silt, and sand content) and structure (bulk density) by CENTURY model improved SOC stock estimates for fertile sites with high clay content, but not for sites with high N deposition. Varying CENTURY parameters of site specific topsoil mineral Nitrogen and C/N ratio of the litterfall showed that this impact on SOC stocks estimates was small in comparison to sensitivity of SOC stock estimates to litterfall (Fig. S12). The application of site specific drainage on our mostly well drained soils showed minor impact on estimated CENTURY SOC stocks.

As expected, the models clearly showed less variation than the measurements. The shift of the mean values from the center of distribution, the width of confidence intervals of means, and the width of the tails of distributions were clearly larger for the measurements than for the modelled estimates (Fig. 3). The modelled distributions agreed for the poor-medium fertility soils with low and medium measured SOC stocks, low and medium eation exchange capacity (CEC)CEC, unsorted parent material, low temperatures and low production (groups 1, 2, and 4) (Fig. 2, Table S1, Fig. 3). Disagreement between modelled and measured SOC stock distributions were formed on fertile soils with sorted parent material (groups 3 and 5), soils with higher water content (groups 3, 5, and 10), where nitrogen deposition was large (groups 7 and 8), and where eation exchange capacity (CEC -CEC was median or large (Fig. 2, Fig. 3). The largest deviation between the measured and modelled distributions was found for the relatively small physicochemical groups of soils (3\%) typical for highly bound water and peat humus types (groups 8 and 10) (Fig. 2, Fig. 3). The distributions of measured total SOC stocks ($\mathrm{tCha}{ }^{-1}$) generally increased for the groups with higher nutrient status (Fig. 3, Fig. S4). The distributions of SOC stocks in mineral soil were larger than those in humus horizon, and distributions of mineral SOC stocks increased with fertility slightly more than distributions of SOC stocks in humus horizon (Fig. S4).

After excluding all the soil physicochemical characteristics from the recursive partitioning, the

4 Discussion

4.1 SOC stock distributions linked to mechanisms of SOM stabilization

It has been suggested that process based soil carbon models with the current formulation lacking major soil environmental and biological controls of decomposition would fail for conditions where these controls predominate (Schmidt et al., 2011; Averill et al., 2014). Although, the effect of the soil properties on SOC stocks e.g. soil nutrient status in the widely used models such as Yasso07, Q, and CENTURY have not previously been quantitatively evaluated. We found that in comparison with Swedish forest soil inventory (SFSI)-data, the models based on the amount and quality of
inherent structural properties of plant litter (Q, Yasso07, and CENTURY) produced accurate SOC stock estimates for $2 / 3$ of northern boreal forest soils in Sweden. Two-thirds of the distributions of SOC stocks measurements of SFSI agreed with distributions of SOC stock estimates of the Q, Yasso07, and CENTURY soil carbon models (Fig. 3, distributions of groups 1, 2, and 4). However, the SOC stocks underestimation by these models for one third of the data (Fig. 3, distributions of groups 3, and 5-10) indicated that some drivers other than molecular structure, especially site nutrient status, play an important role in higher SOC stocks sequestration.

Some level of deviation from measurements and poorly explained spatial variation (Fig. S7) was expected from the uncertainties of the SOC measurements, annual plant litter inputs and climate variability for the model SOC stock change estimates (Ortiz et al., 2013; Lehtonen et al., 2015a). For the long-term SOC stock development the model uncertainties are less known than for the shortterm litter decomposition. Previously reported fine scale comparison also showed poor agreement between Earth system models and the Northern Circumpolar Soil Carbon Database (Todd-Brown et al., 2013), although drivers of the deviation still remained open. Our results showed that if models strongly depend on the litter inputs (Fig. S6) then the spatial differences between measured and modeled SOC stock distributions could be linked to sites with rich nutrient status through cation exchange capacity, C / N ratio, N deposition, drainage (sorting of parent material) among other factors (Fig. 2 and 3). Additionally, when the soil properties were excluded from the regression, the estimates of SOC stocks also deviated for the fertile groups (Fig. S5). However, the rich nutrient status for these groups was linked to differences in species composition, N deposition, and climate (temperature, precipitation) instead of soil properties (Fig. S3).

Larger net soil carbon accumulation in nutrient rich sites could be attributed to the relative differences in litterfall components (relatively more leaves and branches with higher N content than fine roots) and to the reduced microbial demand for N from fine roots and SOM (, and to higher N availability and carbon use efficiency of decomposers, reduction of respiration per unit of C uptake (Ågren et al., 2001, Manzoni et al., 2012, Fernández-Martínez et al., 2014). Largest deviation between measured and modeled data in our study was found for fertile presumably N rich and fresh to fresh-moist sites. The soils with large N deposition were also highly productive and showed high to exceptionally high SOC stocks (Fig. 2, Fig. 3, soil groups 7 and 8). This was in agreement with fertilization and modelling study of Franklin et al. (2003) showing an increase in soil C accumulation with N addition. Our forest biomass and litterfall estimates were based on forest inventory and modeling, but the site nutrient status and N deposition was only partially reflected in the amount of biomass/litterfall (Fig. S11) and its quality. The quality was only reflected through the biochemical differences between species and plant litter components. The relative differences between the biomass/litterfall components or between C / N ratios of litterfall in relation to site fertility are not accounted by the current biomass models, but soil fertility could be considered in an attempt of SOC stock modelling (included in CENTURY but missing in Yasso07 and Q models). For example the
proportion of acid -, water -, and ethanol-soluble and non-soluble litter inputs for Yasso07 could be re-evaluated by allowing it to vary depending on site fertility, in addition to currently used variation specific for species and the litter components. Although CENTURY SOC stocks were sensitive to the amount of clay, the variation of topsoil mineral N and C/N ratio of litterfall did not improved SOC stock predictions for sites with high N deposition (Fig. 3 and Table S1).

The litter decomposition and SOC stabilization rates in Yasso07, Q, and CENTURY based on the litter quality "recalcitrance" originating from the litter bag mass loss measurements have major drawbacks. The mass loss from the litter bags is assumed to be fully mineralized, although the litterbags are subjected to non-negligible leaching (Rantakari et al., 2012; Kammer and Hagedorn, 2011). The SOC stabilization represented in models by the remaining litter mass is thus underestimated due to the fraction of particulate organic matter and dissolved organic carbon that is lost from the litterbags but later immobilized e.g. through organo-mineral stabilization. The use of stable isotopes seems to determine the field carbon mineralization and accumulation rates from the labile (high C quality and N concentration) or recalcitrant (low C quality and N concentration) litter more accurately than litter bags (Kammer and Hagedorn, 2011).

Higher amount of more recalcitrant fine roots compared to more labile leaves (Xia et al., 2015) heavily increased the soil carbon sequestration in CENTURY model simulations which was in line with McCormack et al. (2015). Though, the contribution of fine roots to SOC stabilization is still not settled due to the significant role of mycorrhizal fungi in SOC accumulation (Averill et al., 2014; Orwin et al., 2011). Xia et al. (2015) claimed that more recalcitrant fine roots contribute to stable SOC more than leaf litter, because fine roots degrade slower. This would be supported by the fact if the precursors of fine roots that are degraded by fungi are more stable than the precursors of leaves degraded by microbes. However, more recalcitrant plant litter has been also suggested to stabilize less SOC stocks (Kammer and Hagedorn, 2011). This is a result of recalcitrant litter satisfying less of the microbial N demands promoting respiration and reducing the long-term production of microbial products, precursors for the organo-mineral stabilization (Cotrufo et al., 2013, Castellano et al., 2015). According to the microbial efficiency-matrix (MEM) stabilization mechanism (Cotrufo et al., 2013) fertile sites with relatively more labile plant litter, but with larger absolute production and larger microbial activity than poor sites, would in long-term stabilize more carbon through organo-mineral stabilization. Our results supported MEM stabilization theory by showing larger carbon stocks in mineral soil than in humus horizon, and by relatively more SOC stocks in mineral soil in fertile groups than in poor conditions (Fig. S4).

Expanding on the CENTURY model structure, the MySCaN model incorporating the organic nutrient uptake by mycorrhizal fungi estimated positive effect on SOC accumulation, relatively larger in poor than in fertile sites (Orwin et al., 2011). Ignoring-Therefore, not accounting for the organic nutrient uptake by mycorrhizal fungi by the Yasso07, Q, and CENTURY models probably led to the underestimation of SOC stocks in medium-highly productive soilssites with higher nutrient status.

This hypothesis needs to be tested in further studies. We did not have all input data and the source code to include MySCaN into our model intercomparison. The spatial trends of N and P data of litter in Sweden that would be needed to make such study were not available. However, adjusting biomass turnover rates, used for the litter input estimation, in dependence to site fertility would lead into larger inputs for fertile sites and increased SOC stock accumulation as a result of increasing plant productivity and inputs. It is well established that SOM increases soil fertility by improving the soil water and nutrient holding capacity; recycling of SOM increases CEC, humic substances and nutrient availability for plant resulting in larger biomass/litter production (Zandonadi et al., 2013). As an alternative to adjusting turnover rates with site fertility, we suggest that a feedback link in models between increasing fertility due to SOC stock accumulation (e.g. due to increased CEC relative to humus, increased nitrogen availability), increasing litter inputs, and reduced rates of SOC decomposition per unit of litter input (e.g. through satisfying more microbial N demand with less respiration, limited oxygen in increased moisture conditions) would also increase SOC stock accumulation.

Increased moisture and more frequent water saturation due to SOC accumulation limits soil oxygen availability and slows rates of microbial decomposition which increases the rate of SOC stabilization. Our results, which were derived from mostly well drained soils, suggest that measured high SOC stocks may be partly caused by reduction of decomposition at increased water content (Fig. 2). The CENTURY model has an optional function that represents the reduction of decomposition caused by anaerobic conditions. The function becomes active when a controlling parameter, "drain", is changed, and the value of the parameter has to be arbitrarily determined through parameter fitting against SOC data (e.g. Raich et al., 2000). The function is However, this function was meant for anaerobic conditions in poorly drained soils, and therefore is therefore it was not applicable to (most of) the prevailing conditions of our sites. In addition, tuning a specific parameter to reproduce the SOC data was beyond the scope of this study.Our results, which were derived from mostly well drained soils, suggest that high SOC stocks may be partly caused by reduction of decomposition at increased water contentAccounting for drainage only on some sites slightly affected decomposition, when precipitation increased and potential evapotranspiration decreased in late spring or early autumn. Water availablility affecting soil fertility and SOC formation is beside climate also affected by topography (Clarholm et al. 2013) which was not accounted for by CENTURY. Detailed modelling of soil water conditions requires specific functions and many parameters, which are not included in simpler SOC models like Q and Yasso07. However, appropriate modelling of soil water conditions and reduction of decomposition in wet conditions (not necessarily at saturation) would potentially improve the performance of SOC models in particular for soils with high SOC stocks.

4.2 Intercomparison of models

The similarities between the variations of modeled SOC stocks and litterfall inputs for the soil groups with different fertilities (Fig. 3, Fig. S6) could be expected for the Yasso07 and Q models which ig- nore the soil properties. These models run organic matter decomposition and humus stabilization with litterfall, temperature and/or precipitations input data. Litter quality as input in Yasso07 and Q implicitly includes some information on soil properties, but as we saw litter quality hardly mapped any of soil fertility. Unexpectedly the Although, the impact of soil properties on the estimates was seen also in the relatively more complex model CENTURY (accounting for the plot specific bulk density, sand, silt, and clay contentin addition to litter input, temperature and precipitation data). Contrary to our expectation, the in the more complex CENTURY model still heavily depended model for sites with high clay content, the SOC stock of sites with high N deposition were underestimated. The CENTURY model depended less on the amount of litter input, and its variations of the estimated SOC stocks distributions were similar to-less pronounced than those for the Yasso07 and Q models. In testing multiple soil carbon models with same litter inputs Palosuo et al. (2012) observed larger variation in modeled SOC stocks at the early stage of the litter decomposition (10 years) but later on at 100 years the variation decreased. Although the variations of SOC stocks were similar between the models, the estimated CENTURY SOC stocks distributions were slightly lower than the Yasso07 estimates when we did not accounted for deep soil carbon. CENTURY in its original configuration simulated SOC stock up to 20 cm soil depth (Metherell et al., 1993) whereas the Yasso07, Q, and measured SOC stocks data represented up to 100 cm of the soil (Tuomi et al., 2009, Stendahl et al., 2010). In Yasso07 model parameters were calibrated based on soil age chronosequence data of SOC stocks for soil depths up to 30 cm , which was assumed to represent 60% of the total SOC stocks up to 100 cm soil depth (Liski et al., 1998, 2005 as cited by Tuomi et al., 2009). Therefore, if $40-50$ when 40% of the missing deep carbon (Jobbágy and Jackson 2000) were added on top of the original CENTURY estimates as is done for was done when callibrating Yasso07, the SOC stock levels for CENTURY would be-were larger than those for the Yasso07 and Q models.

Although estimated SOC stocks of CENTURY were generally lower larger than those of Yasso07, the correlation between CENTURY and Yasso07 estimates was stronger than for Q model compared to two other models (Fig. S8). The reason was probably similar global parameterizations of Yasso07 and CENTURY whereas Q was specifically parameterized and applied for the regions in Sweden (Ågren and Hyvönen 2003, Ortiz et al., 2013). Furthermore the Q model SOC stock estimates were more sensitive to differences in species coverage e.g. to pine and spruce (Ågren and Hyvönen 2003) and formed two distinct point cloud distributions (one for pine and broadleaves, the other for spruce) when compared with the CENTURY or Yasso07 estimates (Fig. S8). In spite of similarities in Yasso07 and CENTURY SOC stocks estimates, Yasso07 was more sensitive to species coverage through species specific litterfall solubility (Liski et al., 2009) was more sensitive to species coverage than CENTURY which treated conifers in a single group (Metherell et al., 1993). Pine and
other species (spruce) coverage was shown to affect measured low and median SOC stocks of colder climate if the soil properties were not considered (Fig. S5). Therefore the pattern of increased accumulation of SOC stock on sites with larger spruce coverage partially observed in distribution of Yass07 estimates, and missing in the CENTURY estimates, could be related to the slightly lower solubility/decomposability of spruce compared to pine litterfall. However, the CENTURY model SOC stocks were also highly sensitive to accurate estimation of fineroots litterfall (Mc Cormack et al., 2015) typically increasing with colder climate and increasing the C / N ratio of the organic layer (Lehtonen et al., 2015b) which is driven by the dominant tree species (Cools et al., 2014).

Large SOC stocks measurements on sites with high long-term nitrogen deposition over 10 kgN ha ${ }^{-1} y^{-1}$ (Fig. 3 and Fig. S4) were underestimated by the Q, Yasoo07, and CENTURY models. A positive correlation between nitrogen deposition and SOC stocks measurements in Sweden had been previously reported by Olsson et al. (2009), and the modelling study by Svensson et al. (2008) indicated that Swedish soil carbon was decreasing in the North and increasing in the South mainly as a result of different nitrogen inputs. The Q and Yasso07 models do not have nitrogen processes. As for CENTURY, it is reported that large N input could enhance plant productivity and then increase SOC (Raich et al., 2000). The purpose of the study was to evaluate the performance of soil carbon models against the same SOC data using the same litter input, and therefore only the soil carbon submodel was used and the feedback of nitrogen input to plant productivity was not primarily included in this study -indirectly, through estimated steady state litter input based on site productivity class which strongly correlated with N deposition (Fig. A1 and S11). In spite of slight increase of SOC stock estimates when CENTURY accounted for the site specific topsoil mineral N, C/N ratio of litterfall, in sites with large N deposition CENTURY still underestimated. However, as in the case of drainage discussed above, the original CENTURY incorporates more detailed processes than the relatively simpler soil carbon models, Q and Yasso07, do, and hence the eriginal CENTURY could potentially reproduce a wider range of SOC stocks if it was parameterized in detailwith more detailed data.

5 Conclusions

The In this study we presented the reasons to re-evaluate the connection between the soil nutrient status and performance of widely applied soil carbon models (Yasso07, Q, and CENTURY). As previously described in detail, our simulation was based on the widely used process based SOC models, accurate driving data including litter inputs, and massive SOC data points (Swedish inventory data, $N=3230$). The models differed in the main controls and functions and their performance was expected to depend on model complexity (CENTURY outperforming Q and Yasso07). The intercomparison of SOC stocks between Yasso07, Q, and CENTURY models and Swedish soil carbon inventory data revealed that these process based mathematical models de-
veloped for predicting short-term SOC stock changes steh as Yasse07, Q, or CENTURY can all in their current state ean-predict accurate long-term SOC stocks for most soils. However, for the The estimates of CENTURY fitted generally better to measurements than those of Yasso07 and Q model. However, Yasso07 model which requires fewer parameters and less input data showed similar performance than CENTURY, except for sites with hig clay content. The models with their current formulation lack nutrient status related controls of decomposition and soil carbon accumulation and underestimated for conditions where the high nutrient status predominate, in our application for medium-highly fertile soils the accumulation of stable SOC by models based on extrapolation of initial plant litter decomposition into the long-term leads to underestimation. Thereforeproductive sites of Southern Sweden.

Through the intercomparison of three different widely-used SOC models with massive data points, we identified that re-evaluating of the impact of nutrient status would improve the model development towards their accuracy. Particularly, the relationship between the soil nutrient status and the mechanism of soil organo-mineral carbon stabilization needs to be evaluatedre-evaluated, because larger SOC stocks were found in the mineral than in the humus soil horizon. We suggest evaluating enhanced microbial transformation of soil organic matter and the mycorrhizal organic nutrient uptake and in relation to larger plant biomass/litter production in nutrient rich sites resulting to higher SOC stock accumulation .For in deeper soil layers. In addition for the organo-mineral carbon stabilization, we also suggest further model development accounting for the soil nutrient status through evaluating the effect of topography on sorting of the parent material, and its silt and clay complexes. If modelsean be further developed to

Our study is very useful for developing accurate soil carbon and Earth system models. Furthermore, developing accurate models that would account for the processes that affect the soil nutrient status as one of the key controls affecting the soil organic matter production and stabilization than the soil carbon stock estimates, needed when GHG inventories are used to estimate emissions and sinks due to land-use change, and soil carbon stock management would be improved.

The estimates of Yasso07 fitted generally better to measurements than those of CENTURY making the use of the Yasso07 model which requires fewer parameters and less input data more preferable over CENTURY. If CENTURY estimates would be sealed from 20 cm up to 1 m the underestimation with data would improve, although the deviation in fertile soils would be similar. Furthermore when running soil carbon models such as those which obtain litter inputs based on eurrent stand measurements, when past forest stand dynamies are unknown, we suggest using litter inputs from the steady state forest estimated as 70th percentile of the maximum current state forest biomass for a given species, latitude and productivity class. As models heavily depend on the litter input and its quality, a more aceurate litter imput would also improve the soil organic carbon stock estimatesSOC stabilization improves estimation of feedback of global warming on SOC stock
temperature sensitivity and soil CO_{2} efflux national reporting of soil carbon stock changes for UNFCCC, and implications of decisions mitigating the climate change effects on soil carbon stocks.

Appendix A: Models of fraction of absorbed radiation for actual and steady state forest

The fraction of photosynthetically active absorbed radiation $\left(f_{A P A R}\right)$ for actual state forest was calculated based on basic tree measurements of Swedish forest inventory data as in Härkönen et al. (2010). For the main tree species $f_{A P A R}$ was also well correlated with the stand basal area (r^{2} was $0.85,0.86$, and 0.88 for pine, spruce, and deciduous stands respectively, coefficients of regressions in Table A1). The actual state forest $f_{A P A R}$ varied between 0 and maximum close to 1 (Fig. A1).

The steady state forest $f_{A P A R}$ values were assumed to be in range between the median and the maximum fraction of actual state forest $f_{A P A R}$ for given species, latitudinal degree, and site productivity class (indicated by the height of largest tress at 100 years of stands age). The steady state forest $f_{A P A R}$ values were set to 70 th percentile of maximum $f_{A P A R}\left(f_{A P A R Z 0}\right)$ for given species, latitudinal degree, and site productivity class. We selected 70th percentile out of range from 50th to 95th, because the modelled soil carbon distributions with the litter input from biomass of $f_{\text {APAR70 }}$ best agreed with measured soil carbon distributions (Fig. S2). The $f_{A P A R 70}$ values specific for pine, spruce, and deciduous stands were first modelled by regression models with latitude ($f_{A P A R 70 L A T}$) (Table A2) and then reduced by the difference between the modelled $f_{A P A R 70}$ by regression models with productivity class $(\mathrm{H} 100)\left(f_{A P A R 70 H 100}\right)$ (Table A1) and maximum $f_{A P A R 70 H 100}\left(f_{A P A R 70}\right.$ $=f_{A P A R 70 L A T}+f_{A P A R 70 H 100}$ - maximum $\left.f_{A P A R 70 H 100}\right)$. The $f_{A P A R 70}$ values equaled the $f_{A P A R 70 L A T}$ values only for the maximum productivity class, otherwise it was reduced.

Appendix B: Models of forest dry weight biomass ($\mathrm{kg} \mathrm{ha}^{-1}$) with $f_{A P A R}$.

We fitted species specific exponential regression models between the biomass components (stem, branch, foliage, stump, coarse-roots, fine-roots) of actual state forest and the actual fraction of absorbed radiation $\left(f_{A P A R}\right)$ (scatistics of the regression models in Table B1). The biomass components derived with allometric models (measured) and those derived with $f_{A P A R}$ models (modeled) showed strong correlations (Fig. B1). In order to model the longterm mean forest biomass "steady state forest biomass" we applied the $f_{A P A R}$ biomass models to the modeled $f_{A P A R 70}$ values.

Appendix C: Models of understory vegetation.

We used Swedish forest inventory -ground vegetation coverage (\%) data visually monitored between 1993 and 2002 on 2440 plots around Sweden with altogether 4472 observations separately for species of -forest floor vegetation /or their classes (Table S3). -In order to derive the ground
vegetation biomass and to apply the coverage/biomass conversion functions (Aleksi Lehtenen-, mpublished resultsLehtonen et al., manuscript), we grouped the species coverage observations into five functional types (dwarf-shrubs, herbs, grasses, moss, and lichen) (Table S3). The applied coverage/biomass conversion functions estimated separately the above- and below-ground biomass components for dwarf-shrubs, herbs, and grasses, and total biomass for moss, and lichen.

Except the understory coverage, the forest inventory data also contained basic tree dimensions (diameter and height of trees) and stand variables (species dominance, age, basal area, site productivity class indicated by the height of largest tress at 100 years of stands age), and also we linked the plots by their closest proximity to Swedish Meteorologieal and Hydrologieal Instittute (SMHI) SMHI weather stations with weather data (air temperature, precipitation) and location attributes of the weather stations (latitude, longitude, altitude).

We built linear ground vegetation-models for dry weight biomass of understory vegetation ($\mathrm{kg} \mathrm{ha}^{-1}$) models in a two level selection of the predictors from stand, weather and location variables. First, we selected the predictors into linear models by using R package "Mass" and its stepwise model selection by exact AIC (Venables and Ripley, 2002). Second, we refined the model by using "relaimpo" R package estimating usefulness (Grömping, 2006), or relative importance for each of the predictors in the model, and by selecting only predictors with relative importance ≥ 0.1. The general form of the models was:
$y_{i}=a+b_{1} x_{1}+\ldots+b_{n} x_{n}+\varepsilon$,

Where y_{i} is the understory dry weight biomass $\left(\mathrm{kg} \mathrm{ha}^{-1}\right), x_{1} \ldots x_{n}$ are the predictors, $a, b_{1} \ldots b_{n}$ are parameters of the $i^{t h}$ understory functional type (Table C 1), and ε is the residual error. Statistics of the models are shown in Table C1. Scatter plots between the measured coverage derived biomass and modelled dry weight biomass ($\mathrm{kg} \mathrm{ha}^{-1}$) of the functional types of ground vegetation for the forests in their actual state close to the estimated steady state are shown on Fig. S9. Statistics of the models are shown in Table C1.

Code and data availability

The source codes of the Yasso07, Q and CENTURY models used in this paper are available through the supplementary material. Data used in this study can be available directly by contacting the authors.

Acknowledgements. This work was part of the project Metla project 7509 'Improving soil carbon estimation of GHG inventory' funded by the Finnish Ministry of the Environment and the Ministry of Agriculture and Forestry, and Academy of Finland mobility projects 276300 and 276602 . We thank the Referees for their valuable comments improving the manuscript.

References

Adair, E. C., Parton, W. J., Del Grosso, S. J., Silver, W. L., Harmon, M. E., Hall, S. A., Burke, I. C. and Hart, S. C.: Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates, Global Change Biol., 14, 2636-2660, 2008.
Ågren, G. I., Bosatta, E. and Magill, A. H.: Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition, Oecologia, 128, 94-98, 2001.
Ågren, G. I. and Hyvönen, R.: Changes in carbon stores in Swedish forest soils due to increased biomass harvest and increased temperatures analysed with a semi-empirical model, For. Ecol. Manage., 174, 25-37, 2003.
Ågren, G., Hyvönen, R. and Nilsson, T.: Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data, Biogeochemistry, 82, 217-227, 2007.
Amundson, R.: The carbon budget in soils, Annu. Rev. Earth Planet. Sci., 29, 535-562, 2001.
Averill, C., Turner, B. L. and Finzi, A. C.: Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage, Nature, 505, 543-545, 2014.

Berthrong, S. T., Jobbágy, E. G. and Jackson, R. B.: A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation, Ecol. Appl., 19, 2228-2241, 2009.
Boden, T. A., Marland, G. and Andres, R. J.: Global, regional, and national fossil-fuel CO2 emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA, 2010. doi 10.3334/CDIAC/00001_V2010

Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E. and Six, J.: Integrating Plant Litter Quality, Soil Organic Matter Stabilization and the Carbon Saturation Concept, Global Change Biol., 2015.
Clarholm, M. and Skyllberg, U.: Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils, Soil Biol. Biochem., 63, 142-153, 2013.
Clemente, J. S., Simpson, A. J. and Simpson, M. J.: Association of specific organic matter compounds in size fractions of soils under different environmental controls, Org. Geochem., 42, 1169-1180, 2011.

Cools, N., Vesterdal, L., De Vos, B., Vanguelova, E. and Hansen, K.: Tree species is the major factor explaining C: N ratios in European forest soils, For. Ecol. Manage., 311, 3-16, 2014.

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Global Change Biol., 19, 988-995, 2013.

Deluca, T. H. and Boisvenue, C.: Boreal forest soil carbon: distribution, function and modelling, Forestry, 85, 161-184, 2012.

Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. and Whitmore, A. P.: Soil organic matter turnover is governed by accessibility not recalcitrance, Global Change Biol., 18, 1781-1796, 2012.
Falloon, P., Jones, C. D., Ades, M. and Paul, K.: Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty, Global Biogeochem. Cycles, 25, - GB3010, 2011.

Fan, Z., Neff, J. C., Harden, J. W. and Wickland, K. P.: Boreal soil carbon dynamics under a changing climate: A model inversion approach, Journal of Geophysical Research: Biogeosciences, 113, - G04016, 2008.
Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, M., Chapin III, F. S., Ciais, P., Malhi, Y., Obersteiner, M., Papale, D., Piao, S. L., Reichstein, M., Roda, F. and Penuelas, J.:

Nutrient availability as the key regulator of global forest carbon balance, Nature Clim. Change, 4, 471-476, 2014.

Franklin, O., Högberg, P., Ekblad, A. and Ågren, G. I.: Pine forest floor carbon accumulation in response to N and PK additions: bomb 14C modelling and respiration studies, Ecosystems, 6, 644-658, 2003.
Grömping, U.: Relative importance for linear regression in R: the package relaimpo, Journal of statistical software, 17, 1-27, 2006.

Härkönen, S., Pulkkinen, M., Duursma, R. and Mäkelä, A.: Estimating annual GPP, NPP and stem growth in Finland using summary models, For. Ecol. Manage., 259, 524-533, 2010.

Husson, O.: Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy, Plant Soil, 362, 389-417, 2013.
Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecol. Appl., 10, 423-436, 2000.
Kammer, A. and Hagedorn, F.: Mineralisation, leaching and stabilisation of 13C-labelled leaf and twig litter in a beech forest soil, Biogeosciences, 8, 2195-2208, doi:10.5194/bg-8-2195-2011, 2011.
Kirschbaum, M. U. F.: Will Changes in Soil Organic Carbon Act as a Positive or Negative Feedback on Global Warming?, Biogeochemistry, 48, 21-51, 2000.
Kleja, D. B., Svensson, M., Majdi, H., Jansson, P., Langvall, O., Bergkvist, B., Johansson, M., Weslien, P., Truusb, L. and Lindroth, A.: Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden, Biogeochemistry, 89, 7-25, 2008.

Lehtonen, A., Linkosalo, T., Peltoniemi, M., Sievänen, R., Mäkipää, R., Tamminen, P., Salemaa, M., Nieminen, T., Ťupek, B., and Heikkinen, J.: Testing steady states carbon stocks of Yasso07 and ROMUL models against soil inventory data in Finland, manuscript, 2016.
Lehtonen, A. and Heikkinen, J.: Uncertainty of upland soil carbon sink estimate for Finland, Canadian Journal of Forest Research, 45, 1-13, 2015 a.
Lehtonen, A., Palviainen, M., Ojanen, P., Kalliokoski, T., Nöjd, P., Kukkola, M., Penttilä, T., Mäkipää, R., Leppälammi-Kujansuu, J. and Helmisaari, H. -S.: Modelling fine root biomass of boreal tree stands using site and stand variables, For. Ecol. Manage., 2015b.

Leppälammi-Kujansuu, J., Aro, L., Salemaa, M., Hansson, K., Kleja, D. B. and Helmisaari, H.: Fine root longevity and carbon input into soil from below-and aboveground litter in climatically contrasting forests, For. Ecol. Manage., 326, 79-90, 2014.

Lindén, A., G.: Swedish Geological Survey report, pp. 10, 2002, http://resource.sgu.se/produkter/ae/ae118beskrivning.pdf

Liski, J., Tuomi, M. and Rasinmäki, J.: Yasso07 user-interface manual, Finnish Environment Institute, Helsinki, 2009.

Liski, J., Lehtonen, A., Palosuo, T., Peltoniemi, M., Eggers, T., Muukkonen, P. and Mäkipää, R.: Carbon accumulation in Finland's forests 1922-2004-an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil, Ann. For. Sci., 63, 687-697, 2006.
Manzoni, S., Taylor, P., Richter, A., Porporato, A. and Ågren, G. I.: Environmental and stoichiometric controls on microbial carbon use efficiency in soils, New Phytol., 196, 79-91, 2012.

McCormack, M. L., Crisfield, E., Raczka, B., Schnekenburger, F., Eissenstat, D. M. and Smithwick, E. A.: Sensitivity of four ecological models to adjustments in fine root turnover rate, Ecol. Model., 297, 107-117, 2015.

Metherell, A. K.: Century: Soil Organic Matter Model Environment: Technical Documentation: Agroecosystem Version 4.0, Colorado State University, 1993.

Merilä, P., Mustajärvi, K., Helmisaari, H., Hilli, S., Lindroos, A., Nieminen, T. M., Nöjd, P., Rautio, P., Salemaa, M. and Ukonmaanaho, L.: Above-and below-ground N stocks in coniferous boreal forests in Finland: Implications for sustainability of more intensive biomass utilization, For. Ecol. Manage., 311, 17-28, 2014.
Nalder, I. A. and Wein, R. W.: A model for the investigation of long-term carbon dynamics in boreal forests of western Canada: I. Model development and validation, Ecol. Model., 192, 37-66, 2006.
Olsson, M. T., Erlandsson, M., Lundin, L., Nilsson, T., Nilsson, Å. and Stendahl, J.: Organic carbon stocks in Swedish Podzol soils in relation to soil hydrology and other site characteristics., Silva Fennica, 43, 209-222, 2009.

Ortiz, C., Karltun, E., Stendahl, J., Gärdenäs, A. I. and Ågren, G. I.: Modelling soil carbon development in Swedish coniferous forest soils—An uncertainty analysis of parameters and model estimates using the GLUE method, Ecol. Model., 222, 3020-3032, 2011.
Ortiz, C. A., Liski, J., Gärdenäs, A. I., Lehtonen, A., Lundblad, M., Stendahl, J., Ågren, G. I. and Karltun, E.: Soil organic carbon stock changes in Swedish forest soils-A comparison of uncertainties and their sources through a national inventory and two simulation models, Ecol. Model., 251, 221-231, 2013.

Orwin, K. H., Kirschbaum, M. U., St John, M. G. and Dickie, I. A.: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment, Ecol. Lett., 14, 493-502, 2011.

Palosuo, T., Foereid, B., Svensson, M., Shurpali, N., Lehtonen, A., Herbst, M., Linkosalo, T., Ortiz, C., Rampazzo Todorovic, G., Marcinkonis, S., Li, C. and Jandl, R.: A multi-model comparison of soil carbon assessment of a coniferous forest stand, Environmental Modelling \& Software, 35, 38-49, 2012.
Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S.: Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands, 51, 1173-1179, 1987.
Parton, W., Ojima, D. and Schimel, D.: Environmental change in grasslands: Assessment using models, Clim. Change, 28, 111-141, 1994.
Parton, W.J., McKeown, R., Kirchner, V., and Ojima,D.: CENTURY Users' Manual, Natural Resource Ecology Laboratory, Colorado State University, Ft. Collins., 1992.
Petersson, H. and Ståhl, G.: Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden, Scand. J. For. Res., 21, 84-93, 2006.
Raich, J. W., Parton, W. J., Russell, A. E., Sanford Jr, R. L. and Vitousek, P. M.: Analysis of factors regulating ecosystemdevelopment on Mauna Loa using the Century model, Biogeochemistry, 51, 161-191, 2000.
Rantakari, M., Lehtonen, A., Linkosalo, T., Tuomi, M., Tamminen, P., Heikkinen, J., Liski, J., Mäkipää, R., Ilvesniemi, H. and Sievänen, R.: The Yasso07 soil carbon model-Testing against repeated soil carbon inventory, For. Ecol. Manage., 286, 137-147, 2012.

Rapalee, G., Trumbore, S. E., Davidson, E. A., Harden, J. W. and Veldhuis, H.: Soil Carbon stocks and their rates of accumulation and loss in a boreal forest landscape, Global Biogeochem. Cycles, 12, 687-701, 1998.

Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. and Bloodworth, H.: Effect of soil organic carbon on soil water retention, Geoderma, 116, 61-76, 2003. .
Rolff, C. and Ågren, G. I.: Predicting effects of different harvesting intensities with a model of nitrogen limited forest growth, Ecol. Model., 118, 193-211, 1999.

R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/, 2014.
Scharlemann, J. P., Tanner, E. V., Hiederer, R. and Kapos, V.: Global soil carbon: understanding and managing the largest terrestrial carbon pool, Carbon Management, 5, 81-91, 2014.

Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. and Hendricks, D. M.: Mineral control of soil organic carbon storage and turnover, Nature, 389, 170-173, 1997.
Tuomi, M., Rasinmäki, J., Repo, A., Vanhala, P. and Liski, J.: Soil carbon model Yasso07 graphical user interface, Environmental Modelling \& Software, 26, 1358-1362, 2011.

Tuomi, M., Thum, T., Järvinen, H., Fronzek, S., Berg, B., Harmon, M., Trofymow, J. A., Sevanto, S. and Liski, J.: Leaf litter decomposition—Estimates of global variability based on Yasso07 model, Ecol. Model., 220, 3362-3371, 2009.

Tupek, B., Minkkinen, K., Pumpanen, J., Vesala, T. and Nikinmaa, E.: and dynamies in the boreal forest-mire ecotone, Biogeosciences, 12, 281-297, 2015.

Wiesmeier, M., Hübner, R., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B., von Lützow, M. and Kögel-Knabner, I.: Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation, Global Change Biol., 20, 653-665, 2014.
Xia, M., Talhelm, A. F. and Pregitzer, K. S.: Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests, New Phytol., 2015.
Yurova, A. Y., Volodin, E. M., Agren, G. I., Chertov, O. G. and Komarov, A. S.: Effects of variations in simulated changes in soil carbon contents and dynamics on future climate projections, Global Change Biol., 16, 823835, 2010.

Venables, W. N. and Ripley, B. D.: Modern applied statistics with S-PLUS, Springer Science \& Business Media, 2013.

830 Zandonadi, D. B., Santos, M. P., Busato, J. G., Peres, L. E. P. and Façanha, A. R.: Plant physiology as affected by humified organic matter, Theoretical and Experimental Plant Physiology, 25, 13-25, 2013.

Table 1. Description of the Swedish Forest Soil Inventory (SFSI) data reduction of soil sorting of parent material and humus types; SFSI conversion estimate of soil classes of soil moisture to numerical representation of soil water contentaceording to observations from Tupek et al. (2015); and SFSI conversion estimate of classes to numerical representation of soil texture (sand, silt, and clay content for sediments by Lindén (2002) and for tills by Albert Atterberg's distribution of the different grain size fractions).

SORTING PARENT MATERIAL		HUMUS TYPE		MOISTURE		
SFSI	REDUCED	SFSI	REDUCED	SFSI	SFSI	NUMERIC
Bedrock	Bedrock	Moder	No-peat		Water	Long-term
Poorly sorted sediments	Unsorted	Mor 1	No-peat		level (m)	moisture \%
Tills	Unsorted	Mor 2	No-peat	Dry	<2	10
Well sorted sediments	Sorted	Mull	No-peat	Fresh	1-2	20
		Mull-Moder	Peat	Fresh-moist	<1	30
		Peat	Peat	Moist	<0.5	50
		Peat-Mor	Peat			
TEXTURE						
SFSI	NUMERIC					
	SEDIMENTS			TILLS		
	Sand \%	Silt \%	Clay \%	Sand \%	Silt \%	Clay \%
Bedrock	0	0	0	0	0	0
Boulder	0	0	0	0	0	0
Gravel	10	0	0	10	0	0
Coarse-sand	40	5	0	40	5	0
Sand	80	10	0	45	10	0
Fine-sand	70	25	5	55	15	0
Coarse-silt	50	40	10	65	20	5
Fine-silt	10	75	15	55	35	10
Clay	0	65	35	0	85	15
Peat	0	0	0	0	0	0

Table 2. Descriptive characteristics (mean, confidence interval, $1^{\text {st }}, 50^{\text {th }}$, and $99^{\text {th }}$ percentile) of selected variables ($\mathrm{n}=3230$ samples). The values of the bulk density, cation exchange capacity, base saturation, C / N ratio, and pH are shown only for BC soil horizon (fixed $45-50 \mathrm{~cm}$ depth from the ground surface) due to the strong correlation to the total soil carbon stock. The soil was cut off at 1 meter. The productivity class (H100, $\mathrm{m})$ is an approximation of the site fertility expressed as the height of trees at 100 years of age. Stand and understory biomass, and litter input are modelled values for approximated steady state conditions based on actual state measurements.

	Mean	CI	$1^{\text {st }}$ percentile	$50^{\text {th }}$ percentile	$99^{\text {th }}$ percentile
Total soil carbon stock ($\mathrm{tC} \mathrm{ha}^{-1}$)	93.24	1.95	17.02	79.68	308.68
Humus carbon stock ($\mathrm{tC} \mathrm{ha}{ }^{-1}$)	33.29	1.17	3.89	22.82	176.66
Mineral soil carbon stock ($\mathrm{tCha}{ }^{-1}$)	66.82	1.7	6.92	54.81	273.91
Depth of humus (cm)	10.52	0.27	1	8	36
Depth of soil (cm)	93.37	0.6	18	99	99
Stoniness (\%)	39.91	0.54	3.96	42.37	65.05
Bulk density of BC $\left(\mathrm{g} \mathrm{dm}^{-3}\right)$	1267.1	5.5	790.55	1294.9	1522.13
Cation exchange capacity of $\mathrm{BC}\left(\mathrm{mmol}_{c} \mathrm{~kg}^{-1}\right)$	23.94	1.28	1.53	12.33	203.25
Base saturation of BC (\%)	36.44	1.02	4.33	25.73	100
C / N ratio of BC	16.5	0.35	3.33	14.98	62.45
pH of BC	5.17	0.02	4.36	5.08	7.26
Silt content (\%)	19.98	0.57	0	15	85
Clay content (\%)	3.16	0.25	0	0	35
Sand content (\%)	51.25	0.63	0	55	80
Long-term soil moisture (\%)	22.36	0.2	10	20	30
Mean air temperature (${ }^{\circ} \mathrm{C}$)	4.63	0.09	-0.44	5.34	8.47
Total precipitation (mm)	697.87	7.13	392.54	637.11	1154.55
Nitrogen deposition ($\mathrm{kgN} \mathrm{ha}^{-1} \mathrm{y}^{-1}$)	7.17	0.14	2.35	6.56	17.67
Productivity class (H100, m)	23.61	0.21	12	23	36
Total stand biomass ($\mathrm{tCha}{ }^{-1}$)	56.02	1.39	1.34	51.14	156.52
Total understory biomass (tCha^{-1})	2.69	0.05	0.96	2.37	6.02
Total litterfall input ($\mathrm{tC} \mathrm{ha}^{-1}$)	3.17	0.03	1.65	3.07	5.28

Table 3. Description of models and data inputs relevant for this study.

Model	Yasso07	Q	CENTURY v. 4.0 soil submodel
Time step	Year	Year	Month
Parameters	General (world wide litter bags)	Seven Swedish regions	Two forest sites (evergreen and
$\xrightarrow{\text { Parametrization }}$	Global	$\xrightarrow[\sim]{\text { Scandinavian }}$	deciduous) Combined global with site specific
Carbon pools	Labile (acid -, water -, and ethanolsoluble and non-soluble), recalcitrant (humus)	Cohorts (foliage, stems, branches, coarse roots, fine roots, "grass"), soil organic	Litter (surface structural and metabolic, belowground str. and met.), surface microbial, soil organic matter (active, slow and passive)
Biomass	Biomass components estimated by allometric biomass functions and provided stand data for litter input estimation		
Litter amount	Annual or monthly fractions of biomass components (species specific, same total litter inputs for all models)		
Litter quality	Litterature based solubilities	Estimated cohorts qualities	C / N ratios and lignin/ $/ \mathrm{N}$ ratios
Temperature air	Annual mean, monthly amplitude	Annual mean	Max and min monthly mean
Precipitation		-	Monthly total
Menthly Annual total			
Soil properties	-	-	Bulk density, sand, silt, and clay content
Soil depth (m)	1		0.2
$1 \sim$			

Table A1. Parameter estimates and their standard errors of the $f_{A P A R}$ regressions with the stand basal area (BA, $\mathrm{m}^{2} \mathrm{ha}^{-1}$), and the $f_{A P A R 70 L A T}$ and $f_{A P A R 70 H 100}$ regressions with the latitude (LAT, ${ }^{\circ}$) and with the productivity class (H100, m) for Scots pine, Norway spruce, and deciduous stands.

$f_{A P A R}=a * B A /(b+B A)$	$\mathrm{a} \pm \mathrm{SE}$	$\mathrm{b} \pm \mathrm{SE}$	$\mathrm{c} \pm \mathrm{SE}$	$a d j . R^{2}$
pine	0.996 ± 0.029	11.754 ± 0.811		0.85
spruce	1.167 ± 0.034	10.668 ± 0.870	0.86	
deciduous	1.129 ± 0.064	7.407 ± 1.149		0.88
$f_{A P A R 70 L A T}=L A T /(a+b * L A T)+c$				
pine	$-9.976 \mathrm{e}+03 \pm 3.691 \mathrm{e}+03^{a}$	$1.430 \mathrm{e}+02 \pm 5.416 \mathrm{e}+01^{b}$	$7.220 \mathrm{e}-01 \pm 1.819 \mathrm{e}-02$	0.92
spruce	$-2.689 \mathrm{e}+03 \pm 3.507 \mathrm{e}+03^{c}$	$3.533 \mathrm{e}+01 \pm 5.025 \mathrm{e}+01^{d}$	$9.654 \mathrm{e}-01 \pm 9.221 \mathrm{e}-02$	0.74
$f_{A P A R 70 L A T}=a+b * L A T$				
deciduous	1.363 ± 0.282	-0.009 ± 0.005^{e}		0.26
$f_{\text {APAR70H100 }}=a * e^{(b / H 100)}$	0.85565 ± 0.01917	-5.22016 ± 0.40807		0.89
pine	0.96726 ± 0.01009	-2.85354 ± 0.21634		0.86
spruce	0.93991 ± 0.02331	-2.63462 ± 0.50325		0.51
deciduous				

$p<0.001$ for all parameters except for ${ }^{a} 0.023,{ }^{b} 0.024,{ }^{c} 0.461,{ }^{d} 0.498$, and $^{e} 0.076$.

Table B1. Parameter estimates and their standard errors for the coefficients of the dry weight biomass ($\mathrm{kg} \mathrm{ha}^{-1}$) models with the fraction of absorbed radiation $\left(y=a b^{f_{A P A R}}\right)$ for Scots pine, Norway spruce, and deciduous stands.

$y=a b^{f_{A P A R}}$	species	$\mathrm{a} \pm \mathrm{SE}$	$\mathrm{b} \pm \mathrm{SE}$	$a d j . R^{2}$
branch	pine	610.23 ± 21.043	121.592 ± 5.967	0.917
	spruce	877.265 ± 34.535	54.157 ± 2.457	0.918
	deciduous	289.719 ± 26.464	155.506 ± 15.838	0.892
fineroot	pine	422.031 ± 12.675	20.51 ± 0.914	0.836
	spruce	316.675 ± 13.816	15.186 ± 0.78	0.799
	deciduous	452.632 ± 27.715	14.499 ± 1.032	0.823
foliage	pine	361.428 ± 24.095	86.091 ± 8.223	0.714
	spruce	766.324 ± 40.277	33.323 ± 2.033	0.827
	deciduous	141.11 ± 28.347	70.629 ± 15.992	0.56
root	pine	703.163 ± 26.166	183 ± 9.62	0.918
	spruce	628.686 ± 32.37	113.435 ± 6.665	0.903
	deciduous	358.635 ± 33.267	149.85 ± 15.506	0.888
	pine	1793.215 ± 83.818	253.676 ± 16.658	0.889
stem and bark	spruce	974.029 ± 72.348	229.024 ± 19.259	0.856
	deciduous	971.587 ± 97.632	160.858 ± 18.015	0.876
	pine	231.701 ± 10.273	214.429 ± 13.394	0.893
	spruce	170.77 ± 10.331	129.219 ± 8.907	0.877
stump	deciduous	79.779 ± 8.388	215.511 ± 25.165	0.874

$p<0.001$ for all parameters.

Table C1. Parameter estimates and their standard errors for the coefficients of the forest ground understory vegetation dry weight biomass (W, $\mathrm{kg} \mathrm{ha}^{-1}$) models (Eq. C1) for functional types (1-dwarfshrubs, 2-herbs, 3-grasses, 4-mosses and 5-lichens) with intercept (a) and n number of predictors (b1- age (years), b2 - basal area $\left(\mathrm{m}^{2} \mathrm{ha}^{-1}\right)$, b3 - annual air temperature $\left({ }^{\circ} \mathrm{C}\right)$, $\mathrm{b} 4-$ latitude $\left({ }^{\circ}\right)$, $\mathrm{b} 5-\mathrm{H} 100$ (height of trees at 100 years of age, m), b6 - H100 of spruce trees (m), b7-H100 of pine trees (m), b8- pine dominance ($0 / 1$), b9-spruce dominance ($0 / 1$)). For the latin names of species included into understory functional types see Table S3.

W		$\mathrm{a} \pm \mathrm{SE}$	$\mathrm{b} 1 \pm \mathrm{SE}$	$\mathrm{b} 2 \pm$ SE	$\mathrm{b} 3 \pm \mathrm{SE}$	b4 \pm SE	$\mathrm{b} 5 \pm \mathrm{SE}$	$\mathrm{b} 6 \pm$ SE	b7 \pm SE	$\mathrm{b} 8 \pm \mathrm{SE}$	b9 \pm SE	adj. R^{2}
Aboveground	1	24.28 ± 0.32	0.13 ± 0.01	-0.43 ± 0.02						7.13 ± 0.33		0.29
	2	-82.13 ± 6.8			-0.1 ± 0.1^{a}	1.23 ± 0.1		0.77 ± 0.03				0.12
	3	4.07 ± 0.30		-0.16 ± 0.01				0.27 ± 0.01		-1.36 ± 0.15		0.21
	4	32.9 ± 0.62					-0.78 ± 0.04		0.48 ± 0.06	3.66 ± 0.3	5.76 ± 0.29	0.22
	5	19.91 ± 0.57		-0.13 ± 0.01				-0.45 ± 0.02		6.31 ± 0.29		0.25
	total	43.68 ± 0.29	0.12 ± 0.01	-0.41 ± 0.01						6.34 ± 0.3		0.30
Belowground	1	-256.3 ± 3.5	0.1 ± 0.01	-0.35 ± 0.02		5.05 ± 0.06				8.56 ± 0.35		0.75
	2	-89.34 ± 7.85			$-0.03 \pm 0.1^{\text {b }}$	1.4 ± 0.12		0.78 ± 0.04		-4.97 ± 0.27		0.19
	3	5.97 ± 0.37		-0.19 ± 0.01				0.32 ± 0.01		-1.78 ± 0.19		0.21
	total	-251.9 ± 3.3		-0.2 ± 0.01		5.15 ± 0.05						0.7
Total		-222.7 ± 4.0	0.12 ± 0.01	-0.44 ± 0.02		4.9 ± 0.07						0.67

$p<0.001$ for all parameters except for ${ }^{a} p=0.44$, and ${ }^{b} p=0.84$.

Figure 1. Geographical locations of meteorological stations with corresponding number of nearest soil samples (n , size of the circle) and their mean measured soil organic carbon stock ($\mathrm{tC} \mathrm{ha}{ }^{-1}$, color of the circle) across Sweden.

Figure 2. a) Classification/regression tree for the measured soil carbon stock ($\mathrm{tCha}{ }^{-1}$), soil physicochemical properties and site environmental characteristics; the cation exchange capacity of BC horizon (CEC.BC, ($\mathrm{mmol}_{c} \mathrm{~kg}^{-1}$)), the C / N ratio (CN.BC), the nitrogen deposition (N.deposition $\mathrm{kgN} \mathrm{ha}^{-1} \mathrm{y}^{-1}$), the highly bound soil water of C horizon (bound.H2O.C, \%), and soil class variables as type of sorted or unsorted soil parent material and humus type. Note that variables used to calculate the soil carbon stock (bulk density, carbon content, depth, and stoniness) were excluded from the regression tree analysis. The values in the leaves of the tree show for the distinct environmental conditions mean soil carbon stock ($\mathrm{tCha}{ }^{-1}$), number and percentage of samples. b) The interpretation of 10 physicochemical soil groups of the regression tree model into the levels of carbon, soil moisture, and fertility roughly increasing from left to right.

Figure 3. Bean plot of density functions for 10 physicochemical groups of the soil carbon ($\mathrm{tC} \mathrm{ha}^{-1}$) measurements (grey fill) and estimates simulated by the soil carbon models Yasso07, CENTURY, and Q with the litter input derived from the steady state forest. The thin lines are the density distributions. The thick lines are the group means and dashed lines are their confidence intervals. The n is number of samples. For description of group levels of SOC stocks, moisture, and fertility see Fig. 2 and Table S1.

Figure 4. Scatter plot between mean measured and mean modeled soil organic carbon stocks (tCha^{-1}) for 10 physicochemical groups for Yasso07, CENTURY and Q models. Data were fitted with weighted linear regression (lines). The number of samples in each group was used as weights for fitting and also as weights for the weighted mean of squared differences between the modeled and measured values (MSE, $\mathrm{tC} \mathrm{ha}^{-1}$). The RMSE is the square root of MSE. The r^{2} is the proportion of explained variance.

Figure A1. Actual state fraction of absorbed radiation $\left(f_{A P A R}\right.$, estimated as in Härkönen et al., 2010) (measuredactual $f_{A P A R}$) and steady state $f_{A P A R}$ (modeled max $f_{A P A R 70) ~ w h i c h ~ w a s ~ s e t ~ t o ~}^{70 \text { th percentile }}$ of maximum $f_{A P A R}$ for given species, latitudinal degree, and site productivity class. Panels a), b), and c) show relation between $f_{A P A R}$ and latitude $\left({ }^{\circ}\right)$ for forest stands dominant by Scots pine, Norway spruce and deciduous species, whereas panels d), e), and f) show relation between $f_{A P A R}$ and site productivity class (H100, height of dominant trees at 100 years in meters).

Figure B1. Scatter plots for the dry weight tree biomass components ($\mathrm{W}, \mathrm{tC} \mathrm{ha}{ }^{-1}$) between $\stackrel{\text { "modelled" }}{\sim}$ (estimated based on fraction of absorbed radiation, $f_{A P A R}$, and our $f_{A P A R}$ models) and "measured" " (estimated based on basic tree stand dimensions and allometric biomass models)and "modelled" (estimated based on fraction. The r^{2} values represent the coefficient of absorbed radiation)determination indicating how close the modeled values fit the measured values.

