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Anonymous Referee #3: 
General comments 
The paper Ťupek et al. is aimed to test the ability of some biogeochemical models (Yasso07, Q, and 
CENTURY) to predict the soil organic carbon stocks in Swedish forests. For model validations a large set of 
forest and soil inventory data collected in different forest regions in Sweden are used. As one of the key 
results of the study it was shown that the models are not able to predict adequately the soil carbon 
accumulation in forest sites with very high nutrient status. The question about model ability to predict 
the soil carbon stock under over-moist soil conditions (high ground water level) was also discussed. 
The main goal and objectives of the study is corresponded to the main scope of Biogeoscience journal and 
the paper can be published in BGS after some revision. 
#Thank you! We appreciate your comments and below we provide a point by point response to each of 
them. 
 
Before publication of the manuscript the several points have to be additionally clarified and discussed. 
It is not completely clear why the authors use in the study "an actual fraction of photosynthetically active 
absorbed radiation (fAPAR) as a relative indicator of a site’s capacity to produce biomass"?  
#We clarified the reason why to use fAPAR in 2.1.1 Biomass and litterfall estimates. 
We adopted the actual fAPAR as a relative indicator of a site’s capacity to produce biomass (minimum = 0, 

maximum = 1) by accounting for the forest stand structure, ranging from the absent stand fAPAR = 0 to the 
closed canopy stand fAPAR = 1, through its major role on limiting of the potential gross primary production 

(e.g. Peltoniemi et al. 2015).  Peltoniemi M., Pulkkinen M., Aurela M., Pumpanen J., Kolari P. & Mäkelä A. 
2015: A semi-empirical model of boreal-forest gross primary production, evapotranspiration, and soil water 

— calibration and sensitivity analysis. Boreal Env. Res. 20: 151–171. 

 
Authors write that "the fAPAR was calculated using basic tree measurements".  
#We reformulated confusing expression of “basic tree measurements" to “SFI measurements of basic tree 
dimensions” that were explained in first sentence of the section 2.1.1 Biomass and litterfall estimates. 
 
And from fAPAR values the forest productivity is estimated. Application of such indirect approach to 
estimate the forest productivity within the frameworks of the study is not clear. Actually the amount of 
above ground photosynthesizing biomass that characterizes the forest productivity can be either 
estimated directly from the forest inventory or derived from remote sensing data (e.g. from NDVI).  
#Yes, we initially estimated the actual forest photosynthesizing biomass and litter from the forest inventory. 
However, these “observed - estimated directly from SFI” actual biomasses and litter values include 
information of forest management that masks the effect of site productivity and nitrogen deposition (see 
Fig. S11). Rather than using the observed snapshot of the history, more realistic litter input to the models for 
thousands of years has to be based on an average long term biomass/litter estimates.  
 
The average long term forest biomass corresponds to the proportion of the maximum “observed” biomass 
for the small regions outlined by latitude, productivity class and dominant tree species distribution. 
Instead of modelling the forest biomass components maximum for a latitudinal degree, site productivity 
class, and tree species, and finding its proportion, it was simpler to estimate maximum fAPAR and sought its 
fraction iteratively based on the distributions of measured and modeled soil organic carbon stocks (Fig. S2). 
(Appendix A). 
 
We added following section into the manuscript in 2.1.1 Biomass and litterfall estimates:  
Instead of modelling of average long term biomasses for every tree stand component separately for the 

species, latitude, and productivity index, we simplified the biomass modelling firstly by estimating only a 

long term forest stand structure for the species, latitude, and productivity (fAPAR70, Table A1) and secondly 
by using fAPAR70 with fAPAR biomass models (Table B1) to estimate the biomass components. 
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It is clear that the fAPAR approach is broadly used in remote sensing to quantify the GPP and NPP of land 
surface in regional and global scales. However GPP and NPP estimations on local scale using this approach 
are usually very uncertain. Dependences of NPP and GPP on fAPAR even for growing non-damaged forest 
stands are often non-linear. The fAPAR is actually depended on many different parameters including 
amount of above-ground green biomass, amount of non- photosynthesizing biomass, forest understorey, 
soil properties including composition, texture and moisture, etc., etc 
# As above mentioned, in our study the site specific fAPAR was directly calculated based on Swedish forest 
inventory data and a method described in Härkönen et al. (2010). Härkönen, S., Pulkkinen, M., Duursma, R. 

and Mäkelä, A.: Estimating annual GPP, NPP and stem growth in Finland using summary models, For. Ecol. 

Manage., 259, 524-533, 2010. 

The fAPAR values in our study represented the observed state of forest stand biomass. 
 
Other point. Authors use the tree height as an indicator to quantity the forest "site" productivity. The 
forest productivity is actually depended on forest species composition, influenced by the air temperature, 
precipitation, soil properties, water and nutrient supply during the previous years, etc. Nowadays it is 
very popular to use the tree height as some relative indicator of forest productivity. However it is 
relatively rough indicator. In many cases the tree of different species reaches the maximal heights some 
time before the reference age used by authors - 100 years. In this case the tree height is not the best 
characteristics for forest productivity. The productivity (in particular aboveground production) of the 
trees for the time from the stage of seedlings to stages of mature or old trees can be actually 
characterized by two main characteristics - tree height and tree steam diameter (BHD). So it is better 
actually to use combined indicator for forest productivity including the tree height and BHD.  
# We agree that there are many kinds of indicators of forest productivity and tree height is one of the most 
widely used. However, site index H100 used in our study was comprised in Swedish forest inventory data and 
it was estimated not only based on tree height, but also based on specific site properties (Hägglund and 
Lundmark, 1977).  
We added following section into the manuscript: 
The site index (H100, dominant height at a total age of 100 years), that can be translated to a specific 

productivity (m3ha-1yr-1), was in our study calculated for sites based on observed site properties from Swedish 
forest inventory by using the methodology of Hägglund and Lundmark (1977) (Swedish Statistical Yearbook 

of Forestry 2014). Hägglund, B., Lundmark, J.-E., 1977. Site index estimation by means of site properties. 
Scots pine and Norway spruce in Sweden. Studia Forestale Suecica 138, 1–38. 

 

In figure A1 I suggest to replace the productivity (title of X axe) by tree height. To avoid any 
misunderstanding.  
#we replaced “productivity” in Fig. A1 by “site index H100” 
 
Specific comments 
Line 3. "... carbon exchange ...". Do you mean the total carbon or CO2 only? 
# we mean CO2 and changed “carbon” in the text to “carbon dioxide” 
Line 26. Do you mean the carbon dioxide? 
#we mean CO2 and changed “carbon” in the text to “carbon dioxide” 
Line 331 Annual temperature cannot be never "cold". Cold winter, but the temperature is low or high. 
# the word “cold” was on line 331 replaced by “low” 
Significance level (p=value) in Fig.4, Tab.A1, B1, C1 has to be indicated. 
#we added p values to Fig. 4, in Tab. A1, B1, C1 p values are indicated in the footnotes. 
Table A1, B1. Please to round the numbers to 1 or 2 digits after comma. 
#we rounded the numbers to 2 digits in Table A1 and in Table B1 
 
Anonymous Referee #2: 
Thank you for your careful considerations of my comments from the first round however I have some of 
the same concerns from the first round and a few further points. 
#Thank you! 
 
1. When I expressed confusion about the use of the term 'actual state' that should be a hint that maybe it 
is not a good term. It may be very common in physics, but this is not a physics journal, nor is the audience 
going to be primarily physicists. Use the language of your audience. Consider changing actual state to be 
'observed' if the quantity is indeed observed. It is more clear then the derivation of the information. Just 
because it is the state at the present time doesn't tell me if it is an observed or modelled quantity. 
Similarly, I would use equilibrium value rather than steady-state. Again the language of your readers... 
#we changed the terms as required “actual state” to “observed” and “steady state or long-term mean” to 



“equilibrium” in all instances 
 
2. Why did none of the work with 'tuned' CENTURY not make it into the revised MS and only in the 
response to reviewers? That should go in the MS. 
#We are sorry for the misunderstanding on the content of revised MS, please note that we already described 
the “tuned” CENTURY in the revised manuscript on lines 278-288 and also included these results into our 
model comparison (Fig. 3, Fig. 4, and Fig. S12, Section 3 and 4). 
 
3. I don't agree that keeping soil group 8 with only 0.24% of points is valid. Either show that it is not just 
an artifact or error from your regression tree or remove it. It is obviously very strange given how much it 
differs from the other groups and how far away the models are. If it is a real group and not just sampling 
error or assignment error it should be better justified. There are 5 decisions steps to get to that group, 
prove that you didn't make a mistake on one of those five. Conversely really try to answer why that group 
is so special and look into the measurements to understand the conditions of those few sites better. 
#We still think that including data of the smallest regression tree group 8 is valid and well justified in the 
manuscript (Fig. 2, Fig. S2, Fig. S4, Table S1, and their descriptions in Section 3 and 4), and that the relatively 
small number of points and a large difference from the other groups is no reason for excluding these data.  
As requested, we show in the table below that data of the smallest regression tree group 8 correctly 
represent the unique conditions as shown in Fig. 2a. Furthermore, comparing table below and the 
description statistics of this group in Table S1 indicated highly fertile conditions (large N deposition, H100 is 
largest among groups (31 m), second largest litter input, highest temperature, and highest precipitation, on 
well-drained soil). Please note, that in the table below and in Fig. S4, that SOC stocks of mineral soil are 
extremely large indicating fast soil organic matter dynamics and microbial transformation, SOC transport 
downwards and its stabilization, and confirming MEMS hypothesis of Cotrufo et al. (2013) and one of our 
conclusions that mechanisms of mineral soil associated SOC stabilization of process based soil carbon 
models has to be re-evaluated. 
  

North 
(°) 

East 
(°) 

SOC soil 
(t/ha) 

SOC humus 
(t/ha) 

SOC total 
(t/ha) 

CEC.BC 
(mmolc/kg) CN.BC 

N deposition 
(kgN/ha/year). 

bound.H2O.C  
( %) 

56.26 15.27 204.28 19.60 223.88 28.92 21.36 10.35 3.05 
56.96 13.09 211.71 24.65 236.35 29.29 21.50 16.15 2.91 
57.11 12.27 202.23 67.87 270.11 17.90 25.53 16.56 11.42 
56.96 13.09 285.92 120.32 406.24 29.76 33.62 17.82 5.43 
56.95 13.06 310.38 16.70 327.08 22.71 19.17 17.63 2.63 
56.03 12.77 255.48 

 
255.48 24.71 25.27 17.19 2.69 

56.95 13.06 177.35 36.57 213.92 17.54 21.71 18.52 2.53 
56.96 13.09 197.47 18.36 215.83 25.43 16.22 14.95 3.19 

*coordinates in the table correspond to the closest weather station and not to an exact location of soil inventory plots  
 
4. Fig B1, add the number of points on each (n=...) so us readers have that info. 
#We added n (number of points) into the Fig. B1. 
 
 
5. I see now that Fig A1 caption no longer calls it 'measured fAPAR' but 'actual fAPAR'. So that seems to 
mean that we have 'actual fAPAR' which is a calculated quantity based on Harkonen et al. and your 
modelled fAPAR (?). So really we are comparing model vs. model? So where do things like observations fit 
in? 
# In Fig. A1 caption and through the manuscript the site specific “actual = observed” fAPAR was directly 
calculated based on observations from Swedish forest inventory data and a method described in Härkönen 
et al. (2010). Thus fAPAR values in our study represented the observed state of forest stand biomass. The 
long term average fAPAR (fAPAR70) was found iteratively from the “observed” fAPAR maxima for the sites 
across Sweden by comparison of SOC stocks estimated with litterfall derived by fAPAR models for fAPAR70 
and similarity of distributions between measured and modeled SOC stocks (Fig. S2).  
 
This brings me to a more major point. There is a heavy reliance on models to check models within this 
paper. For eg."We modelled the steady state biomass by applying the fitted exponential functions 
between the actual state forest biomass components (stem, branch, foliage, stump, coarse-roots, fine-
roots, estimated by tree stand measurements and the allometric biomass functions) and the actual 
fraction of absorbed radiation (fAP AR ) (Appendix B) to the estimated fAP AR70 of the steady state 
forest" (line 146 in revised MS) 
and then: 
"Forest stand biomass was estimated by allometric biomass functions for stem with bark, branch,foliage, 



stump, coarse-roots and fine-roots applied to basic tree dimensions (breast height diameter,total height 
of tree, number of trees) of SFI stands " (line 130) 
Then in appendix B: 
"The biomass components derived with allometric models (measured) and those derived with fAP AR 
models (modeled) showed strong correlations (Fig. B1). " 
 
But really they aren't measured! They are both modelled quantities; allometric models are not 'real'.This 
seems like a rabbit hole where modelled quantities are used to check other modelled quantities which 
then generate further modelled quantities. How do you propagate error from the allometric relations? 
How do you know that using one modelled quantity to check another results in a correct answer? Since 
those are very hard questions to answer, it needs to be made completely transparent what is observed 
and what is modelled. So if you are comparing a modelled value to a modelled value there can be no 
mistaking it for measured quantities. What you have done could be valid but it is still very opaque on 
what is going on. 
# We acknowledge the point needed to clarify our method and test the model outputs with litterfall data. 
Although data on required litterfall components was not available for Sweden and for soil carbon modelling 
litterfall needs to be modeled (Ortiz et al. 2011, and 2013), the use of allometric models with data from 
forest inventory and applying litterfall production rates in order to estimate litter input for soil carbon 
models is a standard method of national greenhouse gas inventories estimating soil carbon stock changes 
(Statistics Finland 2013). Therefore we adopted this standard method. In order to model SOC stocks of forest 
in equilibrium (not SOC stocks changes) we modified it only by estimating the long term litterfall of forest in 
equilibrium.  
 

We added following sentence into the section on 2.1.1 Biomass and litterfall estimates: 
For the biomass and litterfall estimation we adopted standard method of national greenhouse gas inventories 
for estimating soil carbon stock changes (Statistics Finland 2013). In order to model SOC stocks of forest in 

equilibrium (not SOC stocks changes) we modified the method by estimating the long term litterfall of forest 

in equilibrium. Statistics Finland 2013. Greenhouse gas emissions in Finland 1990–2011. In: National 

Inventory Report to the UNFCCC Secretariat, Ministry of the Environment, Helsinki, Finland, pp. 285–286. 
 

Dr. Leonid L. Golubyatnikov, Referee #1:  
I do not see in this manuscript new ideas and new approaches. The main results are expected in advance. 
I think this manuscript does not correspond to the level offered for articles in journal Biogeosciences. 
# Thank you for your opinion! Although as we thoroughly replied to your previous comments (see 

Interactive comment on Biogeosciences Discuss., doi:10.5194/bg-2015-657, 2016), we do not see 
any scientifically valid reason for ignoring our results from the SOC stock inter-comparison between the 
massive Swedish forest soil inventory data and Yasso07, CENTURY and Q process based models. 
 
In a nutshell, our study provided unique solution for combining massive ground measurements from Swedish 
forest and forest soil inventories, estimating litterfall for forest in equilibrium required for modelling 
equilibrium soil carbon stocks, as well as unique evaluation of physicochemical soil, climatic, and plant 
factors by using recursive partitioning method for generating regression trees of SOC stocks.  
 
We agree that soil nutrient status as a missing driver of soil carbon sequestration of process based models 
can be hypothesized, as it has been discussed (Schmidt et al., 2011; Averill et al., 2014), and as it’s known 
that soil nutrient status drives the ecosystem carbon use efficiency and soil carbon sequestration (Ågren et 
al., 2001, Manzoni et al., 2012, Fernández-Martínez et al., 2014), and also that models fail to reconstruct the 
spatial variation (Todd-Brown et al., 2013; Ortiz et al., 2013; Lehtonen et al., 2015a).  Although to our 
knowledge this has not been tested by other studies, and our findings that Yasso07, CENTURY and Q SOC 
stock estimates generally agreed well for 2/3 of the Swedish boreal forest sites but underestimated for sites 
with higher fertility due to models poorly predicting the large carbon stabilization in the mineral soil are 
new. 
 
Biogeosciences (BG) frequently publishing results on interactions between the drivers of soil carbon 
sequestration provides the best platform for sharing our findings with the international research community. 
Hopefully by now this has convinced you, that our findings would appeal to a broad audience of scientists 
studying the interactions between climate, forest stand, soil, and carbon sequestration, such as the 
readership of BG.  
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Abstract. Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC)

stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-

atmosphere carbon
::::::
dioxide exchange by process based ecosystem and soil carbon models. Although

the models need to simplify complex environmental processes of soil carbon sequestration, in a large

mosaic of environments a missing key driver could lead into a modelling bias in predictions of SOC5

stock change.

We aimed to evaluate SOC stock estimates of process based models (Yasso07, Q, and CENTURY

soil sub-model v. 4) against massive Swedish forest soil inventory dataset (3230 samples) organized

by recursive partitioning method into distinct soil groups with underlying SOC stock development

linked to physicochemical conditions.10

For two thirds of measurements all models predicted accurate SOC stock levels regardless the

detail of input data e.g. wheather they ignored or included soil properties. However, in fertile sites

with high N deposition, high cation exchange capacity, or moderately increased soil water content,

Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for

the site specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved15

SOC stock estimates for sites with high clay content, but not for sites with high N deposition.

Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the

high nutrient status and well sorted parent material, indeed have had other predominat drivers of SOC

stabilization lacking in the models presumably the mycorrhizal organic uptake and organo-mineral

stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic20

matter mineralization has to be re-evaluated, since correct steady state SOC stocks are decisive for

predicting future SOC change and soil CO2 efflux.
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1 Introduction

In spite of the historical net carbon sink of boreal soils, 500 Pg of carbon since the last ice age

(Rapalee et al., 1998; DeLuca and Boisvenue 2012; Scharlemann et al., 2014), boreal soils could25

become a net source of carbon
::::::
dioxide

:
to the atmosphere as a result of long-term climate warming

(Kirschbaum 2000; Amundson 2001). They have the potential to release larger quantities of car-

bon than all anthropogenic carbon emissions combined (337 Pg) (Boden et al., 2010). In order to

preserve the soil carbon pool and to utilize the soil carbon sequestration potential to mitigate anthro-

pogenic CO2 emissions, mitigation strategies of climate forcing aim to improve soil organic matter30

management (Schlesinger 1999; Smith 2005; Wiesmeier et al., 2014).

Supporting soil management decisions requires an accurate quantification of spatially variable soil

organic carbon (SOC) stock and SOC stock changes (Scharlemann et al., 2014). The initial level of

SOC stock is essential in order to estimate SOC stock changes (Palosuo et al., 2012, Todd-Brown

et al., 2014), especially when estimating carbon emissions due to land-use change e.g. afforestation35

of grasslands (Berthrong et al., 2009). Process-oriented soil carbon models like CENTURY, Roth-C,

Biome-BCG, ORCHIDEE, JSBACH, ROMUL, Yasso07 and Q are important tools for predicting

SOC stock change, but there are also risks for poor predictions (Todd-Brown et al., 2013, DeLuca

and Boisvenue 2012). The models need further validation and improvement as they show poor spatial

agreement on fine scale and moderate agreement on regional scale against SOC stock data (Todd-40

Brown et al., 2013; Ortiz et al., 2013). Despite the potentially quantitative importance of CO2 emis-

sions the expected change will be small in relation to the SOC stock. Therefore, the uncertainty

of measurements and/or model estimates could prevent conclusions on SOC stock changes (Palosuo

et al., 2012; Ortiz et al., 2013; Lethonen et al., 2015a) especially for the soils with largest SOC stocks

which are the most sensitive to carbon loss. Beside large uncertainties, the poor agreement between45

the modelled and measured SOC stocks (Todd-Brown et al., 2013) could also indicate missing biotic

or abiotic drivers of long-term carbon storage (Schmidt et al., 2011; Averill et al., 2014).

For example ignoring the essential role of soil nutrient availability in ecosystem carbon use ef-

ficiency (Fernández-Martínez et al., 2014) could lead to missing important controls of plant litter

production and soil organic matter stabilization mechanisms. Soil nutrient status is linked to the50

mobility of nutrients in the water solution (Husson et al., 2013), production, quality and microbial

decomposition of plant litter (Orwin et al., 2011), and formation of the soil organic matter (SOM).

The SOM affects soil nutrient status by recycling of macronutrients (Husson et al., 2013), and water

retention and water availability (Rawls et al., 2003).

In spite of state of the art soil carbon modelling based on the amount and quality of plant litter55

“recalcitrance”, affected by climate and/or soil properties as in the Yasso07, Q and CENTURY mod-

els, these type of process based models do not include mechanisms for SOM stabilization by a) the

organic nutrient uptake by mycorrhizal fungi; b) humic organic carbon interactions with silt-clay

minerals; and c) the inaccessibility of deep soil carbon and carbon in soil aggregates to soil biota
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(Orwin et al., 211; Sollins et al., 1996; Torn et al., 1997; Six et al., 2002; Fan et al., 2008; Dungait60

et al., 2012; Clemente et al., 2011). Although the models do not contain aforementioned mechanisms

and controls for changes in SOM stabilization processes, they have been parameterized using a wide

variety of datasets and can treat soil biotic, physicochemical and environmental changes implicitly.

The Yasso07 model (Tuomi et al., 2009, 2011) is an advanced forest soil carbon model and it is used

for Kyoto protocol reporting of changes in soil carbon amounts for the United Nations Framework65

Convention on Climate Change (UNFCCC) by European countries e.g. Austria, Finland, Norway,

and Switzerland. The Q model (Ågren et al., 2007) is a mechanistic litter decomposition model de-

veloped in Sweden and used e.g. to compare results produced with Swedish national inventory data

(Stendahl et al., 2010, Ortiz et al., 2011) and also with other models at national or global scales

(Ortiz et al., 2013; Yurova et al., 2010). The CENTURY model (Parton et al., 1987, 1994, Adair70

et al., 2008) is one of the most widely applied models and it is used for soil carbon reporting to

UNFCCC by Canada, Japan, and USA. Although individual parameters and functions vary, math-

ematical models such as Yasso07, Q and CENTURY have similar structures. For example, these

models are driven by the decomposition rates of litter input and soil organic matter (SOM). Decom-

posing litter and SOM is divided into pools based on litter quality, and its transfer from one pool75

to another is apart from model functions and parameters affected by temperature (Q) and/or water

(Yasso07), and/or soil texture and structure (CENTURY). The Q model does not include explicit

moisture function, whereas for the Yasso07 and CENTURY models precipitation affects decompo-

sition (Tuomi et al., 2009; Adair et al., 2008). On the other hand, the models do not explicitly or by

default include mechanisms that reduce decomposition by excessive precipitation/moisture (Falloon80

et al., 2011).

We hypothesized that (1) soil carbon estimates of the Yasso07, Q, and CENTURY models would

deviate for soils where SOC stabilization processes not implicitly accounted by the models are pre-

dominant, (2) the Yasso07 and Q models ignoring soil properties would fail on the nutrient rich sites

of South-West coast of Sweden and on occasionally paludified clay and silt soils, and (3) the CEN-85

TURY model outperforms the Yasso07 and Q models due to fact that it includes soil properties as

input variables.

We grouped Swedish forest soil inventory data into homogenous groups with specific soil physic-

ochemical conditions using regression tree and recursive partitioning modelling methods. After that

we ran the models into a steady state
::
an

::::::::::
equilibrium

:
with a litter input which was derived from the90

Swedish forest inventory. Thereafter we compared the model estimates against data by groups that

were obtained from the regression tree model. In discussion we address the reasons why the models

deviate and indicate directions of further improvements.
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2 Material and methods

2.1 Measurements95

We analysed data from the Swedish forest soil inventory (SFSI) which is a stratified national grid

survey of vegetation and physicochemical properties of soils (SLU, 2011, Olsson et al., 2009). All

analysis was done using R software for statistical computing and graphics (R core team 2014). The

soil data were identical to dataset used in Stendahl et al. (2010). We restricted our sample plots

to minerogenic soils since the Q, Yasso07, and CENTURY models were not developed for use on100

peat soils, and only to plots for forest land use with Swedish forest inventory data (SFI). We also

excluded samples with total SOC stock below 2.8 and above 470.5 (tC ha−1), i.e. samples with SOC

stock below 0.01 and above 99.9 percentile. Measurement data originated from the 1993 to 2002

which constitute a full inventory, and from 2020 sample plots located around Sweden, and in total it

including 3230 samples. For each sample plot the weather (years 1961-2011) and N deposition (years105

1999-2001) data was retrieved from the nearest stations of Swedish Meteorological and Hydrological

Institute (SMHI) network (Fig. 1). The plots which were linked by the closest distance to the given

weather station had the same weather and N deposition data, and the number of soil samples per

station ranged between 10 and 70. The mean total SOC stock of samples corresponding to weather

stations ranged between 40 and 200 (tC ha−1), and the SOC stock level increased from the South to110

North of Sweden (Fig. 1).

Each sample plot contained categorical data from the field survey on the sorting of soil parent ma-

terial, humus type, soil texture, and soil moisture. In our analysis we reduced categorical classes by

basing them on the sorting of soil parent material and humus type (Table 1). We determined numeric

values for silt, clay, and sand content from soil texture categories by Albert Atterberg’s distribution115

of the different grain size fractions in tills and by Lindén’s (2002) distributions for sediments (Ta-

ble 1). We also determined numeric values of volumetric soil water content (SWC) from categorical

field data classified according to the depth of the ground water level (WL) (Table 1).

As typical for soil carbon inventories, the variation of data was large (Table 2). For example, the

mean total SOC stock of all samples was 93 (tC ha−1) while 1st and 99th percentiles were 17 and120

309 (Table 2). The mean SOC stock was 33.3 and 66.8 (tC ha−1) for the humus horizon and the

mineral soil. The mean values of cation exchange capacity (CEC ) 23.9 (mmolc kg−1), the base

saturation 36.4%, and the C/N ratio 16.5 indicated conditions of medium fertility, although the soils

were mostly acidic (mean pH was 5.2). The mean prevailing soil water content (22.3) was typical

for the well-drained forest soils. The mean annual temperatures ranged from below 0 to above 8 °C,125

and annual precipitation varied between 392 and 1154 mm (Table 2). Total SOC stock for all the

samples generally increased for peat and peat like humus forms, for well sorted sediments, for soils

with high fraction of silt and clay and with increasing soil moisture (Fig. S1).
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2.1.1 Biomass and litterfall estimates

:::
For

:::
the

:::::::
biomass

::::
and

:::::::
litterfall

:::::::::
estimation

:::
we

:::::::
adopted

:::::::
standard

:::::::
method

::
of

::::::::
national

:::::::::
greenhouse

::::
gas130

:::::::::
inventories

:::
for

:::::::::
estimating

::::
soil

::::::
carbon

:::::
stock

:::::::
changes

:::::::::
(Statistics

::::::
Finland

::::::
2013).

:::
In

:::::
order

::
to

::::::
model

::::
SOC

:::::
stocks

::
of

:::::
forest

::
in
::::::::::
equilibrium

::::
(not

::::
SOC

::::::
stocks

:::::::
changes)

:::
we

:::::::
modified

:::
the

::::::
methos

:::
by

:::::::::
estimating

::
the

:::::
long

::::
term

:::::::
litterfall

::
of

::::::
forest

::
in

::::::::::
equilibrium.

:
Forest stand biomass was estimated by allometric

biomass functions for stem with bark, branch, foliage, stump, coarse-roots and fine-roots applied to

basic tree dimensions (breast height diameter, total height of tree, number of trees) of SFI stands135

(Marklund 1988; Pettersson and Ståhl 2006; Repola 2008; Lehtonen et al., 2015b). In order to sim-

ulate “steady state
:::::::::
equilibrium” soil carbon stock we estimated long term mean forest biomass, re-

ferred to as “steady state
:::::::::
equilibrium

:
forest” below.

We adopted an actual
:::::::
observed

:
fraction of photosynthetically active absorbed radiation (fAPAR,

Fig. A1) as a relative indicator of a site’
::::::
site1000s capacity to produce biomass (minimum = 0, maxi-140

mum = 1) .
::
by

::::::::::
accounting

::
for

:::
the

:::::
forest

:::::
stand

::::::::
structure,

:::::::
ranging

::::
from

:::
the

:::::
absent

:::::
stand

:::::::
fAPAR :

=
::
0

::
to

::
the

::::::
closed

::::::
canopy

:::::
stand

::::::
fAPAR::

=
::
1,

::::::
through

:::
its

:::::
major

::::
role

::
on

:::::::
limiting

::
of

:::
the

:::::::
potential

:::::
gross

:::::::
primary

:::::::::
production

::::::::::
(Peltoniemi

::
et

::
al.

::::::
2015).

:
The fAPAR was calculated based on basic tree measurements

:::
SFI

::::::::::::
measurements

::
of

::::
basic

::::
tree

:::::::::
dimensions

:
as in Härkönen et al. (2010) and for the main tree species

(pine, spruce, deciduous) it was well correlated with the stand basal area (Appendix A). The steady145

state

:::
The

::::::::::
equilibrium forest fAPAR values were assumed to be in a range between the median and the

maximum fraction of the actual
:::::::
observed

:
state forest fAPAR for a given species, latitudinal degree,

and site productivity class (Appendix A). We selected steady state
::::::::::
equilibrium fAPAR as the 70th

percentile (fAPAR70) out of a range from the 50th to 95th, because the modelled soil carbon distribu-150

tions with a litter input from the fAPAR70 biomass best agreed with the measured soil carbon distri-

butions (Fig. S2). The fAPAR70 was the estimated 70th percentile of the actual
:::::::
observed fraction of

absorbed radiation specific for a given species, latitudinal degree, and site productivity class (
:::::
index

::::
H100

:::::::
(height

::
of

:::::
trees

::
at

::::
100

:::::
years

::
of

::::
age,

:::
m,

::::::::
Hagglund

::::
and

:::::::::
Lundmark

:::::
1977)

::
(Fig. B1).

::::::
Instead

::
of

::::::::
modelling

:::
of

:::::::::
equlibrium

:::::::::
biomasses

:::
for

:::::
every

::::
tree

:::::
stand

::::::::::
component

::::::::
separately

::::
for

:::
the

:::::::
species,155

::::::
latitude,

::::
and

:::
site

::::::::::
productivity

::::::
index,

:::
we

::::::::
simplified

:::
the

:::::::
biomass

:::::::::
modelling

:::::
firstly

:::
by

:::::::::
estimating

::::
only

:::::::::
equlibrium

:::::
forest

:::::
stand

::::::::
structure

:::
for

:::
the

:::::::
species,

:::::::
latitude,

::::
and

::::::::::
productivity

::::::::::
(fAPAR70,

:::::
Table

::::
A1)

:::
and

::::::::
secondly

::
by

:::::
using

::::::::
fAPAR70:::::

with
::::::
fAPAR:::::::

biomass
:::::::
models

:::::
(Table

::::
B1)

::
to

:::::::
estimate

:::
the

::::::::
biomass

::::::::::
components.

:

We modelled the steady state
:::::::::
equilibrium

:
biomass by applying the fitted exponential functions160

between the actual
::::::::
observed state forest biomass components (stem, branch, foliage, stump, coarse-

roots, fine-roots, estimated by tree stand measurements and the allometric biomass functions) and

the actual
:::::::
observed

:
fraction of absorbed radiation (fAPAR) (Appendix B) to the estimated fAPAR70

of the steady state
:::::::::
equilibrium forest. The understory vegetation of the steady state

::::::::::
equilibrium forest
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was estimated by applying our ground vegetation models (Appendix C) to the modelled steady state165

:::::::::
equilibrium

:
forest characteristics, and plot specific environmental conditions.

In order to derive the litter inputs, annual turnover rate (TR, the fraction of living biomass that

is shed onto the ground per year, unitless) of biomass components were applied to the modelled

biomass components of the steady state
:::::::::
equilibrium forest. The needle litter TR was a linear function

of latitude for pine and spruce and a constant for deciduous species (Ågren et al., 2007). The TR of170

branches and roots were from Mukkonen and Lehtonen (2004), Lehtonen et al. (2004) and the TR

of stump and stem were from Viro (1955), Mälkönen (1974, 1977) as cited in Liski et al. (2006).

For tree fine roots we assumed there was a difference between tree species and between southern

and northern Sweden. For pine, spruce, and birch the fine roots TR were 0.811, 0.868, and 1.0

respectively as reported by Maidi (2001) and Kurz et al. (1996), and cited in Liski et al. (2006). Kleja175

et al. (2008) and Leppälampi-Kujansuu et al. (2014) reported different fine root TR for Southern (1

and 0.83) and Northern Finland (0.5). We interpolated TR according to the mean annual temperature

gradient between TR of fine roots in the South and the North. The fine roots TR of 0.811, 0.868, and

1.0 in the warmest southernmost soil plots were thus reduced down to 0.5 in the coldest northernmost

soil plots. The understory TR were applied as in Lehtonen et al. (manuscript).180

The major part of the litter input originated from the tree stand biomass components which were

modeled by the non-linear functions with R2 values close to 0.9 (Fig. B1, Tables A1 and B1).

The linear understory vegetation models had low R2 values (Table C1). However, when the un-

derstory models (Appendix C) were applied only to plots close to steady state
:::::::::
equilibrium

:
forest,

as in our application, the R2 values of predicted and observed understory components were larger185

(Fig. S9). In comparison to major understory litterfall originating from reasonably well predicted

dwarf-shrubs and mosses (Fig. S9 and S10), the influence of poorer understory models (for herbs,

grass, and lichens) was small on predictions of the understory litter and marginal on predictions

of the total forest litterfall (Fig. S10). The main improvement on the accuracy of total litter input

was achieved by avoiding the confounding effect of actual
::::::::
observed forest state by modelling the190

biomass/litterfall estimates representing the mean long-term conditions (defined by estimated steady

state
::::::::::
equilibrium fAPAR70) for small regions (defined by degree of latitude and productivity class

for dominant species, Fig. A1). Thus the estimates accurately reflected the long-term spatial vari-

ability in dominant species, nutrient status and climate (Fig. S11) and lacked higher spatial and

temporal precission; as attempts for high precision of the estimates applied for the period of the last195

few thousands of years would be uncertain due to high variation of factors affecting plot history.

2.1.2 Correlation analysis

Overall our data consists of 3230 soil samples and their carbon stocks linked to soil physicochemical

variables, stand and ground vegetation biomass and litterfall components, and nearest weather sta-

tion environmental variables. We performed the Spearman’s rank correlation analysis between the200
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total soil carbon stock and the other soil variables, site, climate and vegetation characteristics. As

expected the total soil carbon stock most strongly correlated with the measured variables used for its

calculation e.g. bulk density, depth of humus and mineral soil, carbon content, and stoniness. These

variables were excluded from further regression tree analysis which aimed to group data according

to the processes of soil carbon stock development.205

2.1.3 Regression trees

In order to organize SOC data into groups according to the physicochemical soil variables and to

better understand the nature of measured data, we generated regression trees of SOC stocks by using

recursive partitioning (RPART) (Therneau and Atkinson 1997). RPART is based on developing de-

cision rules for predicting and cross validation of continuous output of soil carbon stocks (regression210

tree). The classification tree was built by finding a single variable which best splits the data into two

groups. Each sub-group was recursively separated until no improvement could be made to the soil

carbon stock estimated by using the split based regression model. The complex resultant regression

tree model was cross validated for a nested set of sub trees by computing the estimate of soil carbon

stock to trim back the full tree.215

When building the regression tree models we excluded variables such as bulk density, carbon

contents of soil layers, soil depth, and stoniness, since these measured variables were used for de-

termining the total soil carbon stock. The selected variables for the RPART data mining were based

on the correlations analysis (see 2.1.2), the processes of soil organic matter formation (e.g. Husson

et al., 2013) and decomposition, and represented the soil categorical variables (sorting of parent ma-220

terial, soil texture, long-term soil moisture and humus form), soil physicochemical variables (sand,

clay, and silt content, long-term soil moisture, highly bound water, C/N ratio, pH, CEC of organic,

B, BC, and C horizons), climatic variables (annual mean air temperature, annual precipitation sum),

and stand and site characteristics (tree species coverage of pine, spruce and deciduous, total foliar

litter input, productivity class and N deposition). Alternatively we also ran regression and classifi-225

cation analysis by excluding all measured soil variables because soil variables are often unavailable

for landscape level modelling.

The regression tree model separated the measured total SOC stocks (tC ha−1) into 10 groups.

The cation exchange capacity of the BC horizon (CEC, mmolc kg−1) divided all the samples into

2/3 of lower SOC stock groups (means between 65 and 130 tC ha−1) and 1/3 of larger groups230

(means between 86 and 269 tC ha−1) (Fig. 2a). The group of the smallest SOC stock consisted of

959 samples compared to 8 samples of the group with the largest SOC stocks. We acknowledge that

this is a small distinct group based only on 8 observation. However, we did not have any reasons to

exclude these datapoints as outliers. Two-thirds of samples with smaller SOC stocks were subdivided

by CEC and the type sorting of soil parent material (sorted or unsorted). One-third of samples with235

larger SOC stocks was subdivided by the C/N ratio, CEC, N deposition among others. Roughly
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generalized, groups from left to right or from 1 to 10 formed a gradient in levels of SOC stock,

moisture, nutrient status, and production (Fig. 2, Table S1).

The alternative regression tree model was built with variables other than soil properties. The re-

gression tree with the annual mean air temperature, the annual precipitation sum and the percentage240

of pine trees in the stand, and the nitrogen deposition separated measured SOC stocks (tC ha−1) into

five groups (Fig. S3). Colder groups with smaller SOC stocks (means 67 and 85) also had less litter

input (below 3 tC ha−1) and low productivity class
:::
site

::::::::::
productivity

:::::
index

:
(height of

:::::::
dominant

:
trees

at 100 years of age, H100 < 20 m) (Table S2). The productivity class (
:::
site

:::::
index H100, m) in our

manuscript refers to a site index which can be converted to site productivity . Soil site index is based245

on dominant height at a certain age (100 years) and is determined according to a dominant height

curve ,
::::
that

:::
can

:::
be

::::::::
translated

::
to

:
a
:::::::
specific

::::::::::
productivity

:
m3 ha−1 yr−1

:
,
:::
was

:::::::::
calculated

:::
for

::::
sites

:::::
based

::
on

::::::::
observed

:::
site

:::::::::
properties

::::
from

::::::::
Swedish

:::::
forest

::::::::
inventory

:::
by

:::::
using

:::
the

:::::::::::
methodology

::
of

:::::::::
Hägglund

:::
and

:::::::::
Lundmark

::::::
(1977)

:
(Swedish Statistical Yearbook of Forestry 2014). Nitrogen deposition only

slightly impacted the higher productivity class of soils and litter input (Table S2).250

2.2 Soil carbon stock modelling

The Q model (Rolff and Ågren, 1999) is a continuous mechanistic litter decomposition model de-

scribing change of soil organic matter over time. The decomposition rate for the branch, stem, needle,

fine root, and woody litter fractions is controlled by the temperature, litter quality, microbial growth

and litter invasion rate. The model has been calibrated for seven climatic regions of Sweden in order255

to account for Swedish temperature and precipitation gradients (Ortiz et al., 2011) (Table 3). The Q

model was applied in several studies of SOC stock and change estimation in Sweden (e.g. Stendahl

et al., 2010; Ortiz et al., 2013; Ågren et al., 2007). The Q model was run for seven Swedish climatic

regions (Ortiz et al., 2011). The mean regional parameterization from the calibration of the 2011 Q

model was used for the plot simulations. Thus, the simulations in each region represent variations in260

climate and litter input and not parameter variations. The steady state
:::::::::
equilibrium soil carbon stocks

are estimated in the model using the equation for steady state
:::::::::
equilibrium

:
soil carbon stock which is

derived from the decomposition functions with constant amounts and quality of litter input.

The Yasso07 model (Tuomi et al., 2009; 2011) is one of the most widely applied SOC models. The

model was calibrated based on almost 10 000 measurements of litter decomposition from Europe,265

North and South America (Table 3). The required annual inputs of litterfall, its size and chemical

composition, temperature and precipitation determine the decomposition and sequestration rates of

soil organic matter. Yasso07 estimates SOC stock to a depth of 1 m (organic and mineral layers),

change of SOC stock, and heterotrophic soil respiration. Species specific chemical composition of

different litter compartments of Yasso07 were used according to Liski et al. (2009). The initial soil270

organic matter of Yasso07 was zero. The simulated soil carbon stock corresponding to a steady-state

:::::::::
equilibrium

:
between the litter input and decomposition was achieved by a Yasso07 spin-up run of 10
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000 years. Yasso07 runs used litter inputs of the steady state
:::::::::
equilibrium

:
forest biomasses (see 2.1.1)

and climate variables (annual air temperature, monthly temperature amplitude, and annual precipi-

tation). The global parameter values of decomposition rates, flow rates, and other dependencies of275

Yasso07 soil carbon model were adopted from Tuomi et al. (2011) and the estimates of Yasso07

SOC stocks were used in comparison with measurements and other models. We did not use the

SOC stocks simulated with the more recent Yasso07 parameters based on the litter decomposition

data from the Nordic countries (Rantakari et al., 2012), because the SOC stocks simulated with the

global parameter values produced better fit with SFSI measurements.280

The CENTURY mathematical model originally developed for grassland systems (Parton

et al., 1987; 1992) has been since modified for various ecosystems including boreal forests (Nalder

and Wein 2006). The CENTURY is also one of the most widely applied models. The soil organic

matter in the model consists of active, slow, and passive pools which have different TR (Table 3).

The decomposition rates are modified by temperature and moisture, and in addition the decomposi-285

tion rates of the slow and passive pools rely on lignin to N and C to N ratios, while the active pool

decomposition rate relies on soil texture. The model simulates soil organic matter to a depth of 20

cm. The model simulates plant production and pools of living biomass, while TR for biomass pools

determine the litterfall inputs to soil. To compare the performance of the soil sub-model with other

soil carbon dynamics models, Q and Yasso07, we only used the CENTURY soil sub-model. We used290

the same litterfall inputs as used by the Q and Yasso07 simulations, which were estimated by our

litterfall modelling (see 2.1.1). The litter inputs reflected N deposition and site productivity (Fig.

S11). For CENTURY we adopted general parameters from the parameter file “tree.100”, parameters

of site “AND H_J_ANDREWS” for conifers, and site “CWT Coweeta” for deciduous trees. The

N dynamics in CENTURY sub-model included tuning site specific parameters of topsoil mineral295

N relative to N deposition (Throop et al. 2004) and reduction of C/N ratio of the litterfall up to

15% for most productive sites (Merilä et al. 2014). We also accounted for site specific soil drainage

by varying its parameter between 1 and 0.6 relative to long-term soil water content ranging be-

tween 10 and 50% (Raich et al. 2000). The CENTURY SOC stocks simulation were run with steady

state
::::::::::
equilibrium forest litter inputs, site specific C/N ratios of litterfall, site specific soil parameters300

(specific bulk density, sand, silt, and clay content, mineral N in topsoil, and drainage) and climate

variables (monthly air temperature, and monthly precipitation). In order to account for the deep soil

carbon (Jobbágy and Jackson 2000), we scaled CENTURY estimates representing the topsoil hori-

zon by adding 40% of estimated site specific SOC stock. The simulated steady state
::::::::::
equilibrium

SOC stocks were estimated by a spin-up run of 5 000 years. The number of years to reach steady305

state
::::::::::
equilibrium (equilibrium between the litter input and decomposition) was sought empirically

on 100 random sites, and differs from Yasso07 and Q models.
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3 Results

The distributions of Yasso07, Q, and CENTURY model estimates of total SOC stocks (tC ha−1)

were in agreement for 2/3 of the measured data with lower SOC stock (Fig. 3, distributions of310

groups 1, 2, and 4). The remaining 1/3 of data was underestimated by models. This 1/3 of data was

separated into 7 physicochemical soil groups (means of groups in range from 104 to exceptionally

large 269 tC ha−1, see Fig. 3, distributions of groups 3, and 5-10). The linear regression of mean

levels of all 10 physicochemical soil groups (weighted by the number of samples in each group)

between the modelled and measured SOC stocks showed smaller underestimation of CENTURY315

compared to Yasso07 and Q models (Fig. 4). The weighted root mean square error (RMSE) was

27.5 (tC ha−1) for CENTURY and 31.6 and 38.8 for Yasso07 and Q respectively. The proportion

of explained variance was larger for Q ( r2 = 0.58) than for Yasso07 and CENTURY ( r2 = 0.42

and 0.32) (Fig. 4). The deviation of the distributions of CENTURY SOC stocks, simulated using

soil bulk density, sand, silt, and clay content, were lower than those of Yasso07 and Q estimates320

for 10 physicochemical soil groups (Fig. 3). Accounting for site specific soil texture (clay, silt, and

sand content) and structure (bulk density) by CENTURY model improved SOC stock estimates for

fertile sites with high clay content, but not for sites with high N deposition. Varying CENTURY

parameters of site specific topsoil mineral Nitrogen and C/N ratio of the litterfall showed that this

impact on SOC stocks estimates was small in comparison to sensitivity of SOC stock estimates to325

litterfall (Fig. S12). The application of site specific drainage on our mostly well drained soils showed

minor impact on estimated CENTURY SOC stocks.

As expected, the models clearly showed less variation than the measurements. The shift of the

mean values from the center of distribution, the width of confidence intervals of means, and the width

of the tails of distributions were clearly larger for the measurements than for the modelled estimates330

(Fig. 3). The modelled distributions agreed for the poor-medium fertility soils with low and medium

measured SOC stocks, low and medium CEC, unsorted parent material, low temperatures and low

production (groups 1, 2, and 4) (Fig. 2, Table S1, Fig. 3). Disagreement between modelled and

measured SOC stock distributions were formed on fertile soils with sorted parent material (groups

3 and 5), soils with higher water content (groups 3, 5, and 10), where nitrogen deposition was large335

(groups 7 and 8), and where CEC was median or large (Fig. 2, Fig. 3). The largest deviation between

the measured and modelled distributions was found for the relatively small physicochemical groups

of soils (3%) typical for highly bound water and peat humus types (groups 8 and 10) (Fig. 2, Fig. 3).

The distributions of measured total SOC stocks (tC ha−1) generally increased for the groups with

higher nutrient status (Fig. 3, Fig. S4). The distributions of SOC stocks in mineral soil were larger340

than those in humus horizon, and distributions of mineral SOC stocks increased with fertility slightly

more than distributions of SOC stocks in humus horizon (Fig. S4).

After excluding all the soil physicochemical characteristics from the recursive partitioning, the

SOC stock distributions of 5 groups regression tree model (Fig. S3, Table S2) were in agreement
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between the measurements and model estimates for 3 groups (77% of samples) and deviated for 2345

groups (23%) (Fig. S5). The modelled SOC stock distributions agreed with measurements for all

models on sites with cold
:::
low

:
annual temperatures < 3 ◦C in northern sites (low-C.cold.pine, low-

C.cold.other) and for warmer conditions in middle Sweden on sites with low nitrogen deposition and

median SOC stocks (Fig. S5). However, the models underestimated SOC stocks on sites with high

(> 10 kgNha−1 y−1) N deposition (21% of samples) and on sites with warm and dry climate (2%350

of samples) (Fig. S5).

The variation of density functions of modeled SOC stocks for 10 physicochemical groups (Fig. 3)

was similar to the variation of the total annual plant litter input (tC ha−1) (Fig. S6) indicating that

litterfall was the main driver of SOC accumulation in the models . The mean levels of annual plant

litter input and mean SOC stocks for 10 soil groups were more strongly correlated for Yasso07 and355

Q models (with r2 values 0.86 and 0.96, respectively) than for CENTURY (r2 = 0.52). Although,

models performed reasonably well for the largest soil groups of nutrient and production levels (Fig. 3

and Fig. 4), none of the models was able to predict variation of individual samples (Fig. S7). The

model estimates were well correlated between Yasso07 and CENTURY with r2 ranging from 45 to

73% for individual samples of 10 soil groups, whereas the correlations of estimates between Q and360

the other two models were lower (Fig. S8).

4 Discussion

4.1 SOC stock distributions linked to mechanisms of SOM stabilization

It has been suggested that process based soil carbon models with the current formulation lacking

major soil environmental and biological controls of decomposition would fail for conditions where365

these controls predominate (Schmidt et al., 2011; Averill et al., 2014). Although, the effect of the

soil properties on SOC stocks e.g. soil nutrient status in the widely used models such as Yasso07,

Q, and CENTURY have not previously been quantitatively evaluated. We found that in comparison

with Swedish forest soil inventory data, the models based on the amount and quality of inherent

structural properties of plant litter (Q, Yasso07, and CENTURY) produced accurate SOC stock es-370

timates for 2/3 of northern boreal forest soils in Sweden. Two-thirds of the distributions of SOC

stocks measurements of SFSI agreed with distributions of SOC stock estimates of the Q, Yasso07,

and CENTURY soil carbon models (Fig. 3, distributions of groups 1, 2, and 4). However, the SOC

stocks underestimation by these models for one third of the data (Fig. 3, distributions of groups 3,

and 5-10) indicated that some drivers other than molecular structure, especially site nutrient status,375

play an important role in higher SOC stocks sequestration.

Some level of deviation from measurements and poorly explained spatial variation (Fig. S7) was

expected from the uncertainties of the SOC measurements, annual plant litter inputs and climate

variability for the model SOC stock change estimates (Ortiz et al., 2013; Lehtonen et al., 2015a).
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For the long-term SOC stock development the model uncertainties are less known than for the short-380

term litter decomposition. Previously reported fine scale comparison also showed poor agreement

between Earth system models and the Northern Circumpolar Soil Carbon Database (Todd-Brown

et al., 2013), although drivers of the deviation still remained open. Our results showed that if mod-

els strongly depend on the litter inputs (Fig. S6) then the spatial differences between measured and

modeled SOC stock distributions could be linked to sites with rich nutrient status through cation385

exchange capacity, C/N ratio, N deposition, drainage (sorting of parent material) among other fac-

tors (Fig. 2 and 3). Additionally, when the soil properties were excluded from the regression, the

estimates of SOC stocks also deviated for the fertile groups (Fig. S5). However, the rich nutrient

status for these groups was linked to differences in species composition, N deposition, and climate

(temperature, precipitation) instead of soil properties (Fig. S3).390

Larger net soil carbon accumulation in nutrient rich sites could be attributed to the relative differ-

ences in litterfall components (relatively more leaves and branches with higher N content than fine

roots), and to higher N availability and carbon use efficiency of decomposers, reduction of respira-

tion per unit of C uptake (Ågren et al., 2001, Manzoni et al., 2012, Fernández-Martínez et al., 2014).

Largest deviation between measured and modeled data in our study was found for fertile presumably395

N rich and fresh to fresh-moist sites. The soils with large N deposition were also highly productive

and showed high to exceptionally high SOC stocks (Fig. 2, Fig. 3, soil groups 7 and 8). This was

in agreement with fertilization and modelling study of Franklin et al. (2003) showing an increase in

soil C accumulation with N addition. Our forest biomass and litterfall estimates were based on forest

inventory and modeling, but the site nutrient status and N deposition was only partially reflected in400

the amount of biomass/litterfall (Fig. S11) and its quality. The quality was only reflected through the

biochemical differences between species and plant litter components. The relative differences be-

tween the biomass/litterfall components or between C/N ratios of litterfall in relation to site fertility

are not accounted by the current biomass models, but soil fertility could be considered in an attempt

of SOC stock modelling (included in CENTURY but missing in Yasso07 and Q models). For exam-405

ple the proportion of acid -, water -, and ethanol-soluble and non-soluble litter inputs for Yasso07

could be re-evaluated by allowing it to vary depending on site fertility, in addition to currently used

variation specific for species and the litter components. Although CENTURY SOC stocks were sen-

sitive to the amount of clay, the variation of topsoil mineral N and C/N ratio of litterfall did not

improved SOC stock predictions for sites with high N deposition (Fig. 3 and Table S1).410

The litter decomposition and SOC stabilization rates in Yasso07, Q, and CENTURY based on the

litter quality “recalcitrance” originating from the litter bag mass loss measurements have major draw-

backs. The mass loss from the litter bags is assumed to be fully mineralized, although the litterbags

are subjected to non-negligible leaching (Rantakari et al., 2012; Kammer and Hagedorn, 2011). The

SOC stabilization represented in models by the remaining litter mass is thus underestimated due to415

the fraction of particulate organic matter and dissolved organic carbon that is lost from the litterbags

12



but later immobilized e.g. through organo-mineral stabilization. The use of stable isotopes seems to

determine the field carbon mineralization and accumulation rates from the labile (high C quality and

N concentration) or recalcitrant (low C quality and N concentration) litter more accurately than litter

bags (Kammer and Hagedorn, 2011).420

Higher amount of more recalcitrant fine roots compared to more labile leaves (Xia et al., 2015)

heavily increased the soil carbon sequestration in CENTURY model simulations which was in line

with McCormack et al. (2015). Though, the contribution of fine roots to SOC stabilization is still not

settled due to the significant role of mycorrhizal fungi in SOC accumulation (Averill et al., 2014;

Orwin et al., 2011). Xia et al. (2015) claimed that more recalcitrant fine roots contribute to stable425

SOC more than leaf litter, because fine roots degrade slower. This would be supported by the fact if

the precursors of fine roots that are degraded by fungi are more stable than the precursors of leaves

degraded by microbes. However, more recalcitrant plant litter has been also suggested to stabilize

less SOC stocks (Kammer and Hagedorn, 2011). This is a result of recalcitrant litter satisfying less

of the microbial N demands promoting respiration and reducing the long-term production of mi-430

crobial products, precursors for the organo-mineral stabilization (Cotrufo et al., 2013, Castellano

et al., 2015). According to the microbial efficiency-matrix (MEM) stabilization mechanism (Cotrufo

et al., 2013) fertile sites with relatively more labile plant litter, but with larger absolute produc-

tion and larger microbial activity than poor sites, would in long-term stabilize more carbon through

organo-mineral stabilization. Our results supported MEM stabilization theory by showing larger car-435

bon stocks in mineral soil than in humus horizon, and by relatively more SOC stocks in mineral soil

in fertile groups than in poor conditions (Fig. S4).

Expanding on the CENTURY model structure, the MySCaN model incorporating the organic nu-

trient uptake by mycorrhizal fungi estimated positive effect on SOC accumulation, relatively larger

in poor than in fertile sites (Orwin et al., 2011). Therefore, not accounting for the organic nutrient440

uptake by mycorrhizal fungi by the Yasso07, Q, and CENTURY models probably led to the un-

derestimation of SOC stocks in sites with higher nutrient status. This hypothesis needs to be tested

in further studies. We did not have all input data and the source code to include MySCaN into our

model intercomparison. The spatial trends of N and P data of litter in Sweden that would be needed

to make such study were not available. However, adjusting biomass turnover rates, used for the lit-445

ter input estimation, in dependence to site fertility would lead into larger inputs for fertile sites and

increased SOC stock accumulation as a result of increasing plant productivity and inputs. It is well

established that SOM increases soil fertility by improving the soil water and nutrient holding capac-

ity; recycling of SOM increases CEC, humic substances and nutrient availability for plant resulting

in larger biomass/litter production (Zandonadi et al., 2013). As an alternative to adjusting turnover450

rates with site fertility, we suggest that a feedback link in models between increasing fertility due

to SOC stock accumulation (e.g. due to increased CEC relative to humus, increased nitrogen avail-

ability), increasing litter inputs, and reduced rates of SOC decomposition per unit of litter input
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(e.g. through satisfying more microbial N demand with less respiration, limited oxygen in increased

moisture conditions) would also increase SOC stock accumulation.455

Increased moisture and more frequent water saturation due to SOC accumulation limits soil oxy-

gen availability and slows rates of microbial decomposition which increases the rate of SOC sta-

bilization. Our results, which were derived from mostly well drained soils, suggest that measured

high SOC stocks may be partly caused by reduction of decomposition at increased water content

(Fig. 2). The CENTURY model has an optional function that represents the reduction of decompo-460

sition caused by anaerobic conditions. The function becomes active when a controlling parameter,

“drain”, is changed, and the value of the parameter has to be arbitrarily determined through parame-

ter fitting against SOC data (e.g. Raich et al., 2000). However, this function was meant for anaerobic

conditions in poorly drained soils, therefore it was not applicable to the prevailing conditions of

our sites. Accounting for drainage only on some sites slightly affected decomposition, when precip-465

itation increased and potential evapotranspiration decreased in late spring or early autumn. Water

availablility affecting soil fertility and SOC formation is beside climate also affected by topography

(Clarholm et al., 2013) which was not accounted for by CENTURY. Detailed modelling of soil water

conditions requires specific functions and many parameters, which are not included in simpler SOC

models like Q and Yasso07. However, appropriate modelling of soil water conditions and reduction470

of decomposition in wet conditions (not necessarily at saturation) would potentially improve the

performance of SOC models in particular for soils with high SOC stocks.

4.2 Intercomparison of models

The similarities between the variations of modeled SOC stocks and litterfall inputs for the soil groups

with different fertilities (Fig. 3, Fig. S6) could be expected for the Yasso07 and Q models which ig-475

nore the soil properties. These models run organic matter decomposition and humus stabilization

with litterfall, temperature and/or precipitations input data. Litter quality as input in Yasso07 and Q

implicitly includes some information on soil properties, but as we saw litter quality hardly mapped

any of soil fertility. Although, the impact of soil properties on the estimates was seen in the more

complex CENTURY model for sites with high clay content, the SOC stock of sites with high N480

deposition were underestimated. The CENTURY model depended less on the amount of litter input,

and its variations of the estimated SOC stocks distributions were less pronounced than those for

the Yasso07 and Q models. In testing multiple soil carbon models with same litter inputs Palosuo

et al. (2012) observed larger variation in modeled SOC stocks at the early stage of the litter de-

composition (10 years) but later on at 100 years the variation decreased. Although the variations of485

SOC stocks were similar between the models, the estimated CENTURY SOC stocks distributions

were lower than the Yasso07 estimates when we did not accounted for deep soil carbon. CENTURY

in its original configuration simulated SOC stock up to 20 cm soil depth (Metherell et al., 1993)

whereas the Yasso07, Q, and measured SOC stocks data represented up to 100 cm of the soil (Tuomi
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et al., 2009, Stendahl et al., 2010). In Yasso07 model parameters were calibrated based on soil age490

chronosequence data of SOC stocks for soil depths up to 30 cm, which was assumed to represent

60% of the total SOC stocks up to 100 cm soil depth (Liski et al., 1998, 2005 as cited by Tuomi

et al., 2009). Therefore, when 40% of the missing deep carbon (Jobbágy and Jackson 2000) were

added on top of the original CENTURY estimates as was done when callibrating Yasso07, the SOC

stock levels for CENTURY were larger than those for the Yasso07 and Q models.495

Although estimated SOC stocks of CENTURY were generally larger than those of Yasso07, the

correlation between CENTURY and Yasso07 estimates was stronger than for Q model compared to

two other models (Fig. S8). The reason was probably similar global parameterizations of Yasso07

and CENTURY whereas Q was specifically parameterized and applied for the regions in Sweden

(Ågren and Hyvönen 2003, Ortiz et al., 2013). Furthermore the Q model SOC stock estimates500

were more sensitive to differences in species coverage e.g. to pine and spruce (Ågren and Hyvönen

2003) and formed two distinct point cloud distributions (one for pine and broadleaves, the other for

spruce) when compared with the CENTURY or Yasso07 estimates (Fig. S8). In spite of similarities

in Yasso07 and CENTURY SOC stocks estimates, Yasso07 was more sensitive to species cover-

age through species specific litterfall solubility (Liski et al., 2009) than CENTURY which treated505

conifers in a single group (Metherell et al., 1993). Pine and other species (spruce) coverage was

shown to affect measured low and median SOC stocks of colder climate if the soil properties were

not considered (Fig. S5). Therefore the pattern of increased accumulation of SOC stock on sites

with larger spruce coverage partially observed in distribution of Yass07 estimates, and missing in

the CENTURY estimates, could be related to the slightly lower solubility/decomposability of spruce510

compared to pine litterfall. However, the CENTURY model SOC stocks were also highly sensitive to

accurate estimation of fineroots litterfall (Mc Cormack et al., 2015) typically increasing with colder

climate and increasing the C/N ratio of the organic layer (Lehtonen et al., 2015b) which is driven by

the dominant tree species (Cools et al., 2014).

Large SOC stocks measurements on sites with high long-term nitrogen deposition over 10515

kgNha−1 y−1 (Fig. 3 and Fig. S4) were underestimated by the Q, Yasoo07, and CENTURY models.

A positive correlation between nitrogen deposition and SOC stocks measurements in Sweden had

been previously reported by Olsson et al. (2009), and the modelling study by Svensson et al. (2008)

indicated that Swedish soil carbon was decreasing in the North and increasing in the South mainly

as a result of different nitrogen inputs. The Q and Yasso07 models do not have nitrogen processes.520

As for CENTURY, it is reported that large N input could enhance plant productivity and then in-

crease SOC (Raich et al., 2000). The purpose of the study was to evaluate the performance of soil

carbon models against the same SOC data using the same litter input, and therefore only the soil

carbon submodel was used and the feedback of nitrogen input to plant productivity was primarily

included in this study indirectly, through estimated steady state
:::::::::
equilibrium

:
litter input based on site525

productivity class which strongly correlated with N deposition (Fig. A1 and S11). In spite of slight
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increase of SOC stock estimates when CENTURY accounted for the site specific topsoil mineral

N, C/N ratio of litterfall, in sites with large N deposition CENTURY still underestimated. However,

as in the case of drainage discussed above, the CENTURY incorporates more detailed processes

than the relatively simpler soil carbon models, Q and Yasso07, do, and hence the CENTURY could530

potentially reproduce a wider range of SOC stocks if it was parameterized with more detailed data.

5 Conclusions

In this study we presented the reasons to re-evaluate the connection between the soil nutrient status

and performance of widely applied soil carbon models (Yasso07, Q, and CENTURY). As previously

described in detail, our simulation was based on the widely used process based SOC models, accurate535

driving data including litter inputs, and massive SOC data points (Swedish inventory data, N=3230).

The models differed in the main controls and functions and their performance was expected to de-

pend on model complexity (CENTURY outperforming Q and Yasso07). The intercomparison of

SOC stocks between Yasso07, Q, and CENTURY models and Swedish soil carbon inventory data

revealed that these process based mathematical models developed for predicting short-term SOC540

stock changes can all in their current state predict accurate long-term SOC stocks for most soils.

The estimates of CENTURY fitted generally better to measurements than those of Yasso07 and Q

model. However, Yasso07 model which requires fewer parameters and less input data showed similar

performance than CENTURY, except for sites with hig clay content. The models with their current

formulation lack nutrient status related controls of decomposition and soil carbon accumulation and545

underestimated for conditions where the high nutrient status predominate, in our application for

medium-highly productive sites of Southern Sweden.

Through the intercomparison of three different widely-used SOC models with massive data points,

we identified that re-evaluating of the impact of nutrient status would improve the model develop-

ment towards their accuracy. Particularly, the relationship between the soil nutrient status and the550

mechanism of soil organo-mineral carbon stabilization needs to be re-evaluated, because larger SOC

stocks were found in the mineral than in the humus soil horizon. We suggest evaluating enhanced

microbial transformation of soil organic matter and the mycorrhizal organic nutrient uptake in re-

lation to larger plant biomass/litter production in nutrient rich sites resulting to higher SOC stock

accumulation in deeper soil layers. In addition for the organo-mineral carbon stabilization, we also555

suggest further model development accounting for the soil nutrient status through evaluating the

effect of topography on sorting of the parent material, and its silt and clay complexes.

Our study is very useful for developing accurate soil carbon and Earth system models. Further-

more, developing accurate models that would account for the soil nutrient status as one of the key

controls affecting the soil organic matter production and SOC stabilization improves estimation of560

feedback of global warming on SOC stock temperature sensitivity and soil CO2 efflux, national
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reporting of soil carbon stock changes for UNFCCC, and implications of decisions mitigating the

climate change effects on soil carbon stocks.

Appendix A: Models of fraction of absorbed radiation for actual
:::::::
observed

:
and steady state

::::::::::
equilibrium

:
forest565

The fraction of photosynthetically active absorbed radiation (fAPAR) for actual
::::::::
observed state forest

was calculated based on basic tree measurements of Swedish forest inventory data as in Härkönen

et al. (2010). For the main tree species fAPAR was also well correlated with the stand basal area

( r2 was 0.85, 0.86, and 0.88 for pine, spruce, and deciduous stands respectively, coefficients of

regressions in Table A1). The actual
:::::::
observed

:
state forest fAPAR varied between 0 and maximum570

close to 1 (Fig. A1).

The steady state
::::::::::
equilibrium

:
forest fAPAR values were assumed to be in range between the

median and the maximum fraction of actual
::::::::
observed state forest fAPAR for given species, lat-

itudinal degree, and site productivity class (indicated by the height of largest tress at 100 years

of stands age). The steady state
:::::::::
equilibrium

:
forest fAPAR values were set to 70th percentile of575

maximum (fAPAR70) for given species, latitudinal degree, and site productivity class. We selected

70th percentile out of range from 50th to 95th, because the modelled soil carbon distributions

with the litter input from biomass of fAPAR70 best agreed with measured soil carbon distributions

(Fig. S2). The fAPAR70 values specific for pine, spruce, and deciduous stands were first mod-

elled by regression models with latitude (fAPAR70LAT ) (Table A2) and then reduced by the differ-580

ence between the modelled fAPAR70 by regression models with productivity class
::
site

:::::::::::
productivity

::::
index

:
(H100) (fAPAR70H100) (Table A1) and maximum fAPAR70H100 (fAPAR70 = fAPAR70LAT +

fAPAR70H100 - maximum fAPAR70H100). The fAPAR70 values equaled the fAPAR70LAT values

only for the maximum productivity class, otherwise it was reduced.

Appendix B: Models of forest dry weight biomass (kg ha−1) with fAPAR.585

We fitted species specific exponential regression models between the biomass components (stem,

branch, foliage, stump, coarse-roots, fine-roots) of actual
:::::::
observed

:
state forest and the actual

:::::::
observed

:
fraction of absorbed radiation (fAPAR) (scatistics of the regression models in Table B1).

The biomass components derived with allometric models (measured) and those derived with fAPAR

models (modeled) showed strong correlations (Fig. B1). In order to model the longterm mean forest590

biomass “steady state
::::::::::
equilibrium forest biomass” we applied the fAPAR biomass models to the

modeled fAPAR70 values.
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Appendix C: Models of understory vegetation.

We used Swedish forest inventory ground vegetation coverage (%) data visually monitored be-

tween 1993 and 2002 on 2440 plots around Sweden with altogether 4472 observations separately for595

species of forest floor vegetation /or their classes (Table S3). In order to derive the ground vegetation

biomass and to apply the coverage/biomass conversion functions (Lehtonen et al., manuscript), we

grouped the species coverage observations into five functional types (dwarf-shrubs, herbs, grasses,

moss, and lichen) (Table S3). The applied coverage/biomass conversion functions estimated sepa-

rately the above- and below-ground biomass components for dwarf-shrubs, herbs, and grasses, and600

total biomass for moss, and lichen.

Except the understory coverage, the forest inventory data also contained basic tree dimensions

(diameter and height of trees) and stand variables (species dominance, age, basal area, site produc-

tivity class indicated by the height of largest tress at 100 years of stands age), and also we linked

the plots by their closest proximity to SMHI weather stations with weather data (air temperature,605

precipitation) and location attributes of the weather stations (latitude, longitude, altitude).

We built linear models for dry weight biomass of understory vegetation (kg ha−1) in a two level

selection of the predictors from stand, weather and location variables. First, we selected the predic-

tors into linear models by using R package “Mass” and its stepwise model selection by exact AIC

(Venables and Ripley, 2002). Second, we refined the model by using “relaimpo” R package estimat-610

ing usefulness (Grömping, 2006), or relative importance for each of the predictors in the model, and

by selecting only predictors with relative importance ≥ 0.1. The general form of the models was:

yi = a+ b1x1 + . . .+ bnxn + ε, (C1)

Where yi is the understory dry weight biomass (kg ha−1), x1 . . . xn are the predictors, a, b1 . . . bn

are parameters of the ith understory functional type (Table C1), and ε is the residual error. Statistics615

of the models are shown in Table C1. Scatter plots between the measured coverage derived biomass

and modelled dry weight biomass (kg ha−1) of the functional types of ground vegetation for the

forests in their actual
:::::::
observed

:
state close to the estimated steady state

:::::::::
equilibrium

:
are shown on

Fig. S9.

Code and data availability620

The source codes of the Yasso07, Q and CENTURY models used in this paper are available

through the supplementary material. Data used in this study can be available directly by contacting

the authors.
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Table 1. Description of the Swedish Forest Soil Inventory (SFSI) data reduction of soil sorting of parent material

and humus types; SFSI conversion estimate of soil classes of soil moisture to numerical representation of soil

water content; and SFSI conversion estimate of classes to numerical representation of soil texture (sand, silt,

and clay content for sediments by Lindén (2002) and for tills by Albert Atterberg’s distribution of the different

grain size fractions).

SORTING PARENT MATERIAL HUMUS TYPE MOISTURE

SFSI REDUCED SFSI REDUCED SFSI SFSI NUMERIC

Bedrock Bedrock Moder No-peat Water Long-term

Poorly sorted sediments Unsorted Mor 1 No-peat level (m) moisture %

Tills Unsorted Mor 2 No-peat Dry <2 10

Well sorted sediments Sorted Mull No-peat Fresh 1-2 20

Mull-Moder Peat Fresh-moist <1 30

Peat Peat Moist <0.5 50

Peat-Mor Peat

TEXTURE

SFSI NUMERIC

SEDIMENTS TILLS

Sand % Silt % Clay % Sand % Silt % Clay %

Bedrock 0 0 0 0 0 0

Boulder 0 0 0 0 0 0

Gravel 10 0 0 10 0 0

Coarse-sand 40 5 0 40 5 0

Sand 80 10 0 45 10 0

Fine-sand 70 25 5 55 15 0

Coarse-silt 50 40 10 65 20 5

Fine-silt 10 75 15 55 35 10

Clay 0 65 35 0 85 15

Peat 0 0 0 0 0 0
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Table 2. Descriptive characteristics (mean, confidence interval, 1st, 50th, and 99th percentile) of selected

variables (n = 3230 samples). The values of the bulk density, cation exchange capacity, base saturation, C/N

ratio, and pH are shown only for BC soil horizon (fixed 45–50 cm depth from the ground surface) due to the

strong correlation to the total soil carbon stock. The soil was cut off at 1 meter. The productivity class (H100,

m) is an approximation of the site fertility expressed as the height of trees at 100 years of age. Stand and

understory biomass, and litter input are modelled values for approximated steady state
:::::::::
equilibrium conditions

based on actual
::::::

observed state measurements.

Mean CI 1st percentile 50th percentile 99th percentile

Total soil carbon stock (tCha−1) 93.24 1.95 17.02 79.68 308.68

Humus carbon stock (tCha−1) 33.29 1.17 3.89 22.82 176.66

Mineral soil carbon stock (tCha−1) 66.82 1.7 6.92 54.81 273.91

Depth of humus (cm) 10.52 0.27 1 8 36

Depth of soil (cm) 93.37 0.6 18 99 99

Stoniness (%) 39.91 0.54 3.96 42.37 65.05

Bulk density of BC (g dm−3) 1267.1 5.5 790.55 1294.9 1522.13

Cation exchange capacity of BC (mmolc kg−1) 23.94 1.28 1.53 12.33 203.25

Base saturation of BC (%) 36.44 1.02 4.33 25.73 100

C/N ratio of BC 16.5 0.35 3.33 14.98 62.45

pH of BC 5.17 0.02 4.36 5.08 7.26

Silt content (%) 19.98 0.57 0 15 85

Clay content (%) 3.16 0.25 0 0 35

Sand content (%) 51.25 0.63 0 55 80

Long-term soil moisture (%) 22.36 0.2 10 20 30

Mean air temperature (°C) 4.63 0.09 -0.44 5.34 8.47

Total precipitation (mm) 697.87 7.13 392.54 637.11 1154.55

Nitrogen deposition (kgNha−1 y−1) 7.17 0.14 2.35 6.56 17.67

Productivity class (H100, m) 23.61 0.21 12 23 36

Total stand biomass (tCha−1) 56.02 1.39 1.34 51.14 156.52

Total understory biomass (tCha−1) 2.69 0.05 0.96 2.37 6.02

Total litterfall input (tCha−1) 3.17 0.03 1.65 3.07 5.28
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Table 3. Description of models and data inputs relevant for this study.

Model Yasso07 Q CENTURY v. 4.0 soil submodel

Time step Year Year Month

Parametrization Global Scandinavian Combined global with site specific

Carbon pools Labile (acid -, water -, and ethanol-

soluble and non-soluble), recalci-

trant (humus)

Cohorts (foliage, stems, branches,

coarse roots, fine roots, "grass"),

soil organic

Litter (surface structural and

metabolic, belowground str. and

met.), surface microbial, soil

organic matter (active, slow and

passive)

Biomass Biomass components estimated by allometric biomass functions and provided stand data for litter input estimation

Litter amount Annual or monthly fractions of biomass components (species specific, same total litter inputs for all models)

Litter quality Litterature based solubilities Estimated cohorts qualities C/N ratios and lignin/N ratios

Temperature air Annual mean, monthly amplitude Annual mean Max and min monthly mean

Precipitation Annual total – Monthly total

Soil properties – – Bulk density, sand, silt, and clay

content

Soil depth (m) 1 – 0.2
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Table A1. Parameter estimates and their standard errors of the fAPAR regressions with the stand basal area

(BA, m2 ha−1), and the fAPAR70LAT and fAPAR70H100 regressions with the latitude (LAT, ◦) and with the

productivity class (H100, m) for Scots pine, Norway spruce, and deciduous stands.

fAPAR = a ∗BA/(b+BA) a±SE b±SE c±SE adj.R2

pine 1.00±0.03 11.75±0.81 0.85

spruce 1.17±0.03 10.67±0.87 0.86

deciduous 1.13±0.06 7.41±1.15 0.88

fAPAR70LAT = LAT/(a+ b ∗LAT )+ c

pine -9976.00±3691.00a 143.00±54.16b 0.72±0.02 0.92

spruce -2689.00±3507.00c 35.33±50.25d 0.97±0.09 0.74

fAPAR70LAT = a+ b ∗LAT

deciduous 1.36±0.28 -0.01±0.01e 0.26

fAPAR70H100 = a ∗ e(b/H100)

pine 0.86±0.02 -5.22±0.41 0.89

spruce 0.97±0.01 -2.85±0.22 0.86

deciduous 0.94±0.02 -2.63±0.50 0.51

p < 0.001 for all parameters except for a 0.023, b 0.024, c 0.461, d 0.498, and e 0.076.

815
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Table B1. Parameter estimates and their standard errors for the coefficients of the dry weight biomass (kg ha−1)

models with the fraction of absorbed radiation (y = abfAPAR ) for Scots pine, Norway spruce, and deciduous

stands.

y = abfAPAR species a±SE b±SE adj.R2

branch pine 610.23±21.043
::::
21.04 121.592

:::::
121.59±5.967

:::
5.97 0.917

:::
0.92

spruce 877.265
:::::
877.27±34.535

::::
34.54

:
54.157

::::
54.16±2.457

:::
2.46 0.918

:::
0.92

deciduous 289.719
:::::
289.72±26.464

::::
26.46

:
155.506

:::::
155.51±15.838

::::
15.84

:
0.892

:::
0.89

fineroot pine 422.031
:::::
422.03±12.675

::::
12.68

:
20.51±0.914

:::
0.91 0.836

:::
0.84

spruce 316.675
:::::
316.68±13.816

::::
13.82

:
15.186

::::
15.19±0.78 0.799

:::
0.80

deciduous 452.632
:::::
452.63±27.715

::::
27.72

:
14.499

::::
14.50±1.032

:::
1.03 0.823

:::
0.82

foliage pine 361.428
:::::
361.43±24.095

::::
24.10

:
86.091

::::
86.09±8.223

:::
8.22 0.714

:::
0.71

spruce 766.324
:::::
766.32±40.277

::::
40.28

:
33.323

::::
33.32±2.033

:::
2.03 0.827

:::
0.83

deciduous 141.11±28.347
::::
28.35 70.629

::::
70.63±15.992

::::
15.99 0.56

root pine 703.163
:::::
703.16±26.166

::::
26.17

:
18310001000

::::::::::::
183.00100010009.62 0.918

:::
0.92

spruce 628.686
:::::
628.69±32.37 113.435

:::::
113.44±6.665

:::
6.67 0.903

:::
0.90

deciduous 358.635
:::::
358.64±33.267

::::
33.27

:
149.85±15.506

::::
15.51 0.888

:::
0.89

stem and bark pine 1793.215
::::::
1793.22±83.818

::::
83.82

:
253.676

:::::
253.68±16.658

::::
16.66

:
0.889

:::
0.89

spruce 974.029
:::::
974.03±72.348

::::
72.35

:
229.024

:::::
229.02±19.259

::::
19.26

:
0.856

:::
0.86

deciduous 971.587
:::::
971.59±97.632

::::
97.63

:
160.858

:::::
160.86±18.015

::::
18.02

:
0.876

:::
0.88

stump pine 231.701
:::::
231.70±10.273

::::
10.27

:
214.429

:::::
214.43±13.394

::::
13.39

:
0.893

:::
0.89

spruce 170.77±10.331
::::
10.33 129.219

:::::
129.22±8.907

:::
8.91 0.877

:::
0.88

deciduous 79.779
::::
79.78±8.388

:::
8.39 215.511

:::::
215.51±25.165

::::
25.17

:
0.874

:::
0.87

p < 0.001 for all parameters.
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Table C1. Parameter estimates and their standard errors for the coefficients of the forest understory vegetation

dry weight biomass (kg ha−1) models (Eq. C1) for functional types (1-dwarfshrubs, 2-herbs, 3-grasses, 4-

mosses and 5-lichens) with intercept (a) and n number of predictors (b1- age (years), b2 – basal area (m2 ha−1),

b3 – annual air temperature (◦C), b4 - latitude (◦), b5 – H100 (height of trees at 100 years of age, m), b6 –

H100 of spruce trees (m), b7 – H100 of pine trees (m), b8- pine dominance (0/1), b9-spruce dominance (0/1)).

For the latin names of species included into understory functional types see Table S3.

W a±SE b1±SE b2±SE b3±SE b4±SE b5±SE b6±SE b7±SE b8±SE b9±SE adj.R2

Above- 1 24.28±0.32 0.13±0.01 -0.43±0.02 7.13±0.33 0.29

ground 2 -82.13±6.8 -0.1±0.1a 1.23±0.1 0.77±0.03 0.12

3 4.07±0.30 -0.16±0.01 0.27±0.01 -1.36±0.15 0.21

4 32.9±0.62 -0.78±0.04 0.48±0.06 3.66±0.3 5.76±0.29 0.22

5 19.91±0.57 -0.13±0.01 -0.45±0.02 6.31±0.29 0.25

total 43.68±0.29 0.12±0.01 -0.41±0.01 6.34±0.3 0.30

Below- 1 -256.3±3.5 0.1±0.01 -0.35±0.02 5.05±0.06 8.56±0.35 0.75

ground 2 -89.34±7.85 -0.03±0.1b 1.4±0.12 0.78±0.04 -4.97±0.27 0.19

3 5.97±0.37 -0.19±0.01 0.32±0.01 -1.78±0.19 0.21

total -251.9±3.3 -0.2±0.01 5.15±0.05 0.7

Total -222.7±4.0 0.12±0.01 -0.44±0.02 4.9±0.07 0.67

p < 0.001 for all parameters except for ap = 0.44, and bp = 0.84.
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Figure 1. Geographical locations of meteorological stations with corresponding number of nearest soil samples

(n, size of the circle) and their mean measured soil organic carbon stock (tCha−1, color of the circle) across

Sweden.
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Figure 2. a) Classification/regression tree for the measured soil carbon stock (tCha−1), soil physicochemi-

cal properties and site environmental characteristics; the cation exchange capacity of BC horizon (CEC.BC,

(mmolc kg−1)), the C/N ratio (CN.BC), the nitrogen deposition (N.deposition kgNha−1 y−1), the highly

bound soil water of C horizon (bound.H2O.C, %), and soil class variables as type of sorted or unsorted soil

parent material and humus type. Note that variables used to calculate the soil carbon stock (bulk density, carbon

content, depth, and stoniness) were excluded from the regression tree analysis. The values in the leaves of the

tree show for the distinct environmental conditions mean soil carbon stock (tCha−1), number and percentage

of samples. b) The interpretation of 10 physicochemical soil groups of the regression tree model into the levels

of carbon, soil moisture, and fertility roughly increasing from left to right.
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Figure 3. Bean plot of density functions for 10 physicochemical groups of the soil carbon (tCha−1) measure-

ments (grey fill) and estimates simulated by the soil carbon models Yasso07, CENTURY, and Q with the litter

input derived from the steady state
:::::::::
equilibrium forest. The thin lines are the density distributions. The thick

lines are the group means and dashed lines are their confidence intervals. The n is number of samples. For

description of group levels of SOC stocks, moisture, and fertility see Fig.2 and Table S1.
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Figure 4. Scatter plot between mean measured and mean modeled soil organic carbon stocks (tCha−1) for

10 physicochemical groups for Yasso07, CENTURY and Q models. Data were fitted with weighted linear

regression (lines). The number of samples in each group was used as weights for fitting and also as weights

for the weighted mean of squared differences between the modeled and measured values (MSE, tCha−1). The

RMSE is the square root of MSE. The r2 is the proportion of explained variance.
:::
The

::::::
p-value

:
is
:::
the

::::::::
calculated

::::::::
probability

:::
that

:::
the

::
fit

:
is
:::::::::
significant.
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Figure A1. Actual state
:::::::
Observed

:
fraction of absorbed radiation (fAPAR, estimated as in Härkönen et al., 2010)

(actual
::::::
observed

:
fAPAR) and steady state

:::::::::
equilibrium fAPAR (modeled fAPAR70) which was set to 70th

percentile of maximum fAPAR for given species, latitudinal degree, and site productivity class. Panels a), b),

and c) show relation between fAPAR and latitude (°) for forest stands dominant by Scots pine, Norway spruce

and deciduous species, whereas panels d), e), and f) show relation between fAPAR and site productivity class

(
::::
index H100 ,

:
(height of dominant trees at 100 years in meters).
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Figure B1. Scatter plots
:
(n

:
=
::::
3698

::
in
::
all

::::::
panels) for the dry weight tree biomass components (tCha−1) between

"modelled" (estimated based on fraction of absorbed radiation,fAPAR, and our fAPAR models) and "measured"

(estimated based on basic tree stand dimensions and allometric biomass models). The r2 values represent the

coefficient of determination indicating how close the modeled values fit the measured values.
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