
Dear Editor, 
Thanks very much for providing the revision process to our work. Please find enclosed the revised version of 
the paper, and the responses to all reviewers comments. We have given full response to all Reviewers 
comments, and highlighted the responses in blue in the new version of the manuscript in order to expedite 
the revision process. In addition to the modifications suggested by the reviewers, we also improved some 
parts of the manuscript, rephrased some sentences for the sake of clarity and the quality of the figures. We 
think that the raised comments by the reviewers have been addressed and now the paper meets the quality 
standards of the Journal. 
Kind regards, 
The Authors 
  



Anonymous Referee #2 
 
Dear Referee, Thanks very much for providing detailed comments to our work. Please find enclosed the responses to all reviewer’s comments. We have given full response to all Reviewer’s comments, and highlighted the responses in blue  Comment 1: In ‘’Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms” the authors cross-validate an ensemble of machine learning methods to document the performance of these methods in terms of their spatio-temporal performance. This study is very useful given the role of eddy covariance observations in land-atmosphere studies and the increasing importance of some of the upscaled EC-products in model validation and data analysis. In my opinion the study falls well within the scope of Biogeosciences and addresses a topic that is of interest to the journal’s readership. The work underlying the study is of high quality, however, the current presentation can be much improved. 
If the authors would try to separate the results and discussion, it would become apparent that there is 
hardly any discussion. Despite the carefully worded objectives, the reader is left with a ‘’so-what” feeling. 
The way the objectives are worded is too technical and is unlikely to excite many readers. That would be a 
pity as the results deserve better. 
Reply 1: We thank the reviewer for his positive comments on the quality and relevance of our work and 
more important for the critical view of the structure. We agree with the reviewer that an improving of the 
manuscript‘s presentation was needed to make it more exciting and we have followed the reviewer’s 
suggestion to frame the objectives in an attractive way for a broader audience (ln 81-91). We have also 
inserted a paragraph in the conclusion to clarify that this paper presents the backbone of an ensemble of 
global gridded flux products (Ln 424-425) generated by the FLUXCOM initiative (which it has been 
introduced in the manuscript’s Introduction). We only partially agree with the reviewer that there was 
hardly any discussion – there was substantial discussion in particular related to methodological aspects, 
which have played an essential role in the paper. However we have taken the point and we have added 
some discussion points concerning biogeosciences topics and limitation of proposed approach that, we 
agree, were missing. We have also separated Results and Discussion in the revised version of the 
manuscript. 
 
Comment 2: Are you looking for the best method or do you want to quantify the upscaling uncertainty? 
Both perspectives could be of interest but from the conclusions I understood that all ML results will be 
archived and that the ensemble will be distributed. If my understanding is correct, this information should 
already be presented in the introduction. If this is indeed the context of the study, searching for the best 
ML method becomes less relevant but estimating spatio-temporal patterns in uncertainty becomes even 
more relevant as users may want to know the uncertainty of the ensemble mean. 
Reply 2: We have inserted a paragraph in the Introduction to clarify that the cross-validation experiment 
presented in this manuscript is part of a project that aims to deploy an ensemble of globally upscaled fluxes 
(CO2 and energy) using data-driven models (FLUXCOM). As correctly pointed out by the reviewer, most users 
could be interested in using the ensemble median of different machine learning methods; therefore, we 
focused the paper on the performance of the median ensemble. This point was clarified in the new 
Introduction section as follows (ln 84-85 in the manuscript): 
“We focused in particular on the ensemble median prediction because the ensemble median global 
product will likely be used extensively”. 
As consequence, the section showing the consistency among predictions by different machine learning 
methods were largely reduced in the new results section as follows (ln 287-289):  



“However, the output provided by MLs methods showed high overall consistency among them, that 
increased when predictions were obtained by different MLs trained with the same experimental setup (RS 
else RS+METEO; for more details see Appendix B and Table B1)” 
 and the detailed contents moved in Appendix B. 
Comment 3: Also, the reader may want to know how much the uncertainty can be reduced by adding 
remote sensing and meteorological information in the upscaling process. 
Reply 3: This is an interesting and important question for which we have designed the two different 
experimental set-ups. It is a particularly important question because the use of information from in-situ 
measured meteorological data implies a trade-off with introducing additional uncertainty inherent the 
gridded meteorological data needed for the global flux products (as discussed in different places in the 
manuscript). The comparison between ML based on only satellite drivers and in situ meteorological ones is a 
key point of our manuscript and it was targeted discussed in a (new) discussion section of the revised 
manuscript focused on the ML experimental setup comparison (Section 4.1 Comparison between 
experimental setups, ln 323-350). 
 
Comment 4: Listing the current limitations (saturation point) would be very useful, for example, is there 
anything to gain by adding meteorological data when upscaling NEE? 
Reply 4: Identifying and discussing the limitations of machine learning based upscaling is the overarching 
objective of this manuscript and the Discussion sections are dedicated to that. Reviewer 2 raises an 
interesting point about possible saturation points in the predictions. Detecting possible saturation points in 
the predictions is however not trivial. For example, the uncertainties of the measured fluxes grow with their 
magnitude such that there will always be observed points that are above the largest predicted value. Other 
limitations could be due to the training with noisy drivers (it reduces the sensitivity of the trained algorithm); 
the noise is higher in the variables  obtained by satellite (hence in the RS setup) but we did not find 
significant difference between the two experimental setup (maybe because the drivers were objectively 
selected and drivers selection optimized). All limitations of empirical upscaling by ML have been largely 
discussed in the Discussion section of the revised manuscript. 
 
Comment 5: Several interesting findings are not further explored, for example, line 329 reads ‘’suggested 
that the choice of the explanatory variable had higher impact than the choice of the ML technique for the 
pattern of predictions”. This is a very useful and important finding but it is not at all discussed. 
There are too many loose ends such as the paragraph on line 317 that reads ‘’ Nonetheless, the differences 
between the experimental setups were less appreciable.” A paragraph should have an introduction, a body 
and a concluding phrase signifying the implication of the result/discussion. This is often missing leaving it to 
the reader to guess what the authors want to say. Both the structure and language of the manuscript could 
be improved. 
Reply 5: We thank the reviewer for identifying this problem; we addressed these issues with the help of a 
proofreader native speaker that improved readability and avoided loose ends sentences. 
 
Comment 6: The authors choose to use their objectives to structure the paper. I find the objectives very 
technical and they seems to overlook some of the more interesting questions and answers the study could 
provide. As an alternative the manuscript could discuss the possibilities and limitations of spatial upscaling 
and then the possibilities and limitations of temporal upscaling. Defining more general overarching 
objectives is likely going to result in a better structure and discussion. 
Reply 6: We agree that the original version of the manuscript had a very technical structure. In the revised 
manuscript we have placed the objectives of the paper in the frame of more general questions that are 



relevant for a broader audience, in particular to potential users of the global products generated by 
FLUXCOM. We need however to keep the technical depth and precision for ‘good scientific practice’ since 
the methodology presented here is the basis for global flux products. We thank the reviewer for the 
suggestion on how to split the discussion. We carefully have thought about splitting it into ‘spatial’ and 
‘temporal’ upscaling. We came to the conclusion that discussing the ‘methodological’ and ‘biogeochemical’ 
questions of fluxes uscaling was more appropriate and appealing. 
 
Comment 7: For the typos and grammar ask help from one of the three native speakers on the manuscript. 
It makes me wonder whether all co-authors even made the effort to read the manuscript. The display items 
show a lot of information but not in a way that is easy to interpret or a way that at first sight supports the 
conclusions. The challenge of synthesis study such as this one is to summarize the information in easy to 
grasp figures and tables. In my opinion the authors failed in doing so. This issue is apparent from the first 
paragraph of the results where Table 3 is cited in support of the statement that ‘’ The ensemble median 
estimate always outperformed the median performance of ML-specific methods” but the way I read this 
table it does not contain information of the specific methods. 
Reply 7: The revised manuscript has been proofread and edited by a native speaker with a focus on distilling 
the volume of information into a coherent storyline that supported the conclusions. In addition the final 
papers will be proofread also by the journal. We have added two figures (fig. 3a and 3b) and moved a table 
in appendix (currently the results section contain only two tables). Now the results and discussion section 
are easy to read and figures and tables support the main message of the manuscript. We do not want 
remove the ‘detailed’ table in the appendix, because they could be useful for the users of global products. 
 
Comment 8: The detailed information could be moved to the appendices. Prepare figures that support the 
main message(s) of this study, for example, a figure that shows how some temporal characteristics are lost 
for certain fluxes and/or a figure/map that shows the regions where the methods diverge most. 
Reply 8: Thank you for suggestion. As outlined before, the overall presentation of the material was 
substantially modified in the revised version. We have preferred not add maps showing the uncertainty at 
global scale because this is subject of another manuscript (in preparation) on the global products but the 
current figures brings the same type of message (e.g. Fig. 4). 
  



Anonymous Referee #3 
 
Dear Referee, Thanks very much for providing detailed comments to our work. Please find enclosed the responses to all 
comments point-by-point. 
 
Comment 1: Tramontana et al. present a study in which they have fit various empirical models to CO2 water 
and energy fluxes across eddy-covariance sites. The results are clear and unsurprising: the statistical fitting 
methods all performed comparably, and the energy fluxes were more easily predicted by the statistical 
models. The study is well executed and no doubt will be well cited by follow-on studies that use this dataset 
for research. That said, I was somewhat disappointed at the level of insight the results conveyed. It is not 
clear what we have learned beyond a statistical comparison of fits. The results are presented as dense 
tables of statistics (even the figures are graphical representations of statistical tables) where fits are 
classified as better or worse than others, but with little or no discussion or interpretation of the underlying 
biogeosciences. 
Reply 1: We thank the reviewer for these comments and by the reorganization of results and discussions, 
and also adding discussion, we have brought more interesting and clear message. We revised also the 
Introduction section to frame our work in more broad and relevant questions and dedicated space to 
discussion about how this work is relevant for answering ecological questions. 
 
Comment 2: The manuscript would clearly benefit from a more descriptive comparison of modeled vs. 
data. For example, I would suggest presenting Figures B1 and B2 in the main text. Perhaps see Mahecha et 
al. for ideas on how to gain more insight from comparisons of models and observations. Mahecha, M. D. et 
al. Comparing observations and process-based simulations of biosphere-atmosphere exchanges on multiple 
timescales. J. Geophys. Res. 115, G02003 (2010). 
Reply 2: We thank Referee #3 for the suggestion, but we think that the manuscript would lose focus when 
including a too detailed site-by-site analysis as was presented in Mahecha et al. However we have 
restructured and improved the presentation of the results and discussion sections and we have incorporated 
figures B1 and B2 (currently Fig. 3a and 3b) in the main text as suggested by the reviewer.  
 
Comment 3: One important note is that GPP and RE are modeled. From the methods it appeared that gap-
filled data were also included in the fitted data. Some discussion on comparing models with modeled data 
is merited. 
Reply 3: It is correct that GPP and RE are not direct measurements but are derived using models where 
model parameters are estimated in short temporal moving windows. To acknowledge this source of 
uncertainty we employed GPP and RE estimates from two independent flux partitioning methods. The first 
extrapolates daytime ecosystem respiration using fitted relationships on the basis of nighttime data (where 
RE is measured due to the absence of GPP) whereas the second uses daytime NEE and an hyperbolic light 
response curve to derive GPP and RE. Both methods yield highly consistent results. The difference between 
flux partitioning methods turns out to be even smaller than the spread across ML algorithms. Regarding the 
fact that data are gap-filled, we filtered the data and periods with more than 20% of gap filled data with 
low confidence were not used in upscaling. As such the influence of gap filling was minimized. Restricting 
the training data set of the ML methods to periods with 100% of measured fluxes is impossible because 
almost no data would be available at the time resolution used. It is also important to consider that the gap 
filling algorithm utilizes highly localized and site specific relationships between fluxes and meteorological 



conditions (MDS method, Reichstein et al 2005), while the ML cross-validation presented in the manuscript 
are based only on data from other sites. We have inserted a paragraph were the point outlined by reviewer 
was discussed as follows (ln 387-395): 
“Another common issue with eddy covariance data is the gaps generated by the data exclusion rules. 
Data exclusion strike strongly the nighttime period (primarily for the low turbulence condition) affecting 
the representativeness of the diurnal cycle, hence the quality of the averaged daily/eight days eddy-
covariance fluxes, in particular CO2,. To reduce the risk biased estimates half hourly data gaps are filled 
by models. In our study NEE data were gap filled using site-specific empirical relationships between 
meteorological data and net CO2 ecosystem exchange (the MDS method, Reichstein et al., 2005) that 
produce small biases when short gaps were encountered (Moffat et al., 2007). This has a limited effect in 
this study as only a very small percentage of high quality gap filled data are used. We also minimize the 
bias in estimates of gross CO2 fluxes (GPP and TER) by using two different partitioning methods which 
yield very consistent results”. 
 
Comment 4: The authors briefly reference observational uncertainty when considering their results but it is 
not clear to what extent they have accounted for uncertainty. Do the models fall within the uncertainty of 
the observations? 
Reply 4: We did not account for the propagation of the measurement uncertainties in a formal way; 
however, we have added discussion on the role of uncertainties in the upscaling exercise (section 4.3 Quality 
of the response variable). The random uncertainty of fluxes can be thoroughly quantified but we guess it 
does not have a big impact because: (a) it diminishes quickly as one aggregates to daily or even eight days 
values, and (b) the risk of model’s bias is reduced with random uncertainties. The bigger problem is related 
to the systematic uncertainties for which we only have some heuristic approaches to assess them (u*, 
different flux partitioning methods, energy balance closure) and because, the upscaling exercise, ML 
parameters were across sites estimated. This issue was discussed as follows (LN 378-386): 
“Random uncertainties of the fluxes is likely not a big issue because averaging at daily and 8 days time 
steps (as in this study) greatly reduces the random error (Hollinger and Richardson, 2005). Instead we 
hypothesize that site specific systematic uncertainties in the eddy covariance estimations (e.g. due to 
presence of strong advection not corrected by the standard methods) could play an important role 
because ML methods were trained across sites distributing uncertainties among them. Systematic 
uncertainties could also reduce the sensitivity of the models on the small signal explaining the 
comparatively poor predictive skill of ML for anomalies of eddy co-variance fluxes. We also hypothesize 
that the general tendency of better predictability of energy fluxes compared to carbon fluxes is at least 
partly related to their differences in data quality. To test these hypothesis improved ways of detecting 
and characterizing systematic uncertainties in eddy co-variance data are needed.” 
 
Comment 5: The main benefit of such regression algorithms in the context of Fluxnet is scaling. It would 
greatly increase the impact of the paper if the authors used the trained algorithms to scale each of the 
fluxes to the globe. This would be relatively easy to do, and the difference between the global estimates 
would be much more insightful than the statistics currently presented. 
Reply 5: We agree this would add significant value in the context of scaling FLUXNET. A companion paper 
that uses our results as a point of departure is under preparation. It will feature global estimates as well as 
wall-to-wall maps. 
 
Comment 6: The manuscript would benefit from revisions for the correct use of English. 
The revised manuscript was proofread with the help of coauthor native  



 
Minor comments: 
Line 31: “ML and setups”?  
Reply 6: It was correct in the revised manuscript as: 
“Different ML and experimental setups”. 
 
Comment 7: Line 41: Updated 2013 IPCC reference, 
Line 44: “are equal” 
Line 45: “accounted for”  
Line 59: Perhaps cite Moffat et al. here, as it contains a good discussion of the relative benefits of both 
approaches. Moffat, A. M., Beckstein, C., Churkina, G., Mund, M. &Heimann, M. Characterization of 
ecosystem responses to climatic controls using artificial neural networks.Glob.Chang.Biol.16, 2737–2749 
(2010). 
Line 61: “generally come from” 
Line 78: “The ML tools used span” 
Line 113: “we removed 5%” 
Line 294: “with respect to” 
Reply 7: Thank you, the point outlined in minor comments have been changed. 
 
Comment 8: Line 105: So gap-filled data of high confidence are being included? Some discussion on the 
dangers of fitting a model to modeled data might be warranted. 
Reply 8: We have added discussion on this issue in subsection 4.3 
 
Comment 9: Line 294-296: On what spatial and temporal scale? Daily NEE is typically not affected by 
external factors. The sentence reads as a result of the study but in reality it is a hypothesis you propose to 
explain the lack of model fit. You do not identify management influences or lagged effects. 
Reply 9: Yes. We have clarified it in the appropriate discussion section (4.2 Completeness of predictors) of 
the revised manuscript 
 
Comment 10: Line 298: How were the uncertainties in H, LE and NEE quantified? I do not see that 
presented anywhere. It is not clear where your claim that the uncertainties were larger comes from. 
Reply 10: We did not account for the measurement uncertainties in a formal way. 
 
Comment 11: Line 340: This sentence is not clear 
Reply 11: Sorry for the misunderstanding. The sentence was removed and the discussion reorganized. 
  



Anonymous Referee #4 
 
Dear Referee, Thanks very much for providing detailed comments to our work. Please find enclosed the responses to all 
comments point-by-point. 
 
Comment 1: General comments: 
1) Good paper, but English can significantly be improved. I added the reviewed manuscript with a lot of 
examples for improvement. Please take care of this action. 
Reply 1: We thank the reviewer for his/her comments. We have improved the English in the revised 
manuscript by the help of a native speaker and following, when possible, the suggestion by the reviewer as 
proposed in the supplementary material. 
 
Comment 2: 2) Use the present tense wherever possible. 
Reply 2: Thank you for suggestion. We have been open to this suggestion: the use the past tense was 
requested by the managing editor but we have changed where needed. 
 
Comment 3: 3) Scientifically I have no comments on this paper. Its thesis is sound and the argumentation as 
well. 
Specific comments: 
1) Page 5 line 83-84: According to me, VI’s are only partially descriptive for vegetation state! Please 
comment and discuss on my statement.  
Reply 3: Yes, we agree with the reviewer. We have clarified this point in the revised manuscript. 
 
Comment 4: 2) Page 8, line 138: Give references for the QA/QC standard procedure for flux post-
processing. 
Reply 4: Thanks, we have added the reference Papale et al., (2006). 
 
Comment 5: 3) Page 8, line 178: FPAR is an erroneous acronym for fAPAR. Please correct in the manuscript. 
Reply 5: Thank you, we have corrected it. 
 
Comment 6: 4) Page 9, line 189: Why was the Maximum Value Composite criterion (MVC) not used? Please 
explain. 
Reply 6: We have used different MODIS product, each one having specific composite method. The composite 
methods have been explained in the reference papers of the MODIS products (they are reported in the 
manuscript text) . About the point outlined by the referee, firstly we have filtered the good quality data on 
the basis of the MODIS quality check layer, then we have extracted the mean value of a 3X3km2 area 
centered on the tower location to reduce the effect of geolocation error and to better representing the eddy 
covariance footprint area, as reported in Xiao et al. (Xiao, J. ,et al:  A continuous measure of gross primary 
production for the conterminous United States derived from MODIS and AmeriFlux data, Remote Sens 
Environ, 114, 576–591, doi: 10.1016/j.rse.2009.10.013, 2010). We have clarified this adding the following 
sentence in the revised manuscript (ln 123-124).  
“We used MODIS cutouts of 3×3 km pixels centered on each tower to reduce the effect of geolocation 
error and to better representing the eddy covariance footprint area (Xiao et al., 2008; Yang et al., 2007)” 
 



Comment 7: 5) Page 9, line 192-193: A 16 days composite? What criterion was used for this multitemporal 
composite? 
Reply 7: This is the standard MODIS composition system for the product MOD13A2 as described in Huete et 
al (2002). 
 
Comment 8: 6) Page 9, line 199: VPD? Define VPD please. How was it calculated?  
Reply 8: We have define the acronym VPD (vapor pressure deficit) in the revised manuscript. 
 
Comment 9: 7) Page 9, line 201-202: ERA-Interim dataset? Give references for this dataset.  
Reply 9: We currently have used as reference ”Dee, D. P., et al.: The ERA-Interim reanalysis: configuration 
and performance of the data assimilation system, Q.J.R. Meteorol Soc, 137, 553–597, doi: 10.1002/qj.828, 
2011”. To clarify this we have moved (Dee et al., 2011) right after ‘ERA-Interim’ 
 
Comment 10: 8) Page 17, line 387: predictive skill. This is a rather nonsensical expression, rather use 
predictive capacity or capability. 
Reply 10: Thank you, we have changed some expression with other among the ones proposed by the 
reviewer. 
 
Comment 11: 9) Page 18, Line 411: Individual ML methods also exhibited higher skill than... What does skill 
mean here? Unclear to me. Please also note the supplement to this comment: 
Reply 11: Thank you. We are referring to the predictive capacity. We have used another expression from the 
ones proposed by the reviewer. 
  



List of the relevant changes 
 
Dear Editor and Reviewers, 
 
Here the list of the most relevant changes in the revised manuscript: 

a) Objectives were rephrased and structured to be more attractive for a broader audience. 
b) Results and discussion were splitted in two distinct sections because the same scientific topic  was 

determinant for different facets of results (e.g the missing of import drivers affect both the ranking 
of bad/well predicted fluxes, the gradient of well/bad predicted plant functional type or climate 
zone, the difference between experimental setup). 

c) We have moved technical details (e.g. the ones concerning the consistency among predictions by 
different machine learning (ML)) in appendix. 

d) Figures in appendix were moved in the main text of Results section. 
e) We have added relevant discussions concerning the effects of the next aspects on the ML 

performance: quality of the target drivers; uncertainty of the measured fluxes; gap filling of the net 
ecosystem exchange (NEE); the partitioning of gross CO2 fluxes. 

f) Discussions have been focused mainly on limitations of the fluxes empirical up scaling by ML. The 
new discussion section has been organized looking at the the following topics: a) differences 
between the two experimental setup (RS and RS+METEO); b) Completeness of predictors (or lack of 
important predictors); c) Quality of the explained variables and d) data quantity and 
representativeness of ecological condition and seasonal periods. 

g) The entire manuscript was revised for the English by the help of coauthor native speaker. 
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Correspondence to: G. Tramontana (g.tramontana@unitus.it) 24 
Abstract. Spatio-temporal fields of land-atmosphere fluxes derived from data-driven models can complement simulations by 25 
process-based Land Surface Models. While a number of strategies for empirical models with eddy covariance flux data have 26 
been applied, a systematic intercomparison of these methods is missing so far. In this study, we performed a cross-validation 27 
experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes, across different ecosystem types 28 
with eleven machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and 29 
regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data, and (2) 30 
daily mean fluxes based on meteorological data and mean seasonal cycle of remotely sensed variables. The pattern of 31 
predictions from different ML and experimental setups were highly consistent. There were systematic differences in 32 
performance among the fluxes, with the following ascending order: net ecosystem exchange (R2<0.5), ecosystem respiration 33 
(R2>0.6), gross primary production (R2>0.7), latent heat (R2>0.7), sensible heat (R2>0.7), net radiation (R2>0.8). The ML 34 
methods predicted the across site variability and the mean seasonal cycle of the observed fluxes very well (R2> 0.7), while 35 
the 8-day deviations from the mean seasonal cycle were not well predicted (R2< 0.5). Fluxes were better predicted at forested 36 
and temperate climate sites than at sites in extreme climates or less represented by training data (e.g. the tropics). The 37 
evaluated large ensemble of ML based models will be the basis of new global flux products. 38 
Keywords: Machine learning, carbon fluxes, energy fluxes, FLUXNET, remote sensing, FLUXCOM 39 

1. Introduction 40 



 2

Improving our knowledge of the carbon, water, and energy exchanges between terrestrial ecosystems and the atmosphere is 41 
essential to better understand and model the Earth's climate system (IPCC, 2007; Reich, 2010). In situ continuous 42 
observations can be obtained with the eddy covariance technique, which estimates the net exchanges of carbon dioxide 43 
(CO2), water vapor and energy between land ecosystems and the atmosphere (Aubinet at al., 2012; Baldocchi et al.,2014). 44 
The large-scale measurement network, FLUXNET integrates site observations of these fluxes globally and provides detailed 45 
time series of carbon and energy fluxes across biomes and climates (Baldocchi et al., 2008). However, eddy covariance 46 
measurements are site-level observations (at < 1 km2 scale), and spatial upscaling is required to estimate these fluxes at 47 
regional to global scales. 48 
The increasing number of eddy covariance sites across the globe has encouraged the application of data-driven models by 49 
machine learning (ML) methods such as Artificial Neural Networks (ANNs, Papale et al., 2003), Random Forest (RF, 50 
Tramontana et al., 2015), Model Trees (MTE, Jung et al., 2009; Xiao et al., 2008, 2010) or Support Vector Regression (SVR, 51 
Yang et al., 2006, 2007) to estimate land surface-atmosphere fluxes from site level to regional or global scales (e.g. Beer et 52 
al., 2010, Jung et al., 2010, 2011; Kondo et al., 2015; Schwalm et al., 2010, 2012; Yang et al., 2007; Xiao et al., 2008, 2010). 53 
The ML upscaled outputs are also increasingly used to evaluate process based land surface models (e.g., Anav et al., 2013; 54 
Bonan et al., 2010; Ichii et al., 2009; Piao et al., 2013). 55 
The key characteristic of data-driven models compared to process-based ones are the former’s intrinsic observational nature, 56 
and the fact that functional relationships are not prescribed but rather emerge from patterns found in the measurements. In 57 
this context, data-driven models extract multivariate functional relationships between the in situ measured fluxes of the 58 
network and explanatory variables. These variables are derived from satellite remote sensing, providing useful (although 59 
partial) information on vegetation state (e.g., vegetation indices) and other land surface properties (e.g., surface temperature), 60 
along with continuous measurements of meteorological variables at flux towers. 61 
While ML-based upscaling provides a systematic approach to move from point-based flux estimates to spatially explicit 62 
gridded fields, various sources of uncertainty exist. For example, individual ML methods can have different responses, 63 
especially when these models are applied beyond the conditions represented in the training dataset (Jung et al., 2009; Papale 64 
et al., 2015). The information content of the driving input variables may not be sufficient to capture the variability of the 65 
fluxes in all conditions (Tramontana et al., 2015). Moreover, remotely sensed and meteorological gridded datasets are 66 
affected by uncertainties themselves. Remote sensing data contain noise, biases and gaps, and can be perturbed by 67 
atmospheric effects or by the presence of snow. Meteorological gridded datasets are known to contain product specific biases 68 
as well (Garnaud et al., 2014; Tramontana et al., 2015; Zhao et al., 2012). 69 
Thorough experiments using multiple data-driven models and explanatory variables are an essential step to identify 70 
and assess limitations and sources of uncertainty in the empirical upscaling approach. For this reason several experts 71 
in the field gathered together and formed the collaborative FLUXCOM initiative. FLUXCOM aims to better 72 
understand the multiple sources and facets of uncertainties in empirical upscaling and, ultimately, to provide an 73 
ensemble of machine learning based global flux products to the scientific community. In FLUXCOM we selected 74 
machine learning based regression tools that span the full range of commonly applied algorithms: from model tree 75 
ensembles, multiple adaptive regression splines, artificial neural networks, to kernel methods, with several 76 
representatives of each family. We defined common protocols for two complementary upscaling strategies (setups) 77 
based on: (1) 8-day averaged fluxes based on exclusively remotely sensed data, and (2) daily mean fluxes based on 78 
remotely sensed and meteorological data. Different ML approaches were then applied to both setups using the same 79 
sets of predictor variables, and a thorough ‘leave-towers-out’ cross-validation was conducted. This study presents the 80 
FLUXCOM results obtained from the cross-validation. Our overarching aim was to understand how well fluxes of 81 
CO2 (gross primary production (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE)), 82 
and energy (latent heat (LE), sensible heat (H) and net radiation (Rn)), as estimated by the eddy covariance 83 
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technique, are predicted by an ensemble of ML methods. We focused in particular on the ensemble median 84 
prediction because the ensemble median global product will likely be used extensively. At first we looked at the 85 
consistency of the patterns between the two experimental setups to understand whether satellite remote sensing is 86 
sufficient for mapping carbon and energy fluxes or whether instantaneous meteorological conditions need to be 87 
considered explicitly. Second, we investigated which characteristics of the predicted fluxes were robust, analyzing 88 
how well the median estimates were able to predict the across site variability, the mean seasonal cycle by site and 89 
interannual variation, i.e., time-dependent deviations from the mean seasonal cycle. Thirdly, we investigated how the 90 
ML performance varies among climate zones or ecosystem types. 91 
2 Material and methods 92 
2.1 Data 93 
2.1.1 Eddy covariance study sites 94 
We used eddy covariance data from 224 flux-tower sites (supplementary material, Sect. S1), which originate from the 95 
FLUXNET La Thuile synthesis dataset and CarboAfrica network (Valentini et al., 2014). The study sites were distributed 96 
globally and cover most plant functional types (PFT) and biomes over the globe (Table 1). 97 
2.1.2 Observation-based CO2 and energy fluxes 98 
All flux measurements were post-processed using standardized procedures of quality control (Papale et al. 2006) and 99 
gap-filled following Reichstein et al. (2005). Estimates of GPP and TER were derived from half-hourly NEE measurements 100 
using two independent flux partitioning methods: (1) According to Reichstein et al. (2005), where the temperature sensitivity 101 
of ecosystem respiration was initially estimated from night-time NEE data and then extrapolated to daytime to estimate TER 102 
and GPP. This was done by subtracting NEE (negatively signed for the CO2 uptake) from TER. (2) According to Lasslop et 103 
al. (2010), where daytime NEE data were used to constrain an hyperbolic light response curve to directly estimate GPP and 104 
TER. In the following we refer to GPP and TER as derived by Reichstein et al. (2005) as GPPR and TERR; whereas estimates 105 
based on the Lasslop et al. (2010) method are referred to as GPPL and TERL. 106 
Half-hourly data were aggregated to daily values and screened according to multiple quality criteria, as follows: 107 
1) We excluded data when more than 20% of the data were based on gap-filling with low confidence (Reichstein et al., 108 
2005). 109 
2) We identified and removed obviously erroneous periods due to non-flagged instrument or flux partitioning failures based 110 
on visual interpretation. 111 
3) We excluded data-points where the two flux-partitioning methods provided extremely different patterns. Specifically, we 112 
computed for each site a robust linear regression between (a) TERR – GPPL and NEE, and (b) GPPR and GPPL. Data points 113 
with a residual outside the range of ± 3 times of the inter-quartile range were removed. This criterion removed only the 114 
extreme residuals, systematic differences between methods were not removed. 115 
4) We removed the 5% of data-points with the largest friction velocity (u*) uncertainty, defined as data points above the 95th 116 
percentile of daily u* uncertainty, measured as the inter-quartile range of 100 bootstrap samples (Papale et al., 2006). 117 
We applied the same criteria 1) and 2) above for the energy fluxes as we did for the CO2 fluxes,. Additionally, we removed 118 
data with inconsistent energy fluxes, i.e. when the residual of a robust linear regression between LE + H and Rn for each site 119 
was outside three-times the inter-quartile range of the residuals. 120 
2.1.2 Remote sensing data 121 
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We collected data from the Moderate Resolution Imaging Spectroradiometer (MODIS) which provided data at a spatial 122 
resolution of 1km or better (Justice et al., 2002). We used MODIS cutouts of 3×3 km pixels centered on each tower to 123 
reduce the effect of geolocation error and to better representing the eddy covariance footprint area (Xiao et al., 2008). 124 
We used the following products: MOD11A2 Land Surface Temperature (LST) (Wan et al., 2002); MOD13A2 Vegetation 125 
Index (Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), (Huete et al., 2002); 126 
MOD15A2 Leaf Area Index (LAI) and fraction of Absorbed Photosynthetic Active Radiation (fPAR) (Myneni et al., 2002); 127 
MCD43A2 and MCD43A4 Bidirectional Reflectance Distribution Function (BRDF) corrected surface reflectances (Schaaf 128 
et al., 2002). The BRDF-corrected surface reflectance data were further processed to calculate the Normalized Difference 129 
Water Index (NDWI) (Gao, 1996) and the Land Surface Water Index (LSWI) (Xiao et al., 2002). These data were obtained 130 
from http://daac.ornl.gov/MODIS/. 131 
The remote sensing data were further processed to improve data quality and data gaps were filled to create continuous time-132 
series data, and to minimize non-land surface signals In particular, we identified good quality pixels by the using the quality 133 
assurance/quality control (QA/QC) included in the MODIS product. If more than 25% of the pixels had good quality at the 134 
time of snapshot, the average of good quality pixels were assigned as the actual value. Otherwise, the data at the time 135 
snapshot were marked as blank (no data). Then, we created the mean seasonal variations from 2000-2012 using only good 136 
pixels data and the data gaps in the processed data were filled using the mean seasonal variation. Only MOD13 was provided 137 
with 16-day composites, and 8-day data were created by assigning the 16-day composite value to the corresponding two 8-138 
day periods. 139 
2.1.3 Meteorological data 140 
The air temperature (Tair), global radiation (Rg), vapor pressure deficit (VPD), and precipitation (in situ measured at the flux 141 
towers location) were used after data screening according to the criteria 1) and 2) as applied for the measured fluxes (see 142 
Sect. 2.1.2). We also used long-term time series of these variables from the dataset ERA-Interim (Dee et al., 2011) for the 143 
period 1989-2010, which were bias-corrected for each site based on the period of overlap with the in situ measurements (see 144 
http://www.bgc-jena.mpg.de/~MDIwork/meteo/). These long-term meteorological data were primarily used to calculate 145 
consistent metrics of climatological variables (e.g. mean annual temperature) for all sites given the temporal coverage of data 146 
of the different sites. In addition, we used a composite of these ERA-Interim data and in situ measured data to obtain a gap-147 
free time series for calculating a soil Water Availability Index (WAI, see Sect. 2.3.2 and supplementary material, Sect. S3). 148 
2.2 Applied ML methods 149 
For our purpose, eleven ML algorithms for regression from four broad families were chosen: tree-based methods, regression 150 
splines, neural networks and kernel methods. Moreover a comprehensive review of ML algorithms in biophysical parameter 151 
estimation can be found in Verrelst et al. (2015). At follow a brief description of the characteristics of each family. 152 
Tree based methods 153 
These methods construct hierarchical binary decision trees. The inner nodes of the tree hold decision rules according to 154 
explanatory variables (e.g. less/greater than X1), recursively splitting the data into subspaces. The leaf nodes at the end of 155 
the decision tree contain models for the response variable. Because a single tree is generally not effective enough to cope 156 
with strong non-linear multivariate relationships, ensembles of trees are often used. We applied two different tree ensemble 157 
methods: (1) Random Forests (RF) which combines regression trees grown from different bootstrap samples and randomly 158 
selected features at each split node (Breiman, 2001; Ho, 1998); and (2) Model Tree Ensembles (MTE) which combine model 159 
trees (Jung et al., 2009). The main difference between regression and model trees is the prediction model in the leaf node: a 160 
simple mean of the target values from the training in regression trees and a parametric function (here a multiple linear 161 
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regression) in model trees. In this study, we used three different variants of MTE, which differ mainly with respect to 162 
different cost functions for determining the splits, and the technique to create the ensemble of model trees. Further details are 163 
described in the supplementary material (Sect. S2). 164 
Regression splines 165 
Multivariate regression splines (MARS) are an extension of simple linear regression adapted to non-linear response surfaces 166 
using piecewise (local) functions. The target variable is predicted as the sum of regression splines and a constant value 167 
(Alonso Fernández, 2013; Friedman et al., 1991). 168 
Neural networks 169 
Neural networks are based on nonlinear and nonparametric regressions. Their base unit is the neuron, where nonlinear 170 
regression functions are applied. The neurons are interconnected and organized in layers. The output of m neurons in the 171 
current layer are the inputs for n neurons of the next layer. We used two types of neural networks: the artificial neural 172 
network (ANN) and the group method of data handling (GMDH). In an ANN, each neuron performs a linear regression 173 
followed by a non-linear function. Neurons of different layers are interconnected by weights that are adjusted during the 174 
training (Haykin et al., 1999; Papale et al., 2003). The GMDH is a self-organizing inductive method (Ungaro et al., 2005) 175 
building polynomials of polynomials; the neurons are pairwise connected through a quadratic polynomial to produce new 176 
neurons in the next layer (Shirmohammadi et al., 2015). 177 
Kernel methods 178 
Kernel methods (Shawe-Taylor and Cristianini, 2004; Camps-Valls and Bruzzone, 2009) owe their name to the use of kernel 179 
functions, which measure similarities between input data examples. Among the available kernel methods we used: (1) 180 
support vector regression (SVR) (Vapniket al., 1997), (2) kernel ridge regression (KRR) (Shawe-Taylor and Cristianini, 181 
2004), and (3) Gaussian process regression (GPR) (Rasmussen, 2006). The SVR defines a linear prediction model over 182 
mapped samples to a much higher dimensional space, which is non-linearly related to the original input (Yang et al., 2007). 183 
The KRR is considered as the kernel version of the regularized least squares linear regression (Shawe-Taylor and Cristianini, 184 
2004). The GPR is a probabilistic approximation to nonparametric kernel-based regression, and both a predictive mean 185 
(point-wise estimates) and predictive variance (error bars for the predictions) can be derived. We also used a hybrid 186 
approach combining RF with simple decision stumps in the inner nodes and GPR for prediction in the leaf nodes (Fröhlich et 187 
al., 2012). 188 
2.3 Experimental design 189 
2.3.1. Experiment setups 190 
We defined two complementary experimental setups, which differ in the choice of explanatory variables, and the temporal 191 
resolution of the target fluxes: 1) at 8-day temporal resolution using exclusively remote sensing data (hereafter RS); and 2) at 192 
daily temporal resolution using meteorological data together with the mean seasonal cycle (MSC) of the remote sensing data 193 
(hereafter RS+METEO). In the latter case, the MSC of remote sensing data were smoothed and interpolated to a daily time 194 
step. Each setup represents a trade-off between spatial and temporal resolution. While RS provides products with high spatial 195 
resolution for global upscaling (e.g. 1km), the temporal resolution is coarse (8-day vs. daily) and temporal coverage is 196 
limited to the period when satellite observation is available (e.g. 2000-present in the case of MODIS). The uncertainties of 197 
remote sensing data at tower locations, due to finer scale spatial heterogeneity, also degraded the performance of the ML 198 
methods. In contrast, RS+METEO takes advantage of information from meteorological variables and was resistant to the 199 
noise of remote sensing time series because only the mean seasonal cycle of data from satellite RS were used. RS+METEO 200 
also allowed for upscaled products over a longer time period (because not constrained by the availability of MODIS data) 201 
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and finer time scale (daily). Furthermore, the use of meteorological gridded datasets introduced uncertainty due to dataset 202 
specific biases and the coarser spatial resolution ( > 0.5 degrees or coarser). 203 
2.3.2. Variable selection 204 
Combining remote sensing and meteorological data (see Sect. 2.1.2 and 2.1.3) we created additional explanatory variables. 205 
In the case of RS+METEO setup we derived the Water Availability Index (WAI) based on a soil water balance model (for 206 
more details see supplementary material, Sect. S3) to represent water stress conditions appropriately. For both setups we 207 
derived proxies for absorbed radiation as the product between vegetation greenness (e.g. EVI, NDVI, fPAR) and drivers 208 
related to the useful energy for photosynthesis(e.g. daytime LST, Rg, and potential radiation). Other derived variables 209 
included the MSC of dynamic variables (e.g., LST, fPAR, Rg, air temperature) and associated metrics (minimum, maximum, 210 
amplitude, and mean). For remote sensing predictors, the MSC and associated metrics were based on the period 2001-2012, 211 
while for climate variables were based on the bias corrected daily long-term ERA-Interim data reference period (1989-2010). 212 
In total, 216 potential explanatory variables were created for RS and 231 for RS+METEO (see supplementary material S4 213 
for details). 214 
For each of the two experimental setups we selected a small subset of variables optimally suitable to predict target fluxes 215 
using a variable selection search algorithm. Variable selection was an important component in the spatial upscaling since it 216 
improved the accuracy of predictions, while the computational costs of the global predictions were minimized. We used the 217 
Guided Hybrid Genetic Algorithm (GHGA; Jung and Zscheischler, 2013), which was designed for variable selection 218 
problems with many candidate predictor variables and computationally expensive cost functions. The GHGA required the 219 
training of a regression algorithm (here RF) to estimate the cost associated with selected variable subsets. We executed 220 
GHGA selection runs for the RS and RS+METEO setups and separately for CO2 and energy fluxes (see S5 for details). All 221 
ML used exactly the same selected drivers (listed in Table 2) to made predictions. This procedure had the advantage that the 222 
resulting global products will be originated from a consistent set of predictor variables.  223 
2.3.3. Algorithm training 224 
The capability of ML methods to spatially extrapolate CO2 and energy fluxes was evaluated using a 10-fold cross-validation 225 
strategy. The training datasets were stratified into 10-folds, each containing ca. 10% of the data. Entire sites were assigned to 226 
each fold (Jung et al., 2011). The training of each ML method was done using data from nine folds while predictions were 227 
made for the remaining one. This was repeated 10 times and each fold was used exactly once as a validation set, thus 228 
ensuring that the validation data were completely independent from the training data. Due to the computational expense of 229 
the RS+METEO setup, only one method representing each “family” – RF, MARS, ANN and KRR – was trained. ML 230 
methods hyperparameters (that account for regularization in order to avoid overfitting as well as for the shape and 231 
smoothness constraints) (see supplementary material S6 for details), were estimated in each fold. 232 
2.3.4. Model evaluation 233 
To highlight the differences between the RS and RS+METEO setups, the daily output from RS+METEO were aggregated to 234 
8-day time steps; predictions from the same periods and sites were used for the comparison. Besides the statistical analysis of 235 
the individual ML cross-validation results, we focused on the ensemble median estimate, here defined as the median 236 
predicted value across all ML for a given setup and time step. We used a suite of metrics to evaluate the ML performance: 237 
the Nash and Sutcliffe model efficiency (MEF) (Nash and Sutcliffe, 1970); the root mean square error (RMSE); the 238 
empirical BIAS; the Pearson’s linear correlation coefficient (ρ); the coefficient of determination (R2); and the ratio of 239 
variance (ROV). 240 
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MEF is a measure of the capability of a model to estimate a target variable better than a reference, generally the mean value 241 
of the observations. In our study MEF was calculated as: 242 
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whereXi and Yi were the predicted and the observed values respectively and y  is the mean value of the observations. MEF 244 
varied between -inf to 1; in the case of MEF > 0 the predictive capacity of the model was better than the mean (MEF = 1 for 245 
the ideal model), instead if MEF=0 the predictive capacity of the model was equivalent to the mean, finally if MEF < 0, the 246 
predictive capacity of the mean value of the target was better than the model. 247 
The RMSE was estimated as the root square of the mean value of the squared residuals: 248 
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The BIAS was evaluated as the mean value of model’s residuals  250 
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Following Gupta et al. (2009) the importance of bias on the overall uncertainty was evaluated as the ratio between the square 252 
of BIAS and the Mean Square Error, the latter estimated as the square value of RMSE. 253 
The Pearson’s linear correlation coefficient (ρ) was the ratio between the covariance between the modeled and observed 254 
values (σxy) and the product of the standard deviation of modeled (σx) and observed (σy) values: 255 
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R2 was estimated as the squared value of ρ; finally ROV was evaluated as the ratio between predicted and observed standard 257 
deviation. 258 
We evaluated the overall predictive capacity and consistency of ML approaches—including the ML median estimate—by 259 
flux, by experimental setup and by site as well as grouped by Köppen climate zone and International Geosphere-Biosphere 260 
Programme (IGBP) plant functional types (PFT). In our evaluation we focused on site-specific means, the mean seasonal 261 
cycle (MSC), and anomalies (Jung et al., 2011). The MSC per site was calculated using the averaged values for each 8-day 262 
period across the years, but only when at least two values (i.e., years) for each 8-day period were available. To assess the 263 
mean values of the study sites, we calculated the mean of the MSC if at least 50% of the 46 8-day values were present, 264 
whereas the 8-day anomalies were calculated as the deviation of a flux value from the MSC. Finally, the mean site values 265 
were removed from the MSC to disentangle the seasonal variation from the mean site values, making them as 266 
complementary. 267 

3. Results 268 
3.1 Machine learning performance across fluxes 269 
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Prediction capability of the ensemble median estimate clustered into tiers whereby energy fluxes were better predicted than 270 
CO2 fluxes: Rn > H/LE/GPP > TER > NEE (Table 3 and Table A1). The highest predictive capacity levels as exhibited by 271 
net radiation showed near perfect agreement; Rn displayed a model efficiency (MEF) of 0.91-0.92 and a correlation of 0.96. 272 
The decline in predictive capacity for the second tier fluxes was ca. 15% to 20%; MEF for H, LE, and GPP is 0.79, 0.75-0.76, 273 
and 0.71 respectively. The lowest two tiers exhibited 20% and 40% declines in MEF (0.57-0.64 and 0.43-0.46 for TER and 274 
NEE respectively). These relative rankings, consistent with previous studies (Jung et al., 2011; Yuan et al., 2010), were 275 
unchanged regardless the metric of the predictive capacity used in cross-validation—apart from RMSE where the difference 276 
in fluxes units and magnitude, confounded a direct comparison (Table 3). 277 
There were only minor performance differences between the two CO2 fluxes partitioning methods (Table 3), although for the 278 
RS setup, the performance of TERL were slightly lower than TERR (lower MEF, ρ and ROV). However, a similar pattern 279 
was not found in RS+METEO setup. 280 
Accuracy metrics of median ensemble were similar, by flux, for both RS and RS+METEO approaches, showing that the 281 
spatiotemporal variability of remotely sensed land surface properties are appropriate to predict the top tier fluxes (Rn, H, LE, 282 
and GPP) (Jung et al., 2008; Tramontana et al., 2015; Xiao et al., 2010;.Yang et al., 2007). We found some minor differences 283 
for those fluxes which showed lower overall predictive capacity levels, in particular the NEE and TERL (Fig. 1, Table 3). 284 
MEF and correlation values were slightly larger for RS than RS+METEO but the differences in performances might be due 285 
to a different ensemble size, with the RS median ensemble composed of 11 MLs, whereas RS+METEO was based on only 286 
four. However, the output provided by MLs methods showed high overall consistency among them, that increased 287 
when predictions were obtained by different MLs trained with the same experimental setup (RS else RS+METEO; 288 
for more details see Appendix B and Table B1). 289 
3.2 Capability to predict the across site variability, the mean seasonal cycle and the deviations from it. 290 
Decomposing FLUXNET data into across-site variability, mean seasonal cycle, and interannual variability components (Sect. 291 
2.3.4) revealed clear gradients in predictive capacity (Table 4 and Fig. 2, Fig. 3a and 3b). Across-site variability was in 292 
general well-captured by the ML (R2 range: 0.61 to 0.81 except for NEE), suggesting that the ML methods are suitable to 293 
reproduce the spatial pattern of the mean annual fluxes. The variability in the mean seasonal cycle (at 8-day time scale) was 294 
also uniformly well predicted, in particular for LE and Rn (R2 between 0.67-0.77 for GPP and TER, and between 0.86-0.98 295 
for the energy fluxes). In contrast, the 8-day anomalies variability were generally poorly captured by all the ML approaches 296 
with only H and Rn showing an R2 greater than 0.4. This low predictive skill was regardless of whether 8-day, monthly 297 
(Jung et al., 2011), or annual time steps were used (data not shown) and predicting interannual variability remains one of the 298 
largest challenges in the context of the empirical upscaling. NEE was confirmed to be the poorest predicted flux (Table 3). 299 
ML showed considerably lower predictive capability for NEE, by comparison with the other fluxes for across-sites 300 
variability (R2 = 0.46), the mean seasonal cycle (R2 = 0.59), and interannual variability (R2 = 0.13, TERL was the lowest at 301 
0.10). 302 
3.3 Models performance for different climate zones and ecosystem types. 303 
Climate zone and plant functional type (PFT) are important discriminating factor for ML predictive capacity for CO2 fluxes. 304 
In general, the mixed forest (MF), the deciduous broadleaved forest (DBF) and the boreal sites (Bor) showed higher 305 
accuracy of prediction for the median ensembles (Fig. 4, Tables C1-C6 in Appendix C), even for NEE (R2> 0.6). In contrast, 306 
relatively poor prediction capability was found in evergreen broadleaved forest (EBF), in the tropics (Trop), in the extreme 307 
environments for reduced water resource (Dry) or low temperature (Cold), and in managed sites such as croplands (Crop). 308 
This gradient largely reflects the mismatch between the seasonal dynamics of predicted fluxes and the models drivers. The 309 
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absence of a clear seasonal cycle in evergreen broadleaf forest and in the tropical sites likely contributed to the low ML 310 
performance (in general) in these ecosystems (Sims et al., 2008; Yebra et al., 2015; Yuan et al., 2010). Similarly, cold and 311 
dry sites are characterized by both low magnitude and low variance of fluxes, making it difficult to explain the fluxes 312 
variability in these ecosystems types using empirical methods. For the intensively managed croplands the seasonal dynamics 313 
of fluxes were highly constrained by management practices (e.g. irrigation, fertilization, tillage) which is not directly 314 
reflected in the explanatory variables used in training. 315 
The gradient of prediction capability in different PFT and climate zone was less evident in the case of energy fluxes (not 316 
significant in the case of Rn) and the performance of ML were generally good. In fact the median R2 between simulations 317 
and observations were greater than 0.7 for more than the 85% of the PFT and climate zone (in all sites for Rn). For 318 
comparison in the case of GPP and TER, the median R2 between simulations and observations were greater than 0.6 for more 319 
than 75% of the PFT and climate zone. 320 
4. Discussion 321 
4.1 Comparison between experimental setups 322 
In general the performance metrics across the two experimental setups were highly similar. Very few differences 323 
were found decomposing the fluxes variability into across-site variability, mean seasonal cycle, and interannual 324 
variability components. This suggests that CO2 and energy fluxes can be mapped exclusively with remotely sensed 325 
inputs allowing for high-spatial resolution products without additional uncertainty introduced by gridded 326 
meteorological data products (Tramontana et al., 2015). However, differences between the two experimental setups 327 
are apparent at PFT and climate zone scales, particularly in the EBF PFT and in the tropics where RS+METEO 328 
performs better than RS for predicting CO2 fluxes (e.g. in RS+METEO the decrease in RMSE was 0.10-0.68 gCm-2d-1 329 
in comparison to RS). This might be due, from one side to the pattern of CO2 fluxes that do not follow the seasonal 330 
pattern of the vegetation indices, from the other side to the increasing importance of meteorological drivers, in 331 
particular the ones accounting for the water stress/limitation (e.g. VPD or WAI). In addition, the larger sample size 332 
due to the daily resolution of the RS+METEO setup might have been beneficial. The RS setup might also suffer from 333 
poorer quality of remote sensing data in the tropics due to frequent cloud coverage. At cropland sites the RS has 334 
better predictive capacity than RS+METEO (in comparison to RS, RMSE of RS+METEO increase of 0.02-0.67 gCm-335 
2d-1 for predicting CO2 fluxes). This could be related to management (e.g. sowing and harvesting dates) which are 336 
partly captured by RS but not by RS+METEO which uses only the mean seasonal cycle of VI reflecting also the 337 
better performance of RS for predicting anomalies in the case of CRO, (although in general results for anomalies 338 
were not good, data not shown). 339 
Another distinguishing element between RS and RS+METEO is the degree of uncertainty of the drivers. At the site 340 
level meteorological drivers (used only in RS+METEO) are generally measured with good quality while remote 341 
sensing data are generally affected by additional uncertainties. Scale mismatch between FLUXNET eddy covariance 342 
towers and satellite sensor footprints as well as satellite sensors limitations are important sources of uncertainty, not 343 
present in the in situ measured meteorological drivers. Furthermore, the quality of remote sensing data is affected by 344 
external factors such as the atmospheric condition, cloud cover and ground surface state. These issues were 345 
minimized in the RS+METEO by using only the smoothed mean seasonal cycle of satellite data which contains much 346 
less noise. We had expected that this would improve the performance of predicting anomalies (in general) with the 347 
RS+METEO setup, because anomalies area comparatively small signals that could be readily distorted by the 348 
comparatively large noise in remote sensing data. However, we found no clear indication for that in the cross-349 
validation results. 350 
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4.2 Completeness of predictors 351 
Certainly, the predictor variables used for the ML approaches do not capture all drivers of flux variability both 352 
across sites and temporally. For example, in managed sites, external factors such management practices and 353 
disturbances (Amiro et al., 2010; Thornton et al., 2002) are likely crucial. In addition, direct estimates of soil moisture 354 
would improve the prediction capability in dry environments. The absence of important drivers of flux variability in 355 
the predictor sets likely explains why NEE and TER is less well predicted compared to GPP. First order constraints 356 
of GPP such as radiation, temperature, and canopy properties are accounted for in the predictors. For TER some 357 
important factors like soil properties and carbon pools (Amiro et al., 2010) are not well presented in the predictor 358 
variables. For NEE, several studies have shown its dependence on long-term lag and memory effects (Bell et al., 2012; 359 
Frank et al., 2015, Papale et al., 2015; Paruelo et al., 2005) that are not accounted for by the drivers used in this study. 360 
Adding targeted variables (e.g. soil carbon stock, turnover of the soil organic matter, lagged drivers) among the 361 
candidate predictors and carrying out the driver selection for each CO2 flux specifically, could improve the ML 362 
performance for each flux. At the same time it could be a detriment for the spatial upscaling of CO2 fluxes generating 363 
less consistent global products with plausible bad effects on CO2 uptake/release balance closure over the land 364 
ecosystems. Moreover, the choice of predictor variables for the ML approaches is limited in practical terms by the 365 
availability of consistent observations across all sites on the one hand, and on the availability of a corresponding 366 
consistent global gridded product for upscaling. Therefore, continued efforts of metadata collection at the sites in 367 
conjunction with large scale inventories and new Earth Observations are needed to improve the ML approach in the 368 
future. 369 
4.3 Quality of the response variable 370 
The predictive capacity of ML approaches also depends on the uncertainties of the flux variables themselves. Clearly, 371 
there is some variability in the target flux variables which is due to noise and measurement problems, and this 372 
portion of variability cannot (and should not!) be reproduced by the ML approaches. Interestingly, we obtained the 373 
best results for Rn and H which have lower measurement uncertainties than all other target fluxes. For example, for 374 
H only one sensor, the sonic anemometer, is used while other measured fluxes (LE and NEE) two sensors, a sonic 375 
anemometer and a CO2/H2O trace gas analyser, are needed. GPP and TER estimates are additionally subject to 376 
uncertainties of the flux partitioning methods, and this might explain why LE as a direct measurement was better 377 
predicted than GPP. Random uncertainties of the fluxes is likely not a big issue because averaging at daily and 8-day 378 
time steps (as in this study) greatly reduces the random error (Hollinger and Richardson, 2005). Instead we 379 
hypothesize that site specific systematic uncertainties in the eddy covariance estimations (e.g. due to presence of 380 
strong advection not corrected by the standard methods) could play an important role because ML methods were 381 
trained across sites distributing uncertainties among them. Systematic uncertainties could also reduce the sensitivity 382 
of the models on the small signal explaining the comparatively poor predictive skill of ML for anomalies of eddy co-383 
variance fluxes. We also hypothesize that the general tendency of better predictability of energy fluxes compared to 384 
carbon fluxes is at least partly related to their differences in data quality. To test these hypothesis improved ways of 385 
detecting and characterizing systematic uncertainties in eddy co-variance data are needed. 386 
Another common issue with eddy covariance data is the gaps generated by the data exclusion rules. Data exclusion 387 
strike strongly the nighttime period (primarily for the low turbulence condition) affecting the representativeness of 388 
the diurnal cycle, hence the quality of the averaged daily/eight days eddy-covariance fluxes, in particular CO2,. To 389 
reduce the risk biased estimates half hourly data gaps are filled by models. In our study NEE data were gap filled 390 
using site-specific empirical relationships between meteorological data and net CO2 ecosystem exchange (the MDS 391 
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method, Reichstein et al., 2005) that produce small biases when short gaps were encountered (Moffat et al., 2007). 392 
This has a limited effect in this study as only a very small percentage of high quality gap filled data are used. We also 393 
minimize the bias in estimates of gross CO2 fluxes (GPP and TER) by using two different partitioning methods which 394 
yield very consistent results. 395 
4.4 Data quantity and representativeness 396 
The mismatch between prediction and eddy-covariance estimation were also influenced by data representativeness. 397 
FLUXNET sites are not uniformly distributed over the globe and not all climates and PFTs are well represented. 398 
Very few sites are currently distributed in tropical forest, and data availability over the record is fragmented. 399 
Similarly, very few sites are located in the poorly predicted extreme environments, e.g., cold and dry climates. There 400 
was a clear pattern in our cross-validation results where more accurate predictions were obtained for the better 401 
represented vegetation types and climates (e.g. temperate and boreal forests). Therefore increasing the number of 402 
study sites in less represented environments (e.g. the tropics and in the extreme climates), could improve the 403 
prediction by ML and models in general (Papale et al. 2015). 404 
Data representativeness has also a temporal aspect. For example, remote sensing data discarded due to low quality 405 
occurs preferentially in the cold or wet season—due to snow, ice or cloud cover—by comparison with other seasonal 406 
periods. 407 

5. Conclusions 408 
The ML methods presented and evaluated in this study have shown high capability to predict CO2 and energy fluxes, in 409 
particular the across site variability and the mean seasonal cycle, with a general tendency of increasing performance in the 410 
following order: NEE, TER, GPP, LE, H, and Rn. The relatively poor performance for NEE likely resulted from factors that 411 
cannot be easily accounted for in ML-based approaches, such as legacies of site history (e.g., disturbances, management, age, 412 
and stocks). Future progress in this direction requires the reconstruction of the relevant management and disturbance history 413 
and the integration of information from forest inventories, high resolution satellites such as LANDSAT, and high resolution 414 
biomass data from radar and LIDAR. We found no substantial bias in the predictions of the ML approaches for most 415 
vegetation types or biomes. However, there is less consistency with observations for evergreen broadleaf forests, croplands, 416 
the tropics, and extreme climates. The growing number of eddy covariance sites, in particular new sites in poorly represented 417 
regions, will improve the predictive capacity of ML methods in the future. This is particularly so for the tropics which 418 
account for a disproportionate share of global terrestrial water and carbon fluxes (Beer et al., 2010). 419 
The predictions for ecosystem fluxes across FLUXNET by different explanatory variable sets (RS vs RS+METEO) were 420 
highly consistent, indicating that the extracted patterns by the trained models were robust, realistic and not subject to 421 
overfitting. We recommend using the ensemble median estimate for generating global flux products as extrapolation beyond 422 
the FLUXNET-sampled conditions may generate large differences among methods. 423 
The ML based models presented and extensively evaluated here form the basis of an extensive archive of global gridded flux 424 
products, which is currently under development. The thorough cross-validation experiment presented in this paper helps 425 
users understand the products’ strengths and weaknesses. The overall high skill of the ML methods, the planned archival of 426 
their ensemble median, and the detailed analysis of their uncertainties will make this product a sought-after data stream to 427 
study the global land-atmosphere exchange of CO2, water and energy. 428 

Appendix A: Median performance of the methods. 429 



 12

In table A1 we reported, for both setups, the median value of predictive capacity metrics (MEF, RMSE, and absolute value 430 
of BIAS) realized across singular ML and their standard deviation estimated as reported in Jung et al., (2009). 431 
Appendix B: Consistency among ML algorithms 432 
Pair-wise R2 values among model outputs (Table B1) were close to unity (R2 ≥ 0.90), regardless of experimental setup, 433 
with NEE showing a slightly lower value (R2 = 0.84). Among corresponding model residuals (Table B1), R2 values 434 
ranged from 0.79 (Rn) to 0.89 (TERL). Comparing the same ML technique but using different experimental setups 435 
(Table B1, RS vs. RS+METEO) showed similarly high, albeit somewhat diminished level of consistency (R2 range 436 
ranged from 0.71 to 0.80 for model residuals). These results highlighted that the ML methods were mapping between 437 
explanatory variables and target fluxes both reliably and robustly. Across the all three consistency checks there was 438 
also a tendency for better predicted fluxes (e.g., H) to exhibit higher pair-wise R2 values than poorly predicted fluxes 439 
(e.g., NEE). 440 

Appendix C Median value of site-by-site performance per vegetation and climate type. 441 
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Table 1. Distribution of flux tower sites across plant functional types (PFT) and climate zones. 658 
PFT N° of sites Climate zone N° of sites 
Evergreen needleleaf forest 66 Temperate 111 
Grassland 38 Subtropical - Mediterranean 47 
Cropland 27 Boreal 34 
Deciduous broadleaf forest 24 Tropical 14 
Evergreen broadleaf forest 19 Dry 13 
Wetland 17 Artic 5 
Shrubland 12   
Mixed forest 11   
Savannah 10   659 



 19

Table 2. Selected predictors for both setup for CO2 fluxes (GPP, TER and NEE) and energy fluxes (H, LE and Rn). List of acronyms: 660 
Enhanced Vegetation Index (EVI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), Leaf Area Index (LAI), daytime 661 
Land Surface Temperature (LSTDay) and nighttime Land Surface Temperature (LSTNight), Middle Infrared Reflectance (band 7) (MIR(1)), 662 
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Plant Functional Type (PFT), incoming 663 
global Radiation (Rg), top of atmosphere potential Radiation (Rpot), Index of Water Availability (IWA), Relative humidity (Rh), Water 664 
Availability Index lower (WAIL), and upper (WAIU) (for details see supplementary material, Sect. S3), Mean Seasonal Cycle (MSC). The 665 
product between A and B (AxB) is shown as (A, B). 666 
Setup Type of variability CO2fluxes Energy fluxes 
RS Spatial PFT PFT 

Amplitude of MSC of EVI Maximum of MSC of (fAPAR, 
Rg) 

Amplitude of MSC of MIR(1) Minimum of MSC of Rg 
Maximum of MSC of LSTDay  

Spatial & Seasonal MSC LAI MSC of (EVI, LSTDay)  Rpot 
Spatial, Seasonal & 
Interannual 

NDWI Rg 
LSTDay LSTDay LSTNight Anomalies of LSTNight (NDVI, Rg) Anomalies of (EVI, LSTDay) RS+METEO Spatial PFT PFT 
Amplitude of MSC of NDVI  Maximum of MSC of WAIU 
Amplitude of MSC of band 4 
BRDF reflectance(2) 

Mean of MSC of band 6 BRDF 
reflectance(2) 

Minimum of MSC of NDWI Max of MSC of (fPAR, Rg) 
Amplitude of MSC of WAIL  

Spatial & Seasonal MSC of LSTNight Rpot 
MSC of (fPAR, LSTDay) MSC of NDWI 
MSC of (EVI, Rpot) MSC of LSTNight  MSC of (EVI, Rg) 

Spatial & Seasonal & 
Interannual 

Tair Rain 
(Rg, MSC of NDVI) Rg 
WAIL Rh 

    (MSC of NDVI, Rg, IWA) 
(1)derived from the MOD13 product; (2) derived from MCD43 product. 667 

668 
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Table 3.Statistics of the accuracy of predictions of CO2 and energy fluxes made by the ensemble median estimate based on RS and 669 
RS+METEO. For RMSE and BIAS, the reference units were gCm-2d-1 and MJm-2d-1 for CO2 fluxes (GPP, TER and NEE) and energy 670 
fluxes (H, LE and Rn) respectively. 671 

Flux RS RS+METEO 
MEF RMSE ρ ROV BIAS MEF RMSE ρ ROV BIAS 

GPPR 0.71 1.56 0.85 0.69 -0.02 0.70 1.59 0.84 0.73 0.09 
GPPL 0.71 1.53 0.84 0.68 -0.02 0.71 1.54 0.84 0.74 0.09 
TERR 0.64 1.14 0.80 0.61 -0.01 0.64 1.15 0.80 0.69 0.09 
TERL 0.60 1.18 0.77 0.56 -0.01 0.63 1.14 0.79 0.66 0.08 
NEE 0.46 1.24 0.68 0.39 0.04 0.43 1.28 0.65 0.40 -0.02 

H 0.79 1.36 0.89 0.71 -0.02 0.79 1.37 0.89 0.75 0.02 
LE 0.76 1.37 0.87 0.71 -0.07 0.75 1.39 0.87 0.73 -0.01 
Rn 0.92 1.51 0.96 0.90 -0.01 0.91 1.55 0.96 0.93 0.08 

 672 673 
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Table 4: R2 and RMSE for the comparison across sites, mean seasonal cycle and anomalies. The last two columns showed the 674 
consistency between the median estimates of the two setups. For RMSE, the reference units were gCm-2d-1 and MJm-2d-1for CO2 675 
fluxes (GPP, TER and NEE) and energy fluxes (H, LE and Rn) respectively. 676 

Fluxes RS vs. OBS RS+METEO vs. OBS RS vs. RS+METEO 
R2 RMSE R2 RMSE R2 RMSE 

Across site variability 
GPPR 0.78 0.80 0.77 0.82 0.95 0.34 
GPPL 0.78 0.77 0.79 0.75 0.94 0.36 
TERR 0.68 0.73 0.61 0.81 0.92 0.32 
TERL 0.72 0.60 0.71 0.61 0.92 0.27 
NEE 0.48 0.61 0.46 0.61 0.83 0.22 

H 0.81 0.68 0.81 0.68 0.97 0.25 
LE 0.79 0.74 0.75 0.80 0.93 0.33 
Rn 0.80 0.93 0.79 0.96 0.96 0.38 

Mean seasonal cycle 
GPPR 0.76 1.03 0.77 1.02 0.93 0.48 
GPPL 0.77 1.00 0.77 0.99 0.93 0.50 
TERR 0.71 0.62 0.71 0.62 0.92 0.29 
TERL 0.67 0.64 0.68 0.63 0.92 0.29 
NEE 0.61 0.83 0.59 0.84 0.93 0.24 

H 0.86 0.89 0.86 0.87 0.97 0.36 
LE 0.87 0.79 0.87 0.79 0.95 0.45 
Rn 0.98 0.74 0.98 0.74 0.99 0.43 

Anomalies 
GPPR 0.18 0.67 0.12 0.68 0.38 0.32 
GPPL 0.16 0.67 0.11 0.68 0.37 0.31 
TERR 0.14 0.48 0.15 0.48 0.36 0.17 
TERL 0.10 0.58 0.13 0.57 0.35 0.18 
NEE 0.13 0.56 0.13 0.55 0.43 0.20 

H 0.43 0.81 0.41 0.81 0.77 0.34 
LE 0.21 0.78 0.21 0.77 0.46 0.32 
Rn 0.57 0.81 0.54 0.83 0.84 0.41 

 677 678 
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Table A1: Accuracy of CO2 and energy fluxes predicted by machine learning method based on RS and RS+METEO setup. The median 679 
value and the standard deviation across methods (in brackets and estimated as reported in Jung et al., 2009) are shown. 680 

FLUXES RS RS+METEO 
MEF RMSE Abs BIAS MEF RMSE Abs BIAS 

GPP 0.698 (±0.012) 1.604 (±0.033) 0.022 (±0.019) 0.694 (±0.012) 1.614 (±0.032) 0.073 (±0.011) 
GPPHB 0.700 (±0.009) 1.564 (±0.024) 0.023 (±0.024) 0.701 (±0.008) 1.561 (±0.020) 0.083 (±0.011) 
TER 0.612 (±0.022) 1.183 (±0.033) 0.026 (±0.025) 0.623 (±0.005) 1.166 (±0.008) 0.089 (±0.033) 

TERHB 0.571 (±0.016) 1.218 (±0.023) 0.019 (±0.017) 0.609 (±0.001) 1.163 (±0.002) 0.079 (±0.017) 
NEE 0.433 (±0.017) 1.270 (±0.019) 0.024 (±0.021) 0.407 (±0.029) 1.298 (±0.032) 0.014 (±0.003) 

H 0.767 (±0.015) 1.426 (±0.047) 0.014 (±0.005) 0.776 (±0.008) 1.397 (±0.025) 0.022 (±0.009) 
LE 0.739 (±0.015) 1.418 (±0.042) 0.052 (±0.046) 0.734 (±0.003) 1.434 (±0.009) 0.023 (±0.008) 
Rn 0.909 (±0.009) 1.589 (±0.082) 0.030 (±0.025) 0.908 (±0.008) 1.600 (±0.070) 0.073 (±0.015) 

 681 
  682 
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Table B1: Mean values of the determination coefficient (R2) by the pair-wise comparison of the models output and their residuals. 683 
We compared different ML and same drivers (RS and RS+METEO respectively) or the same ML and different drivers (RS vs 684 
RS+METEO). Numbers in brackets were the standard deviation of R2. All correlations were statistically significant (p < 0.001). 685 

Fluxes 
Correlation among models output Correlation among models residuals 
RS RS+METEO RS vs 

RS+METEO RS RS+METEO RS vs 
RS+METEO 

GPPR 0.95 (0.02)   0.95 (0.02)   0.89 (0.02)   0.88 (0.04)   0.87 (0.04)   0.74 (0.04)  
GPPL 0.95 (0.02)   0.94 (0.02)   0.88 (0.02)   0.88 (0.04)   0.86 (0.04)   0.72 (0.04)  
TERR 0.91 (0.03)   0.94 (0.03)   0.86 (0.04)   0.86 (0.05)   0.88 (0.05)   0.75 (0.06)  
TERL 0.92 (0.03)   0.93 (0.03)   0.85 (0.03)   0.89 (0.04)   0.88 (0.05)   0.77 (0.05)  
NEE 0.84 (0.06)   0.84 (0.07)   0.75 (0.08)   0.88 (0.05)   0.87 (0.06)   0.80 (0.06)  
H 0.94 (0.02)   0.96 (0.02)   0.93 (0.03)   0.80 (0.06)   0.87 (0.05)   0.76 (0.08)  
LE 0.94 (0.02)   0.96 (0.01)   0.90 (0.02)   0.83 (0.05)   0.88 (0.04)   0.73 (0.04)  
Rn 0.98 (0.01)   0.99 (0.00)   0.97 (0.01)   0.79 (0.08)   0.86 (0.03)   0.71 (0.12)  

 686 
 687 
 688 
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Table C1. Median site-by-site R2 and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the CO2 fluxes, per PFT and climate zones. List of acronyms: ENF, was evergreen 689 
needleleaf forest; DBF, deciduous broadleaf forest; EBF, Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, Tropical; 690 
SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and polar environment or covered by ice.  691 

CAT GPPR GPPL TERR TERL NEE  
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 0.87 (0.10) 0.86 (0.10) 0.85 (0.12) 0.86 (0.12) 0.81 (0.15) 0.85 (0.11) 0.75 (0.24) 0.76 (0.20) 0.50 (0.34) 0.55 (0.30) 
DBF 0.89 (0.07) 0.87 (0.09) 0.87 (0.07) 0.88 (0.08) 0.81 (0.12) 0.83 (0.13) 0.76 (0.14) 0.76 (0.14) 0.72 (0.16) 0.68 (0.17) 
EBF 0.50 (0.29) 0.48 (0.20) 0.48 (0.29) 0.44 (0.28) 0.34 (0.34) 0.49 (0.35) 0.15 (0.18) 0.29 (0.20) 0.26 (0.23) 0.24 (0.26) 
MF 0.91 (0.06) 0.95 (0.02) 0.91 (0.03) 0.95 (0.04) 0.85 (0.10) 0.90 (0.07) 0.84 (0.10) 0.86 (0.15) 0.73 (0.10) 0.75 (0.09) 
SHR 0.67 (0.30) 0.71 (0.28) 0.67 (0.36) 0.72 (0.23) 0.80 (0.13) 0.78 (0.24) 0.68 (0.18) 0.66 (0.38) 0.37 (0.38) 0.41 (0.31) 
SAV 0.75 (0.13) 0.70 (0.13) 0.72 (0.05) 0.67 (0.17) 0.65 (0.07) 0.72 (0.11) 0.55 (0.16) 0.61 (0.10) 0.38 (0.20) 0.34 (0.29) 
GRA 0.69 (0.27) 0.62 (0.33) 0.69 (0.25) 0.60 (0.32) 0.70 (0.25) 0.73 (0.25) 0.66 (0.20) 0.72 (0.21) 0.40 (0.29) 0.36 (0.30) 
CRO 0.58 (0.41) 0.44 (0.36) 0.56 (0.41) 0.45 (0.31) 0.78 (0.17) 0.76 (0.15) 0.68 (0.22) 0.65 (0.23) 0.35 (0.46) 0.33 (0.43) 
WET 0.87 (0.11) 0.91 (0.07) 0.85 (0.12) 0.87 (0.09) 0.78 (0.19) 0.83 (0.14) 0.65 (0.17) 0.74 (0.20) 0.64 (0.16) 0.61 (0.24) 
Trop 0.32 (0.46) 0.40 (0.39) 0.63 (0.23) 0.31 (0.32) 0.25 (0.23) 0.34 (0.47) 0.11 (0.13) 0.26 (0.14) 0.28 (0.35) 0.21 (0.30) 
SubTrop 0.64 (0.26) 0.66 (0.28) 0.65 (0.26) 0.65 (0.24) 0.64 (0.25) 0.66 (0.26) 0.52 (0.24) 0.55 (0.28) 0.39 (0.37) 0.39 (0.26) 
Dry 0.47 (0.27) 0.40 (0.33) 0.50 (0.25) 0.38 (0.30) 0.62 (0.25) 0.62 (0.38) 0.55 (0.19) 0.55 (0.39) 0.21 (0.29) 0.11 (0.14) 
Tmp 0.81 (0.19) 0.74 (0.24) 0.83 (0.14) 0.78 (0.22) 0.78 (0.13) 0.77 (0.18) 0.68 (0.20) 0.72 (0.17) 0.56 (0.28) 0.47 (0.34) 
TmpCont 0.86 (0.09) 0.82 (0.16) 0.84 (0.11) 0.80 (0.17) 0.81 (0.12) 0.78 (0.14) 0.75 (0.17) 0.76 (0.15) 0.54 (0.42) 0.53 (0.36) 
Bor 0.90 (0.07) 0.90 (0.07) 0.92 (0.06) 0.89 (0.07) 0.90 (0.05) 0.91 (0.04) 0.86 (0.08) 0.89 (0.06) 0.59 (0.31) 0.59 (0.25) 
Cold 0.56 (0.57) 0.50 (0.56) 0.49 (0.62) 0.46 (0.59) 0.84 (0.20) 0.86 (0.13) 0.50 (0.38) 0.55 (0.23) 0.47 (0.56) 0.45 (0.57) 

692 
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Table C2. Median site-by-site RMSE and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the CO2 fluxes per PFT and climate zones. List of acronyms: ENF, was 693 
evergreen needleleaf forest; DBF, deciduous broadleaf forest; EBF, Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, 694 
Tropical; SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and polar environment or covered by ice. 695 

CAT GPPR (gCm-2d-1) GPPL (gCm-2d-1) TERR (gCm-2d-1) TERL (gCm-2d-1) NEE (gCm-2d-1) 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 1.05 (0.60) 1.12 (0.60) 1.04 (0.59) 1.14 (0.66) 0.82 (0.50) 0.80 (0.52) 0.87 (0.60) 0.91 (0.68) 0.87 (0.51) 0.86 (0.53) 
DBF 1.21 (0.78) 1.35 (0.59) 1.17 (0.68) 1.36 (0.62) 0.68 (0.26) 0.76 (0.33) 0.76 (0.33) 0.93 (0.44) 1.28 (0.39) 1.28 (0.39) 
EBF 1.70 (0.55) 1.64 (0.85) 1.65 (0.70) 1.46 (0.51) 1.23 (0.69) 1.48 (0.85) 1.88 (1.23) 1.71 (0.73) 1.15 (0.48) 1.15 (0.45) 
MF 0.87 (0.17) 0.76 (0.45) 0.89 (0.27) 0.97 (0.56) 0.65 (0.18) 0.73 (0.42) 0.79 (0.14) 0.79 (0.18) 0.91 (0.47) 0.81 (0.29) 
SHR 0.73 (0.47) 0.78 (0.46) 0.69 (0.44) 0.77 (0.37) 0.50 (0.33) 0.70 (0.41) 0.50 (0.34) 0.55 (0.36) 0.57 (0.31) 0.52 (0.15) 
SAV 0.83 (0.44) 0.81 (0.18) 0.87 (0.45) 0.84 (0.18) 0.80 (0.53) 0.68 (0.41) 0.86 (0.55) 0.77 (0.38) 0.71 (0.36) 0.69 (0.31) 
GRA 1.22 (0.64) 1.22 (0.60) 1.18 (0.68) 1.20 (0.62) 1.00 (0.48) 1.01 (0.54) 0.99 (0.58) 0.95 (0.52) 0.76 (0.61) 0.85 (0.49) 
CRO 1.69 (1.38) 2.30 (1.02) 1.57 (1.42) 2.24 (1.10) 0.87 (0.46) 0.90 (0.57) 0.80 (0.51) 0.98 (0.57) 1.42 (0.90) 1.44 (0.70) 
WET 1.04 (0.95) 0.93 (0.77) 1.03 (0.96) 0.78 (0.53) 1.04 (0.87) 0.98 (0.82) 1.07 (0.51) 1.02 (0.51) 0.46 (0.19) 0.64 (0.26) 
Trop 1.93 (0.46) 1.74 (1.01) 2.24 (0.62) 1.56 (0.78) 2.07 (0.69) 1.55 (0.87) 2.47 (0.74) 2.05 (0.43) 1.28 (0.29) 1.17 (0.46) 
SubTrop 1.37 (0.55) 1.40 (0.61) 1.37 (0.56) 1.38 (0.57) 1.03 (0.46) 1.00 (0.41) 1.08 (0.36) 1.11 (0.40) 1.13 (0.63) 1.15 (0.62) 
Dry 0.60 (0.24) 0.78 (0.36) 0.63 (0.16) 0.74 (0.30) 0.49 (0.10) 0.54 (0.20) 0.58 (0.26) 0.67 (0.32) 0.41 (0.13) 0.46 (0.15) 
Tmp 1.73 (1.02) 1.82 (0.99) 1.73 (0.98) 1.71 (1.03) 1.09 (0.54) 1.17 (0.67) 1.24 (0.57) 1.31 (0.59) 1.43 (0.59) 1.40 (0.61) 
TmpCont 1.01 (0.42) 1.29 (0.59) 1.00 (0.45) 1.26 (0.57) 0.71 (0.30) 0.75 (0.38) 0.74 (0.31) 0.79 (0.34) 0.95 (0.39) 1.02 (0.43) 
Bor 0.66 (0.27) 0.70 (0.36) 0.66 (0.27) 0.67 (0.33) 0.48 (0.27) 0.47 (0.27) 0.48 (0.16) 0.45 (0.21) 0.50 (0.32) 0.48 (0.22) 
Cold 0.44 (0.04) 0.58 (0.42) 0.51 (0.24) 0.46 (0.32) 0.41 (0.06) 0.23 (0.06) 0.57 (0.16) 0.29 (0.12) 0.51 (0.21) 0.54 (0.35) 

696 
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Table C3. Median site-by-site absolute bias and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the CO2 fluxes per PFT and climate zones. List of acronyms: ENF, was 697 
evergreen needleleaf forest; DBF, deciduous broadleaf forest; EBF, Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, 698 
Tropical; SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and polar environment or covered by ice. 699 

CAT GPPR (gCm-2d-1) GPPL (gCm-2d-1) TERR (gCm-2d-1) TERL (gCm-2d-1) NEE (gCm-2d-1) 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 0.53 (0.46) 0.54 (0.56) 0.45 (0.42) 0.48 (0.50) 0.47 (0.47) 0.50 (0.54) 0.42 (0.40) 0.41 (0.43) 0.39 (0.44) 0.32 (0.36) 
DBF 0.43 (0.38) 0.56 (0.59) 0.42 (0.36) 0.50 (0.52) 0.29 (0.32) 0.35 (0.35) 0.39 (0.33) 0.42 (0.34) 0.60 (0.28) 0.55 (0.30) 
EBF 0.82 (0.91) 0.77 (0.50) 0.75 (0.81) 0.76 (0.48) 0.88 (0.98) 0.84 (0.72) 0.76 (0.81) 0.93 (0.65) 0.36 (0.45) 0.46 (0.44) 
MF 0.47 (0.20) 0.34 (0.38) 0.38 (0.29) 0.57 (0.29) 0.39 (0.28) 0.41 (0.13) 0.37 (0.15) 0.30 (0.35) 0.34 (0.49) 0.32 (0.36) 
SHR 0.38 (0.37) 0.54 (0.49) 0.38 (0.44) 0.39 (0.47) 0.36 (0.38) 0.50 (0.43) 0.31 (0.40) 0.32 (0.23) 0.27 (0.27) 0.28 (0.24) 
SAV 0.42 (0.40) 0.36 (0.21) 0.35 (0.40) 0.23 (0.15) 0.43 (0.41) 0.35 (0.23) 0.42 (0.37) 0.31 (0.10) 0.23 (0.21) 0.19 (0.10) 
GRA 0.60 (0.59) 0.48 (0.49) 0.60 (0.56) 0.52 (0.55) 0.38 (0.29) 0.36 (0.37) 0.44 (0.39) 0.38 (0.38) 0.17 (0.20) 0.31 (0.31) 
CRO 0.47 (0.37) 0.66 (0.44) 0.36 (0.33) 0.56 (0.47) 0.29 (0.32) 0.25 (0.22) 0.29 (0.32) 0.30 (0.29) 0.41 (0.31) 0.56 (0.55) 
WET 0.54 (0.64) 0.28 (0.41) 0.55 (0.62) 0.29 (0.25) 0.72 (0.35) 0.48 (0.52) 0.69 (0.29) 0.50 (0.51) 0.24 (0.19) 0.30 (0.25) 
Trop 1.66 (1.31) 0.67 (0.79) 1.71 (1.23) 0.77 (0.86) 1.73 (0.88) 1.16 (1.19) 1.94 (0.81) 1.21 (0.67) 0.52 (0.57) 0.38 (0.55) 
SubTrop 0.54 (0.45) 0.55 (0.43) 0.50 (0.38) 0.52 (0.55) 0.46 (0.44) 0.53 (0.47) 0.47 (0.35) 0.42 (0.37) 0.34 (0.44) 0.37 (0.34) 
Dry 0.31 (0.20) 0.33 (0.26) 0.33 (0.38) 0.36 (0.29) 0.24 (0.21) 0.32 (0.35) 0.34 (0.21) 0.43 (0.26) 0.14 (0.08) 0.22 (0.14) 
Tmp 0.72 (0.55) 0.77 (0.71) 0.66 (0.59) 0.63 (0.56) 0.50 (0.46) 0.47 (0.50) 0.51 (0.55) 0.41 (0.45) 0.46 (0.43) 0.51 (0.41) 
TmpCont 0.45 (0.35) 0.60 (0.52) 0.39 (0.35) 0.57 (0.47) 0.37 (0.28) 0.29 (0.25) 0.37 (0.33) 0.38 (0.37) 0.35 (0.40) 0.55 (0.55) 
Bor 0.36 (0.30) 0.32 (0.34) 0.32 (0.24) 0.27 (0.31) 0.32 (0.40) 0.32 (0.33) 0.31 (0.35) 0.26 (0.32) 0.27 (0.26) 0.23 (0.26) 
Cold 0.07 (0.00) 0.08 (0.09) 0.08 (0.12) 0.15 (0.06) 0.34 (0.04) 0.12 (0.06) 0.34 (0.06) 0.15 (0.01) 0.37 (0.15) 0.27 (0.27) 
 700 
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Table C4. Median site-by-site R2 and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the energy 701 
fluxes per PFT and climate zones. List of acronyms: ENF, was evergreen needleleaf forest; DBF, deciduous broadleaf forest; EBF, 702 
Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, 703 
Tropical; SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and 704 
polar environment or covered by ice. 705 

CAT H  LE  Rn  
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 0.87 (0.10) 0.86 (0.10) 0.83 (0.10) 0.84 (0.11) 0.97 (0.02) 0.97 (0.02) 
DBF 0.76 (0.18) 0.74 (0.12) 0.87 (0.05) 0.87 (0.07) 0.97 (0.01) 0.97 (0.02) 
EBF 0.85 (0.13) 0.82 (0.17) 0.56 (0.30) 0.52 (0.42) 0.95 (0.05) 0.96 (0.03) 
MF 0.85 (0.06) 0.82 (0.10) 0.91 (0.07) 0.89 (0.06) 0.97 (0.02) 0.96 (0.02) 
SHR 0.83 (0.15) 0.83 (0.17) 0.73 (0.29) 0.77 (0.23) 0.98 (0.01) 0.97 (0.01) 
SAV 0.74 (0.25) 0.77 (0.26) 0.85 (0.06) 0.78 (0.11) 0.86 (0.05) 0.88 (0.10) 
GRA 0.72 (0.22) 0.71 (0.22) 0.85 (0.11) 0.83 (0.16) 0.96 (0.02) 0.96 (0.02) 
CRO 0.70 (0.16) 0.66 (0.18) 0.79 (0.14) 0.80 (0.14) 0.97 (0.02) 0.96 (0.02) 
WET 0.81 (0.06) 0.78 (0.14) 0.86 (0.10) 0.84 (0.06) 0.94 (0.02) 0.92 (0.06) 
Trop 0.52 (0.18) 0.60 (0.32) 0.56 (0.38) 0.50 (0.44) 0.86 (0.14) 0.89 (0.13) 
SubTrop 0.81 (0.18) 0.82 (0.18) 0.78 (0.13) 0.80 (0.13) 0.96 (0.03) 0.96 (0.02) 
Dry 0.87 (0.07) 0.86 (0.13) 0.80 (0.07) 0.79 (0.14) 0.90 (0.06) 0.93 (0.05) 
Tmp 0.78 (0.14) 0.78 (0.13) 0.86 (0.11) 0.83 (0.13) 0.97 (0.02) 0.96 (0.02) 
TmpCont 0.72 (0.18) 0.69 (0.18) 0.83 (0.08) 0.84 (0.09) 0.97 (0.02) 0.96 (0.02) 
Bor 0.90 (0.07) 0.89 (0.08) 0.92 (0.05) 0.92 (0.03) 0.98 (0.01) 0.97 (0.02) 
Cold 0.83 (0.12) 0.57 (0.19) 0.83 (0.08) 0.82 (0.07) 0.94 (0.03) 0.85 (0.13) 
 706 707 
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Table C5. Median site-by-site RMSE and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the energy 708 
fluxes per PFT and climate zones. List of acronyms: ENF, was evergreen needleleaf forest; DBF, deciduous broadleaf forest; EBF, 709 
Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, 710 
Tropical; SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and 711 
polar environment or covered by ice. 712 

CAT H (MJm-2d-1) LE (MJm-2d-1) Rn (MJm-2d-1) 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 1.09 (0.25) 1.16 (0.25) 1.00 (0.56) 1.02 (0.55) 1.27 (0.68) 1.26 (0.57) 
DBF 1.30 (0.43) 1.31 (0.38) 1.22 (0.26) 1.14 (0.46) 1.11 (0.42) 1.24 (0.41) 
EBF 1.14 (0.60) 1.29 (0.76) 1.55 (0.39) 1.60 (0.46) 1.33 (0.43) 1.14 (0.56) 
MF 1.18 (0.44) 1.12 (0.42) 0.82 (0.37) 1.15 (0.54) 1.14 (0.45) 1.09 (0.43) 
SHR 1.21 (0.46) 1.14 (0.28) 1.12 (0.41) 1.11 (0.56) 1.37 (0.80) 1.01 (0.43) 
SAV 1.23 (0.25) 1.20 (0.22) 1.32 (0.56) 1.35 (0.30) 1.10 (0.33) 1.19 (0.60) 
GRA 1.14 (0.35) 1.08 (0.47) 1.09 (0.34) 1.32 (0.54) 1.48 (0.83) 1.48 (0.90) 
CRO 1.24 (0.45) 1.36 (0.33) 1.51 (0.61) 1.54 (0.35) 1.24 (0.52) 1.23 (0.26) 
WET 0.97 (0.36) 1.22 (0.60) 0.88 (0.13) 0.90 (0.18) 1.42 (0.51) 1.65 (0.71) 
Trop 0.98 (0.51) 1.19 (0.63) 1.60 (0.52) 1.62 (0.41) 1.33 (0.73) 1.03 (0.48) 
SubTrop 1.28 (0.38) 1.32 (0.46) 1.36 (0.62) 1.36 (0.53) 1.40 (0.40) 1.33 (0.49) 
Dry 1.07 (0.24) 1.05 (0.50) 1.21 (0.33) 1.27 (0.52) 1.61 (0.75) 2.02 (0.93) 
Tmp 1.18 (0.23) 1.15 (0.33) 1.18 (0.43) 1.17 (0.49) 1.10 (0.36) 1.14 (0.47) 
TmpCont 1.30 (0.42) 1.35 (0.37) 1.25 (0.41) 1.47 (0.37) 1.17 (0.65) 1.16 (0.54) 
Bor 0.98 (0.23) 1.05 (0.26) 0.70 (0.26) 0.61 (0.20) 0.88 (0.31) 1.08 (0.50) 
Cold 1.03 (0.36) 1.50 (0.55) 1.00 (0.23) 1.03 (0.45) 1.47 (0.18) 2.04 (0.19) 713 
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Table C6. Median site-by-site absolute bias and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the 714 
energy fluxes. List of acronyms: ENF, was evergreen needleleaf forest; DBF, deciduous broadleaf forest; EBF, Evergreen broadleaf forest; 715 
MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, Tropical; SubTrop, 716 
subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and polar environment or 717 
covered by ice. 718 

CAT H (MJm-2d-1) LE (MJm-2d-1) Rn (MJm-2d-1) 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 0.44 (0.40) 0.40 (0.33) 0.42 (0.41) 0.44 (0.49) 0.78 (0.63) 0.64 (0.61) 
DBF 0.60 (0.35) 0.66 (0.35) 0.57 (0.56) 0.49 (0.50) 0.38 (0.28) 0.61 (0.49) 
EBF 0.38 (0.48) 0.55 (0.46) 0.97 (0.79) 0.88 (0.70) 0.88 (0.51) 0.62 (0.43) 
MF 0.48 (0.40) 0.26 (0.31) 0.34 (0.40) 0.64 (0.52) 0.56 (0.45) 0.56 (0.57) 
SHR 0.34 (0.43) 0.47 (0.52) 0.41 (0.41) 0.50 (0.43) 0.62 (0.76) 0.44 (0.52) 
SAV 0.68 (0.35) 0.56 (0.15) 0.63 (0.80) 0.40 (0.15) 0.27 (0.22) 0.63 (0.55) 
GRA 0.51 (0.39) 0.40 (0.24) 0.38 (0.38) 0.57 (0.50) 0.97 (0.81) 0.81 (1.03) 
CRO 0.23 (0.21) 0.24 (0.24) 0.36 (0.38) 0.41 (0.50) 0.66 (0.58) 0.68 (0.39) 
WET 0.47 (0.51) 0.67 (0.37) 0.54 (0.41) 0.38 (0.21) 0.34 (0.34) 0.83 (0.78) 
Trop 0.37 (0.51) 0.67 (0.47) 0.97 (0.79) 1.24 (0.82) 0.94 (1.10) 0.63 (0.60) 
SubTrop 0.58 (0.59) 0.50 (0.39) 0.62 (0.58) 0.58 (0.56) 0.83 (0.71) 0.70 (0.55) 
Dry 0.68 (0.62) 0.55 (0.56) 0.21 (0.14) 0.30 (0.26) 1.06 (0.55) 1.61 (0.91) 
Tmp 0.38 (0.23) 0.34 (0.31) 0.49 (0.46) 0.56 (0.54) 0.65 (0.49) 0.68 (0.58) 
TmpCont 0.49 (0.41) 0.40 (0.46) 0.44 (0.51) 0.53 (0.50) 0.69 (0.72) 0.61 (0.58) 
Bor 0.33 (0.32) 0.38 (0.24) 0.22 (0.16) 0.23 (0.24) 0.38 (0.27) 0.50 (0.47) 
Cold 0.43 (0.46) 0.71 (0.11) 0.56 (0.31) 0.39 (0.18) 0.30 (0.29) 0.86 (0.58) 719 



 

720 Figure 1. Spider plot of MEF (first column) and RMSE (second column) for 721 
consistency of prediction made by RS (black line) and RS+METEO (grey lines) setups. The lines 722 
ML; we also showed the performance of multiple regressions trained with RS (black point) and RS+METEO (gr723 
GPPL were respectively the gross primary production estimated following Reichstein et al. (2005) and Lasslop et al. (2010), TER724 
TERL the total ecosystem respiration estimated following Reichstein et al. (2005) and Lasslop et al. (725 
H the sensible heat, LE the latent heat and Rn the net radiation.726 

Spider plot of MEF (first column) and RMSE (second column) for CO2 (first row) and energy fluxes (seco
lack line) and RS+METEO (grey lines) setups. The lines were the ensemble median estimate

the performance of multiple regressions trained with RS (black point) and RS+METEO (gr
gross primary production estimated following Reichstein et al. (2005) and Lasslop et al. (2010), TER

the total ecosystem respiration estimated following Reichstein et al. (2005) and Lasslop et al. (2010), NEE net ecosystem exchange, 
H the sensible heat, LE the latent heat and Rn the net radiation. 

30

 first row) and energy fluxes (second row) showing the 
re the ensemble median estimate of 

the performance of multiple regressions trained with RS (black point) and RS+METEO (gray points). GPPR and 
gross primary production estimated following Reichstein et al. (2005) and Lasslop et al. (2010), TERR and 

2010), NEE net ecosystem exchange, 
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 727 Figure 2. Coefficients of determination (R2) from the comparison of overall time series, across-sites, mean seasonal cycle, and the 728 
anomalies, in particular: the determination coefficients between predictions by the ensemble median estimate of RS setup and observation 729 
(dark grey bars), between predictions by the ensemble median estimate of RS+METEO setup and observation (light grey bars), and 730 
between the two ensembles median estimate (white bars). Whiskers were the higher and lower R2 when the comparisons were made 731 
among the singular ML. The comparison of output by the multiple regressions was also shown (black points). GPPR and GPPL were 732 
respectively the gross primary production estimated following Reichstein et al. (2005) and Lasslop et al. (2010), TERR and TERL the total 733 
ecosystem respiration estimated following Reichstein et al. (2005) and Lasslop et al. (2010), NEE net ecosystem exchange, H the sensible 734 
heat, LE the latent heat and Rn the net radiation. 735 
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 736 Figure 3a. Scatterplots of observed data by eddy covariance (y-axis) and the median ensemble of modeled fluxes by RS setup (x-axis). 737 
The panels from left to right were the 8-day predictions, the across sites variability, the mean seasonal cycle and the 8-day anomalies. The 738 
fluxes considered here were: the gross primary production estimated following Lasslop et al (2010), GPPL (first row); the total ecosystem 739 
respiration estimated following Reichstein et al., (2005), TERR (second row); the sensible heat, H (third row); the latent heat, LE (fourth 740 
row). The reference units were gCm-2d-1 and MJm-2d-1 for CO2 fluxes (GPPL and TERR) and energy fluxes (H and LE) respectively. 741 
 742 
 743 
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 744 
Figure 3b. As in Figure 3a but the predictions (x-axis) were obtained by the RS+METEO setup. 745 
 746 
 747 
 748 
 749 
 750 
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 751 Figure 4. Performance of FLUXCOM median estimates per climate zone and plant functional type (PFT). The colored matrices show the 752 
median values of R2 (red pixels for low R2, yellow pixels for high R2). Numbers indicate the RMSE (units of CO2 fluxes are gCm-2d-1 and 753 
MJm-2d-1 in the case of energy fluxes). Oblique and bold fonts are used when the relative RMSE (normalized for the mean observed fluxes 754 
per PFT and climate zone) was greater than 0.5. The symbols ‘**’ after RMSE were used when the weight of bias (estimated as the ratio 755 
between the square of median absolute bias and the MSE) was greater than 0.5, instead ‘*’ symbols were used if the weight of bias was 756 
between 0.25 than 0.5. No symbols were used if the weight of bias is less than 0.25. List of acronyms: ENF, was evergreen needleleaf 757 
forest; DBF, deciduous broadleaf forest; EBF, Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, 758 
Grassland; CRO, cropland; WET, Wetland; Trop, Tropical; SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, 759 
Temperate-continental; Bor, boreal; Cold, cold and polar environment or covered by ice; GPPR and GPPL were respectively the gross 760 
primary production estimated following Reichstein et al. (2005) and Lasslop et al. (2010); TERR and TERL the total ecosystem respiration 761 
estimated following Reichstein et al. (2005) and Lasslop et al. (2010); NEE, net ecosystem exchange; H, sensible heat; LE, latent heat; Rn 762 
net radiation. 763 
 764 
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