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Abstract. Spatio-temporal fields of land-atmosphere fluxes derived from data-driven models can complement simulations by 25 
process-based Land Surface Models. While a number of strategies for empirical models with eddy covariance flux data have 26 
been applied, a systematic intercomparison of these methods is missing so far. In this study, we performed a cross-validation 27 
experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes, across different ecosystem types 28 
with eleven machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and 29 
regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data, and (2) 30 
daily mean fluxes based on meteorological data and mean seasonal cycle of remotely sensed variables. The pattern of 31 
predictions from different ML and experimental setups were highly consistent. There were systematic differences in 32 
performance among the fluxes, with the following ascending order: net ecosystem exchange (R2<0.5), ecosystem respiration 33 
(R2>0.6), gross primary production (R2>0.7), latent heat (R2>0.7), sensible heat (R2>0.7), net radiation (R2>0.8). The ML 34 
methods predicted the across site variability and the mean seasonal cycle of the observed fluxes very well (R2> 0.7), while 35 
the 8-day deviations from the mean seasonal cycle were not well predicted (R2< 0.5). Fluxes were better predicted at forested 36 
and temperate climate sites than at sites in extreme climates or less represented by training data (e.g. the tropics). The 37 
evaluated large ensemble of ML based models will be the basis of new global flux products. 38 
Keywords: Machine learning, carbon fluxes, energy fluxes, FLUXNET, remote sensing, FLUXCOM 39 
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Improving our knowledge of the carbon, water, and energy exchanges between terrestrial ecosystems and the atmosphere is 41 
essential to better understand and model the Earth's climate system (IPCC, 2007; Reich, 2010). In situ continuous 42 
observations can be obtained with the eddy covariance technique, which estimates the net exchanges of carbon dioxide 43 
(CO2), water vapor and energy between land ecosystems and the atmosphere (Aubinet at al., 2012; Baldocchi et al.,2014). 44 
The large-scale measurement network, FLUXNET integrates site observations of these fluxes globally and provides detailed 45 
time series of carbon and energy fluxes across biomes and climates (Baldocchi et al., 2008). However, eddy covariance 46 
measurements are site-level observations (at < 1 km2 scale), and spatial upscaling is required to estimate these fluxes at 47 
regional to global scales. 48 
The increasing number of eddy covariance sites across the globe has encouraged the application of data-driven models by 49 
machine learning (ML) methods such as Artificial Neural Networks (ANNs, Papale et al., 2003), Random Forest (RF, 50 
Tramontana et al., 2015), Model Trees (MTE, Jung et al., 2009; Xiao et al., 2008, 2010) or Support Vector Regression (SVR, 51 
Yang et al., 2006, 2007) to estimate land surface-atmosphere fluxes from site level to regional or global scales (e.g. Beer et 52 
al., 2010, Jung et al., 2010, 2011; Kondo et al., 2015; Schwalm et al., 2010, 2012; Yang et al., 2007; Xiao et al., 2008, 2010). 53 
The ML upscaled outputs are also increasingly used to evaluate process based land surface models (e.g., Anav et al., 2013; 54 
Bonan et al., 2010; Ichii et al., 2009; Piao et al., 2013). 55 
The key characteristic of data-driven models compared to process-based ones are the former’s intrinsic observational nature, 56 
and the fact that functional relationships are not prescribed but rather emerge from patterns found in the measurements. In 57 
this context, data-driven models extract multivariate functional relationships between the in situ measured fluxes of the 58 
network and explanatory variables. These variables are derived from satellite remote sensing, providing useful (although 59 
partial) information on vegetation state (e.g., vegetation indices) and other land surface properties (e.g., surface temperature), 60 
along with continuous measurements of meteorological variables at flux towers. 61 
While ML-based upscaling provides a systematic approach to move from point-based flux estimates to spatially explicit 62 
gridded fields, various sources of uncertainty exist. For example, individual ML methods can have different responses, 63 
especially when these models are applied beyond the conditions represented in the training dataset (Jung et al., 2009; Papale 64 
et al., 2015). The information content of the driving input variables may not be sufficient to capture the variability of the 65 
fluxes in all conditions (Tramontana et al., 2015). Moreover, remotely sensed and meteorological gridded datasets are 66 
affected by uncertainties themselves. Remote sensing data contain noise, biases and gaps, and can be perturbed by 67 
atmospheric effects or by the presence of snow. Meteorological gridded datasets are known to contain product specific biases 68 
as well (Garnaud et al., 2014; Tramontana et al., 2015; Zhao et al., 2012). 69 
Thorough experiments using multiple data-driven models and explanatory variables are an essential step to identify and 70 
assess limitations and sources of uncertainty in the empirical upscaling approach. For this reason several experts in the field 71 
gathered together and formed the collaborative FLUXCOM initiative. FLUXCOM aims to better understand the multiple 72 
sources and facets of uncertainties in empirical upscaling and, ultimately, to provide an ensemble of machine learning based 73 
global flux products to the scientific community. In FLUXCOM we selected machine learning based regression tools that 74 
span the full range of commonly applied algorithms: from model tree ensembles, multiple adaptive regression splines, 75 
artificial neural networks, to kernel methods, with several representatives of each family. We defined common protocols for 76 
two complementary upscaling strategies (setups) based on: (1) 8-day averaged fluxes based on exclusively remotely sensed 77 
data, and (2) daily mean fluxes based on remotely sensed and meteorological data. Different ML approaches were then 78 
applied to both setups using the same sets of predictor variables, and a thorough ‘leave-towers-out’ cross-validation was 79 
conducted. This study presents the FLUXCOM results obtained from the cross-validation. Our overarching aim was to 80 
understand how well fluxes of CO2 (gross primary production (GPP), terrestrial ecosystem respiration (TER) and net 81 
ecosystem exchange (NEE)), and energy (latent heat (LE), sensible heat (H) and net radiation (Rn)), as estimated by the eddy 82 
covariance technique, are predicted by an ensemble of ML methods. We focused in particular on the ensemble median 83 
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prediction because the ensemble median global product will likely be used extensively. At first we looked at the consistency 84 
of the patterns between the two experimental setups to understand whether satellite remote sensing is sufficient for mapping 85 
carbon and energy fluxes or whether instantaneous meteorological conditions need to be considered explicitly. Second, we 86 
investigated which characteristics of the predicted fluxes were robust, analyzing how well the median estimates were able to 87 
predict the across site variability, the mean seasonal cycle by site and interannual variation, i.e., time-dependent deviations 88 
from the mean seasonal cycle. Thirdly, we investigated how the ML performance varies among climate zones or ecosystem 89 
types. 90 
2 Material and methods 91 
2.1 Data 92 
2.1.1 Eddy covariance study sites 93 
We used eddy covariance data from 224 flux-tower sites (supplementary material, Sect. S1), which originate from the 94 
FLUXNET La Thuile synthesis dataset and CarboAfrica network (Valentini et al., 2014). The study sites were distributed 95 
globally and cover most plant functional types (PFT) and biomes over the globe (Table 1). 96 
2.1.2 Observation-based CO2 and energy fluxes 97 
All flux measurements were post-processed using standardized procedures of quality control (Papale et al. 2006) and gap-98 
filled following Reichstein et al. (2005). Estimates of GPP and TER were derived from half-hourly NEE measurements 99 
using two independent flux partitioning methods: (1) According to Reichstein et al. (2005), where the temperature sensitivity 100 
of ecosystem respiration was initially estimated from night-time NEE data and then extrapolated to daytime to estimate TER 101 
and GPP. This was done by subtracting NEE (negatively signed for the CO2 uptake) from TER. (2) According to Lasslop et 102 
al. (2010), where daytime NEE data were used to constrain an hyperbolic light response curve to directly estimate GPP and 103 
TER. In the following we refer to GPP and TER as derived by Reichstein et al. (2005) as GPPR and TERR; whereas estimates 104 
based on the Lasslop et al. (2010) method are referred to as GPPL and TERL. 105 
Half-hourly data were aggregated to daily values and screened according to multiple quality criteria, as follows: 106 
1) We excluded data when more than 20% of the data were based on gap-filling with low confidence (Reichstein et al., 107 
2005). 108 
2) We identified and removed obviously erroneous periods due to non-flagged instrument or flux partitioning failures based 109 
on visual interpretation. 110 
3) We excluded data-points where the two flux-partitioning methods provided extremely different patterns. Specifically, we 111 
computed for each site a robust linear regression between (a) TERR – GPPL and NEE, and (b) GPPR and GPPL. Data points 112 
with a residual outside the range of ± 3 times of the inter-quartile range were removed. This criterion removed only the 113 
extreme residuals, systematic differences between methods were not removed. 114 
4) We removed the 5% of data-points with the largest friction velocity (u*) uncertainty, defined as data points above the 95th 115 
percentile of daily u* uncertainty, measured as the inter-quartile range of 100 bootstrap samples (Papale et al., 2006). 116 
We applied the same criteria 1) and 2) above for the energy fluxes as we did for the CO2 fluxes,. Additionally, we removed 117 
data with inconsistent energy fluxes, i.e. when the residual of a robust linear regression between LE + H and Rn for each site 118 
was outside three-times the inter-quartile range of the residuals. 119 
2.1.2 Remote sensing data 120 
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We collected data from the Moderate Resolution Imaging Spectroradiometer (MODIS) which provided data at a spatial 121 
resolution of 1km or better (Justice et al., 2002). We used MODIS cutouts of 3×3 km pixels centered on each tower to reduce 122 
the effect of geolocation error and to better representing the eddy covariance footprint area (Xiao et al., 2008). We used the 123 
following products: MOD11A2 Land Surface Temperature (LST) (Wan et al., 2002); MOD13A2 Vegetation Index 124 
(Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), (Huete et al., 2002); MOD15A2 125 
Leaf Area Index (LAI) and fraction of Absorbed Photosynthetic Active Radiation (fPAR) (Myneni et al., 2002); MCD43A2 126 
and MCD43A4 Bidirectional Reflectance Distribution Function (BRDF) corrected surface reflectances (Schaaf et al., 2002). 127 
The BRDF-corrected surface reflectance data were further processed to calculate the Normalized Difference Water Index 128 
(NDWI) (Gao, 1996) and the Land Surface Water Index (LSWI) (Xiao et al., 2002). These data were obtained from 129 
http://daac.ornl.gov/MODIS/. 130 
The remote sensing data were further processed to improve data quality and data gaps were filled to create continuous time-131 
series data, and to minimize non-land surface signals In particular, we identified good quality pixels by the using the quality 132 
assurance/quality control (QA/QC) included in the MODIS product. If more than 25% of the pixels had good quality at the 133 
time of snapshot, the average of good quality pixels were assigned as the actual value. Otherwise, the data at the time 134 
snapshot were marked as blank (no data). Then, we created the mean seasonal variations from 2000-2012 using only good 135 
pixels data and the data gaps in the processed data were filled using the mean seasonal variation. Only MOD13 was provided 136 
with 16-day composites, and 8-day data were created by assigning the 16-day composite value to the corresponding two 8-137 
day periods. 138 
2.1.3 Meteorological data 139 
The air temperature (Tair), global radiation (Rg), vapor pressure deficit (VPD), and precipitation (in situ measured at the flux 140 
towers location) were used after data screening according to the criteria 1) and 2) as applied for the measured fluxes (see 141 
Sect. 2.1.2). We also used long-term time series of these variables from the dataset ERA-Interim (Dee et al., 2011) for the 142 
period 1989-2010, which were bias-corrected for each site based on the period of overlap with the in situ measurements (see 143 
http://www.bgc-jena.mpg.de/~MDIwork/meteo/). These long-term meteorological data were primarily used to calculate 144 
consistent metrics of climatological variables (e.g. mean annual temperature) for all sites given the temporal coverage of data 145 
of the different sites. In addition, we used a composite of these ERA-Interim data and in situ measured data to obtain a gap-146 
free time series for calculating a soil Water Availability Index (WAI, see Sect. 2.3.2 and supplementary material, Sect. S3). 147 
2.2 Applied ML methods 148 
For our purpose, eleven ML algorithms for regression from four broad families were chosen: tree-based methods, regression 149 
splines, neural networks and kernel methods. Moreover a comprehensive review of ML algorithms in biophysical parameter 150 
estimation can be found in Verrelst et al. (2015). At follow a brief description of the characteristics of each family. 151 
Tree based methods 152 
These methods construct hierarchical binary decision trees. The inner nodes of the tree hold decision rules according to 153 
explanatory variables (e.g. less/greater than X1), recursively splitting the data into subspaces. The leaf nodes at the end of 154 
the decision tree contain models for the response variable. Because a single tree is generally not effective enough to cope 155 
with strong non-linear multivariate relationships, ensembles of trees are often used. We applied two different tree ensemble 156 
methods: (1) Random Forests (RF) which combines regression trees grown from different bootstrap samples and randomly 157 
selected features at each split node (Breiman, 2001; Ho, 1998); and (2) Model Tree Ensembles (MTE) which combine model 158 
trees (Jung et al., 2009). The main difference between regression and model trees is the prediction model in the leaf node: a 159 
simple mean of the target values from the training in regression trees and a parametric function (here a multiple linear 160 
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regression) in model trees. In this study, we used three different variants of MTE, which differ mainly with respect to 161 
different cost functions for determining the splits, and the technique to create the ensemble of model trees. Further details are 162 
described in the supplementary material (Sect. S2). 163 
Regression splines 164 
Multivariate regression splines (MARS) are an extension of simple linear regression adapted to non-linear response surfaces 165 
using piecewise (local) functions. The target variable is predicted as the sum of regression splines and a constant value 166 
(Alonso Fernández, 2013; Friedman et al., 1991). 167 
Neural networks 168 
Neural networks are based on nonlinear and nonparametric regressions. Their base unit is the neuron, where nonlinear 169 
regression functions are applied. The neurons are interconnected and organized in layers. The output of m neurons in the 170 
current layer are the inputs for n neurons of the next layer. We used two types of neural networks: the artificial neural 171 
network (ANN) and the group method of data handling (GMDH). In an ANN, each neuron performs a linear regression 172 
followed by a non-linear function. Neurons of different layers are interconnected by weights that are adjusted during the 173 
training (Haykin et al., 1999; Papale et al., 2003). The GMDH is a self-organizing inductive method (Ungaro et al., 2005) 174 
building polynomials of polynomials; the neurons are pairwise connected through a quadratic polynomial to produce new 175 
neurons in the next layer (Shirmohammadi et al., 2015). 176 
Kernel methods 177 
Kernel methods (Shawe-Taylor and Cristianini, 2004; Camps-Valls and Bruzzone, 2009) owe their name to the use of kernel 178 
functions, which measure similarities between input data examples. Among the available kernel methods we used: (1) 179 
support vector regression (SVR) (Vapniket al., 1997), (2) kernel ridge regression (KRR) (Shawe-Taylor and Cristianini, 180 
2004), and (3) Gaussian process regression (GPR) (Rasmussen, 2006). The SVR defines a linear prediction model over 181 
mapped samples to a much higher dimensional space, which is non-linearly related to the original input (Yang et al., 2007). 182 
The KRR is considered as the kernel version of the regularized least squares linear regression (Shawe-Taylor and Cristianini, 183 
2004). The GPR is a probabilistic approximation to nonparametric kernel-based regression, and both a predictive mean 184 
(point-wise estimates) and predictive variance (error bars for the predictions) can be derived. We also used a hybrid 185 
approach combining RF with simple decision stumps in the inner nodes and GPR for prediction in the leaf nodes (Fröhlich et 186 
al., 2012). 187 
2.3 Experimental design 188 
2.3.1. Experiment setups 189 
We defined two complementary experimental setups, which differ in the choice of explanatory variables, and the temporal 190 
resolution of the target fluxes: 1) at 8-day temporal resolution using exclusively remote sensing data (hereafter RS); and 2) at 191 
daily temporal resolution using meteorological data together with the mean seasonal cycle (MSC) of the remote sensing data 192 
(hereafter RS+METEO). In the latter case, the MSC of remote sensing data were smoothed and interpolated to a daily time 193 
step. Each setup represents a trade-off between spatial and temporal resolution. While RS provides products with high spatial 194 
resolution for global upscaling (e.g. 1km), the temporal resolution is coarse (8-day vs. daily) and temporal coverage is 195 
limited to the period when satellite observation is available (e.g. 2000-present in the case of MODIS). The uncertainties of 196 
remote sensing data at tower locations, due to finer scale spatial heterogeneity, also degraded the performance of the ML 197 
methods. In contrast, RS+METEO takes advantage of information from meteorological variables and was resistant to the 198 
noise of remote sensing time series because only the mean seasonal cycle of data from satellite RS were used. RS+METEO 199 
also allowed for upscaled products over a longer time period (because not constrained by the availability of MODIS data) 200 



 6

and finer time scale (daily). Furthermore, the use of meteorological gridded datasets introduced uncertainty due to dataset 201 
specific biases and the coarser spatial resolution ( > 0.5 degrees or coarser). 202 
2.3.2. Variable selection 203 
Combining remote sensing and meteorological data (see Sect. 2.1.2 and 2.1.3) we created additional explanatory variables. 204 
In the case of RS+METEO setup we derived the Water Availability Index (WAI) based on a soil water balance model (for 205 
more details see supplementary material, Sect. S3) to represent water stress conditions appropriately. For both setups we 206 
derived proxies for absorbed radiation as the product between vegetation greenness (e.g. EVI, NDVI, fPAR) and drivers 207 
related to the useful energy for photosynthesis(e.g. daytime LST, Rg, and potential radiation). Other derived variables 208 
included the MSC of dynamic variables (e.g., LST, fPAR, Rg, air temperature) and associated metrics (minimum, maximum, 209 
amplitude, and mean). For remote sensing predictors, the MSC and associated metrics were based on the period 2001-2012, 210 
while for climate variables were based on the bias corrected daily long-term ERA-Interim data reference period (1989-2010). 211 
In total, 216 potential explanatory variables were created for RS and 231 for RS+METEO (see supplementary material S4 212 
for details). 213 
For each of the two experimental setups we selected a small subset of variables optimally suitable to predict target fluxes 214 
using a variable selection search algorithm. Variable selection was an important component in the spatial upscaling since it 215 
improved the accuracy of predictions, while the computational costs of the global predictions were minimized. We used the 216 
Guided Hybrid Genetic Algorithm (GHGA; Jung and Zscheischler, 2013), which was designed for variable selection 217 
problems with many candidate predictor variables and computationally expensive cost functions. The GHGA required the 218 
training of a regression algorithm (here RF) to estimate the cost associated with selected variable subsets. We executed 219 
GHGA selection runs for the RS and RS+METEO setups and separately for CO2 and energy fluxes (see S5 for details). All 220 
ML used exactly the same selected drivers (listed in Table 2) to made predictions. This procedure had the advantage that the 221 
resulting global products will be originated from a consistent set of predictor variables.  222 
2.3.3. Algorithm training 223 
The capability of ML methods to spatially extrapolate CO2 and energy fluxes was evaluated using a 10-fold cross-validation 224 
strategy. The training datasets were stratified into 10-folds, each containing ca. 10% of the data. Entire sites were assigned to 225 
each fold (Jung et al., 2011). The training of each ML method was done using data from nine folds while predictions were 226 
made for the remaining one. This was repeated 10 times and each fold was used exactly once as a validation set, thus 227 
ensuring that the validation data were completely independent from the training data. Due to the computational expense of 228 
the RS+METEO setup, only one method representing each “family” – RF, MARS, ANN and KRR – was trained. ML 229 
methods hyperparameters (that account for regularization in order to avoid overfitting as well as for the shape and 230 
smoothness constraints) (see supplementary material S6 for details), were estimated in each fold. 231 
2.3.4. Model evaluation 232 
To highlight the differences between the RS and RS+METEO setups, the daily output from RS+METEO were aggregated to 233 
8-day time steps; predictions from the same periods and sites were used for the comparison. Besides the statistical analysis of 234 
the individual ML cross-validation results, we focused on the ensemble median estimate, here defined as the median 235 
predicted value across all ML for a given setup and time step. We used a suite of metrics to evaluate the ML performance: 236 
the Nash and Sutcliffe model efficiency (MEF) (Nash and Sutcliffe, 1970); the root mean square error (RMSE); the 237 
empirical BIAS; the Pearson’s linear correlation coefficient (ρ); the coefficient of determination (R2); and the ratio of 238 
variance (ROV). 239 
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MEF is a measure of the capability of a model to estimate a target variable better than a reference, generally the mean value 240 
of the observations. In our study MEF was calculated as: 241 
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whereXi and Yi were the predicted and the observed values respectively and y  is the mean value of the observations. MEF 243 
varied between -inf to 1; in the case of MEF > 0 the predictive capacity of the model was better than the mean (MEF = 1 for 244 
the ideal model), instead if MEF=0 the predictive capacity of the model was equivalent to the mean, finally if MEF < 0, the 245 
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The BIAS was evaluated as the mean value of model’s residuals  249 
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Following Gupta et al. (2009) the importance of bias on the overall uncertainty was evaluated as the ratio between the square 251 
of BIAS and the Mean Square Error, the latter estimated as the square value of RMSE. 252 
The Pearson’s linear correlation coefficient (ρ) was the ratio between the covariance between the modeled and observed 253 
values (σxy) and the product of the standard deviation of modeled (σx) and observed (σy) values: 254 
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R2 was estimated as the squared value of ρ; finally ROV was evaluated as the ratio between predicted and observed standard 256 
deviation. 257 
We evaluated the overall predictive capacity and consistency of ML approaches—including the ML median estimate—by 258 
flux, by experimental setup and by site as well as grouped by Köppen climate zone and International Geosphere-Biosphere 259 
Programme (IGBP) plant functional types (PFT). In our evaluation we focused on site-specific means, the mean seasonal 260 
cycle (MSC), and anomalies (Jung et al., 2011). The MSC per site was calculated using the averaged values for each 8-day 261 
period across the years, but only when at least two values (i.e., years) for each 8-day period were available. To assess the 262 
mean values of the study sites, we calculated the mean of the MSC if at least 50% of the 46 8-day values were present, 263 
whereas the 8-day anomalies were calculated as the deviation of a flux value from the MSC. Finally, the mean site values 264 
were removed from the MSC to disentangle the seasonal variation from the mean site values, making them as 265 
complementary. 266 

3. Results 267 
3.1 Machine learning performance across fluxes 268 
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Prediction capability of the ensemble median estimate clustered into tiers whereby energy fluxes were better predicted than 269 
CO2 fluxes: Rn > H/LE/GPP > TER > NEE (Table 3 and Table A1). The highest predictive capacity levels as exhibited by 270 
net radiation showed near perfect agreement; Rn displayed a model efficiency (MEF) of 0.91-0.92 and a correlation of 0.96. 271 
The decline in predictive capacity for the second tier fluxes was ca. 15% to 20%; MEF for H, LE, and GPP is 0.79, 0.75-0.76, 272 
and 0.71 respectively. The lowest two tiers exhibited 20% and 40% declines in MEF (0.57-0.64 and 0.43-0.46 for TER and 273 
NEE respectively). These relative rankings, consistent with previous studies (Jung et al., 2011; Yuan et al., 2010), were 274 
unchanged regardless the metric of the predictive capacity used in cross-validation—apart from RMSE where the difference 275 
in fluxes units and magnitude, confounded a direct comparison (Table 3). 276 
There were only minor performance differences between the two CO2 fluxes partitioning methods (Table 3), although for the 277 
RS setup, the performance of TERL were slightly lower than TERR (lower MEF, ρ and ROV). However, a similar pattern 278 
was not found in RS+METEO setup. 279 
Accuracy metrics of median ensemble were similar, by flux, for both RS and RS+METEO approaches, showing that the 280 
spatiotemporal variability of remotely sensed land surface properties are appropriate to predict the top tier fluxes (Rn, H, LE, 281 
and GPP) (Jung et al., 2008; Tramontana et al., 2015; Xiao et al., 2010;.Yang et al., 2007). We found some minor differences 282 
for those fluxes which showed lower overall predictive capacity levels, in particular the NEE and TERL (Fig. 1, Table 3). 283 
MEF and correlation values were slightly larger for RS than RS+METEO but the differences in performances might be due 284 
to a different ensemble size, with the RS median ensemble composed of 11 MLs, whereas RS+METEO was based on only 285 
four. However, the output provided by MLs methods showed high overall consistency among them, that increased when 286 
predictions were obtained by different MLs trained with the same experimental setup (RS else RS+METEO; for more details 287 
see Appendix B and Table B1). 288 
3.2 Capability to predict the across site variability, the mean seasonal cycle and the deviations from it. 289 
Decomposing FLUXNET data into across-site variability, mean seasonal cycle, and interannual variability components (Sect. 290 
2.3.4) revealed clear gradients in predictive capacity (Table 4 and Fig. 2, Fig. 3a and 3b). Across-site variability was in 291 
general well-captured by the ML (R2 range: 0.61 to 0.81 except for NEE), suggesting that the ML methods are suitable to 292 
reproduce the spatial pattern of the mean annual fluxes. The variability in the mean seasonal cycle (at 8-day time scale) was 293 
also uniformly well predicted, in particular for LE and Rn (R2 between 0.67-0.77 for GPP and TER, and between 0.86-0.98 294 
for the energy fluxes). In contrast, the 8-day anomalies variability were generally poorly captured by all the ML approaches 295 
with only H and Rn showing an R2 greater than 0.4. This low predictive skill was regardless of whether 8-day, monthly 296 
(Jung et al., 2011), or annual time steps were used (data not shown) and predicting interannual variability remains one of the 297 
largest challenges in the context of the empirical upscaling. NEE was confirmed to be the poorest predicted flux (Table 3). 298 
ML showed considerably lower predictive capability for NEE, by comparison with the other fluxes for across-sites 299 
variability (R2 = 0.46), the mean seasonal cycle (R2 = 0.59), and interannual variability (R2 = 0.13, TERL was the lowest at 300 
0.10). 301 
3.3 Models performance for different climate zones and ecosystem types. 302 
Climate zone and plant functional type (PFT) are important discriminating factor for ML predictive capacity for CO2 fluxes. 303 
In general, the mixed forest (MF), the deciduous broadleaved forest (DBF) and the boreal sites (Bor) showed higher 304 
accuracy of prediction for the median ensembles (Fig. 4, Tables C1-C6 in Appendix C), even for NEE (R2> 0.6). In contrast, 305 
relatively poor prediction capability was found in evergreen broadleaved forest (EBF), in the tropics (Trop), in the extreme 306 
environments for reduced water resource (Dry) or low temperature (Cold), and in managed sites such as croplands (Crop). 307 
This gradient largely reflects the mismatch between the seasonal dynamics of predicted fluxes and the models drivers. The 308 
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absence of a clear seasonal cycle in evergreen broadleaf forest and in the tropical sites likely contributed to the low ML 309 
performance (in general) in these ecosystems (Sims et al., 2008; Yebra et al., 2015; Yuan et al., 2010). Similarly, cold and 310 
dry sites are characterized by both low magnitude and low variance of fluxes, making it difficult to explain the fluxes 311 
variability in these ecosystems types using empirical methods. For the intensively managed croplands the seasonal dynamics 312 
of fluxes were highly constrained by management practices (e.g. irrigation, fertilization, tillage) which is not directly 313 
reflected in the explanatory variables used in training. 314 
The gradient of prediction capability in different PFT and climate zone was less evident in the case of energy fluxes (not 315 
significant in the case of Rn) and the performance of ML were generally good. In fact the median R2 between simulations 316 
and observations were greater than 0.7 for more than the 85% of the PFT and climate zone (in all sites for Rn). For 317 
comparison in the case of GPP and TER, the median R2 between simulations and observations were greater than 0.6 for more 318 
than 75% of the PFT and climate zone. 319 
4. Discussion 320 
4.1 Comparison between experimental setups 321 
In general the performance metrics across the two experimental setups were highly similar. Very few differences were found 322 
decomposing the fluxes variability into across-site variability, mean seasonal cycle, and interannual variability components. 323 
This suggests that CO2 and energy fluxes can be mapped exclusively with remotely sensed inputs allowing for high-spatial 324 
resolution products without additional uncertainty introduced by gridded meteorological data products (Tramontana et al., 325 
2015). However, differences between the two experimental setups are apparent at PFT and climate zone scales, particularly 326 
in the EBF PFT and in the tropics where RS+METEO performs better than RS for predicting CO2 fluxes (e.g. in 327 
RS+METEO the decrease in RMSE was 0.10-0.68 gCm-2d-1 in comparison to RS). This might be due, from one side to the 328 
pattern of CO2 fluxes that do not follow the seasonal pattern of the vegetation indices, from the other side to the increasing 329 
importance of meteorological drivers, in particular the ones accounting for the water stress/limitation (e.g. VPD or WAI). In 330 
addition, the larger sample size due to the daily resolution of the RS+METEO setup might have been beneficial. The RS 331 
setup might also suffer from poorer quality of remote sensing data in the tropics due to frequent cloud coverage. At cropland 332 
sites the RS has better predictive capacity than RS+METEO (in comparison to RS, RMSE of RS+METEO increase of 0.02-333 
0.67 gCm-2d-1 for predicting CO2 fluxes). This could be related to management (e.g. sowing and harvesting dates) which are 334 
partly captured by RS but not by RS+METEO which uses only the mean seasonal cycle of VI reflecting also the better 335 
performance of RS for predicting anomalies in the case of CRO, (although in general results for anomalies were not good, 336 
data not shown). 337 
Another distinguishing element between RS and RS+METEO is the degree of uncertainty of the drivers. At the site level 338 
meteorological drivers (used only in RS+METEO) are generally measured with good quality while remote sensing data are 339 
generally affected by additional uncertainties. Scale mismatch between FLUXNET eddy covariance towers and satellite 340 
sensor footprints as well as satellite sensors limitations are important sources of uncertainty, not present in the in situ 341 
measured meteorological drivers. Furthermore, the quality of remote sensing data is affected by external factors such as the 342 
atmospheric condition, cloud cover and ground surface state. These issues were minimized in the RS+METEO by using only 343 
the smoothed mean seasonal cycle of satellite data which contains much less noise. We had expected that this would improve 344 
the performance of predicting anomalies (in general) with the RS+METEO setup, because anomalies area comparatively 345 
small signals that could be readily distorted by the comparatively large noise in remote sensing data. However, we found no 346 
clear indication for that in the cross-validation results. 347 
4.2 Completeness of predictors 348 
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Certainly, the predictor variables used for the ML approaches do not capture all drivers of flux variability both across sites 349 
and temporally. For example, in managed sites, external factors such management practices and disturbances (Amiro et al., 350 
2010; Thornton et al., 2002) are likely crucial. In addition, direct estimates of soil moisture would improve the prediction 351 
capability in dry environments. The absence of important drivers of flux variability in the predictor sets likely explains why 352 
NEE and TER is less well predicted compared to GPP. First order constraints of GPP such as radiation, temperature, and 353 
canopy properties are accounted for in the predictors. For TER some important factors like soil properties and carbon pools 354 
(Amiro et al., 2010) are not well presented in the predictor variables. For NEE, several studies have shown its dependence on 355 
long-term lag and memory effects (Bell et al., 2012; Frank et al., 2015, Papale et al., 2015; Paruelo et al., 2005) that are not 356 
accounted for by the drivers used in this study. Adding targeted variables (e.g. soil carbon stock, turnover of the soil organic 357 
matter, lagged drivers) among the candidate predictors and carrying out the driver selection for each CO2 flux specifically, 358 
could improve the ML performance for each flux. At the same time it could be a detriment for the spatial upscaling of CO2 359 
fluxes generating less consistent global products with plausible bad effects on CO2 uptake/release balance closure over the 360 
land ecosystems. Moreover, the choice of predictor variables for the ML approaches is limited in practical terms by the 361 
availability of consistent observations across all sites on the one hand, and on the availability of a corresponding consistent 362 
global gridded product for upscaling. Therefore, continued efforts of metadata collection at the sites in conjunction with 363 
large scale inventories and new Earth Observations are needed to improve the ML approach in the future. 364 
4.3 Quality of the response variable 365 
The predictive capacity of ML approaches also depends on the uncertainties of the flux variables themselves. Clearly, there 366 
is some variability in the target flux variables which is due to noise and measurement problems, and this portion of 367 
variability cannot (and should not!) be reproduced by the ML approaches. Interestingly, we obtained the best results for Rn 368 
and H which have lower measurement uncertainties than all other target fluxes. For example, for H only one sensor, the 369 
sonic anemometer, is used while other measured fluxes (LE and NEE) two sensors, a sonic anemometer and a CO2/H2O trace 370 
gas analyser, are needed. GPP and TER estimates are additionally subject to uncertainties of the flux partitioning methods, 371 
and this might explain why LE as a direct measurement was better predicted than GPP. Random uncertainties of the fluxes is 372 
likely not a big issue because averaging at daily and 8-day time steps (as in this study) greatly reduces the random error 373 
(Hollinger and Richardson, 2005). Instead we hypothesize that site specific systematic uncertainties in the eddy covariance 374 
estimations (e.g. due to presence of strong advection not corrected by the standard methods) could play an important role 375 
because ML methods were trained across sites distributing uncertainties among them. Systematic uncertainties could also 376 
reduce the sensitivity of the models on the small signal explaining the comparatively poor predictive skill of ML for 377 
anomalies of eddy co-variance fluxes. We also hypothesize that the general tendency of better predictability of energy fluxes 378 
compared to carbon fluxes is at least partly related to their differences in data quality. To test these hypothesis improved 379 
ways of detecting and characterizing systematic uncertainties in eddy co-variance data are needed. 380 
Another common issue with eddy covariance data is the gaps generated by the data exclusion rules. Data exclusion strike 381 
strongly the nighttime period (primarily for the low turbulence condition) affecting the representativeness of the diurnal 382 
cycle, hence the quality of the averaged daily/eight days eddy-covariance fluxes, in particular CO2,. To reduce the risk biased 383 
estimates half hourly data gaps are filled by models. In our study NEE data were gap filled using site-specific empirical 384 
relationships between meteorological data and net CO2 ecosystem exchange (the MDS method, Reichstein et al., 2005) that 385 
produce small biases when short gaps were encountered (Moffat et al., 2007). This has a limited effect in this study as only a 386 
very small percentage of high quality gap filled data are used. We also minimize the bias in estimates of gross CO2 fluxes 387 
(GPP and TER) by using two different partitioning methods which yield very consistent results. 388 
4.4 Data quantity and representativeness 389 
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The mismatch between prediction and eddy-covariance estimation were also influenced by data representativeness. 390 
FLUXNET sites are not uniformly distributed over the globe and not all climates and PFTs are well represented. Very few 391 
sites are currently distributed in tropical forest, and data availability over the record is fragmented. Similarly, very few sites 392 
are located in the poorly predicted extreme environments, e.g., cold and dry climates. There was a clear pattern in our cross-393 
validation results where more accurate predictions were obtained for the better represented vegetation types and climates (e.g. 394 
temperate and boreal forests). Therefore increasing the number of study sites in less represented environments (e.g. the 395 
tropics and in the extreme climates), could improve the prediction by ML and models in general (Papale et al. 2015). 396 
Data representativeness has also a temporal aspect. For example, remote sensing data discarded due to low quality occurs 397 
preferentially in the cold or wet season—due to snow, ice or cloud cover—by comparison with other seasonal periods. 398 

5. Conclusions 399 
The ML methods presented and evaluated in this study have shown high capability to predict CO2 and energy fluxes, in 400 
particular the across site variability and the mean seasonal cycle, with a general tendency of increasing performance in the 401 
following order: NEE, TER, GPP, LE, H, and Rn. The relatively poor performance for NEE likely resulted from factors that 402 
cannot be easily accounted for in ML-based approaches, such as legacies of site history (e.g., disturbances, management, age, 403 
and stocks). Future progress in this direction requires the reconstruction of the relevant management and disturbance history 404 
and the integration of information from forest inventories, high resolution satellites such as LANDSAT, and high resolution 405 
biomass data from radar and LIDAR. We found no substantial bias in the predictions of the ML approaches for most 406 
vegetation types or biomes. However, there is less consistency with observations for evergreen broadleaf forests, croplands, 407 
the tropics, and extreme climates. The growing number of eddy covariance sites, in particular new sites in poorly represented 408 
regions, will improve the predictive capacity of ML methods in the future. This is particularly so for the tropics which 409 
account for a disproportionate share of global terrestrial water and carbon fluxes (Beer et al., 2010). 410 
The predictions for ecosystem fluxes across FLUXNET by different explanatory variable sets (RS vs RS+METEO) were 411 
highly consistent, indicating that the extracted patterns by the trained models were robust, realistic and not subject to 412 
overfitting. We recommend using the ensemble median estimate for generating global flux products as extrapolation beyond 413 
the FLUXNET-sampled conditions may generate large differences among methods. 414 
The ML based models presented and extensively evaluated here form the basis of an extensive archive of global gridded flux 415 
products, which is currently under development. The thorough cross-validation experiment presented in this paper helps 416 
users understand the products’ strengths and weaknesses. The overall high skill of the ML methods, the planned archival of 417 
their ensemble median, and the detailed analysis of their uncertainties will make this product a sought-after data stream to 418 
study the global land-atmosphere exchange of CO2, water and energy. 419 

Appendix A: Median performance of the methods. 420 
In table A1 we reported, for both setups, the median value of predictive capacity metrics (MEF, RMSE, and absolute value 421 
of BIAS) realized across singular ML and their standard deviation estimated as reported in Jung et al., (2009). 422 
Appendix B: Consistency among ML algorithms 423 
Pair-wise R2 values among model outputs (Table B1) were close to unity (R2 ≥ 0.90), regardless of experimental setup, with 424 
NEE showing a slightly lower value (R2 = 0.84). Among corresponding model residuals (Table B1), R2 values ranged from 425 
0.79 (Rn) to 0.89 (TERL). Comparing the same ML technique but using different experimental setups (Table B1, RS vs. 426 
RS+METEO) showed similarly high, albeit somewhat diminished level of consistency (R2 range ranged from 0.71 to 0.80 427 
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for model residuals). These results highlighted that the ML methods were mapping between explanatory variables and target 428 
fluxes both reliably and robustly. Across the all three consistency checks there was also a tendency for better predicted 429 
fluxes (e.g., H) to exhibit higher pair-wise R2 values than poorly predicted fluxes (e.g., NEE). 430 

Appendix C Median value of site-by-site performance per vegetation and climate type. 431 
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Table 1. Distribution of flux tower sites across plant functional types (PFT) and climate zones. 648 
PFT N° of sites Climate zone N° of sites 
Evergreen needleleaf forest 66 Temperate 111 
Grassland 38 Subtropical - Mediterranean 47 
Cropland 27 Boreal 34 
Deciduous broadleaf forest 24 Tropical 14 
Evergreen broadleaf forest 19 Dry 13 
Wetland 17 Artic 5 
Shrubland 12   
Mixed forest 11   
Savannah 10   649 



 19

Table 2. Selected predictors for both setup for CO2 fluxes (GPP, TER and NEE) and energy fluxes (H, LE and Rn). List of acronyms: 650 
Enhanced Vegetation Index (EVI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), Leaf Area Index (LAI), daytime 651 
Land Surface Temperature (LSTDay) and nighttime Land Surface Temperature (LSTNight), Middle Infrared Reflectance (band 7) (MIR(1)), 652 
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Plant Functional Type (PFT), incoming 653 
global Radiation (Rg), top of atmosphere potential Radiation (Rpot), Index of Water Availability (IWA), Relative humidity (Rh), Water 654 
Availability Index lower (WAIL), and upper (WAIU) (for details see supplementary material, Sect. S3), Mean Seasonal Cycle (MSC). The 655 
product between A and B (AxB) is shown as (A, B). 656 
Setup Type of variability CO2fluxes Energy fluxes 
RS Spatial PFT PFT 

Amplitude of MSC of EVI Maximum of MSC of (fAPAR, 
Rg) 

Amplitude of MSC of MIR(1) Minimum of MSC of Rg 
Maximum of MSC of LSTDay  

Spatial & Seasonal MSC LAI MSC of (EVI, LSTDay)  Rpot 
Spatial, Seasonal & 
Interannual 

NDWI Rg 
LSTDay LSTDay LSTNight Anomalies of LSTNight (NDVI, Rg) Anomalies of (EVI, LSTDay) RS+METEO Spatial PFT PFT 
Amplitude of MSC of NDVI  Maximum of MSC of WAIU 
Amplitude of MSC of band 4 
BRDF reflectance(2) 

Mean of MSC of band 6 BRDF 
reflectance(2) 

Minimum of MSC of NDWI Max of MSC of (fPAR, Rg) 
Amplitude of MSC of WAIL  

Spatial & Seasonal MSC of LSTNight Rpot 
MSC of (fPAR, LSTDay) MSC of NDWI 
MSC of (EVI, Rpot) MSC of LSTNight  MSC of (EVI, Rg) 

Spatial & Seasonal & 
Interannual 

Tair Rain 
(Rg, MSC of NDVI) Rg 
WAIL Rh 

    (MSC of NDVI, Rg, IWA) 
(1)derived from the MOD13 product; (2) derived from MCD43 product. 657 

658 
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Table 3.Statistics of the accuracy of predictions of CO2 and energy fluxes made by the ensemble median estimate based on RS and 659 
RS+METEO. For RMSE and BIAS, the reference units were gCm-2d-1 and MJm-2d-1 for CO2 fluxes (GPP, TER and NEE) and energy 660 
fluxes (H, LE and Rn) respectively. 661 

Flux RS RS+METEO 
MEF RMSE ρ ROV BIAS MEF RMSE ρ ROV BIAS 

GPPR 0.71 1.56 0.85 0.69 -0.02 0.70 1.59 0.84 0.73 0.09 
GPPL 0.71 1.53 0.84 0.68 -0.02 0.71 1.54 0.84 0.74 0.09 
TERR 0.64 1.14 0.80 0.61 -0.01 0.64 1.15 0.80 0.69 0.09 
TERL 0.60 1.18 0.77 0.56 -0.01 0.63 1.14 0.79 0.66 0.08 
NEE 0.46 1.24 0.68 0.39 0.04 0.43 1.28 0.65 0.40 -0.02 

H 0.79 1.36 0.89 0.71 -0.02 0.79 1.37 0.89 0.75 0.02 
LE 0.76 1.37 0.87 0.71 -0.07 0.75 1.39 0.87 0.73 -0.01 
Rn 0.92 1.51 0.96 0.90 -0.01 0.91 1.55 0.96 0.93 0.08 

 662 663 
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Table 4: R2 and RMSE for the comparison across sites, mean seasonal cycle and anomalies. The last two columns showed the 664 
consistency between the median estimates of the two setups. For RMSE, the reference units were gCm-2d-1 and MJm-2d-1for CO2 665 
fluxes (GPP, TER and NEE) and energy fluxes (H, LE and Rn) respectively. 666 

Fluxes RS vs. OBS RS+METEO vs. OBS RS vs. RS+METEO 
R2 RMSE R2 RMSE R2 RMSE 

Across site variability 
GPPR 0.78 0.80 0.77 0.82 0.95 0.34 
GPPL 0.78 0.77 0.79 0.75 0.94 0.36 
TERR 0.68 0.73 0.61 0.81 0.92 0.32 
TERL 0.72 0.60 0.71 0.61 0.92 0.27 
NEE 0.48 0.61 0.46 0.61 0.83 0.22 

H 0.81 0.68 0.81 0.68 0.97 0.25 
LE 0.79 0.74 0.75 0.80 0.93 0.33 
Rn 0.80 0.93 0.79 0.96 0.96 0.38 

Mean seasonal cycle 
GPPR 0.76 1.03 0.77 1.02 0.93 0.48 
GPPL 0.77 1.00 0.77 0.99 0.93 0.50 
TERR 0.71 0.62 0.71 0.62 0.92 0.29 
TERL 0.67 0.64 0.68 0.63 0.92 0.29 
NEE 0.61 0.83 0.59 0.84 0.93 0.24 

H 0.86 0.89 0.86 0.87 0.97 0.36 
LE 0.87 0.79 0.87 0.79 0.95 0.45 
Rn 0.98 0.74 0.98 0.74 0.99 0.43 

Anomalies 
GPPR 0.18 0.67 0.12 0.68 0.38 0.32 
GPPL 0.16 0.67 0.11 0.68 0.37 0.31 
TERR 0.14 0.48 0.15 0.48 0.36 0.17 
TERL 0.10 0.58 0.13 0.57 0.35 0.18 
NEE 0.13 0.56 0.13 0.55 0.43 0.20 

H 0.43 0.81 0.41 0.81 0.77 0.34 
LE 0.21 0.78 0.21 0.77 0.46 0.32 
Rn 0.57 0.81 0.54 0.83 0.84 0.41 

 667 668 
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Table A1: Accuracy of CO2 and energy fluxes predicted by machine learning method based on RS and RS+METEO setup. The median 669 
value and the standard deviation across methods (in brackets and estimated as reported in Jung et al., 2009) are shown. 670 

FLUXES RS RS+METEO 
MEF RMSE Abs BIAS MEF RMSE Abs BIAS 

GPP 0.698 (±0.012) 1.604 (±0.033) 0.022 (±0.019) 0.694 (±0.012) 1.614 (±0.032) 0.073 (±0.011) 
GPPHB 0.700 (±0.009) 1.564 (±0.024) 0.023 (±0.024) 0.701 (±0.008) 1.561 (±0.020) 0.083 (±0.011) 
TER 0.612 (±0.022) 1.183 (±0.033) 0.026 (±0.025) 0.623 (±0.005) 1.166 (±0.008) 0.089 (±0.033) 

TERHB 0.571 (±0.016) 1.218 (±0.023) 0.019 (±0.017) 0.609 (±0.001) 1.163 (±0.002) 0.079 (±0.017) 
NEE 0.433 (±0.017) 1.270 (±0.019) 0.024 (±0.021) 0.407 (±0.029) 1.298 (±0.032) 0.014 (±0.003) 

H 0.767 (±0.015) 1.426 (±0.047) 0.014 (±0.005) 0.776 (±0.008) 1.397 (±0.025) 0.022 (±0.009) 
LE 0.739 (±0.015) 1.418 (±0.042) 0.052 (±0.046) 0.734 (±0.003) 1.434 (±0.009) 0.023 (±0.008) 
Rn 0.909 (±0.009) 1.589 (±0.082) 0.030 (±0.025) 0.908 (±0.008) 1.600 (±0.070) 0.073 (±0.015) 

 671 
  672 
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Table B1: Mean values of the determination coefficient (R2) by the pair-wise comparison of the models output and their residuals. 673 
We compared different ML and same drivers (RS and RS+METEO respectively) or the same ML and different drivers (RS vs 674 
RS+METEO). Numbers in brackets were the standard deviation of R2. All correlations were statistically significant (p < 0.001). 675 

Fluxes 
Correlation among models output Correlation among models residuals 
RS RS+METEO RS vs 

RS+METEO RS RS+METEO RS vs 
RS+METEO 

GPPR 0.95 (0.02)   0.95 (0.02)   0.89 (0.02)   0.88 (0.04)   0.87 (0.04)   0.74 (0.04)  
GPPL 0.95 (0.02)   0.94 (0.02)   0.88 (0.02)   0.88 (0.04)   0.86 (0.04)   0.72 (0.04)  
TERR 0.91 (0.03)   0.94 (0.03)   0.86 (0.04)   0.86 (0.05)   0.88 (0.05)   0.75 (0.06)  
TERL 0.92 (0.03)   0.93 (0.03)   0.85 (0.03)   0.89 (0.04)   0.88 (0.05)   0.77 (0.05)  
NEE 0.84 (0.06)   0.84 (0.07)   0.75 (0.08)   0.88 (0.05)   0.87 (0.06)   0.80 (0.06)  
H 0.94 (0.02)   0.96 (0.02)   0.93 (0.03)   0.80 (0.06)   0.87 (0.05)   0.76 (0.08)  
LE 0.94 (0.02)   0.96 (0.01)   0.90 (0.02)   0.83 (0.05)   0.88 (0.04)   0.73 (0.04)  
Rn 0.98 (0.01)   0.99 (0.00)   0.97 (0.01)   0.79 (0.08)   0.86 (0.03)   0.71 (0.12)  

 676 
 677 
 678 
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Table C1. Median site-by-site R2 and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the CO2 fluxes, per PFT and climate zones. List of acronyms: ENF, was evergreen 679 
needleleaf forest; DBF, deciduous broadleaf forest; EBF, Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, Tropical; 680 
SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and polar environment or covered by ice.  681 

CAT GPPR GPPL TERR TERL NEE  
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 0.87 (0.10) 0.86 (0.10) 0.85 (0.12) 0.86 (0.12) 0.81 (0.15) 0.85 (0.11) 0.75 (0.24) 0.76 (0.20) 0.50 (0.34) 0.55 (0.30) 
DBF 0.89 (0.07) 0.87 (0.09) 0.87 (0.07) 0.88 (0.08) 0.81 (0.12) 0.83 (0.13) 0.76 (0.14) 0.76 (0.14) 0.72 (0.16) 0.68 (0.17) 
EBF 0.50 (0.29) 0.48 (0.20) 0.48 (0.29) 0.44 (0.28) 0.34 (0.34) 0.49 (0.35) 0.15 (0.18) 0.29 (0.20) 0.26 (0.23) 0.24 (0.26) 
MF 0.91 (0.06) 0.95 (0.02) 0.91 (0.03) 0.95 (0.04) 0.85 (0.10) 0.90 (0.07) 0.84 (0.10) 0.86 (0.15) 0.73 (0.10) 0.75 (0.09) 
SHR 0.67 (0.30) 0.71 (0.28) 0.67 (0.36) 0.72 (0.23) 0.80 (0.13) 0.78 (0.24) 0.68 (0.18) 0.66 (0.38) 0.37 (0.38) 0.41 (0.31) 
SAV 0.75 (0.13) 0.70 (0.13) 0.72 (0.05) 0.67 (0.17) 0.65 (0.07) 0.72 (0.11) 0.55 (0.16) 0.61 (0.10) 0.38 (0.20) 0.34 (0.29) 
GRA 0.69 (0.27) 0.62 (0.33) 0.69 (0.25) 0.60 (0.32) 0.70 (0.25) 0.73 (0.25) 0.66 (0.20) 0.72 (0.21) 0.40 (0.29) 0.36 (0.30) 
CRO 0.58 (0.41) 0.44 (0.36) 0.56 (0.41) 0.45 (0.31) 0.78 (0.17) 0.76 (0.15) 0.68 (0.22) 0.65 (0.23) 0.35 (0.46) 0.33 (0.43) 
WET 0.87 (0.11) 0.91 (0.07) 0.85 (0.12) 0.87 (0.09) 0.78 (0.19) 0.83 (0.14) 0.65 (0.17) 0.74 (0.20) 0.64 (0.16) 0.61 (0.24) 
Trop 0.32 (0.46) 0.40 (0.39) 0.63 (0.23) 0.31 (0.32) 0.25 (0.23) 0.34 (0.47) 0.11 (0.13) 0.26 (0.14) 0.28 (0.35) 0.21 (0.30) 
SubTrop 0.64 (0.26) 0.66 (0.28) 0.65 (0.26) 0.65 (0.24) 0.64 (0.25) 0.66 (0.26) 0.52 (0.24) 0.55 (0.28) 0.39 (0.37) 0.39 (0.26) 
Dry 0.47 (0.27) 0.40 (0.33) 0.50 (0.25) 0.38 (0.30) 0.62 (0.25) 0.62 (0.38) 0.55 (0.19) 0.55 (0.39) 0.21 (0.29) 0.11 (0.14) 
Tmp 0.81 (0.19) 0.74 (0.24) 0.83 (0.14) 0.78 (0.22) 0.78 (0.13) 0.77 (0.18) 0.68 (0.20) 0.72 (0.17) 0.56 (0.28) 0.47 (0.34) 
TmpCont 0.86 (0.09) 0.82 (0.16) 0.84 (0.11) 0.80 (0.17) 0.81 (0.12) 0.78 (0.14) 0.75 (0.17) 0.76 (0.15) 0.54 (0.42) 0.53 (0.36) 
Bor 0.90 (0.07) 0.90 (0.07) 0.92 (0.06) 0.89 (0.07) 0.90 (0.05) 0.91 (0.04) 0.86 (0.08) 0.89 (0.06) 0.59 (0.31) 0.59 (0.25) 
Cold 0.56 (0.57) 0.50 (0.56) 0.49 (0.62) 0.46 (0.59) 0.84 (0.20) 0.86 (0.13) 0.50 (0.38) 0.55 (0.23) 0.47 (0.56) 0.45 (0.57) 

682 
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Table C2. Median site-by-site RMSE and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the CO2 fluxes per PFT and climate zones. List of acronyms: ENF, was 683 
evergreen needleleaf forest; DBF, deciduous broadleaf forest; EBF, Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, 684 
Tropical; SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and polar environment or covered by ice. 685 

CAT GPPR (gCm-2d-1) GPPL (gCm-2d-1) TERR (gCm-2d-1) TERL (gCm-2d-1) NEE (gCm-2d-1) 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 1.05 (0.60) 1.12 (0.60) 1.04 (0.59) 1.14 (0.66) 0.82 (0.50) 0.80 (0.52) 0.87 (0.60) 0.91 (0.68) 0.87 (0.51) 0.86 (0.53) 
DBF 1.21 (0.78) 1.35 (0.59) 1.17 (0.68) 1.36 (0.62) 0.68 (0.26) 0.76 (0.33) 0.76 (0.33) 0.93 (0.44) 1.28 (0.39) 1.28 (0.39) 
EBF 1.70 (0.55) 1.64 (0.85) 1.65 (0.70) 1.46 (0.51) 1.23 (0.69) 1.48 (0.85) 1.88 (1.23) 1.71 (0.73) 1.15 (0.48) 1.15 (0.45) 
MF 0.87 (0.17) 0.76 (0.45) 0.89 (0.27) 0.97 (0.56) 0.65 (0.18) 0.73 (0.42) 0.79 (0.14) 0.79 (0.18) 0.91 (0.47) 0.81 (0.29) 
SHR 0.73 (0.47) 0.78 (0.46) 0.69 (0.44) 0.77 (0.37) 0.50 (0.33) 0.70 (0.41) 0.50 (0.34) 0.55 (0.36) 0.57 (0.31) 0.52 (0.15) 
SAV 0.83 (0.44) 0.81 (0.18) 0.87 (0.45) 0.84 (0.18) 0.80 (0.53) 0.68 (0.41) 0.86 (0.55) 0.77 (0.38) 0.71 (0.36) 0.69 (0.31) 
GRA 1.22 (0.64) 1.22 (0.60) 1.18 (0.68) 1.20 (0.62) 1.00 (0.48) 1.01 (0.54) 0.99 (0.58) 0.95 (0.52) 0.76 (0.61) 0.85 (0.49) 
CRO 1.69 (1.38) 2.30 (1.02) 1.57 (1.42) 2.24 (1.10) 0.87 (0.46) 0.90 (0.57) 0.80 (0.51) 0.98 (0.57) 1.42 (0.90) 1.44 (0.70) 
WET 1.04 (0.95) 0.93 (0.77) 1.03 (0.96) 0.78 (0.53) 1.04 (0.87) 0.98 (0.82) 1.07 (0.51) 1.02 (0.51) 0.46 (0.19) 0.64 (0.26) 
Trop 1.93 (0.46) 1.74 (1.01) 2.24 (0.62) 1.56 (0.78) 2.07 (0.69) 1.55 (0.87) 2.47 (0.74) 2.05 (0.43) 1.28 (0.29) 1.17 (0.46) 
SubTrop 1.37 (0.55) 1.40 (0.61) 1.37 (0.56) 1.38 (0.57) 1.03 (0.46) 1.00 (0.41) 1.08 (0.36) 1.11 (0.40) 1.13 (0.63) 1.15 (0.62) 
Dry 0.60 (0.24) 0.78 (0.36) 0.63 (0.16) 0.74 (0.30) 0.49 (0.10) 0.54 (0.20) 0.58 (0.26) 0.67 (0.32) 0.41 (0.13) 0.46 (0.15) 
Tmp 1.73 (1.02) 1.82 (0.99) 1.73 (0.98) 1.71 (1.03) 1.09 (0.54) 1.17 (0.67) 1.24 (0.57) 1.31 (0.59) 1.43 (0.59) 1.40 (0.61) 
TmpCont 1.01 (0.42) 1.29 (0.59) 1.00 (0.45) 1.26 (0.57) 0.71 (0.30) 0.75 (0.38) 0.74 (0.31) 0.79 (0.34) 0.95 (0.39) 1.02 (0.43) 
Bor 0.66 (0.27) 0.70 (0.36) 0.66 (0.27) 0.67 (0.33) 0.48 (0.27) 0.47 (0.27) 0.48 (0.16) 0.45 (0.21) 0.50 (0.32) 0.48 (0.22) 
Cold 0.44 (0.04) 0.58 (0.42) 0.51 (0.24) 0.46 (0.32) 0.41 (0.06) 0.23 (0.06) 0.57 (0.16) 0.29 (0.12) 0.51 (0.21) 0.54 (0.35) 

686 
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Table C3. Median site-by-site absolute bias and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the CO2 fluxes per PFT and climate zones. List of acronyms: ENF, was 687 
evergreen needleleaf forest; DBF, deciduous broadleaf forest; EBF, Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, 688 
Tropical; SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and polar environment or covered by ice. 689 

CAT GPPR (gCm-2d-1) GPPL (gCm-2d-1) TERR (gCm-2d-1) TERL (gCm-2d-1) NEE (gCm-2d-1) 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 0.53 (0.46) 0.54 (0.56) 0.45 (0.42) 0.48 (0.50) 0.47 (0.47) 0.50 (0.54) 0.42 (0.40) 0.41 (0.43) 0.39 (0.44) 0.32 (0.36) 
DBF 0.43 (0.38) 0.56 (0.59) 0.42 (0.36) 0.50 (0.52) 0.29 (0.32) 0.35 (0.35) 0.39 (0.33) 0.42 (0.34) 0.60 (0.28) 0.55 (0.30) 
EBF 0.82 (0.91) 0.77 (0.50) 0.75 (0.81) 0.76 (0.48) 0.88 (0.98) 0.84 (0.72) 0.76 (0.81) 0.93 (0.65) 0.36 (0.45) 0.46 (0.44) 
MF 0.47 (0.20) 0.34 (0.38) 0.38 (0.29) 0.57 (0.29) 0.39 (0.28) 0.41 (0.13) 0.37 (0.15) 0.30 (0.35) 0.34 (0.49) 0.32 (0.36) 
SHR 0.38 (0.37) 0.54 (0.49) 0.38 (0.44) 0.39 (0.47) 0.36 (0.38) 0.50 (0.43) 0.31 (0.40) 0.32 (0.23) 0.27 (0.27) 0.28 (0.24) 
SAV 0.42 (0.40) 0.36 (0.21) 0.35 (0.40) 0.23 (0.15) 0.43 (0.41) 0.35 (0.23) 0.42 (0.37) 0.31 (0.10) 0.23 (0.21) 0.19 (0.10) 
GRA 0.60 (0.59) 0.48 (0.49) 0.60 (0.56) 0.52 (0.55) 0.38 (0.29) 0.36 (0.37) 0.44 (0.39) 0.38 (0.38) 0.17 (0.20) 0.31 (0.31) 
CRO 0.47 (0.37) 0.66 (0.44) 0.36 (0.33) 0.56 (0.47) 0.29 (0.32) 0.25 (0.22) 0.29 (0.32) 0.30 (0.29) 0.41 (0.31) 0.56 (0.55) 
WET 0.54 (0.64) 0.28 (0.41) 0.55 (0.62) 0.29 (0.25) 0.72 (0.35) 0.48 (0.52) 0.69 (0.29) 0.50 (0.51) 0.24 (0.19) 0.30 (0.25) 
Trop 1.66 (1.31) 0.67 (0.79) 1.71 (1.23) 0.77 (0.86) 1.73 (0.88) 1.16 (1.19) 1.94 (0.81) 1.21 (0.67) 0.52 (0.57) 0.38 (0.55) 
SubTrop 0.54 (0.45) 0.55 (0.43) 0.50 (0.38) 0.52 (0.55) 0.46 (0.44) 0.53 (0.47) 0.47 (0.35) 0.42 (0.37) 0.34 (0.44) 0.37 (0.34) 
Dry 0.31 (0.20) 0.33 (0.26) 0.33 (0.38) 0.36 (0.29) 0.24 (0.21) 0.32 (0.35) 0.34 (0.21) 0.43 (0.26) 0.14 (0.08) 0.22 (0.14) 
Tmp 0.72 (0.55) 0.77 (0.71) 0.66 (0.59) 0.63 (0.56) 0.50 (0.46) 0.47 (0.50) 0.51 (0.55) 0.41 (0.45) 0.46 (0.43) 0.51 (0.41) 
TmpCont 0.45 (0.35) 0.60 (0.52) 0.39 (0.35) 0.57 (0.47) 0.37 (0.28) 0.29 (0.25) 0.37 (0.33) 0.38 (0.37) 0.35 (0.40) 0.55 (0.55) 
Bor 0.36 (0.30) 0.32 (0.34) 0.32 (0.24) 0.27 (0.31) 0.32 (0.40) 0.32 (0.33) 0.31 (0.35) 0.26 (0.32) 0.27 (0.26) 0.23 (0.26) 
Cold 0.07 (0.00) 0.08 (0.09) 0.08 (0.12) 0.15 (0.06) 0.34 (0.04) 0.12 (0.06) 0.34 (0.06) 0.15 (0.01) 0.37 (0.15) 0.27 (0.27) 
 690 
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Table C4. Median site-by-site R2 and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the energy 691 
fluxes per PFT and climate zones. List of acronyms: ENF, was evergreen needleleaf forest; DBF, deciduous broadleaf forest; EBF, 692 
Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, 693 
Tropical; SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and 694 
polar environment or covered by ice. 695 

CAT H  LE  Rn  
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 0.87 (0.10) 0.86 (0.10) 0.83 (0.10) 0.84 (0.11) 0.97 (0.02) 0.97 (0.02) 
DBF 0.76 (0.18) 0.74 (0.12) 0.87 (0.05) 0.87 (0.07) 0.97 (0.01) 0.97 (0.02) 
EBF 0.85 (0.13) 0.82 (0.17) 0.56 (0.30) 0.52 (0.42) 0.95 (0.05) 0.96 (0.03) 
MF 0.85 (0.06) 0.82 (0.10) 0.91 (0.07) 0.89 (0.06) 0.97 (0.02) 0.96 (0.02) 
SHR 0.83 (0.15) 0.83 (0.17) 0.73 (0.29) 0.77 (0.23) 0.98 (0.01) 0.97 (0.01) 
SAV 0.74 (0.25) 0.77 (0.26) 0.85 (0.06) 0.78 (0.11) 0.86 (0.05) 0.88 (0.10) 
GRA 0.72 (0.22) 0.71 (0.22) 0.85 (0.11) 0.83 (0.16) 0.96 (0.02) 0.96 (0.02) 
CRO 0.70 (0.16) 0.66 (0.18) 0.79 (0.14) 0.80 (0.14) 0.97 (0.02) 0.96 (0.02) 
WET 0.81 (0.06) 0.78 (0.14) 0.86 (0.10) 0.84 (0.06) 0.94 (0.02) 0.92 (0.06) 
Trop 0.52 (0.18) 0.60 (0.32) 0.56 (0.38) 0.50 (0.44) 0.86 (0.14) 0.89 (0.13) 
SubTrop 0.81 (0.18) 0.82 (0.18) 0.78 (0.13) 0.80 (0.13) 0.96 (0.03) 0.96 (0.02) 
Dry 0.87 (0.07) 0.86 (0.13) 0.80 (0.07) 0.79 (0.14) 0.90 (0.06) 0.93 (0.05) 
Tmp 0.78 (0.14) 0.78 (0.13) 0.86 (0.11) 0.83 (0.13) 0.97 (0.02) 0.96 (0.02) 
TmpCont 0.72 (0.18) 0.69 (0.18) 0.83 (0.08) 0.84 (0.09) 0.97 (0.02) 0.96 (0.02) 
Bor 0.90 (0.07) 0.89 (0.08) 0.92 (0.05) 0.92 (0.03) 0.98 (0.01) 0.97 (0.02) 
Cold 0.83 (0.12) 0.57 (0.19) 0.83 (0.08) 0.82 (0.07) 0.94 (0.03) 0.85 (0.13) 
 696 697 
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Table C5. Median site-by-site RMSE and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the energy 698 
fluxes per PFT and climate zones. List of acronyms: ENF, was evergreen needleleaf forest; DBF, deciduous broadleaf forest; EBF, 699 
Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, 700 
Tropical; SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and 701 
polar environment or covered by ice. 702 

CAT H (MJm-2d-1) LE (MJm-2d-1) Rn (MJm-2d-1) 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 1.09 (0.25) 1.16 (0.25) 1.00 (0.56) 1.02 (0.55) 1.27 (0.68) 1.26 (0.57) 
DBF 1.30 (0.43) 1.31 (0.38) 1.22 (0.26) 1.14 (0.46) 1.11 (0.42) 1.24 (0.41) 
EBF 1.14 (0.60) 1.29 (0.76) 1.55 (0.39) 1.60 (0.46) 1.33 (0.43) 1.14 (0.56) 
MF 1.18 (0.44) 1.12 (0.42) 0.82 (0.37) 1.15 (0.54) 1.14 (0.45) 1.09 (0.43) 
SHR 1.21 (0.46) 1.14 (0.28) 1.12 (0.41) 1.11 (0.56) 1.37 (0.80) 1.01 (0.43) 
SAV 1.23 (0.25) 1.20 (0.22) 1.32 (0.56) 1.35 (0.30) 1.10 (0.33) 1.19 (0.60) 
GRA 1.14 (0.35) 1.08 (0.47) 1.09 (0.34) 1.32 (0.54) 1.48 (0.83) 1.48 (0.90) 
CRO 1.24 (0.45) 1.36 (0.33) 1.51 (0.61) 1.54 (0.35) 1.24 (0.52) 1.23 (0.26) 
WET 0.97 (0.36) 1.22 (0.60) 0.88 (0.13) 0.90 (0.18) 1.42 (0.51) 1.65 (0.71) 
Trop 0.98 (0.51) 1.19 (0.63) 1.60 (0.52) 1.62 (0.41) 1.33 (0.73) 1.03 (0.48) 
SubTrop 1.28 (0.38) 1.32 (0.46) 1.36 (0.62) 1.36 (0.53) 1.40 (0.40) 1.33 (0.49) 
Dry 1.07 (0.24) 1.05 (0.50) 1.21 (0.33) 1.27 (0.52) 1.61 (0.75) 2.02 (0.93) 
Tmp 1.18 (0.23) 1.15 (0.33) 1.18 (0.43) 1.17 (0.49) 1.10 (0.36) 1.14 (0.47) 
TmpCont 1.30 (0.42) 1.35 (0.37) 1.25 (0.41) 1.47 (0.37) 1.17 (0.65) 1.16 (0.54) 
Bor 0.98 (0.23) 1.05 (0.26) 0.70 (0.26) 0.61 (0.20) 0.88 (0.31) 1.08 (0.50) 
Cold 1.03 (0.36) 1.50 (0.55) 1.00 (0.23) 1.03 (0.45) 1.47 (0.18) 2.04 (0.19) 703 
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Table C6. Median site-by-site absolute bias and its standard deviation (in brackets and estimated as reported in Jung et al., 2009) for the 704 
energy fluxes. List of acronyms: ENF, was evergreen needleleaf forest; DBF, deciduous broadleaf forest; EBF, Evergreen broadleaf forest; 705 
MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, Grassland; CRO, cropland; WET, Wetland; Trop, Tropical; SubTrop, 706 
subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, Temperate-continental; Bor, boreal; Cold, cold and polar environment or 707 
covered by ice. 708 

CAT H (MJm-2d-1) LE (MJm-2d-1) Rn (MJm-2d-1) 
RS RS+METE

O 
RS RS+METE

O 
RS RS+METE

O 
ENF 0.44 (0.40) 0.40 (0.33) 0.42 (0.41) 0.44 (0.49) 0.78 (0.63) 0.64 (0.61) 
DBF 0.60 (0.35) 0.66 (0.35) 0.57 (0.56) 0.49 (0.50) 0.38 (0.28) 0.61 (0.49) 
EBF 0.38 (0.48) 0.55 (0.46) 0.97 (0.79) 0.88 (0.70) 0.88 (0.51) 0.62 (0.43) 
MF 0.48 (0.40) 0.26 (0.31) 0.34 (0.40) 0.64 (0.52) 0.56 (0.45) 0.56 (0.57) 
SHR 0.34 (0.43) 0.47 (0.52) 0.41 (0.41) 0.50 (0.43) 0.62 (0.76) 0.44 (0.52) 
SAV 0.68 (0.35) 0.56 (0.15) 0.63 (0.80) 0.40 (0.15) 0.27 (0.22) 0.63 (0.55) 
GRA 0.51 (0.39) 0.40 (0.24) 0.38 (0.38) 0.57 (0.50) 0.97 (0.81) 0.81 (1.03) 
CRO 0.23 (0.21) 0.24 (0.24) 0.36 (0.38) 0.41 (0.50) 0.66 (0.58) 0.68 (0.39) 
WET 0.47 (0.51) 0.67 (0.37) 0.54 (0.41) 0.38 (0.21) 0.34 (0.34) 0.83 (0.78) 
Trop 0.37 (0.51) 0.67 (0.47) 0.97 (0.79) 1.24 (0.82) 0.94 (1.10) 0.63 (0.60) 
SubTrop 0.58 (0.59) 0.50 (0.39) 0.62 (0.58) 0.58 (0.56) 0.83 (0.71) 0.70 (0.55) 
Dry 0.68 (0.62) 0.55 (0.56) 0.21 (0.14) 0.30 (0.26) 1.06 (0.55) 1.61 (0.91) 
Tmp 0.38 (0.23) 0.34 (0.31) 0.49 (0.46) 0.56 (0.54) 0.65 (0.49) 0.68 (0.58) 
TmpCont 0.49 (0.41) 0.40 (0.46) 0.44 (0.51) 0.53 (0.50) 0.69 (0.72) 0.61 (0.58) 
Bor 0.33 (0.32) 0.38 (0.24) 0.22 (0.16) 0.23 (0.24) 0.38 (0.27) 0.50 (0.47) 
Cold 0.43 (0.46) 0.71 (0.11) 0.56 (0.31) 0.39 (0.18) 0.30 (0.29) 0.86 (0.58) 709 



 

710 Figure 1. Spider plot of MEF (first column) and RMSE (second column) for 711 
consistency of prediction made by RS (black line) and RS+METEO (grey lines) setups. The lines 712 
ML; we also showed the performance of multiple regressions trained with RS (black point) and RS+METEO (gray points). GPP713 
GPPL were respectively the gross primary production estimated following Reichstein et al. (2005) and Lasslop et al. (2010), TER714 
TERL the total ecosystem respiration estimated following Reichstein et al. (2005) and Lasslop et al. (2010), NEE net ecosystem exc715 
H the sensible heat, LE the latent heat and Rn the net radiation.716 

Spider plot of MEF (first column) and RMSE (second column) for CO2 (first row) and energy fluxes (second row) showing the 
lack line) and RS+METEO (grey lines) setups. The lines were the ensemble median estimate

the performance of multiple regressions trained with RS (black point) and RS+METEO (gray points). GPP
gross primary production estimated following Reichstein et al. (2005) and Lasslop et al. (2010), TER

the total ecosystem respiration estimated following Reichstein et al. (2005) and Lasslop et al. (2010), NEE net ecosystem exc
H the sensible heat, LE the latent heat and Rn the net radiation. 
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 first row) and energy fluxes (second row) showing the 
re the ensemble median estimate of 

the performance of multiple regressions trained with RS (black point) and RS+METEO (gray points). GPPR and 
gross primary production estimated following Reichstein et al. (2005) and Lasslop et al. (2010), TERR and 

the total ecosystem respiration estimated following Reichstein et al. (2005) and Lasslop et al. (2010), NEE net ecosystem exchange, 
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 717 Figure 2. Coefficients of determination (R2) from the comparison of overall time series, across-sites, mean seasonal cycle, and the 718 
anomalies, in particular: the determination coefficients between predictions by the ensemble median estimate of RS setup and observation 719 
(dark grey bars), between predictions by the ensemble median estimate of RS+METEO setup and observation (light grey bars), and 720 
between the two ensembles median estimate (white bars). Whiskers were the higher and lower R2 when the comparisons were made 721 
among the singular ML. The comparison of output by the multiple regressions was also shown (black points). GPPR and GPPL were 722 
respectively the gross primary production estimated following Reichstein et al. (2005) and Lasslop et al. (2010), TERR and TERL the total 723 
ecosystem respiration estimated following Reichstein et al. (2005) and Lasslop et al. (2010), NEE net ecosystem exchange, H the sensible 724 
heat, LE the latent heat and Rn the net radiation. 725 



 32

 726 Figure 3a. Scatterplots of observed data by eddy covariance (y-axis) and the median ensemble of modeled fluxes by RS setup (x-axis). 727 
The panels from left to right were the 8-day predictions, the across sites variability, the mean seasonal cycle and the 8-day anomalies. The 728 
fluxes considered here were: the gross primary production estimated following Lasslop et al (2010), GPPL (first row); the total ecosystem 729 
respiration estimated following Reichstein et al., (2005), TERR (second row); the sensible heat, H (third row); the latent heat, LE (fourth 730 
row). The reference units were gCm-2d-1 and MJm-2d-1 for CO2 fluxes (GPPL and TERR) and energy fluxes (H and LE) respectively. 731 
 732 
 733 
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 734 
Figure 3b. As in Figure 3a but the predictions (x-axis) were obtained by the RS+METEO setup. 735 
 736 
 737 
 738 
 739 
 740 
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 741 Figure 4. Performance of FLUXCOM median estimates per climate zone and plant functional type (PFT). The colored matrices show the 742 
median values of R2 (red pixels for low R2, yellow pixels for high R2). Numbers indicate the RMSE (units of CO2 fluxes are gCm-2d-1 and 743 
MJm-2d-1 in the case of energy fluxes). Oblique and bold fonts are used when the relative RMSE (normalized for the mean observed fluxes 744 
per PFT and climate zone) was greater than 0.5. The symbols ‘**’ after RMSE were used when the weight of bias (estimated as the ratio 745 
between the square of median absolute bias and the MSE) was greater than 0.5, instead ‘*’ symbols were used if the weight of bias was 746 
between 0.25 than 0.5. No symbols were used if the weight of bias is less than 0.25. List of acronyms: ENF, was evergreen needleleaf 747 
forest; DBF, deciduous broadleaf forest; EBF, Evergreen broadleaf forest; MF, mixed forest; SHR, shrubland; SAV, Savannah; GRA, 748 
Grassland; CRO, cropland; WET, Wetland; Trop, Tropical; SubTrop, subtropical; Dry, dry and arid land; Tmp, Temperate; TmpCont, 749 
Temperate-continental; Bor, boreal; Cold, cold and polar environment or covered by ice; GPPR and GPPL were respectively the gross 750 
primary production estimated following Reichstein et al. (2005) and Lasslop et al. (2010); TERR and TERL the total ecosystem respiration 751 
estimated following Reichstein et al. (2005) and Lasslop et al. (2010); NEE, net ecosystem exchange; H, sensible heat; LE, latent heat; Rn 752 
net radiation. 753 
 754 


