
S1 Eddy covariance study sites used for FLUXCOM experiment 

Table S1: List of the La Thuile and CarboAfrica study sites used for this study. Elevation marked with * are filled by Google earth. 
Abbreviation of IGBP vegetation type are: CRO cropland, CSH closed shrubland, DBF deciduous broadleaf forest, EBF evergreen 
broadleaf forest, ENF evergreen needleleaf forest, GRA grassland, MF mixed forest, OSH open shrubland, SAV savannah, WET wetland, 
WSA woody savannah. Abbreviation for climate type are Arc arctic, Bor boreal, Dry dry climate arid and semiarid, Subtrop subtropical 
and mediterranean climate, Temp temperate climate, Temp/cont temperate continental climate, Temp/cont hot temperate continental 
climate with hot or warm summer, Trop is the tropical climate. 

ID Site Code Lat (°N) Long (°E)  Elevation (m) VegType IGBP Koeppen Climate class Climate type 

1 AT-Neu 47.12 11.32 970 GRA Cfb Temp 

2 AU-Fog -12.54 131.31 6* WET Aw Trop 

3 AU-How -12.49 131.15 38* WSA Aw Trop 

4 AU-Tum -35.66 148.15 1200 EBF Cfb Temp 

5 AU-Wac -37.43 145.19 545 EBF Cfb Temp 

6 BE-Bra 51.31 4.52 16 MF Cfb Temp 

7 BE-Jal 50.56 6.07 500 MF Cfb Temp 

8 BE-Lon 50.55 4.74 167 CRO Cfb Temp 

9 BE-Vie 50.31 6.00 450 MF Cfb Temp 

10 BR-Ban -9.82 -50.16 173* EBF Aw Trop 

11 BR-Ma2 -2.61 -60.21 120 EBF Af Trop 

12 BR-Sa1 -2.86 -54.96 196* EBF Am Trop 

13 BR-Sa3 -3.02 -54.97 184* EBF Am Trop 

14 BR-Sp1 -21.62 -47.65 690 WSA Aw Trop 

15 BW-Ghg -21.51 21.74 1161* SAV BSh Dry 

16 BW-Ghm -21.2 21.75 1149* WSA BSh Dry 

17 BW-Ma1 -19.92 23.56 950 WSA BSh Dry 

18 CA-Ca1 49.87 -125.33 300 ENF Cfb Temp 

19 CA-Ca2 49.87 -125.29 300 ENF Cfb Temp 

20 CA-Ca3 49.53 -124.90 159* ENF Cfb Temp 

21 CA-Gro 48.22 -82.16 346* MF Dfb Temp/cont hot 

22 CA-Let 49.71 -112.94 960 GRA Dfb Temp/cont hot 

23 CA-Man 55.88 -98.48 259 ENF Dfc Bor 

24 CA-Mer 45.41 -75.52 70 WET Dfb Temp/cont hot 

25 CA-NS1 55.88 -98.48 260 ENF Dfc Bor 

26 CA-NS2 55.91 -98.52 260 ENF Dfc Bor 

27 CA-NS3 55.91 -98.38 260 ENF Dfc Bor 

28 CA-NS4 55.91 -98.38 260 ENF Dfc Bor 

29 CA-NS5 55.86 -98.49 260 ENF Dfc Bor 

30 CA-NS6 55.92 -98.96 259* OSH  Dfc Bor 

31 CA-NS7 56.64 -99.95 271* OSH  Dfc Bor 

32 CA-Oas 53.63 -106.20 530 DBF Dfc Bor 

33 CA-Obs 53.99 -105.12 629  ENF Dfc Bor 

34 CA-Ojp 53.92 -104.69 579 ENF Dfc Bor 

35 CA-Qcu 49.27 -74.04 392 ENF Dfc Bor 

36 CA-Qfo 49.69 -74.34 382 ENF Dfc Bor 

37 CA-SF1 54.49 -105.82 536 ENF Dfc Bor 

38 CA-SF2 54.25 -105.88 520 ENF Dfc Bor 

39 CA-SF3 54.09 -106.00 540 ENF Dfc Bor 

40 CA-SJ1 53.91 -104.66 580 ENF Dfc Bor 

41 CA-SJ2 53.94 -104.65 580 ENF Dfc Bor 

42 CA-SJ3 53.88 -104.64 495* ENF Dfc Bor 



43 CA-TP1 42.66 -80.56 265 ENF Dfb Temp/cont hot 

44 CA-TP2 42.77 -80.46 212 ENF Dfb Temp/cont hot 

45 CA-TP3 42.71 -80.35 184 ENF Dfb Temp/cont hot 

46 CA-TP4 42.71 -80.36 184 ENF Dfb Temp/cont hot 

47 CA-WP1 54.95 -112.47 540 MF Dfc Bor 

48 CA-WP2 55.54 -112.33 789* WET Dfc Bor 

49 CA-WP3 54.47 -113.32 676* WET Dfc Bor 

50 CG-Hin -4.68 12.00 118* EBF Aw Trop 

51 CG-Kis -4.79 11.98 124* EBF Aw Trop 

52 CG-Tch -4.29 11.66 83* OSH  Aw Trop 

53 CH-Oe1 47.29 7.73 450 GRA Cfb Temp 

54 CH-Oe2 47.29 7.73 452 CRO Cfb Temp 

55 CN-Bed 39.53 116.25 30 EBF Dwa Temp/cont hot 

56 CN-Cha 42.40 128.10 761 MF Dwb Temp/cont hot 

57 CN-Do1 31.52 121.96 4 WET Cfa SubTrop 

58 CN-Do2 31.58 121.90 4 WET Cfa SubTrop 

59 CN-Do3 31.52 121.97 4 WET Cfa SubTrop 

60 CN-Du1 42.05 116.67 1350 CRO Dwb Temp/cont hot 

61 CN-Du2 42.05 116.28 1350 GRA Dwb Temp/cont hot 

62 CN-HaM 37.37 101.18 3250 GRA ET Arc  

63 CN-Ku1 40.54 108.69 1020 EBF BSk Dry 

64 CN-Ku2 40.38 108.55 1160 OSH  BSk Dry 

65 CN-Xfs 44.13 116.33 1110* GRA BSk Dry 

66 CN-Xi1 43.55 116.68 1250 GRA Dwb Temp/cont hot 

67 CN-Xi2 43.55 116.67 1250 GRA Dwb Temp/cont hot 

68 CZ-BK1 49.50 18.54 908 ENF Dfb Temp/cont hot 

69 CZ-wet 49.03 14.77 420 WET Cfb Temp 

70 DE-Geb 51.10 10.91 162 CRO Cfb Temp 

71 DE-Gri 50.95 13.51 385 GRA Cfb Temp 

72 DE-Hai 51.08 10.45 430 DBF Cfb Temp 

73 DE-Har 47.93 7.60 201 ENF Cfb Temp 

74 DE-Kli 50.89 13.52 480 CRO Cfb Temp 

75 DE-Meh 51.28 10.66 286 GRA Cfb Temp 

76 DE-Tha 50.96 13.57 380 ENF Cfb Temp 

77 DE-Wet 50.45 11.46 785 ENF Cfb Temp 

78 DK-Fou 56.48 9.59 51 CRO Cfb Temp 

79 DK-Lva 55.68 12.08 15 GRA Cfb Temp 

80 DK-Ris 55.53 12.10 10 CRO Cfb Temp 

81 DK-Sor 55.49 11.65 40 DBF Cfb Temp 

82 ES-ES1 39.35 -0.32 10 ENF Csa SubTrop 

83 ES-ES2 39.28 -0.32 10 CRO Csa SubTrop 

84 ES-LJu 36.93 -2.75 1600 OSH  Csa SubTrop 

85 ES-LMa 39.94 -5.77 260 SAV Csa SubTrop 

86 ES-VDA 42.15 1.45 1770 GRA Cfb Temp 

87 FI-Hyy 61.85 24.29 181 ENF Dfc Bor 

88 FI-Kaa 69.14 27.30 155 WET Dfc Bor 

89 FI-Sii 61.83 24.19 169* GRA Dfc Bor 

90 FI-Sod 67.36 26.64 180 ENF Dfc Bor 

91 FR-Aur 43.55 1.11 240* CRO Cfb Temp 

92 FR-Fon 48.48 2.78 90 DBF Cfb Temp 

93 FR-Gri 48.84 1.95 125 CRO Cfb Temp 

94 FR-Hes 48.67 7.06 300 DBF Cfb Temp 



95 FR-Lam 43.49 1.24 182* CRO Cfb Temp 

96 FR-LBr 44.72 -0.77 61 ENF Cfb Temp 

97 FR-Pue 43.74 3.60 270 EBF Csa SubTrop 

98 GF-Guy 5.28 -52.93 35 EBF Af Trop 

99 GH-Ank 5.27 -2.69 77* EBF Am Trop 

100 HU-Bug 46.69 19.60 140 GRA Cfb Temp 

101 HU-Mat 47.85 19.73 350 GRA Cfb Temp 

102 ID-Pag -2.35 114.04 30 EBF Af Trop 

103 IE-Ca1 52.86 -6.92 50 CRO Cfb Temp 

104 IE-Dri 51.99 -8.75 187 GRA Cfb Temp 

105 IL-Yat 31.34 35.05 650 ENF BSh Dry 

106 IT-Amp 41.9 13.61 884 GRA Cfa SubTrop 

107 IT-BCi 40.52 14.96 20 CRO Csa SubTrop 

108 IT-Be2 46.00 13.03 62* GRA Cfb Temp 

109 IT-Cas 45.06 8.67 90* CRO Cfa SubTrop 

110 IT-Col 41.85 13.59 1550 DBF Cfa SubTrop 

111 IT-Cpz 41.71 12.38 68 EBF Csa SubTrop 

112 IT-Lav 45.96 11.28 1353 ENF Cfb Temp 

113 IT-Lec 43.30 11.27 314 EBF Cfa SubTrop 

114 IT-LMa 45.58 7.15 350 GRA Cfb Temp 

115 IT-Mal 46.12 11.70 1730 GRA Cfb Temp 

116 IT-MBo 46.02 11.05 1550 GRA Cfb Temp 

117 IT-Noe 40.61 8.15 28 CSH Csa SubTrop 

118 IT-Non 44.69 11.09 25 DBF Cfa SubTrop 

119 IT-PT1 45.20 9.06 60 DBF Cfa SubTrop 

120 IT-Ren 46.59 11.43 1730 ENF Dfb Temp 

121 IT-Ro1 42.41 11.93 235 DBF Csa SubTrop 

122 IT-Ro2 42.39 11.92 224 DBF Csa SubTrop 

123 IT-SRo 43.73 10.28 4 ENF Csa SubTrop 

124 IT-Vig 45.32 8.85 107* DBF Cfa SubTrop 

125 JP-Mas 36.05 140.03 12 CRO Cfa SubTrop 

126 JP-Tom 42.74 141.51 140 MF Dfb Temp/cont hot 

127 KR-Hnm 34.55 126.57 7* CRO Cfa SubTrop 

128 KR-Kw1 37.75 127.16 330 MF Dwa Temp/cont hot 

129 ML-AgG 15.34 -1.48 286* GRA BWh Dry 

130 NL-Ca1 51.97 4.93 1 GRA Cfb Temp 

131 NL-Haa 52.00 4.81 -2* GRA Cfb Temp 

132 NL-Hor 52.03 5.07 -2 GRA Cfb Temp 

133 NL-Lan 51.95 4.90 -2* CRO Cfb Temp 

134 NL-Loo 52.17 5.74 25 ENF Cfb Temp 

135 NL-Lut 53.40 6.36 0* CRO Cfb Temp 

136 PL-wet 52.76 16.31 54 WET Cfb Temp 

137 PT-Esp 38.64 -8.60 95 EBF Csa SubTrop 

138 PT-Mi1 38.54 -8.00 250 EBF Csa SubTrop 

139 PT-Mi2 38.48 -8.02 190 GRA Csa SubTrop 

140 RU-Che 68.61 161.34 3* MF Dfc Bor 

141 RU-Cok 70.62 147.88 23* WET Dfc Bor 

142 RU-Fyo 56.46 32.92 265 ENF Dfb Temp/cont hot 

143 RU-Zot 60.80 89.35 90 ENF Dfc Bor 

144 SD-Dem 13.28 30.48 542* SAV BWh Dry 

145 SE-Abi 68.36 18.79 361* DBF ET Arc  

146 SE-Deg 64.18 19.55 270 WET Dfc Bor 



147 SE-Nor 60.09 17.48 43 ENF Dfb Temp/cont hot 

148 SE-Sk1 60.13 17.92 42 ENF Dfb Temp/cont hot 

149 SE-Sk2 60.13 17.84 55 ENF Dfb Temp/cont hot 

150 SK-Tat 49.12 20.16 1050 ENF Dfb Temp/cont hot 

151 UK-AMo 55.79 -3.24 270 WET Cfb Temp 

152 UK-EBu 55.87 -3.21 190 GRA Cfb Temp 

153 UK-ESa 55.91 -2.86 97 CRO Cfb Temp 

154 UK-Ham 51.12 -0.86 80 DBF Cfb Temp 

155 UK-Her 51.78 -0.48 140 CRO Cfb Temp 

156 UK-PL3 51.45 -1.27 115 DBF Cfb Temp 

157 UK-Tad 51.21 -2.83 3 GRA Cfb Temp 

158 US-ARM 36.61 -97.49 314 CRO Cfa SubTrop 

159 US-Atq 70.47 -157.41 15 WET ET Arc  

160 US-Aud 31.59 -110.51 1469 GRA BSk Dry 

161 US-Bar 44.06 -71.29 272 DBF Dfb Temp/cont hot 

162 US-Bkg 44.35 -96.84 510 GRA Dfa Temp/cont hot 

163 US-Blo 38.90 -120.63 1315 ENF Csa SubTrop 

164 US-Bn1 63.92 -145.38 518 ENF Dsc Bor 

165 US-Bn2 63.92 -145.38 410 DBF Dsc Bor 

166 US-Bn3 63.92 -145.74 469 OSH  Dsc Bor 

167 US-Bo1 40.01 -88.29 219 CRO Dfa Temp/cont hot 

168 US-Bo2 40.01 -88.29 219 CRO Dfa Temp/cont hot 

169 US-Brw 71.32 -156.63 1 WET ET Arc  

170 US-CaV 39.06 -79.42 994 GRA Cfb Temp 

171 US-Dk1 35.97 -79.09 168 GRA Cfa SubTrop 

172 US-Dk2 35.97 -79.10 168 DBF Cfa SubTrop 

173 US-Dk3 35.98 -79.09 163 ENF Cfa SubTrop 

174 US-Fmf 35.14 -111.73 2160 ENF Csb SubTrop 

175 US-FPe 48.31 -105.10 634 GRA BSk Dry 

176 US-FR2 29.95 -98.00 272 WSA Cfa SubTrop 

177 US-Fuf 35.09 -111.76 2180 ENF Csb Temp/cont 

178 US-Fwf 35.45 -111.77 2270 GRA Csb Temp/cont 

179 US-Goo 34.25 -89.87 87 GRA Cfa SubTrop 

180 US-Ha1 42.54 -72.17 340 DBF Dfb Temp/cont hot 

181 US-Ho1 45.20 -68.74 60 ENF Dfb Temp/cont hot 

182 US-IB1 41.86 -88.22 227 CRO Dfa Temp/cont hot 

183 US-IB2 41.84 -88.24 227 GRA Dfa Temp/cont hot 

184 US-Ivo 68.49 -155.75 674* WET ET Arc  

185 US-KS1 28.46 -80.67 2* ENF Cfa SubTrop 

186 US-KS2 28.61 -80.67 3 CSH Cfa SubTrop 

187 US-Los 46.08 -89.98 480 WET Dfb Temp/cont hot 

188 US-LPH 42.54 -72.18 378 DBF Dfb Temp/cont hot 

189 US-Me1 44.58 -121.50 896 ENF Dfb Temp/cont hot 

190 US-Me2 44.45 -121.56 1253 ENF Dfb Temp/cont hot 

191 US-Me3 44.32 -121.61 1005 ENF Dfb Temp/cont hot 

192 US-Me4 44.50 -121.62 922 ENF Dfb Temp/cont hot 

193 US-MOz 38.74 -92.20 219 DBF Cfa SubTrop 

194 US-NC1 35.81 -76.71 6 ENF Cfa SubTrop 

195 US-NC2 35.80 -76.67 5 ENF Cfa SubTrop 

196 US-Ne1 41.17 -96.48 361 CRO Dfa Temp/cont hot 

197 US-Ne2 41.16 -96.47 362 CRO Dfa Temp/cont hot 

198 US-Ne3 41.18 -96.44 363 CRO Dfa Temp/cont hot 



199 US-NR1 40.03 -105.55 3050 ENF Dfc Bor 

200 US-PFa 45.95 -90.27 470 MF Dfb Temp/cont hot 

201 US-SO2 33.37 -116.62 1394 CSH Csa SubTrop 

202 US-SO3 33.38 -116.62 1429 CSH Csa SubTrop 

203 US-SO4 33.38 -116.64 1429 CSH Csa SubTrop 

204 US-SP1 29.74 -82.22 50 ENF Cfa SubTrop 

205 US-SP2 29.76 -82.24 50 ENF Cfa SubTrop 

206 US-SP3 29.75 -82.16 50 ENF Cfa SubTrop 

207 US-SRM 31.82 -110.87 1120 WSA BSk Dry 

208 US-Syv 46.24 -89.35 540 MF Dfb Temp/cont hot 

209 US-Ton 38.43 -120.97 177 WSA Csa SubTrop 

210 US-UMB 45.56 -84.71 234 DBF Dfb Temp/cont hot 

211 US-Var 38.41 -120.95 129 GRA Csa SubTrop 

212 US-WCr 45.81 -90.08 520 DBF Dfb Temp/cont hot 

213 US-Wi0 46.62 -91.08 340 ENF Dfb Temp/cont hot 

214 US-Wi1 46.73 -91.23 342 DBF Dfb Temp/cont hot 

215 US-Wi2 46.69 -91.15 381 ENF Dfb Temp/cont hot 

216 US-Wi4 46.74 -91.17 377 ENF Dfb Temp/cont hot 

217 US-Wi5 46.65 -91.09 369 ENF Dfb Temp/cont hot 

218 US-Wi6 46.62 -91.3 357 OSH  Dfb Temp/cont hot 

219 US-Wi7 46.65 -91.07 345 ENF Dfb Temp/cont hot 

220 US-Wi8 46.72 -91.25 389 DBF Dfb Temp/cont hot 

221 US-Wi9 46.62 -91.08 341 ENF Dfb Temp/cont hot 

222 US-Wkg 31.74 -109.94 1531 GRA BSk Dry 

223 US-Wrc 45.82 -121.95 371 ENF Csb Temp 

224 VU-Coc -15.44 167.19 80 EBF Af Trop 



S2 Description of additionally developed model 

S2.1 MTEM 

The MTEM algorithm grows several model trees with full extent until a small number of samples (2*number of regression 

variables) are in each leaf node. The splits are determined as described in Jung et al. (2009), but a certain fraction of data 

(default is one third) is randomly removed before the split is determined. After the split is found, the data previously hold-out 

are walked into the respective two children nodes as well. Within each children node a suitable multiple regression with 

variable selection, as described in Jung et al. (2009), is performed using a certain fraction of data (default is two third) and 

the remaining fraction of data to estimate the mean squared error of the multiple linear regression. The random local hold-out 

for both, split determination and regression, introduces instability in the tree induction algorithm and allows for generating 

an ensemble of model trees. The prediction of MTEM is then the weighted average over all nodes (not only leaf nodes) of all 

trees where the conditions (split criteria) are applied. The weights are taken as the inverse of the mean squared error of each 

node. If the predicted value by a regression in one node is beyond the range of observed values for that node then the 

predicted value is truncated to the minimum or maximum of the respective observed values, and its weight is decreased by a 

factor of 1000. 

The MTEM algorithm is capable of making use of samples where some predictor variables are missing. In the initial model 

tree building phase all samples with missing values are removed. Afterwards, all samples with missing values are walked 

into those nodes where the missing predictors were not required either as split variable in the hierarchy above this node or as 

regression variable. Then the multiple linear regressions and its mean squared error are recomputed for the respective 

‘updated’ nodes. 

S2.2 MTEV 

The MTEV is an ensemble of m model trees (30 in FLUXCOM experiment). The model trees were created by the recursive 

partitioning of the training dataset (starting from the first node, named “root”). 

The splitting was carried out comparing the performance of a “reference regression” with a “splitted regression”. More 

specifically the “reference regression” is the best multiple regression for the sample, emerging from a comparison of a user 

defined maximum number of regressions (10 in FLUXCOM experiment). The candidate regressions differing for the drivers 

that were randomly extracted (three drivers and their interactions were used in the FLUXCOM experiment). The metric of 

the regression’s performance were the MEF and the RMSE, calculated from an X-fold cross comparison (five-fold in 

FLUXCOM experiment), by which the best reference multiple regression was selected. 

The “splitted regressions” were established on the basis of splitting rules dividing the sample into two subsamples. Several 

splitting rules were extracted from an additional splitting dataset carrying both quantitative and categorical variables and 

then evaluated. The best multiple regression were established for each subsample (from the splitting rule) following the 

scheme adopted to estimate the “reference regressions”. The splitting rule and associated regressions maximizing the 

accuracy of predictions was chosen as “splitted regression”. 

For the comparison between “splitted regressions” and “reference regression”, the performance were adjusted for the higher 

number of parameters into the “splitted regressions” (equations S2.2.1 and S2.2.2). 
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In eq. S2.2.1 and S2.2.2, n is the sample dimensions, and p the number of parameters. If the MEFadj (and RMSEadj) of the 

“splitted regressions” were greater (lower) than the “reference regression”, “splitted regressions” were accepted. 

The subsample resulting from the splitting rules were used for another partitioning, and the regressions on the left and right 

“branches “used as “reference regression” for the next step. The development of a branch was stopped when the “reference 

regression” resulted better than any additional “splitted regressions”. 

The variability among the model trees was determined by the random extraction of the candidate regressions and splitting 

rules. 

The final output was the median estimates of the predictions across the m trees. 

S2.3: Random Decision Forests and Gaussian Processes (RDF-GP) 

The RDF-GP is a combination of Random Decision Forests (RDF) (Breiman et al., 2001) and Gaussian Process (GP) 

(Rasmussen et al., 2006). 

A RDF is an ensemble method consisting of several decision trees. Decision trees are based on the hierarchical binary 

decision scheme: beginning from a root node, simple comparisons of attribute values with a threshold decide whether a data 

example is handed over to the left or the right child node of a currently processed node. In the last nodes of the trees there are 

regression models based on Gaussian Processes (GP). 

In GP, the target (observed) variable (yn) is modeled as the sum of some unknown latent function of the input f(x) plus 

constant power (homoscedastic) Gaussian noise en, i.e. yn=f(x)+en. 

Instead of proposing a parametric form for f(x) and learning its parameters in order to fit observed data well, GP regression 

proceeds in a Bayesian, non-parametric way. A zero mean GP prior is placed on the latent function f(x) and a Gaussian prior 

is used for each latent noise term e. Given the priors GP, samples drawn from f(x) at the set of training data points follow a 

joint multivariate Gaussian with zero mean and covariance matrix K, also known as kernel function. Computing the posterior 

distribution can be done analytically. Then, predictions for unseen points depend on the chosen kernel function measuring 

the similarity between training samples and unseen points. 

The appropriate definition of the kernel is the bottleneck in any kernel method in general, and for GP in particular. Since we 

here deal with both real continuous and discrete features we introduce a composite kernel function as the sum of a kernel for 

continuous (Kc) and discrete data (Kd). For Kc we used the squared exponential (KSE) kernel function (radial basis function), 

while for Kd we used the algorithms Overlap or Goodall4 described in Boriah et al. (2008). 

For continuous data the KSE kernel function computes the similarity between training (x) and unseen (x’) points as: 
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Were σ2 and l are parameters which have to be optimized. 

The Overlap measure returns 1 if the value for attribute d is equal and 0 otherwise. Goodall4 computes the similarity 
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where fd(x) is the frequency of how often the attribute d takes value x. GP are very powerful tools for the task of regression 

but they are often not applicable to large data sets directly because for the learning of the kernel the computational time is 

cubic in the number of training examples. In our experiments, we learn a GP with a rather small kernel using only the 

training examples which reached certain leafs of the RDF. Furthermore, the random extraction of variables and samples for 

the RDF training (Breimann et al., 2001) avoided the over-fitting for the training data. 



S3 Description of indexes of soil water availability. 

A simple soil water balance model is used to derive predictor variables aiming at capturing water stress effects in a better 

way than solely based on vapor pressure deficit, precipitation, or remotely sensed indices. Soil water storage (SWS) is treated 

as a bucket model with a defined plant available water storage capacity (AWC). In each daily time step t, the soil water 

storage of the previous time step t-1 is updated by water recharge (R(t)), and water loss by evapotranspiration (E(t)): 

)()()1()( tEtRtSWStSWS −+−=          (S3.1) 

Recharge is taken as the minimum of precipitation (P(t)) and the water deficit of the previous time step: 

[ ])1(),(min)( −−= tSWCAWCtPtR         (S3.2) 

Evapotranspiration is taken as the minimum of demand (EPOT) and water supply (ESUP) driven E: 

[ ])()(min)( tEtEtE SUPPOT −=          (S3.3) 

Epot is calculated based on Priestley-Taylor (EPT, Priestley and Taylor, 1972) and scaled with the fraction of photosynthetic 

active radiation (fPAR), which is based on a smoothed mean seasonal cycle based on MODIS: 

)()()( tEtfPARtE PTPOT =           (S3.4) 

Water supply limited evaporation follows Teuling et al. (2006) is modeled as a fraction k of SWS: 

[ ])()1()( tRtSWSktESUP +−=          (S3.5) 

An upper and a lower soil layer are realized by making the assumption that both recharge by precipitation and water loss by 

evaporation occur from top to bottom: 

)]1(),(min[)( −−= tSWSAWCtRtR UPPERUPPERUPPER , )()()( tRtRtR UPPERLOWER −=    (S3.6) 

)]()1(),(min[)( tRtSWStEtE UPPERUPPERUPPER +−= , )()()( tEtEtE UPPERLOWER −=    (S3.7) 

The water availability index (WAI) is expressed as fractional available water: 
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An alternative index of water availability (IWA) is calculated analogously to evaporative fraction: 
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The simple model requires the definition of the parameter k, and the storage capacities of the upper and lower soil layers. K 

was chosen to be 0.05, which corresponds to the median value of 19 analyzed site-years by Teuling et al. (2006). AWCUPPER 

and AWClOWER were chosen heuristically as 15 mm and 100 mm, respectively. The model was run with the same parameters 

for all sites, a necessary requirement to use the derived predictor variables at global scale. AWC were initialized with full 



storage in 1989, and the necessary meteorological data are based on downscaled ERA-Interim reanalysis; those were 

replaced by measurements from the towers whenever available. 



S4 List of the candidate predictors 

Table S4.1: List of the candidate predictors The predictors include time varying variables,  mean seasonal cycle and its metrics (e.g. 
minimum, maximum, amplitude.) For further details see also paper Sect. 2.3.2. 

Name Symbol Units Values MSC ANO 

Original Variables 

MODIS spectral reflectances BRDF adjusted 
bands 1 to 7 

Reflectancebands1to7 None RS BOTH RS 

Daily land surface temperature LSTday °K RS BOTH RS 

Nightly land surface temperature LSTnight °K RS BOTH RS 

Enhanced vegetation index EVI None RS BOTH RS 

Normalized difference vegetation index NDVI None RS BOTH RS 

Land surface water index LSWI None RS BOTH RS 

Normalized difference water index NDWI None RS BOTH RS 

Fraction of absorbed Par fpar None RS BOTH RS 

Leaf Area index LAI None RS BOTH RS 

Aggregated Koeppen Climate AggregatedKoeppenIds None RS+METEO     

Koeppen Climate KoeppenIds None RS+METEO     

Relative humidity Rh None RS+METEO RS+METEO RS+METEO 

Daily mean air temperature Tair °C RS+METEO RS+METEO RS+METEO 

Daily maximum air temperature Tmax °C RS+METEO RS+METEO RS+METEO 

Daily minimum air temperature Tmin °C RS+METEO RS+METEO RS+METEO 

Vapor pressure deficit VPD KPa RS+METEO RS+METEO RS+METEO 

Precipitation Precip mm RS+METEO RS+METEO RS+METEO 

Index of water availability IWA None RS+METEO RS+METEO RS+METEO 

Water availability index upper WAIu None RS+METEO RS+METEO RS+METEO 

Water availability index lower WAIl None RS+METEO RS+METEO RS+METEO 

Global Radiation  Rg MJ m-2d-1 BOTH BOTH BOTH 

Plant Functional Type PFT None BOTH     

Canopy height Canopyheight m BOTH     

Potential Radiation Rpot MJ m-2d-1   BOTH   

Potential evapotranspiration PET mm   RS+METEO RS+METEO 

Interactions 

Product between EVI and LST EVI*LST °K RS BOTH RS 

Product between EVI and Rg EVI*Rg MJ m-2d-1 RS BOTH RS 

Product between EVI and Rpot EVI*Rpot MJ m-2d-11 RS BOTH RS 

Product between fPAR and LST FPAR*LST °K RS BOTH RS 

Product between fPAR and Rg FPAR*Rg MJ m-2d-1 RS BOTH RS 

Product between fPAR and Rpot FPAR*Rpot MJ m-2d-1 RS BOTH RS 

Product between NDVI and LST NDVI*LST °K RS BOTH RS 

Product between NDVI and Rg NDVI*Rg MJ m-2d-1 RS BOTH RS 

Product between NDVI and Rpot NDVI*Rpot MJ m-2d-1 RS BOTH RS 

Difference between daily and nightly LST LSTday-LSTnight °K RS BOTH RS 

Product between mean seasonal cycle of EVI 
and LST 

MSC(EVI)*LST °K RS BOTH BOTH 

Product between mean seasonal cycle of 
NDVI and LST 

MSC(NDVI)*LST °K RS BOTH BOTH 

Product between mean seasonal cycle of  
fPAR and LST 

MSC(FPAR)*LST °K RS BOTH BOTH 

Water balance (lag n days) WB (lag 3 days) mm RS+METEO     



  WB (lag 5 days) mm RS+METEO     

  WB (lag 7 days) mm RS+METEO     

  WB (lag 9 days) mm RS+METEO     

  WB (lag 11 days) mm RS+METEO     

  WB (lag 13 days) mm RS+METEO     

  WB (lag 15 days) mm RS+METEO     

  WB (lag 17 days) mm RS+METEO     

  WB (lag 19 days) mm RS+METEO     

  WB (lag 21 days) mm RS+METEO     

  WB (lag 23 days) mm RS+METEO     

  WB (lag 25 days) mm RS+METEO     

  WB (lag 27 days) mm RS+METEO     

  WB (lag 29 days) mm RS+METEO     

Product among mean seasonal cycle of EVI, 
RG and IWA 

MSC(EVI)*Rg*IWA MJ m-2d-1 RS+METEO     

Product among mean seasonal cycle of 
fPAR, RG and IWA 

MSC(FPAR)*Rg*IWA MJ m-2d-1 RS+METEO     

Product among mean seasonal cycle of 
NDVI, RG and IWA 

MSC(NDVI)*Rg*IWA MJ m-2d-1 RS+METEO     

Product between mean seasonal cycle of EVI 
and Rg 

MSC(EVI)*Rg MJ m-2d-1 BOTH BOTH BOTH 

Product between mean seasonal cycle of 
NDVI and Rg 

MSC(NDVI)*Rg MJ m-2d-1 BOTH BOTH BOTH 

Product between mean seasonal cycle of  
fPAR and Rg 

MSC(FPAR)*Rg MJ m-2d-1 BOTH BOTH BOTH 

Ratio between global and potential radiation Rg/Rpot none BOTH     



S5 Description of the Guided hybrid genetic algorithm 

GHGA is an optimization algorithm that combines a global search genetic algorithm tailored to variable selection problems, 

and a ‘guided’ procedure for local elimination of variables to speed-up the stochastic nature of the backward search of the 

GA (see Jung and Zscheischler (2013) for details). GHGA makes suggestions of variable sets, which are tested by a 

regression algorithm (e.g. RFs) and the resulting performance is quantified in a cost function. The cost function (c(v)) of the 

variable set v aims at identifying a compromise between performance (m) and number of variables (n(v)) and follows Jung 

and Zscheischler (2013): 
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+=           (S5.1) 

Where m(v) is Nash-Sutcliff’s modeling efficiency (MEF) for variable set v, M is the MEF identified so far during the 

search, and epsilon is a parameter that describes the accepted performance loss for retaining one variable less (set to 0.005). 

The settings of GHGA were the recommended default values given in Jung and Zscheischler (2013). 

The training of RF was based on a randomly chosen half of FLUXNET sites, while the remaining half was used for 

validation (for which MEF was calculated). To minimize differences of MEF between different variable sets by chance, the 

stratification in training and validation sites and the bootstrap samples for growing the regression trees were always the same. 

The number of regression trees of each RF was set to 60 to limit the computational burden. The variable search stopped 

when no new global or local optimum were found within the last 1000 cost function evaluations, or when 10000 cost 

function evaluations were reached. The final selected variable set was the ones with smallest cost function values. The entire 

variable selection exercise required nearly 100000 pairs of training and prediction of RF, (here used to make suggestion of 

variables with in total more than 5 million regression trees. 



S6 Methods settings. 

Machine learning methods need of free hyperparametres often related to the cost function used that one aims to minimize, 

the regularization terms that are in charge of controlling overfitting the training data, the shape and smoothness of the 

nonlinear functions. In Table S6.1 we presented the hyperparametres setting the applied machine learning applied for the 

training at eight daily time step by RS setup (see section 2.3.1). The variants for the training of the machine learning applied 

for the RS+METEO setup (daily time step) were shown in Table S6.2. 

Table S6.1: Method settings adopted for the training of the eight daily time step for the RS setup. Acronym of methods are: RF Random 
Forest, MTE Model Tree Ensemble, SVM Support Vector Machine, KRR Kernel Ridge Regression, GPR Gaussian Processes, ANN feed 
forward Artificial Neural Networks, GMDH Group Method of Data Handling or polynomial neural networks, RDFGP Random Forest 
with Gaussian Processes in leafs node, MARS Multivariate Adaptive Regression Splines. NA Not Available 

Name Hyperparameters and settings Scaling Ensemble Reference 
Tree methods 

RF 

Minimum number of samples in leafs = 5. 
Fraction of variables to find split per node = 0.33. 
Surrogate splits activated to use samples with 
incomplete predictors. 

none 200 Regression trees Breimann (2001) 

MTE 

All continuous variables are used for split and 
regression. 
One two-fold cross-validation in leaf nodes to 
avoid overfitting. 

none 
25 Model Trees 

selected out of 2500 
Jung et al. (2009) 

MTEM 
All continuous variables are used for split and 
regression. 
Local hold-out fraction = 0.33. 

none 

50 Model Trees by 
randomly removing 
the hold-out fraction 

locally 

Supplementary 
material S2 

MTEV 

Drivers for regressions in the leaf node = 3. 
Splitting rules and regressions randomly extracted 
choosing the best among 10 extractions. 
Five fold cross comparison to evaluate multiple 
regressions. 

constrained 
between the 

minimum/maxim
um values of the 
domain of the 

regressions into 
the leaf node 

Median ensemble of 
30 trees. 

Supplementary 
material S2 

Kernel methods 

KRR 
Grid search of the squared exponential kernel 
lengthscale and the regularization parameter. 
Testing against a hold out of 50% of sites. 

-1 to 1 NA 
Shawe-Taylor 
and Cristianini 

(2004) 

SVM 

Grid search of the squared exponential kernel 
lengthscale. the epsilon-insensitivity zone for the 
cost function, and the regularization parameter to 
control errors penalization. 
Testing against a hold out of 50% of sites. 

-1 to 1 NA 
Vapnik et al. 

(1998) 

GPR 
Hyperparameters found by maximum likelihood of 
the marginal evidence. 

Remove the 
mean, scaling all 
features between 

0 to 1 

NA 
Rasmussen 

(2006) 

RDF-GP 

Hyperparameters found by maximum likelihood of 
the marginal evidence. 
Same initialization parameters as in GPR (for the 
prediction GPR model in the leaves of the RF). A 
minimum of 1000 sample in each leaf. Ensemble 
of 10 trees. 
 

Remove the 
mean, scaling all 
features between 

0 to 1 

10 

Fröhlich et al. 
(2012) 

Supplementary 
material S2 

Neural Network methods 

ANN 

Feed forward network trained with the Levenberg-
Marquardt learning algorithm. 
5 initializations for each net; percentage of sites 
distributed among training, test and validation set 
60, 20, 20 respectively. 
Net architecture with one or two layers, each one 
having from 5 to 12 neurons. 
The net with the best performance (on the 

0 to 1 

10, randomly 
sampling sites for 
training, test and 
validation sets 

Haykin (1999) 
Papale et al. 

(2003) 
 



validation set) and the simplest architecture was 
chosen. 

GMDH 

Maximum number of inputs for individual neurons 
= 3. 
Maximum number of neurons per layer equal to 
the number of predictor; 
Degree of polynomials in neurons = 3. 
 

-1 to 1 

20 (by randomly 
sampling sites for 

training and 
validation) 

Ungaro et al. 
(2005) 

Multivariate Splines 

MARS 

The maximal number of basis functions included 
in the forward model building phase = 21 
(default). 
Generalized Cross-Validation (GCV) penalty per 
knot = 3 (default value). 
Maximum degree of interactions =2. 

-1 to 1 for X 
Zscore for Y 

20 (by bootstrapping) 
Friedman et al. 

(1991) 

Footnotes: MTEM can handle samples with missing predictors; GMDH Neurons take input from preceding layer and from original input 
variables; MARS piecewise-cubic models no self interactions. In all methods, excepting the tree methods, the vegetation category was 
converted in Woody/non-woody dummy vector (1 for woody PFT and 0 for non-woody PFT). 

Table S6.2: Method settings adopted for the training in the RS+METEO setup (daily time step). Acronym of the same for Table S6.1. 

Name Hyperparameters and settings Scaling Ensemble Reference 
Tree methods 

RF 

Minimum number of samples in leafs = 25. 
Fraction of variables to find split per node = 0.33. 
Surrogate splits not activated (not handle missing 
values ) 

none 200 Regression trees Breimann (2001) 

Kernel methods 

KRR 
Grid search of the squared exponential kernel 
lengthscale and the regularization parameter. 
Testing against a hold out of 50% of sites. 

-1 to 1 

20 models each one 
using a training set 

(10000 points) 
extracted by a 

stratified random 
sampling strategy. 

Shawe-Taylor 
and Cristianini 

(2004) 

Neural Network methods 

ANN 

Feed forward network trained with the Levenberg-
Marquardt learning algorithm. 
5 initializations for each net; percentage of sites 
distributed among training, test and validation set 
60,20,20 respectively. 
Net architecture with one or two layers, each one 
having from 5 to 12 neurons. 
The net with the best performance (on the 
validation set) and the simplest architecture was 
choosen. 

0 to 1 

10, randomly 
sampling sites for 
training, test and 
validation sets 

Haykin, (1999) 
Papale et al. 

(2003) 
 

Multivariate Splines 

MARS* 

The maximal number of basis functions included 
in the forward model building phase = 21 
(default). 
Generalized Cross-Validation (GCV) penalty per 
knot = 3 (default value). 
Maximum degree of interactions =2. 

-1 to 1 for X 
Zscore for Y 

20 models; training 
set (10000 points) 

extracted by a 
stratified random 
sampling strategy. 

Friedman et al. 
(1991) 
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