S1 Eddy covariance study sites used for FLUXCOM experiment

Table S1: List of the La Thuile and CarboAfrica study sitesed for this study. Elevation marked with * aréefl by Google earth.
Abbreviation of IGBP vegetation type are: CRO cropla@&H closed shrubland, DBF deciduous broadleaf ioEeEBF evergreen
broadleaf forest, ENF evergreen needleleaf fo@Ri grassland, MF mixed forest, OSH open shrubl&#/ savannah, WET wetland,
WSA woody savannah. Abbreviation for climate type Arc arctic, Bor boreal, Dry dry climate arid asemiarid, Subtrop subtropical
and mediterranean climate, Temp temperate climBd@p/cont temperate continental climate, Temp/dwit temperate continental
climate with hot or warm summer, Trop is the trapiciimate.

ID Site Code Lat(°N) Long (°E) Elevation (m) Vegie/IGBP Koeppen Climate class Climate type
1 AT-Neu 47.12 11.32 970 GRA Cfb Temp
2 AU-Fog -12.54 131.31 6* WET Aw Trop
3  AU-How -12.49 131.15 38* WSA Aw Trop
4  AU-Tum -35.66 148.15 1200 EBF Cfb Temp
5 AU-Wac -37.43 145.19 545 EBF Cfb Temp
6 BE-Bra 51.31 452 16 MF Cfb Temp
7 BE-Jal 50.56 6.07 500 MF Cfb Temp
8 BE-Lon 50.55 4.74 167 CRO Cfb Temp
9 BE-Vie 50.31 6.00 450 MF Cfb Temp

10 BR-Ban -9.82 -50.16 173* EBF Aw Trop
11 BR-Ma2 -2.61 -60.21 120 EBF Af Trop
12 BR-Sal -2.86 -54.96 196* EBF Am Trop
13 BR-Sa3 -3.02 -54.97 184* EBF Am Trop
14 BR-Spl -21.62 -47.65 690 WSA Aw Trop
15 BW-Ghg -21.51 21.74 1161* SAV BSh Dry
16 BW-Ghm -21.2 21.75 1149* WSA BSh Dry
17 BW-Mal -19.92 23.56 950 WSA BSh Dry
18 CA-Cal 49.87 -125.33 300 ENF Cfb Temp
19 CA-Ca2 49.87 -125.29 300 ENF Cfb Temp
20 CA-Ca3 49.53 -124.90 159* ENF Cfb Temp
21 CA-Gro 48.22 -82.16 346* MF Dfb Temp/cont hot
22 CA-Let 49.71 -112.94 960 GRA Dfb Temp/cont hot
23 CA-Man 55.88 -98.48 259 ENF Dfc Bor
24 CA-Mer 4541 -75.52 70 WET Dfb Temp/cont hot
25 CA-NS1 55.88 -98.48 260 ENF Dfc Bor
26 CA-NS2 55.91 -98.52 260 ENF Dfc Bor
27 CA-NS3 55.91 -98.38 260 ENF Dfc Bor
28 CA-NS4 55.91 -98.38 260 ENF Dfc Bor
29 CA-NS5 55.86 -98.49 260 ENF Dfc Bor
30 CA-NS6 55.92 -98.96 259* OSH Dfc Bor
31 CA-NS7 56.64 -99.95 271* OSH Dfc Bor
32 CA-Oas 53.63 -106.20 530 DBF Dfc Bor
33 CA-Obs 53.99 -105.12 629 ENF Dfc Bor
34 CA-Qjp 53.92 -104.69 579 ENF Dfc Bor
35 CA-Qcu 49.27 -74.04 392 ENF Dfc Bor
36 CA-Qfo 49.69 -74.34 382 ENF Dfc Bor
37 CA-SF1 54.49 -105.82 536 ENF Dfc Bor
38 CA-SF2 54.25 -105.88 520 ENF Dfc Bor
39 CA-SF3 54.09 -106.00 540 ENF Dfc Bor
40 CA-SJ1 53.91 -104.66 580 ENF Dfc Bor
41 CA-SJ2 53.94 -104.65 580 ENF Dfc Bor
42 CA-SJ3 53.88 -104.64 495* ENF Dfc Bor



43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

CA-TP1
CA-TP2
CA-TP3
CA-TP4
CA-WP1
CA-WP2
CA-WP3
CG-Hin
CG-Kis
CG-Tch
CH-Oel
CH-Oe2
CN-Bed
CN-Cha
CN-Dol
CN-Do2
CN-Do3
CN-Dul
CN-Du2
CN-HaM
CN-Kul
CN-Ku2
CN-Xfs
CN-Xil
CN-Xi2
CZ-BK1
CZ-wet
DE-Geb
DE-Gri
DE-Hai
DE-Har
DE-KIi
DE-Meh
DE-Tha
DE-Wet
DK-Fou
DK-Lva
DK-Ris
DK-Sor
ES-ES1
ES-ES2
ES-LJu
ES-LMa
ES-VDA
Fl-Hyy
Fl-Kaa
FI-Sii
FI-Sod
FR-Aur
FR-Fon
FR-Gri
FR-Hes

42.66
42.77
42.71
42.71
54.95
55.54
54.47
-4.68
-4.79
-4.29
47.29
47.29
39.53
42.40
31.52
31.58
31.52
42.05
42.05
37.37
40.54
40.38
44.13
43.55
43.55
49.50
49.03
51.10
50.95
51.08
47.93
50.89
51.28
50.96
50.45
56.48
55.68
556.53
55.49
39.35
39.28
36.93
39.94
42.15
61.85
69.14
61.83
67.36
43.55
48.48
48.84
48.67

-80.56
-80.46
-80.35
-80.36
-112.47
-112.33
-113.32
12.00
11.98
11.66
7.73
7.73
116.25
128.10
121.96
121.90
121.97
116.67
116.28
101.18
108.69
108.55
116.33
116.68
116.67
18.54
14.77
10.91
13.51
10.45
7.60
13.52
10.66
13.57
11.46
9.59
12.08
12.10
11.65
-0.32
-0.32
-2.75
-5.77
1.45
24.29
27.30
24.19
26.64
1.11
2.78
1.95
7.06

265
212
184
184
540
789*
676*
118*
124~
83*
450
452
30
761

1350
1350
3250
1020
1160
1110*
1250
1250
908
420
162
385
430
201
480
286
380
785
51
15
10
40
10
10
1600
260
1770
181
155
169*
180
240*
90
125
300

ENF
ENF
ENF
ENF
MF
WET
WET
EBF
EBF
OSH
GRA
CRO
EBF
MF
WET
WET
WET
CRO
GRA
GRA
EBF
OSH
GRA
GRA
GRA
ENF
WET
CRO
GRA
DBF
ENF
CRO
GRA
ENF
ENF
CRO
GRA
CRO
DBF
ENF
CRO
OSH
SAV
GRA
ENF
WET
GRA
ENF
CRO
DBF
CRO
DBF

Dfb
Dfb
Dfb
Dfb
Dfc
Dfc
Dfc
Aw
Aw
Aw
Cfb
Cfb
Dwa
Dwb
Cfa
Cfa
Cfa
Dwb
Dwb
ET
BSk
BSk
BSk
Dwb
Dwb
Dfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Csa
Csa
Csa
Csa
Cfb
Dfc
Dfc
Dfc
Dfc
Cfb
Cfb
Cfb
Cfb

Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Bor
Bor
Bor
Trop
Trop
Trop
Temp
Temp
Temp/cont hot
Temp/cont hot
SubTrop
SubTrop
SubTrop
Temp/cont hot
Temp/cont hot
Arc
Dry
Dry
Dry
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp
Temp
Temp
Temp
Temp
Temp
Temp
Temp
Temp
Temp
Temp
Temp
Temp
SubTrop
SubTrop
SubTrop
SubTrop
Temp
Bor
Bor
Bor
Bor
Temp
Temp
Temp
Temp



95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

FR-Lam
FR-LBr
FR-Pue
GF-Guy
GH-Ank
HU-Bug
HU-Mat
ID-Pag
IE-Cal
IE-Dri
IL-Yat
IT-Amp
IT-BCi
IT-Be2
IT-Cas
IT-Col
IT-Cpz
IT-Lav
IT-Lec
IT-LMa
IT-Mal
IT-MBo
IT-Noe
IT-Non
IT-PT1
IT-Ren
IT-Ro1
IT-R02
IT-SRo
IT-Vig
JP-Mas
JP-Tom
KR-Hnm
KR-Kw1l
ML-AgG
NL-Cal
NL-Haa
NL-Hor
NL-Lan
NL-Loo
NL-Lut
PL-wet
PT-Esp
PT-Mil
PT-Mi2
RU-Che
RU-Cok
RU-Fyo
RU-Zot
SD-Dem
SE-Abi
SE-Deg

43.49
44.72
43.74
5.28
5.27
46.69
47.85
-2.35
52.86
51.99
31.34
41.9
40.52
46.00
45.06
41.85
41.71
45.96
43.30
45.58
46.12
46.02
40.61
44.69
45.20
46.59
42.41
42.39
43.73
45.32
36.05
42.74
34.55
37.75
15.34
51.97
52.00
52.03
51.95
52.17
53.40
52.76
38.64
38.54
38.48
68.61
70.62
56.46
60.80
13.28
68.36
64.18

1.24
-0.77
3.60
-52.93
-2.69
19.60
19.73
114.04
-6.92
-8.75
35.05
13.61
14.96
13.03
8.67
13.59
12.38
11.28
11.27
7.15
11.70
11.05
8.15
11.09
9.06
11.43
11.93
11.92
10.28
8.85
140.03
141.51
126.57
127.16
-1.48
4.93
4.81
5.07
4.90
5.74
6.36
16.31
-8.60
-8.00
-8.02
161.34
147.88
32.92
89.35
30.48
18.79
19.55

182*
61
270
35
7
140
350
30
50
187
650
884
20
62*
90~
1550
68
1353
314
350
1730
1550
28
25
60
1730
235
224

107*
12
140
7%
330
286*

250
190
3%
23*
265
90
542*
361*
270

CRO
ENF
EBF
EBF
EBF
GRA
GRA
EBF
CRO
GRA
ENF
GRA
CRO
GRA
CRO
DBF
EBF
ENF
EBF
GRA
GRA
GRA
CSH
DBF
DBF
ENF
DBF
DBF
ENF
DBF
CRO
MF
CRO
MF
GRA
GRA
GRA
GRA
CRO
ENF
CRO
WET
EBF
EBF
GRA
MF
WET
ENF
ENF
SAV
DBF
WET

Cfb
Cfb
Csa
Af
Am
Cfb
Cfb
Af
Cfb
Cfb
BSh
Cfa
Csa
Cfb
Cfa
Cfa
Csa
Cfb
Cfa
Cfb
Cfb
Cfb
Csa
Cfa
Cfa
Dfb
Csa
Csa
Csa
Cfa
Cfa
Dfb
Cfa
Dwa
BWh
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Csa
Csa
Csa
Dfc
Dfc
Dfb
Dfc
BWh
ET
Dfc

Temp
Temp
SubTrop
Trop
Trop
Temp
Temp
Trop
Temp
Temp
Dry
SubTrop
SubTrop
Temp
SubTrop
SubTrop
SubTrop
Temp
SubTrop
Temp
Temp
Temp
SubTrop
SubTrop
SubTrop
Temp
SubTrop
SubTrop
SubTrop
SubTrop
SubTrop
Temp/cont hot
SubTrop
Temp/cont hot
Dry
Temp
Temp
Temp
Temp
Temp
Temp
Temp
SubTrop
SubTrop
SubTrop
Bor
Bor
Temp/cont hot
Bor
Dry
Arc
Bor



147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

SE-Nor
SE-Sk1
SE-Sk2
SK-Tat
UK-AMo
UK-EBuU
UK-ESa
UK-Ham
UK-Her
UK-PL3
UK-Tad
US-ARM
US-Atq
US-Aud
US-Bar
US-Bkg
US-Blo
US-Bnl
US-Bn2
US-Bn3
US-Bol
US-Bo2
US-Brw
US-CaVv
US-Dk1
US-Dk2
US-Dk3
US-Fmf
US-FPe
US-FR2
US-Fuf
US-Fwf
US-Goo
US-Hal
US-Hol
US-1B1
US-1B2
US-Ivo
US-KS1
US-KS2
US-Los
US-LPH
US-Mel
US-Me2
US-Me3
US-Me4
US-MOz
US-NC1
US-NC2
US-Nel
US-Ne2
US-Ne3

60.09
60.13
60.13
49.12
55.79
55.87
55.01
51.12
51.78
51.45
51.21
36.61
70.47
31.59
44.06
44.35
38.90
63.92
63.92
63.92
40.01
40.01
71.32
39.06
35.97
35.97
35.98
35.14
48.31
29.95
35.09
35.45
34.25
42.54
45.20
41.86
41.84
68.49
28.46
28.61
46.08
42.54
44.58
44.45
44.32
44.50
38.74
35.81
35.80
41.17
41.16
41.18

17.48

17.92

17.84

20.16

-3.24

-3.21

-2.86

-0.86

-0.48

-1.27

-2.83
-97.49
157.41
110.51
-71.29
-96.84
120.63
145.38
145.38
145.74
-88.29
-88.29
156.63
-79.42
-79.09
-79.10
-79.09
111.73
105.10
-98.00
111.76
111.77
-89.87
-72.17
-68.74
-88.22
-88.24
155.75
-80.67
-80.67
-89.98
-72.18
121.50
121.56
121.61
121.62
-92.20
-76.71
-76.67
-96.48
-96.47
-96.44

43
42
55
1050
270
190
97
80
140
115

314
15
1469
272
510
1315
518
410
469
219
219

994
168
168
163
2160
634
272
2180
2270
87
340
60
227
227
674*
%

480
378
896
1253
1005
922
219

361
362
363

ENF
ENF
ENF
ENF
WET
GRA
CRO
DBF
CRO
DBF
GRA
CRO
WET
GRA
DBF
GRA
ENF
ENF
DBF
OSH
CRO
CRO
WET
GRA
GRA
DBF
ENF
ENF
GRA
WSA
ENF
GRA
GRA
DBF
ENF
CRO
GRA
WET
ENF
CSH
WET
DBF
ENF
ENF
ENF
ENF
DBF
ENF
ENF
CRO
CRO
CRO

Dfb
Dfb
Dfb
Dfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfb
Cfa
ET
BSk
Dfb
Dfa
Csa
Dsc
Dsc
Dsc
Dfa
Dfa
ET
Cfb
Cfa
Cfa
Cfa
Csb
BSk
Cfa
Csb
Csb
Cfa
Dfb
Dfb
Dfa
Dfa
ET
Cfa
Cfa
Dfb
Dfb
Dfb
Dfb
Dfb
Dfb
Cfa
Cfa
Cfa
Dfa
Dfa
Dfa

Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp
Temp
Temp
Temp
Temp
Temp
Temp
SubTrop
Arc
Dry
Temp/cont hot
Temp/cont hot
SubTrop
Bor
Bor
Bor
Temp/cont hot
Temp/cont hot
Arc
Temp
SubTrop
SubTrop
SubTrop
SubTrop
Dry
SubTrop
Temp/cont
Temp/cont
SubTrop
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Arc
SubTrop
SubTrop
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
SubTrop
SubTrop
SubTrop
Temp/cont hot
Temp/cont hot
Temp/cont hot



199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

US-NR1
US-PFa
US-S02
US-S03
US-S0O4
US-SP1
US-SP2
US-SP3
US-SRM
US-Syv
US-Ton
US-UMB
US-var
US-WCr
US-Wio
Us-wil
US-Wwi2
Us-wi4
US-Wi5
US-Wi6
US-wi7
US-wi8
US-wi9
US-WKkg
US-Wrc
VU-Coc

40.03
45.95
33.37
33.38
33.38
29.74
29.76
29.75
31.82
46.24
38.43
45.56
38.41
45.81
46.62
46.73
46.69
46.74
46.65
46.62
46.65
46.72
46.62
31.74
45.82
-15.44

-105.55
-90.27
116.62
-116.62
116.64
-82.22
-82.24
-82.16
110.87
-89.35
120.97
-84.71
-120.95
-90.08
-91.08
-91.23
-91.15
-91.17
-91.09
-91.3
-91.07
-91.25
-91.08
-109.94
-121.95
167.19

3050
470
1394
1429
1429
50
50
50
1120
540
177
234
129
520
340
342
381
377
369
357
345
389
341
1531
371
80

ENF
MF
CSH
CSH
CSH
ENF
ENF
ENF
WSA
MF
WSA
DBF
GRA
DBF
ENF
DBF
ENF
ENF
ENF
OSH
ENF
DBF
ENF
GRA
ENF
EBF

Dfc
Dfb
Csa
Csa
Csa
Cfa
Cfa
Cfa
BSk
Dfb
Csa
Dfb
Csa
Dfb
Dfb
Dfb
Dfb
Dfb
Dfb
Dfb
Dfb
Dfb
Dfb
BSk
Csb
Af

Bor
Temp/cont hot
SubTrop
SubTrop
SubTrop
SubTrop
SubTrop
SubTrop
Dry
Temp/cont hot
SubTrop
Temp/cont hot
SubTrop
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Temp/cont hot
Dry
Temp
Trop




S2 Description of additionally developed model
S2.1MTEy

The MTEy algorithm grows several model trees with full ettantil a small number of samples (2*number ofresgion
variables) are in each leaf node. The splits ateragned as described in Jung et al. (2009), begrtain fraction of data
(default is one third) is randomly removed befdre $plit is determined. After the split is founltle data previously hold-out
are walked into the respective two children nodesvall. Within each children node a suitable midtipegression with
variable selection, as described in Jung et aD920s performed using a certain fraction of dakefault is two third) and
the remaining fraction of data to estimate the nsprared error of the multiple linear regressidme Tandom local hold-out
for both, split determination and regression, idtrees instability in the tree induction algorithmdaallows for generating
an ensemble of model trees. The prediction of MTEthen the weighted average over all nodes (niytleaf nodes) of all
trees where the conditions (split criteria) areli@op The weights are taken as the inverse of taamsquared error of each
node. If the predicted value by a regression in ooge is beyond the range of observed values far ibde then the
predicted value is truncated to the minimum or mmaxn of the respective observed values, and itshwésgdecreased by a
factor of 1000.

The MTEy, algorithm is capable of making use of samples @ls®me predictor variables are missing. In théainiodel
tree building phase all samples with missing valaesremoved. Afterwards, all samples with missiatyes are walked
into those nodes where the missing predictors weteequired either as split variable in the hiehgrabove this node or as
regression variable. Then the multiple linear regi@ns and its mean squared error are recomputethdorespective

‘updated’ nodes.
S22 MTEy

The MTE, is an ensemble of m model trees (30 in FLUXCOMeeipent). The model trees were created by the sacur
partitioning of the training dataset (starting fréme first node, named “root”).

The splitting was carried out comparing the perfanoe of a “reference regression” with a “splittedjression”. More
specifically the “reference regression” is the hasttiple regression for the sample, emerging fleomparison of a user
defined maximum number of regressions (10 in FLUXCE&xperiment). The candidate regressions diffeforghe drivers
that were randomly extracted (three drivers and theeractions were used in the FLUXCOM experimefihe metric of
the regression’s performance were the MEF and tMSIR calculated from an X-fold cross comparisowdffold in
FLUXCOM experiment), by which the best referencdtiple regression was selected.

The “splitted regressions” were established onbthsis of splitting rules dividing the sample inteotsubsamples. Several
splitting rules were extracted from an additionglitSng dataset carrying both quantitative andegatical variables and
then evaluated. The best multiple regression wetabéished for each subsample (from the splittinig)r following the
scheme adopted to estimate the “reference regnsssidhe splitting rule and associated regressimaimizing the
accuracy of predictions was chosen as “splittedessgion”.

For the comparison between “splitted regressions!’ ‘@aeference regression”, the performance werasté§l for the higher

number of parameters into the “splitted regressi¢eguations S2.2.1 and S2.2.2).

MEF,, = MEF* P (S2.2.1)
n



n

RMSE, = RMSE — .

(S2.2.2)

In eq. S2.2.1 and S2.2.2, n is the sample dimess&md p the number of parameters. If MieF,y; (andRMSEy) of the
“splitted regressions” were greater (lower) tham ‘treference regression”, “splitted regressionsfeneccepted.

The subsample resulting from the splitting rulesengsed for another partitioning, and the regressan the left and right
“branches “used as “reference regression” for e step. The development of a branch was stoppexh she “reference
regression” resulted better than any additionalittep regressions”.

The variability among the model trees was deterthimg the random extraction of the candidate regrassand splitting
rules.

The final output was the median estimates of tlegligtions across the m trees.
S2.3: Random Decision Forests and Gaussian Processes (RDF-GP)

The RDF-GP is a combination of Random Decision &sréRDF) (Breiman et al., 2001) and Gaussian RB¢&P)
(Rasmussen et al., 2006).

A RDF is an ensemble method consisting of seveealsitbn trees. Decision trees are based on tharbkécal binary
decision scheme: beginning from a root node, siroplaparisons of attribute values with a threshadide whether a data
example is handed over to the left or the rightdchode of a currently processed node. In therades of the trees there are
regression models based on Gaussian Processes (GP).

In GP, the target (observed) variabig) (is modeled as the sum of some unknown latenttiomaof the inputf(x) plus
constant power (homoscedastic) Gaussian rejisee. y,=f(x)+e,.

Instead of proposing a parametric form for) and learning its parameters in order to fit obsdrdata well, GP regression
proceeds in a Bayesian, non-parametric way. A meran GP prior is placed on the latent funcfiogih and a Gaussian prior
is used for each latent noise teenGiven the priors GP, samples drawn from f(x)h&t $et of training data points follow a
joint multivariate Gaussian with zero mean and ciavece matrix K, also known as kernel function. Garting the posterior
distribution can be done analytically. Then, prédits for unseen points depend on the chosen k&inetion measuring
the similarity between training samples and ungeents.

The appropriate definition of the kernel is thetleoteck in any kernel method in general, and foriGparticular. Since we
here deal with both real continuous and discredéufes we introduce a composite kernel functiothasum of a kernel for
continuous (K) and discrete data (K For K. we used the squared exponenti&dd kernel function (radial basis function),
while for Ky we used the algorithms Overlap or Goodall4 deedrib Boriah et al. (2008).

For continuous data th&sg kernel function computes the similarity betweeirting (x) and unseen (x’) points as:

_ v\ 2
Ke=0° ex{—%} (S2.3.1)

Wereo” and | are parameters which have to be optimized.

The Overlap measure returns 1 if the value foribaite d is equal and 0 otherwise. Goodall4 compthessimilarity
(Su(*a,Xd)) as:

fa (X)(fa(x4) =)
SH (de‘d) = n(n-1
0 otherwise

if x, =X,

(S2.3.2)



wherefy(x) is the frequency of how often the attribat¢éakes valux. GP are very powerful tools for the task of regias

but they are often not applicable to large data datctly because for the learning of the kerhel ¢omputational time is
cubic in the number of training examples. In oupenments, we learn a GP with a rather small keusihg only the
training examples which reached certain leafs efRIDF. Furthermore, the random extraction of vadeistand samples for

the RDF training (Breimann et al., 2001) avoidesl ¢lver-fitting for the training data.



S3 Description of indexes of soil water availability.

A simple soil water balance model is used to depredictor variables aiming at capturing water sstreffects in a better
way than solely based on vapor pressure defi@gipitation, or remotely sensed indices. Soil waterage $W$ is treated
as a bucket model with a defined plant availabléewatorage capacityAfVQ. In each daily time step the soil water

storage of the previous time step is updated by water rechard®({)), and water loss by evapotranspirati&ift)):
SWS§t) = SWSt -1 + R(t) — E(t) (S3.1)
Recharge is taken as the minimum of precipitat®()) and the water deficit of the previous time step:

R(t) = min[P(t), AWC- SWQt - 1)] (S3.2)
Evapotranspiration is taken as the minimum of dei{&no7) and water supplyHsyp driven E:

E(t) = min[Epgr (t) = Eque(t)] (S3.3)

Epot is calculated based on Priestley-Taylog(Briestley and Taylor, 1972) and scaled with thetiom of photosynthetic

active radiationfPAR), which is based on a smoothed mean seasonallcgséxl on MODIS:

Epor (t) = FPAR) E, (1) (S3.4)
Water supply limited evaporation follows Teulingagt (2006) is modeled as a fractionf SWS

Eque(t) = k[SWSt -1) + R(t)] (S3.5)

An upper and a lower soil layer are realized by imgkhe assumption that both recharge by precipitaind water loss by

evaporation occur from top to bottom:

RJPPER(t) = min[R(t)’ AWQJPPER - SW%PPER(t _1)] , RLOWER(t) = R(t) - RJPPER(t) (S3.6)

EUPPER(t) = mln[E(t)’ SW%PPER(t _1) + RJPPER(t)] ' ELOWER(t) = E(t) - EUPPER(t) (537)

The water availability indeXWA) is expressed as fractional available water:

SWSeeer(t)
AW pper

SW$OWER (t)
AWQOWER

An alternative index of water availabilitjWA) is calculated analogously to evaporative fraction

WA pper(t) = (S3.8)

WAI ouer(t) = (S3.9)

IWA(t) = _EM (S3.10)

Epor (1)
The simple model requires the definition of thegmaeter k, and the storage capacities of the uppkicaver soil layers. K
was chosen to be 0.0&hich corresponds to the median value of 19 andlgiie-years by Teuling et al. (2008\WGpper
and AWGower Were chosen heuristically as 15 mm and 100 mmpetively. The model was run with the same pararsete

for all sites, a necessary requirement to use énevetl predictor variables at global sca#VC were initialized with full



storage in 1989, and the necessary meteorologit@ dre based on downscaled ERA-Interim reanalystgse were

replaced by measurements from the towers wheneadahble.



A List of the candidate predictors

Table $4.1: List of the candidate predictors The predictorslide time varying variables, mean seasonal cgokd its metrics (e.g.
minimum, maximum, amplitude.) For further detai® @lso paper Sect. 2.3.2.

Name Symbol Units Values MSC ANO
Original Variables

MODIS spectral reflectances BRDF adjustageflectancebandsl1to7 None RS BOTH RS

bands 1to 7

Daily land surface temperature LSTday °K RS BOTH RS

Nightly land surface temperature LSTnight °K RS BOTH RS

Enhanced vegetation index EVI None RS BOTH RS

Normalized difference vegetation index NDVI None RS BOTH RS

Land surface water index LSWI None RS BOTH RS

Normalized difference water index NDWI None RS BOTH RS

Fraction of absorbed Par fpar None RS BOTH RS

Leaf Area index LAI None RS BOTH RS

Aggregated Koeppen Climate AggregatedKoeppenlds None RS+METEO

Koeppen Climate Koeppenlds None RS+METEO

Relative humidity Rh None RS+METEO RS+METEO RS+METEO

Daily mean air temperature Tair °C RS+METEO RS+METERS+METEO

Daily maximum air temperature Tmax °C RS+METEO RS+MBI RS+METEO

Daily minimum air temperature Tmin °C RS+METEO RS+MEXY RS+METEO

Vapor pressure deficit VPD KPa RS+METEO RS+METEO RSTHE

Precipitation Precip mm RS+METEO RS+METEO RS+METEO

Index of water availability IWA None RS+METEO RS+MEDE RS+METEO

Water availability index upper WAI None RS+METEO RS+METEO RS+METEO

Water availability index lower WAI None RS+METEO RS+METEO RS+METEO

Global Radiation Rg MJ Rult BOTH BOTH BOTH

Plant Functional Type PFT None BOTH

Canopy height Canopyheight m BOTH

Potential Radiation Rpot MJfd? BOTH

Potential evapotranspiration PET mm RS+METEO RS+HET

Interactions

Product between EVI and LST EVI*LST °K RS BOTH RS

Product between EVI and Rg EVI*Rg MJ%ht RS BOTH RS

Product between EVI and Rpot EVI*Rpot MFPd1 RS BOTH RS

Product between fPAR and LST FPAR*LST °K RS BOTH RS

Product between fPAR and Rg FPAR*Rg M3di RS BOTH RS

Product between fPAR and Rpot FPAR*Rpot M3dh RS BOTH RS

Product between NDVI and LST NDVI*LST °K RS BOTH RS

Product between NDVI and Rg NDVI*Rg MJ ol RS BOTH RS

Product between NDVI and Rpot NDVI*Rpot MJdit RS BOTH RS

Difference between daily and nightly LST LSTday-Lrsght °K RS BOTH RS

Product between mean seasonal cycle of EMBC(EVI)*LST °K RS BOTH BOTH

Iirr]gdlzli;rbetween mean seasonal cycle of MSC(NDVI)*LST °K RS BOTH BOTH

NDVI and LST

Product between mean seasonal cycle of MSC(FPAR)*LST °K RS BOTH BOTH

fPAR and LST

Water balance (lag n days) WB (lag 3 days) mm RS+METE



WB (lag 5 days) mm

WB (lag 7 days) mm
WB (lag 9 days) mm
WB (lag 11 days) mm
WB (lag 13 days) mm
WB (lag 15 days) mm
WB (lag 17 days) mm
WB (lag 19 days) mm
WB (lag 21 days) mm
WB (lag 23 days) mm
WB (lag 25 days) mm
WB (lag 27 days) mm
WB (lag 29 days) mm

Product among mean seasonal cycle of EVMSC(EVI)*Rg*IWA MJ mZdt

RG and IWA

Product among mean seasonal cycle of MSC(FPAR)*Rg*IWA MJ m?d?

fPAR, RG and IWA

Product among mean seasonal cycle of MSC(NDVI)*Rg*IWA MJ m2d?

NDVI, RG and IWA

Product between mean seasonal cycle of EMBC(EVI)*Rg MJ m%d?

and Rg

Product between mean seasonal cycle of MSC(NDVI)*Rg MJ mi%d?t

NDVI and Rg

Product between mean seasonal cycle of MSC(FPAR)*Rg MJ rifd™*

fPAR and Rg

Ratio between global and potential radiation Rg/Rpot onen

RS+METEO
RS+METEO
RS+METEO
RS+METEO
RS+METEO
RS+METEO
RS+METEO
RS+METEO
RS+METEO
RS+METEO
RS+METEO
RS+METEO
RS+METEO
RS+METEO

RS+METEO

RS+METEO

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH




S5 Description of the Guided hybrid genetic algorithm

GHGA is an optimization algorithm that combineslab@l search genetic algorithm tailored to variadséection problems,
and a ‘guided’ procedure for local elimination @friables to speed-up the stochastic nature of dle&vkard search of the
GA (see Jung and Zscheischler (2013) for detaB)GA makes suggestions of variable sets, whichteséed by a
regression algorithm (e.g. RFs) and the resultierdopmance is quantified in a cost function. Thetdanction (c(v)) of the
variable set v aims at identifying a compromiseneein performance (m) and number of variables (rgmy) follows Jung
and Zscheischler (2013):

M —m(v)
c(v)=n(v)+2 ¢ (85.1)

Where m(v) is Nash-Sutcliff's modeling efficiencMEF) for variable set v, M is the MEF identified §ar during the
search, and epsilon is a parameter that deschibesctepted performance loss for retaining onebkriess (set to 0.005).
The settings of GHGA were the recommended defalites given in Jung and Zscheischler (2013).

The training of RF was based on a randomly chosshdi FLUXNET sites, while the remaining half wased for
validation (for which MEF was calculated). To mirz® differences of MEF between different variald¢ssby chance, the
stratification in training and validation sites atheé bootstrap samples for growing the regresseestwere always the same.
The number of regression trees of each RF wasoséd tto limit the computational burden. The varabkarch stopped
when no new global or local optimum were found witthe last 1000 cost function evaluations, or wi€@00 cost
function evaluations were reached. The final selbetariable set was the ones with smallest costifumvalues. The entire
variable selection exercise required nearly 10004i¢s of training and prediction of RF, (here usedanake suggestion of

variables with in total more than 5 million regriesstrees.



S6 M ethods settings.

Machine learning methods need of free hyperparawnetften related to the cost function used thatame to minimize,

the regularization terms that are in charge of miliig overfitting the training data, the shapedasmoothness of the

nonlinear functions. In Table S6.1 we presentedhyerparametres setting the applied machine legrapplied for the

training at eight daily time step by RS setup (seetion 2.3.1). The variants for the training &f thachine learning applied

for the RS+METEO setup (daily time step) were shawmable S6.2.

Table S6.1: Method settings adopted for the training of trghedaily time step for the RS setup. Acronym of moels are: RF Random
Forest, MTE Model Tree Ensemble, SVM Support Vedtachine, KRR Kernel Ridge Regression, GPR GaussiareBses, ANN feed
forward Artificial Neural Networks, GMDH Group Metld of Data Handling or polynomial neural networkR)FGP Random Forest
with Gaussian Processes in leafs node, MARS MultitewAdaptive Regression Splines. NA Not Available

Name Hyperparameters and settings Scaling Ensemble Reference
Tree methods
Minimum number of samples in leafs = 5.
RF Fraction of vapableg to find split per node :.0'33 none 200 Regression trees  Breimann (2001)
Surrogate splits activated to use samples with
incomplete predictors.
All continuous variables are used for split and
regression. 25 Model Trees
MTE One two-fold cross-validation in leaf nodes to none selected out of 2500 Jung etal. (2009)
avoid overfitting.
All continuous variables are used for split and 50 Model| Trees.by
. randomly removing  Supplementary
MTEy regression. none . .
L the hold-out fraction material S2
Local hold-out fraction = 0.33.
locally
constrained
Drivers for regressions in the leaf node = 3. between the
Splitting rules and regressions randomly extractedninimum/maxim Median ensemble of  Supplementar
MTEy choosing the best among 10 extractions. um values of the ppler y
. . . - 30 trees. material S2
Five fold cross comparison to evaluate multiple ~ domain of the
regressions. regressions into
the leaf node
Kernel methods
Grid search of the squared exponential kernel Shawe-Taylor
KRR lengthscale and the regularization parameter. -lto1l NA and Cristianini
Testing against a hold out of 50% of sites. (2004)
Grid search of the squared exponential kernel
lengthscale. the epsilon-insensitivity zone for the Vapnik et al
SVM cost function, and the regularization parameter to -l1to1l NA ?1998) '
control errors penalization.
Testing against a hold out of 50% of sites.
Remove the
Hyperparameters found by maximum likelihood ofmean, scaling all Rasmussen
GPR . . NA
the marginal evidence. features between (2006)
Oto1l
Hyperparameters found by maximum likelihood of
the marginal evidence. .
Same initialization parameters as in GPR (for the meRaenm(s)Z:Htr?eall Fro?zllgrzit al.
RDF-GP  prediction GPR model in the leaves of the RF). A ' 9 10
S - features between Supplementary
minimum of 1000 sample in each leaf. Ensemble -
Oto1l material S2
of 10 trees.
Neural Network methods
Feed forward network trained with the Levenberg-
Marquardt learning algorithm.
5 initializations for each net; percentage of sites 10, randomly Haykin (1999)
ANN distributed among training, test and validation set 0to1 sampling sites for Papale et al.
60, 20, 20 respectively. training, test and (2003)

Net architecture with one or two layers, each one
having from 5 to 12 neurons.
The net with the best performance (on the

validation sets



validation set) and the simplest architecture was

chosen.
Maximum number of inputs for individual neurons
=3. 20 (by randomly
GMDH Maximum number of neurons per layer equal to 1to1 sampling sites for Ungaro et al.
the number of predictor; training and (2005)
Degree of polynomials in neurons = 3. validation)
Multivariate Splines
The maximal number of basis functions included
in the forward model building phase = 21
MARS (default). -1to 1 for X 20 (by bootstrapping) Friedman et al.

Generalized Cross-Validation (GCV) penalty per  Zscore for Y
knot = 3 (default value).
Maximum degree of interactions =2.

(1991)

Footnotes: MTE; can handle samples with missing predictors; GMDéumdns take input from preceding layer and frongiosl input
variables; MARS piecewise-cubic models no self atgons. In all methods, excepting the tree methtis vegetation category was
converted in Woody/non-woody dummy vector (1 foroadp PFT and 0 for non-woody PFT).

Table S6.2: Method settings adopted for the training in the REFEO setup (daily time step). Acronym of the sdoreTable S6.1.

Name Hyperparameters and settings Scaling Ensemble Reference

Tree methods

Minimum number of samples in leafs = 25.
Fraction of variables to find split per node = 0.33
Surrogate splits not activated (not handle missing
values )

RF none 200 Regression trees  Breimann (2001)

Kernel methods

20 models each one
using a training set
(10000 points)
extracted by a

Grid search of the squared exponential kernel
KRR lengthscale and the regularization parameter. -lto1l

Shawe-Taylor
and Cristianini

Testing against a hold out of 50% of sites. stratified random (2004)

sampling strategy.

Neural Network methods
Feed forward network trained with the Levenberg-
Marquardt learning algorithm.
5 initializations for each net; percentage of sites
distributed among training, test and validation set 10, randomly Haykin, (1999)
ANN 60,20,20 respectively. 0to 1 sampling sites for Papale et al.
Net architecture with one or two layers, each one training, test and (2003)
having from 5 to 12 neurons. validation sets
The net with the best performance (on the
validation set) and the simplest architecture was
choosen.
Multivariate Splines

The maximal number of basis functions included 20 models: trainin
in the forward model building phase = 21 , training

set (10000 points) .

MARS* (default)_. o -1to 1 for X extracted by a Friedman et al.
Generalized Cross-Validation (GCV) penalty per  Zscore for Y o (1991)
~ stratified random
knot = 3 (default value). sampling strategy
Maximum degree of interactions =2. )
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