

- Biogeochemical and biological impacts of diazotroph blooms in a Low Nutrient Low Chlorophyll ecosystem: synthesis from the VAHINE mesocosm experiment (New Caledonia) Sophie Bonnet^{1,2}, Melika Baklouti¹, Audrey Gimenez¹, Hugo Berthelot¹, Ilana Berman-Frank³ [1] {IRD, Aix Marseille Université, CNRS/INSU, Université de Toulon, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille-Noumea, France, New Caledonia} [2] {Institut de Recherche pour le Développement, AMU/ NRS/INSU, Université de Toulon, Mediterranean Institute of Oceanography (MIO) UM110, 98848, Noumea, New Caledonia } [3] {Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel } Correspondence to: S. Bonnet (sophie.bonnet@ird.fr)

1 Abstract

In marine ecosystems, N2 fixation provides the predominant external source of nitrogen (N) 2 (140±50 Tg N yr⁻¹), contributing more than atmospheric and riverine inputs to the N supply. 3 Yet the fate and magnitude of the newly-fixed N, or diazotroph-derived N (hereafter named 4 5 DDN) in marine ecosystems is poorly understood. Moreover, it remains unclear whether the DDN is preferentially directly exported out of the photic zone, recycled by the microbial loop, 6 and/or transferred into larger organisms, subsequently enhancing indirect particle export. 7 These questions were investigated in the framework of the VAHINE (VAriability of vertical 8 9 and tropHIc transfer of diazotroph derived N in the south wEst Pacific) project. Triplicate large volume (~ 50 m³) mesocosms were deployed in the tropical South West Pacific coastal 10 ocean (New Caledonia) to maintain a stable water-mass without disturbing ambient light and 11 temperature conditions. The mesocosms were intentionally fertilized with $\sim 0.8 \ \mu M$ dissolved 12 inorganic phosphorus (DIP) at the start of the experiment to stimulate diazotrophy. A total of 13 47 stocks, fluxes, enzymatic activities and diversity parameters were measured daily inside 14 15 and outside the mesocosms by the 40 scientists involved in the project. The experiment lasted 16 for 23 days and was characterized by two distinct and successive diazotroph blooms: a dominance of diatom-diazotroph associations (DDAs) during the first half of the experiment 17 (days 2-14) followed by a bloom of UCYN-C during the second half of the experiment (days 18 15-23). These conditions provided a unique opportunity to compare the DDN transfer and 19 export efficiency associated with different diazotrophs. Here we summarize the major 20 21 experimental and modelling results obtained during the project and described in the VAHINE Special issue, in particular those regarding the evolution of the main standing stocks, fluxes 22 and biological characteristics over the 23-days experiment, the contribution of N_2 fixation to 23 export fluxes, the DDN released to dissolved pool and its transfer to the planktonic food web 24 25 (bacteria, phytoplankton, zooplankton). We then apply our Eco3M modelling platform further 26 to infer the fate of DDN in the ecosystem and role of N_2 fixation on productivity, food web 27 structure and carbon export. Recommendations for future work are finally provided in the 28 conclusion section. 29

- 30
- 31
- 32
- 33
- 55
- 34

1 1 Introduction

2 Atmospheric dinitrogen (N_2) is the largest pool of nitrogen (N) on earth yet it is unavailable 3 for most organisms that require N for growth. Biological fixation of N_2 (or diazotrophy) is catalyzed by the nitrogenase enzyme (encoded by the nifH genes) that converts the inert 4 triple-bond N_2 into bioavailable ammonia (NH₄⁺). This process has long been studied in 5 terrestrial agriculture as it increases the yield of cultures associated with N2-fixing organisms. 6 In the ocean, diazotrophy provides the predominant external source of N (140±50 Tg N yr⁻¹) 7 contributing more than atmospheric and riverine inputs (Gruber, 2004). Moreover, N₂ fixation 8 9 acts as a potential natural fertilizer adding a source of new N that is available for non-10 diazotrophic primary producers and bacterioplankton especially in Low Nutrient, Low Chlorophyll (LNLC) ecosystems, where N is the proximal limiting nutrient e.g. (Moore et al., 11 2013). Tropical LNLC ecosystems include the vast oligotrophic subtropical gyres and 12 represent more than 60 % of the global ocean area. N₂-fixing organisms (or diazotrophs) have 13 14 a competitive advantage and sustain a large percentage (~50 %) of new primary production (PP) e.g. (Karl et al., 2002) in these vast ecosystems. 15

16 The non-heterocystous filamentous cyanobacterium Trichodesmium spp. remains the most studied marine diazotroph. Based on direct rate measurements, Trichodesmium accounts for a 17 quarter to half of geochemically-derived estimates of marine N₂ fixation at the global scale 18 19 (Mahaffey et al., 2005). Diverse cyanobacteria and bacteria also fix N_2 in marine waters. These include: (1) the heterocystous cyanobacteria frequently found in association with 20 21 diatoms (diatom-diazotroph associations (hereafter referred to as DDAs; (Foster and O'Mullan, 2008)) efficient at exporting organic matter out of the photic zone (Karl et al., 22 2012), (2) unicellular cyanobacterial lineages (UCYN-A, B, and C) with a size range from 1 23 to 6 µm (Moisander et al., 2010), which are key oceanic diazotrophs (Luo et al., 2012) 24 25 accounting for the predominant fraction of N2 fixation in many tropical oceans (Bonnet et al., 26 2009; Montoya et al., 2004), and (3) non-cyanobacterial N_2 -fixing bacteria and archaea that 27 are still poorly characterized yet recent studies show they are abundant and active across the 28 world's oceans (Farnelid et al., 2011; Farnelid and Riemann, 2008; Moisander et al., 2014). While the role and contribution of marine N₂ fixation on biogeochemical cycles have been 29

intensely investigated, a critical question that remains poorly studied is the fate of newly-fixed 30

N, or diazotroph-derived N (hereafter named DDN) in LNLC ecosystems (Mulholland, 2007). 31

32 It remains unclear whether the DDN is preferentially directly exported out of the photic zone,

recycled by the microbial loop, and/or transferred into larger organisms, subsequently 33

enhancing indirect particle export. 34

1 This question was investigated in the framework of the VAHINE (VAriability of vertical and 2 tropHIc transfer of diazotroph derived N in the south wEst Pacific) project. Here we 3 summarize the major results described in the VAHINE Special issue and integrate them to 4 obtain general conclusions from the experiment. In this introduction section, we first 5 summarize some of our knowledge regarding the fate of DDN in the ocean, describe the 6 ongoing technical challenges to study this question, and the specific scientific objectives of 7 the VAHINE project.

8

9 1.1 Current knowledge on the fate of DDN in the ocean

10 1.1.1 DDN release to the dissolved pool

As the biologically catalysed process of N_2 fixation is not entirely efficient, diazotrophs 11 release some of the recently fixed N2 as dissolved organic N (DON) and NH4⁺ to the 12 surrounding waters (Glibert and Bronk, 1994; Meador et al., 2007; Mulholland et al., 2006). 13 Several studies have reported elevated DON and NH4⁺ concentrations during and immediately 14 after Trichodesmium spp. blooms in the Indian (Devassy et al., 1979; Devassy et al., 1978; 15 16 Glibert and O'Neil, 1999), Pacific (Karl et al., 1992; Karl et al., 1997b), and Atlantic (Lenes et al., 2001) oceans. Subsequent culture (Hutchins et al., 2007; Karl et al., 1992; Karl et al., 17 1997a) and field studies (Benavides et al., 2013b; Konno et al., 2010; Mulholland and 18 Bernhardt, 2005) have quantified that diazotrophs release \sim 50 % of the total fixed N₂ to the 19 dissolved pool. Most of these studies were performed on the conspicuous *Trichodesmium* spp. 20 21 and were based on the difference between gross N2 fixation (measured by acetylene reduction assays) and net N₂ fixation (Mulholland et al., 2004) measured using the ¹⁵N₂ labelling 22 technique (Montoya et al., 1996). The recent modification of the ¹⁵N₂ labelling method (Mohr 23 et al., 2010) led to higher net N_2 fixation rates and potentially reduced the gap between gross 24 and net N2 fixation. Applying the new N2 fixation method and the direct measurement of the 25 ^{15}N signature on the released DON and NH_4^+ demonstrated low release rates from 26 Trichodesmium spp. and from three strains of UCYN-B and C (<1 % of total N₂ fixation) 27 (Berthelot et al., 2015a). Similar experiments (examining the direct ¹⁵N measurement on 28 released molecules) showed low release by UCYN-C (~1 %, (Benavides et al., 2013a)). 29 Culture studies probably represent lower end estimates of DDN release, as in the field, 30 exogenous factors such as viral lysis (Hewson et al., 2004; Ohki, 1999) and sloppy feeding 31 32 (O'Neil et al., 1996) may enhance the leakage of DDN by UCYN, yet such field studies on 33 these organisms are rare.

1 **1.1.2** Transfer of DDN to the trophic chain and impact on plankton community

2 composition

3 The transfer of DDN towards the first levels of the food chain (phytoplankton, bacteria) is mainly achieved through the dissolved pool. Devassy et al. (1979) first observed that as 4 5 blooms of Trichodesmium spp. decayed in the Indian ocean, diatom populations increased (mainly Chaetoceros sp.), followed by a succession of cladocerans, dinoflagellates, green 6 algae and finally copepods. In the Atlantic, a high abundance of non-diazotrophic diatoms and 7 8 dinoflagellates succeeded blooms of *Trichodesmium* spp. (Devassy et al., 1978; Furnas and 9 Mitchell, 1996; Lenes et al., 2001), while in the pelagic waters of the Kuroshio current, 10 Trichodesmium spp. and diatom abundance were positively correlated (Chen et al., 2011). These studies suggest a potential transfer of DDN from diazotrophic to non-diazotrophic 11 phytoplankton. Actual calculations were first performed by Bronk et al. (2004), Lenes and 12 Heil (2010) and Sipler et al. (2013), who demonstrated how the DDN released by 13 Trichodesmium spp. affected the bloom dynamics of the toxic dinoflagellate Karenia brevis in 14 the Gulf of Mexico. Size-fractionation of picoplankton after ¹⁵N₂ incubation also supported 15 the idea of a DDN transfer towards non-diazotrophic plankton (Bryceson and Fay, 1981; 16 Olendieck et al., 2007; Garcia et al., 2007), yet this method could not discriminate the DDN 17 transfer towards non-diazotrophic picoplankton from N₂ fixation by picoplankton itself and 18 19 thus likely overestimated the DDN transfer.

Thus, the actual transfer of DDN towards non-diazotrophic phytoplankton and bacteria 20 21 remains poorly qualified and challenged due mainly to technical limitations as it requires appropriate methodologies to track the passage of DDN through the different components of 22 microbial food web. Moreover, the planktonic groups (autotrophic versus heterotrophic, small 23 versus large phytoplankton) that benefit the most from this DDN and develop during/after 24 25 diazotroph blooms have not been identified so far despite their potential to differentially affect 26 the structure of the trophic chain and eventually the mode of export of carbon (C) from the 27 photic zone.

Regarding higher trophic levels, low δ^{15} N signatures measured on zooplankton indicate that DDN is transferred towards secondary producers (Montoya et al., 2002b). This transfer can be direct through the ingestion of diazotrophs (O'Neil et al., 1996; Wannicke et al., 2013a), or indirect, i.e. mediated by the dissolved N released by diazotrophs (Capone et al., 1994; Glibert and Bronk, 1994; Mulholland et al., 2004). The dissolved N (both DIN and DON) is taken up by heterotrophic and autotrophic plankton and then potentially grazed on by zooplankton, yet these pathways remain poorly explored.

1 The transfer of DDN to zooplankton may possibly depend on the diazotroph community 2 composition in the water column. Toxicity of Trichodesmium spp. (Kerbrat et al., 2010) 3 combined with poor nutritional quality (O'Neil, 1999; O'Neil and Roman, 1992) reduce grazing pressure by copepods other than the harpacticoïd Macrosetella gracilis. Stable isotope 4 5 measurements performed on zooplankton suggest higher DDN uptake when the diazotroph community is dominated by DDAs rather than Trichodesmium spp. (Montoya et al., 2002a). 6 Grazing experiments on UCYN have not been conducted so far and the potential of UCYN as 7 8 a conduit of DDN into marine food webs remains unexplored.

9

10 **1.1.3 Export of DDN out of the photic zone**

Low $\delta^{15}N$ signatures in particles from sediment traps in the tropical North Pacific suggests 11 that at least part of the DDN is ultimately exported out of the photic zone (Karl et al., 2012; 12 Karl et al., 1997b; Scharek et al., 1999a; Sharek et al., 1999b). The export of DDN may either 13 14 be direct through sinking of diazotrophs, or indirect, through the transfer of DDN to nondiazotrophic plankton in the photic zone, that is subsequently exported. While it has been 15 16 demonstrated that DDAs directly contribute to particle export (Karl et al., 2012; Subramaniam et al., 2008; Yeung et al., 2012), the DDN export efficiency appears to depend on the 17 diazotroph community composition present in surface waters. The positive buoyancy of 18 Trichodesmium spp. probably prevents its downward flux and settling in sediment traps 19 (Capone et al., 1997; Walsby, 1992), although programmed cell death (PCD) causing bloom 20 21 demise can cause rapid export of Trichodesmium biomass to depth (Bar-Zeev et al., 2013; Berman-Frank et al., 2004; Spungin et al., 2016). In the north-east Pacific, when the 22 diazotrophic community was dominated by UCYN-A and Trichodesmium spp., N₂ fixation 23 contributed ~10 % of the export (White et al., 2012); when DDAs dominated the diazotrophic 24 25 community they contributed ~44 % of export production, thereby suggesting that DDAs have a higher export efficiency compared to Trichodesmium spp. and UCYN-A. Despite their 26 27 recent recognition as key oceanic diazotrophs (Luo et al., 2012), the export efficiency of UCYN from other lineages (UCYN-B and UCYN-C) is currently undetermined as no 28 published studies of natural UCYN blooms and their fate in the ocean are to date available. 29 The determination of direct versus indirect export requires diazotroph quantification in both 30

the water column and in sediment traps in addition to clarifying the actual transfer of DDN to the different groups of autotrophic and heterotrophic plankton. Few studies have thus focused on the direct coupling between N_2 fixation and particulate export in general (see references above). Ideally such studies require the successful encounter of an oceanic diazotroph bloom,

- deployment of sediment traps, and long-term (several weeks) monitoring of the
 biogeochemical characteristics of the water body influenced by the bloom, which are rarely
 accomplished. The patchy distribution of diazotrophs in the surface ocean (Bombar et al.,
 2015), the temporal lag between production and export, and hydrodynamic features that may
- decouple production in surface and export below the photic zone (Buesseler et al., 2007) also
 make these studies very challenging.
- 7

8 1.2 Scientific objectives of the VAHINE project

9 Thus, the main scientific objectives of the VAHINE project were:

10

i) To quantify the DDN which enters the planktonic food web. Is DDN preferably transferred
to large size (e.g. diatoms), small size (pico-, nanophytoplankton) phytoplankton, or to the
microbial food web? What percentage of DDN is transferred to zooplankton? Does it depend
on the diazotroph community composition?

15 ii) To investigate how the development of diazotrophs influences the subsequent diversity,

gene expression, and production of primary producers, heterotrophic bacterioplankton, andsubsequently the zooplankton abundance

iii) To examine whether different functional types of diazotrophs significantly modify thestocks and fluxes of the major biogenic elements (C, N, P)?

iv) To elucidate whether the efficiency of particulate matter export depends on the
development of different functional types of diazotrophs? Is this export direct (through the
sinking of diazotrophic cells) or indirect (through the transfer of DDN to non-diazotrophic
plankton that is subsequently exported)?

24

25 To achieve these goals and concurrently determine N_2 fixation and particle export, we isolated large water masses containing ambient planktonic communities by deploying three large-26 volume (~50 m³) mesocosms (Bonnet et al., 2016) thereby maintaining a stable water-mass 27 without disturbing ambient light and temperature conditions. The experimental location in the 28 southwestern Pacific region was chosen as in this area some of the highest rates of oceanic N_2 29 30 fixation occur (Bonnet et al., 2015b; Messer et al., 2015). Additionally, to enhance N₂ fixation, the mesocosms were intentionally fertilized with dissolved inorganic phosphorus 31 (DIP). The experiment lasted 23 days and was characterized by a dominance of DDAs during 32 the first half of the experiment (days 2-14) and a bloom of UCYN-C during the second half of 33 34 the experiment (days 15-23), providing a unique opportunity to compare the DDN transfer

- 1 and export efficiency associated with specific diazotrophs in this experimental system. Some
- 2 additional process experiments performed on *Trichodesmium* spp. which bloomed outside the
- 3 mesocosms on the last two days are also presented here.
- 4 Below, we summarize the scientific strategy used in this study, as well as some of the major
- 5 results obtained during this project and propose some scientific perspectives for the future.
- 6

7 2 Scientific strategy

8 2.1 Brief description of the mesocosms and study site

9 The large-volume (~50 m³) mesocosm experiment was undertaken in New Caledonia, located 10 1500 km east of Australia in the Coral Sea (southwestern tropical Pacific, Fig. 1). Three replicate polyethylene and vinyl acetate mesocosms (diameter 2.3 m, height 15 m, volume 11 ~50 m³, Fig. 2) were deployed 28 km off the coast of New Caledonia at the entrance to the 12 Noumea coral lagoon (22°29.073 S - 166°26.905 E) for 23 days from January 13th to February 13 6th (austral summer). The New Caledonian lagoon has been chosen as it is a well-studied 14 environment (Special issue Marine Pollution Bulletin 2010 (Grenz and LeBorgne, 2010)) 15 submitted to high oceanic influence (Ouillon et al., 2010) and harbouring typical oligotrophic 16 conditions during the summer season (NO₃⁻ concentrations <0.04 μ mol L⁻¹ and chlorophyll a 17 (Chl a) ~0.10-0.15 μ g L⁻¹ (Fichez et al., 2010). Primary productivity is N-limited throughout 18 the year (Torréton et al., 2010), giving diazotrophs a competitive advantage. New Caledonian 19 waters support high N₂ fixation rates (151-703 μ mol N m⁻² d⁻¹, (Garcia et al., 2007)), as well 20 21 as high Trichodesmium spp. (Dupouy et al., 2000; Rodier and Le Borgne, 2010, 2008), and UCYN abundances (Biegala and Raimbault, 2008), therefore representing an ideal location to 22 implement the VAHINE project and study the fate of DDN in the marine ecosystem. 23

DIP availability can control N_2 fixation in the southwestern Pacific (Moutin et al., 2008; Moutin et al., 2005), hence the mesocosms were intentionally fertilized with ~0.8 μ M DIP (KH₂PO₄) the evening of day 4 to alleviate any potential DIP limitation and promote N_2 fixation and even diazotroph blooms for the purpose of the project.

The mesocosms used for this study are well suited for conducting replicated process studies on the first levels of the pelagic food web (Bonnet et al., 2016; Guieu et al., 2010; Guieu et al., 2014). They are equipped with sediment traps allowing the collection of sinking material. Due to the height of the mesocosms (15 m), they do not represent processes occurring in the full photic layer but allow studying the dynamics of C, N, P pools/fluxes and export associated with the plankton diversity in the same water mass, and comparing these dynamics. before/after the DIP fertilization, and under contrasted conditions regarding the diazotroph

1 community composition (cf below). Detailed surveys performed in LNLC environments 2 revealed that temperature and light conditions are not affected by the presence of the 3 mesocosms compared to surrounding waters (Bonnet et al., 2016; Guieu et al., 2010; Guieu et 4 al., 2014). These studies also revealed a good replicability of stocks, fluxes and plankton 5 diversity measurements among the replicate mesocosms. Hence, the discussion below will 6 consider the average between the three mesocosms deployed in this study.

7

8 2.2 Sampling strategy and logistics

A complete description of the mesocosms design and deployment strategy is given in the
introductory article (Bonnet et al., 2016). In total, over 47 stocks, fluxes, enzymatic activities
and diversity parameters were measured daily by the 40 scientists involved in the project.
Protocols for each measured parameter are detailed in the specific contributions to this special
issue and will not be described here. Modelling has also accompanied all steps of the project
(see Gimenez et al. (2016) and section 5 below).

Sampling for stocks, fluxes and plankton diversity measurements was performed daily at 7 am 15 in each of the three mesocosms (M1, M2 and M3) and in surrounding waters (hereafter called 16 'lagoon waters') from day 2 (January 15th, the day of the mesocosms closure) to day 23 17 (February 6th) at three selected depths (1, 6 and 12 m) to study the vertical variability within 18 and in lagoon waters. For flux measurements, bottles were incubated on an in situ mooring 19 line at the appropriate sampling depth set up close to the mesocosms. Vertical CTD profiles 20 21 were then performed daily at 10 am in every mesocosm and in lagoon waters using a SBE 19 plus Seabird CTD to obtain the vertical profiles of temperature, salinity and fluorescence. 22 Finally, sediment traps were collected daily by SCUBA divers at 10:30 am, see details in 23 Bonnet et al. (2016). 24

25

26 3 Evolution of the main standing stocks, fluxes and biological 27 characteristics during the VAHINE experiment

Initial hydrological and biogeochemical conditions (i.e. conditions in ambient waters the day of mesocosms deployment - January 13th, day 0) were typical of those encountered in the oligotrophic Noumea lagoon during austral summer conditions (Fichez et al., 2010; Le Borgne et al., 2010), with seawater temperature of 25.5°C, surface salinity of 35.15, NO₃⁻depleted waters ($0.04\pm0.01 \mu mol L^{-1}$), low DIP concentrations ($0.04\pm0.01 \mu mol L^{-1}$), and Chl *a* concentrations of 0.20 µg L⁻¹. N₂ fixation rates were 8.70±1.70 nmol N L⁻¹ d⁻¹ and the diazotroph community was dominated by DDAs (het-1 3.1 x 10⁴ *nifH* copies L⁻¹ and het-2 1.2

- 1 $x10^4$ nifH copies L⁻¹) as well as UCYN-A2 (1.5 x 10^4 nifH copies L⁻¹) and UCYN-A1 (5.6 x
- 2 10^3 nifH copies L⁻¹), which together accounted for 95 % of the total nifH pool in the lagoon
- 3 waters prior to the mesocosms closure (Turk-Kubo et al., 2015).
- During the 23-days VAHINE mesocosm experiment, three major periods could be defined 4 based on the main C, N, P stocks and fluxes (Berthelot et al., 2015b) and on the identity of the 5 most abundant diazotrophs that developed in the mesocosms (Turk-Kubo et al., 2015): P0 6 7 from days 2 to 4 (i.e. prior to the DIP fertilization that occurred on the evening of day 4), P1 from days 5 to 14, and P2 from days 15 to 23 (Figs. 3 and 4). Figure 3 reports the main 8 9 hydrological and biogeochemical parameters during the experiment. Figure 4 provides a 10 synoptic view of the main changes (positive, negative, neutral) in the major stocks, fluxes, 11 and plankton community composition measured during P1 and P2 respectively.
- Seawater temperature (Fig. 3) gradually increased both inside and outside the mesocosms 12 over the 23-days of the experiment from 25.5°C to 26.2°C on day 23, which is the general 13 trend observed during austral summer conditions (Le Borgne et al., 2010). The water column 14 15 was well homogenized inside the mesocosms throughout the experiment (Bonnet et al., 2016). NO₃⁻ concentrations remained close to detection limit of conventional micromolar methods 16 $(0.02 \text{ }\mu\text{mol }L^{-1})$ both inside and outside the mesocosms throughout the 23 days of the 17 experiment (Fig. 3). The low (0.04 µmol L⁻¹) DIP concentrations measured during P0 18 increased in the mesocosms right after the fertilization up to ~ 0.8 µmol L⁻¹, then decreased 19 quickly to reach values close to initial DIP concentrations (~0.04 μ mol L⁻¹) at the end of the 20 21 experiment.
- As a major objective of the experiment was to study the development of diazotroph blooms 22 and the fate of DDN, investigation of the biological response was focused on diazotrophs and 23 their subsequent influence on biological and biogeochemical signatures. N_2 fixation rates 24 tripled between P1 and P2, to reach extremely high rates during P2 (27.3±1.0 nmol N L⁻¹ d⁻¹ 25 on average and up to 70 nmol N L⁻¹ d⁻¹ (Bonnet et al., 2015a)) (Fig. 3), ranking among the 26 highest rates reported in marine waters (Luo et al., 2012). The diazotroph community 27 composition was dominated by DDAs during P1, and a bloom of UCYN-C occurred during 28 P2 (Fig. 4). Standing stocks of Chl a and PON increased by a factor of 3 and 1.5 between P1 29 and P2 and subsequently, export of PON dramatically increased (by a factor of 5) in the 30 mesocosms during P2 (Fig. 3). These results emphasize that the experimental mesocosm setup 31 provided ideal conditions to study the fate of DDN associated with different diazotroph 32 communities (DDAs versus UCYN-C). 33

1 The synoptic view of the mesocosm dynamics (Fig. 4) indicates that after the DIP fertilization, DIP concentrations and DIP turn-over time increased significantly during P1, and 2 3 alleviated P-limitation in the microbial communities as reflected in the significant decline in alkaline phosphatase activity (APA). The major biomass-indicative standing stock parameters 4 5 (Chl a, POC, PON, POP) did not increase immediately after the DIP fertilization (P1) but during P2 (see below). Only PP increased significantly by a factor of 2 during P1, associated 6 with a significant increase in N₂-fixing DDAs and *Prochlorococcus* abundances. During P1, 7 enhanced DIP availability enabled non-diazotrophic organisms with lower energetic 8 9 requirements and higher growth rates such as Prochlorococcus to outcompete the diazotrophs 10 in the mesocosms via utilization of recycled N derived from N2 fixation (Bonnet et al., 2015a). Thus, while PP increased, N₂ fixation rates decreased significantly after the DIP spike. 11

During P2, diazotrophy was characterized by the significant increase in UCYN-C abundances 12 that reached up to 7 x 10^5 nifH copies L⁻¹, concomitant with the utilization of DIP and the 13 significant decline in DIP concentrations, DIP turn-over time and a parallel increase of total 14 APA. In all three mesocosms, the increase in UCYN-C abundances coincided with the day at 15 16 which the DIP turnover time declined below 1 d, indicative of DIP limitation (Berthelot et al., 2015b; Moutin et al., 2005). UCYN-C may have also utilized dissolved organic phosphorus 17 (DOP) as a P source (Bandyopadhyay, 2011), driving the significant decline in DOP 18 concentrations observed during P2 ((Berthelot et al., 2015b), Fig. 4). The mesocosm approach 19 also enabled the calculation of *in situ* growth rates for UCYN-C, which were up to 2 d^{-1} 20 21 during P2, i.e. higher than growth rates of other diazotrophic phylotypes during P2 (Turk-Kubo et al., 2015), indicating that under NO₃⁻ depletion and low DIP availability, UCYN-C 22 was the most competitive diazotroph in the mesocosms. 23

24

Under the high N₂ fixation conditions encountered during P2 (27.3 ± 1.0 nmol N L⁻¹ d⁻¹), all 25 standing stocks (Chl a, POC, PON, POP) increased in the mesocosms, together with PP and 26 BP (Fig. 4). The corresponding NO3⁻, DIP, DON and DOP stocks for P2 decreased, indicating 27 active consumption by the planktonic communities. As no external supply of NO_3^- was 28 provided to the enclosed mesocosms, we calculated that the consumption of the NO3⁻ stock 29 initially present in the mesocosms (0.04 μ mol L⁻¹) represented less than 11 % of the integrated 30 N2 fixation rates. Therefore, N2 fixation supplied nearly all of the new production during the 31 experiment. Our results demonstrate that in oligotrophic N-depleted systems, diazotrophs can 32 provide enough new N to sustain high PP rates (exceeding 2 µmol C L⁻¹ d⁻¹) and high biomass 33 (~ 10 μ mol L⁻¹ of POC and 0.7 μ g L⁻¹ of Chl *a*), as long as DIP does not limit N₂ fixation 34

- 1 (Berthelot et al., 2015b). Furthermore, during P2, DON provided an additional N source for
- 2 non-diazotrophic phytoplankton and bacteria (Berthelot et al., 2015).
- 3 The time lag between the DIP fertilization and the increase in biogeochemical stocks/fluxes was 10 days, indicating that 10 days were necessary for N₂ fixation to sustain the high 4 5 production rates observed, and to see an effective accumulation of biomass. Our results demonstrate the restricted applicability of nutrient-addition experiments in small-volume 6 microcosms (several liters) mostly limited to 24-72 h incubations that are typically employed 7 8 to assess nutrient limitations on plankton growth in the ocean, e.g. (Moore et al., 2013). If 9 indeed a longer time scale (weeks) is required to study nutrient limitation of plankton in 10 marine ecosystems, then large-volume mesocosms, such as we demonstrate here, would be more suitable (Gimenez et al., 2016). 11
- Concurrent with the development of diazotrophic (UCYN-C) populations, the abundance of 12 13 Synechococcus, pico-eukaryote and nano-eukaryote primary producers also increased at the end of P2 (i.e. around day 16) (Leblanc et al., 2016). The non-diazotrophic diatoms responded 14 rapidly (i.e. around day 10-11) and increased to bloom values (100 000 cells L^{-1}) 15 16 simultaneously with the UCYN-C bloom on days 15-16 and prior to the increases in the picoand nanophytoplankton (Pfreundt et al., 2015; Van Wambeke et al., 2015). This increase was 17 paralleled by a drastic change in the diatom community structure, which became almost 18 monospecifically dominated by Cylindrotheca closterium. Despite the significant increase in 19 BP during P2 and enrichments in the 16S transcripts of specific bacterial groups (Pfreundt et 20 21 al., Submitted), the total abundance of heterotrophic bacteria did not (Van Wambeke et al., 2015), probably due to grazing. Finally, no consistent temporal pattern in zooplankton 22 biomass was detected over the course of the experiment (Hunt et al., 2016), although changes 23 were observed regarding the contribution of DDN to zooplankton biomass (see below). 24
- 25

26 4. Tracking the fate of N₂ fixation

27 4.1. Contribution of N₂ fixation to export fluxes

We specifically utilized the mesocosm approach to answer whether the composition of the diazotroph community influenced the subsequent export of particulate matter and how. During P1, DDAs dominated the diazotroph community. For this time period, the biomass indices (Chl *a*, POC, PON, POP) were stable within the mesocosms (Fig. 3, 4), suggesting that the DDN associated with DDAs remained within the symbiotic associations (i.e. was poorly transferred to the rest of the planktonic community). Moreover, the amount of recently fixed N₂ equaled that of exported PON, suggesting that the recently fixed N₂ by DDAs was

rapidly exported (Fig. 5a) as also observed for DDAs in the tropical North Pacific at Station
ALOHA (Karl et al., 2012). DDAs such as het-1 (*Richelia* in association with the diatom *Rhizosolenia* spp.), which dominated the DDA community during P1 in the mesocosms
(Turk-Kubo et al., 2015) have indeed been shown to sink at high rates in the ocean (Scharek
et al., 1999a).

During P2 and the UCYN-C bloom, the increases in Chl a, POC, PON, and POP 6 concentrations in the mesocosms suggest that a fraction of the recently produced biomass 7 sustained by N_2 fixation remained in the water column. The mesocosms enabled us to 8 9 determine whether export associated with diazotrophs was direct (through the sinking of 10 diazotrophic cells) or indirect (through the transfer of DDN to non-diazotrophic plankton that is subsequently exported). The direct export of UCYN has rarely been studied (White et al., 11 2012). Yet, UCYN contribution to vertical flux and export was assumed to be lower than the 12 contribution of DDAs due to their small size of (1 to $6 \mu m$) and low sinking rates compared to 13 14 DDAs (up to 500 µm comprised of dense silica shells). qPCR quantification of diazotrophs in the sediment traps revealed that ~10 % of UCYN-C from the water column was exported to 15 16 the traps daily, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom (Bonnet et al., 2015a). Mechanistically, the vertical downward flux was 17 enabled by the aggregation of the small (5.7 \pm 0.8 µm) UCYN-C cells into large (100-500 µm) 18 aggregates, the size of which increased with depth (Fib. 5b) possibly due to a sticky matrix 19 composed also of transparent exopolymeric particles (TEP), which concentrations increased 20 21 during P2 (Fig. 4) (Berman-Frank et al., 2016). These data, reported for the first time from the VAHINE experiment (Bonnet et al., 2015a), emphasize that despite their small size relative to 22 DDAs, UCYN-C are able to directly export organic matter to depth, indicating that these 23 small organisms should be considered in future biogeochemical studies. 24

25 The direct export of UCYN-C and other diazotrophs could not solely explain the very high exported matter observed during P2 (Bonnet et al., 2015a), suggesting another way of export 26 27 during that period. An experiment performed during the UCYNC bloom using nanoSIMS demonstrated that a significant fraction of DDN (21±4 %) was quickly (within 24 h) 28 transferred to non-diazotrophic plankton (Bonnet et al., 2015a), revealing that N₂ fixation was 29 fuelling non-diazotrophic plankton growth in the water column (Fig. 5b), suggesting an 30 indirect export pathway in addition to the direct export of UCYN-C. The fact that UCYN-C 31 32 fuelled non-diazotrophic plankton during P2 is consistent with the increase in biomass indicators as well as the increase in non-diazotrophic phytoplankton abundances (diatom and 33 picoplankton) simultaneously with or after the UCYN-C bloom during P2. 34

1 The high export efficiency associated with the UCYN-C bloom compared to the one associated with the DDAs during VAHINE was also indicated by e-ratio calculations, which 2 3 quantify the efficiency of a system to export POC relative to PP. During P2, the *e*-ratio was significantly (p<0.05) higher (i.e., during the UCYN-C bloom; 39.7±24.9 %) than during P1 4 5 (i.e., when DDAs dominated the diazotrophic community; 23.9±20.2 %) (Berthelot et al., 2015b). $\delta^{15}N$ measurements on DON, PON and particles from sediment traps further 6 substantiated these results with a significantly (p<0.05) higher contribution of N_2 fixation to 7 export production during P2 (56±24 % and up to 80 % at the end of the experiment) compared 8 9 to P1 (47 \pm 6 %) (Knapp et al., 2015). The contribution of N₂ fixation to export (up to 80 %) 10 was very high in our study compared with reports from other tropical and subtropical regions where active N_2 fixation contribute 10 to 25 % to export production (e.g. (Altabet, 1988; 11 Knapp et al., 2005)). This is consistent with the extremely high N₂ fixation rates measured in 12 the mesocosms (up to 70 nmol N $L^{-1} d^{-1}$) compared to those measured in other regions (Luo et 13 al., 2012). 14

The export associated with *Trichodesmium* spp. has not been studied in the present mesocosm experiment as only limited numbers of *Trichodesmium* spp. were counted in the mesocosms. Its potential for export is discussed below based on parallel studies from the region and intensive short-term experiments on surface blooms of *Trichodesmium* that appeared outside the mesocosms on days 22-23 (Spungin et al., 2016).

20

21 4.2. DDN release and transfer to the food web

4.2.1 DDN release and transfer to non-diazotrophic phytoplankton and bacteria

As part of VAHINE, we assessed the quantity of DDN entering the planktonic food web as a function of the dominant diazotroph players, and examined which planktonic communities benefited the most from the DDN (i.e. small *versus* large phytoplankton, microbial food web?).

Diazotrophs transfer DDN to phytoplankton and heterotrophic prokaryotes via the dissolved 27 N pool (DON and NH_4^+). During the maximal abundance of UCYN-C, UCYN-C were 28 responsible for 90±29 % of total N₂ fixation rates in the mesocosms (Bonnet et al., 2015a) and 29 the DDN released to the dissolved pool (based on the direct measurement of the isotopic 30 signature (¹⁵N) of the total dissolved N according to the denitrifying method (Knapp et al., 31 2005)) accounted for 7.1 \pm 1.2 to 20.6 \pm 8.1 % of gross N₂ fixation (Bonnet et al., 2015a). This 32 proportion is higher than that reported for UCYN-C in monospecific cultures using an 33 equivalent method (1.0 \pm 0.3 to 1.3 \pm 0.2 % of gross N₂ fixation (Benavides et al., 2013a; 34

Berthelot et al., 2015a). In the natural waters of the mesocosms, a diverse diazotroph community was found at the same time as UCYN-C (Turk-Kubo et al., 2015), and probably contributed to some DDN release. Additionally, exogenous factors such as viral lysis (Fuhrman, 1999) and sloppy feeding (O'Neil and Roman, 1992) occur in natural populations and could enhance N release compared to the mono-culture studies. To our knowledge, these data are the first reported of DDN released in a UCYN bloom.

The physiological state of cells probably plays a critical role in the quantity and availability of 7 DDN to the microbial communities as demonstrated in a study (applying identical 8 9 methodology) from two naturally-occurring blooms of Trichodesmium spp. in the same area 10 (New Caledonian lagoon) (Bonnet et al., Accepted). DDN release from these blooms was slightly higher (bloom 1: 20 ± 5 to 48 ± 5 % and bloom 2: 13 ± 2 to 28 ± 6 % of gross N₂ fixation) 11 compared to UCYN-C (Bonnet et al., Accepted). Trichodesmium spp. bloom 1 was decaying, 12 leading to high DDN release rates and high NH_4^+ accumulation (up to 3.4 μ M) in the 13 14 dissolved pool, which was not observed during bloom 2 when Trichodesmium spp. were in exponential growing phase. The importance of physiological status rather than specific 15 16 diazotroph types was further substantiated in culture study showing no significant differences in DDN release between Trichodesmium spp. and three strains of UCYN-B and C (Berthelot 17 et al., 2015a) 18

Previous comparisons between gross and net N2 fixation rates indicated high DDN release 19 rates for oceanic populations of Trichodesmium spp. (40-50 % of gross N_2 fixation on 20 21 average, and up to 97 %, (Mulholland, 2007) and references therein). The physiological status of these populations may have influenced the fluxes. Furthermore, the values could reflect a 22 methodological overestimation due to the use of the ¹⁵N₂ bubble method (Montoya et al., 23 1996) that may lead to greater differences between gross and net N_2 fixation (see 24 introduction). Currently, direct measurement of the ¹⁵N signature of the dissolved N pool 25 itself (either the TDN pool through the Knapp et al. (2005) method or both the NH_4^+ and the 26 27 DON using the Slawyk and Raimbault (1995) method) appears the preferred method to 28 accurately quantify the amount of DDN released by diazotrophs in the dissolved pool (Berthelot et al., 2015a). 29

30

Once released in the form of NH_4^+ and/or DON, DDN can be taken up by surrounding planktonic communities. Experimental evidence from nanoSIMS experiments during VAHINE indicate that 21 ± 4 % of the ${}^{15}N_2$ fixed during the UCYN-C bloom was transferred to the non-diazotrophic plankton after 24 h of incubation (Bonnet et al., 2015a). Among these

1 21±4 %, 18±3 % was transferred to picoplankton (including both pico-phytoplankton and heterotrophic prokaryotes) and 3 % to diatoms (Fig. 5b), suggesting that picoplankton would 2 3 be more competitive than diatoms using DDN, which is consistent with the increase in Synechococcus and pico-eukaryote abundances by a factor of two following the UCYN-C 4 5 bloom (Leblanc et al., 2016; Pfreundt et al., 2015). The short-term nanoSIMS experiment was performed on day 17, when pico- and nanoplankton dominated the phytoplankonic biomass 6 and diatom abundances declined probably due to DIP limitation (Leblanc et al., 2016). 7 8 Picoplankton can efficiently utilize low DIP concentrations (Moutin et al., 2002) and/or can 9 use alternative DOP sources (Pfreundt et al., Submitted; Van Wambeke et al., 2015), which 10 may explain why they were the first beneficiaries of the DDN from UCYN-C at that time of the mesocosm experiment, although we cannot exclude that diatoms had also benefited from 11 the DDN from UCYN-C but earlier in the experiment (between days 10-11 and days 15-16 12 when they reached bloom values of ~100 000 cells L^{-1}), when the DIP turn-over time was still 13 higher than 1 d (indicative of no DIP limitation, (Berthelot et al., 2015b)). 14

A significant increase of both PP and BP during P2 (Fig. 2) suggests that both autotrophic and 15 16 heterotrophic communities benefited from the DDN (Bonnet et al., 2015a). Calculations based on C:N molar ratios show that N_2 fixation may have provided ~30 % of the N demand of the 17 N-limited bacteria during P2 (compared to ~20 % during P1), the rest being likely provided 18 by detritus and DON (Van Wambeke et al., 2015), which concentrations decreased during the 19 23 days (Berthelot et al., 2015b). The biological system inside the mesocosms was net 20 21 autotrophic during VAHINE, with an upper error limit close to the metabolic balance between autotrophy and heterotrophy (Van Wambeke et al., 2015). The weak (during P2) or absent 22 (during P1) correlations between BP and N_2 fixation rates and the tightly coupled 23 relationships between BP and Chl a concentrations, and between BP and PP suggests that N2 24 25 fixation stimulated autotrophic communities and these subsequently stimulated heterotrophic 26 prokaryotes through the production and release of dissolved organic matter including C 27 (DOC) (Van Wambeke et al., 2015).

In a recent study performed at the VAHINE study site, (Berthelot et al., 2016) compared the DDN transfer efficiency to several groups of non-diazotrophic plankton as a function of the diazotroph groups dominating the community (*Trichodesmium* spp. *versus* UCYN-B *versus* UCYN-C). Simulated blooms of *Trichodesmium* spp., UCYN-B and UCYN-C grown in culture added to ambient lagoon communities reveal that the primary route of transfer of DDN towards non-diazotrophs is NH₄⁺, and DON mainly accumulates in the dissolved pool, whatever the diazotroph considered. In all cases, the presence of diazotrophs stimulated

biomass production of non-diazotrophs, with heterotrophic prokaryotes the main beneficiaries
of the DDN followed by diatoms and picophytoplankton. NanoSIMS analyses revealed that
heterotrophic prokaryotes were highly ¹⁵N-enriched, confirming they can directly benefit from
the DDN (Berthelot et al., 2016). Further studies are needed to study the indirect stimulation
of heterotrophic prokaryotes through the release of DOC by diazotrophs and non-diazotrophic
phytoplankton that has been stimulated by the DDN.
Similar experiments (¹⁵N₂ labelling, flow cytometry cell sorting and nanoSIMS) performed on

three naturally-occurring Trichodesmium spp. blooms in the southwestern Pacific illustrated 8 9 that DDN was predominantly transferred to diatoms whose abundance increased from 1.5 to 10 15-fold during and after the Trichodesmium spp. blooms (Bonnet et al., Accepted). The results from these small-scale experiments indicate that under realistic conditions the extensive 11 oceanic blooms of *Trichodesmium* spp. (reaching tens to thousands of km^2), the high amounts 12 of DDN can fuel successively large diatom or dinoflagellate blooms (Bonnet et al., Accepted; 13 14 Devassy et al., 1979; Lenes et al., 2001), whose efficient export rates (Nelson et al., 1995) can 15 contribute to a large indirect downward flux of organic matter (Fig. 5c).

16 Direct export flux of *Trichodesmium* spp. blooms may also occur in cases where rapid (< 2 d)bloom mortality occurs via a programmed cell death (PCD) process that is induced under 17 environmental stressors (e.g. Fe limitation, oxidative stress) or physiological status (stationary 18 phase) (Berman-Frank et al., 2004; Berman-Frank et al., 2007). PCD in Trichodesmium spp. 19 is also characterized by the loss of buoyancy (collapse of gas vesicles) and increased 20 21 production of TEP and aggregation leading to enhanced and massive vertical flux (Bar-Zeev et al., 2013). A Trichodesmium spp. bloom that occurred outside the VAHINE mesocosms on 22 days 23-24 displayed mechanistic features of PCD including mass mortality within 24 h, loss 23 of gas vesicles, and high production of TEP (Spungin et al., 2016). While we could not 24 25 directly quantify the export flux as no sediment traps were deployed in the lagoon water outside the mesocosms, the characteristics of the bloom, lack of grazer influence and the 26 27 demise of biomass suggests this would lead to high rates of export (Spungin et al., 2016) as demonstrated in culture simulations (Bar-Zeev et al., 2013) (Fig 5c). 28

29

30 4.2.2 DDN transfer to zooplankton

DDN transfer to zooplankton may either be direct through the ingestion of diazotrophs, or indirect, i.e. mediated through the release of dissolved DDN by diazotrophs taken up by heterotrophic and autotrophic plankton and subsequently grazed by zooplankton. During the VAHINE experiment, the percent contribution of DDN to zooplankton biomass averaged 30

- 1 % (range = 15 to 70 %) (Hunt et al., 2016), which is in upper range of values reported from
- 2 high N₂ fixation areas such as the subtropical north Atlantic (Landrum et al., 2011; Mompean
- 3 et al., 2013; Montoya et al., 2002a), the Baltic Sea (Sommer et al., 2006; Wannicke et al.,
- 4 2013b), and the pelagic waters off the New Caledonian shelf (Hunt et al., 2015).
- 5 During VAHINE all four of the qPCR targeted diazotrophs (*Trichodesmium* spp., het-1, het-2,
- 6 UCYN-C) were found in zooplankton guts indicating a direct grazing of these four phylotypes
 7 (Hunt et al., 2016). Overall, the most frequently detected targets were het-1 (during P1; 17 to
- 8 180 *nifH* copies copepod⁻¹) and UCYN-C (during P2; 7 to 50 *nifH* copies copepod⁻¹), i.e. the
- 9 most abundant phylotypes encountered in the mesocosms during P1 and P2, respectively.
- 10 However, *Trichodesmium* spp. and het-2 were also detected at relatively high abundances in
- 11 copepod guts (~280 *nifH* copies copepod⁻¹) despite their low abundance in the mesocosms,
- suggesting selective feeding and a possible top down control through zooplankton grazing for
- 13 these two phylotypes.
- Direct and efficient zooplankton grazing on UCYN-C was further substantiated by targeted 14 grazing experiments during VAHINE which consisted of ¹⁵N₂-labeled bottle incubations of 15 freshly collected zooplankton in the presence of natural phytoplankton assemblages. The ¹⁵N₂ 16 label was taken up by the diazotroph in the incubation bottles and used as a marker of 17 zooplankton diazotroph ingestion and/or ingestion of non-diazotrophic plankton grown on 18 DDN. Zooplankton were highly ¹⁵N enriched after 72 h of incubation during the UCYN-C 19 bloom (P2), slightly enriched during P1 when DDAs dominated to diazotrophic community, 20 21 and not enriched at all when a Trichodesmium spp. bloom was encountered outside the mesocosms during P2 (Hunt et al., 2016). This was a surprising finding given that het-1, and 22 to a lesser extent *Trichodesmium* spp. were detected in copepod guts, and would suggest that 23 UCYN-C are much more efficiently transferred to zooplankton compared to DDAs and 24 25 Trichodesmium spp. While we demonstrated direct grazing of zooplankton on Trichodesmium spp., DDAs and UCYN-C, further studies are required to quantify a more general contribution 26 27 of direct and indirect transfer of DDN to zooplankton.
- 28

5 Modelling as a tool to infer the fate of DDN and the role of N₂ fixation on productivity, food web structure and C export

Modelling has accompanied every stage of the VAHINE project. Mesocosm 1D-vertical simulations with the biogeochemical mechanistic Eco3M-MED model (Alekseenko et al., 2014), enriched with diazotrophs for the present study, and embedded in the Eco3M modelling platform (Baklouti et al., 2006), were utilized prior to the *in situ* experiments to aid

1 in the scientific design of the experiment and in understanding the need and the optimal timing of the DIP enrichment. The biogeochemical model was first assessed using in situ data 2 3 from the mesocosms and then applied to study the fate of DDN in the ecosystem (Gimenez et al., 2016). Finally, one of the main strengths of the modelling tool lies in the opportunity that 4 5 it offers to deconvoluate the different processes that are deeply interlinked. This last facility is used here to infer the role of N₂ fixation on productivity, food web structure and C export. 6 The simulation of the mesocosm experiment (including DIP enrichment) reported in Gimenez 7 et al. (2016) hereafter referred to as the 'REF' simulation, and its main results relative to the 8 9 fate of the DDN are summarized below.

10

At the end of the REF simulation (set at 25 days in the model), 33 % of the DDN was found 11 in the diazotrophs, 43 % in the non-diazotroph organisms, 16 % in the DON pool, 3 % in the 12 particulate detrital organic pool and 5 % in the traps, indicating that N_2 fixation efficiently 13 14 benefited non-diazotrophic organisms and contributed to particle export. The model results substantiated the mass balance of N (Berthelot et al., 2015b) demonstrating that during the 10 15 16 first days of the experiment, planktonic organisms did not significantly benefit from the DDN and that DDN did not accumulate in the water column (was not transferred to non-17 diazotrophic plankton). After day 10, the DDN proportion increased in all the non-18 diazotrophic plankton groups, and simultaneously decreased in the non-living pools, although 19 DON concentrations lagged decreasing only from day 13. This decrease in DDN proportion in 20 21 the abiotic N pools is due both to the assimilation of mineral and organic nutrients by phytoplankton and heterotrophic prokaryotes, as well as to the sinking of the produced 22 organic matter through aggregation processes. 23

The model results further showed that the fraction of DDN in the exported particulate matter increased from day 10 until the end of the simulation, consistent with the high *e*-ratio determined by (Berthelot et al., 2015b) during P2 (see above) and with the δ^{15} N-budget performed by Knapp et al. (submitted), emphasizing the higher contribution of N₂ fixation to export production during P2 compared to P1 (Gimenez et al., 2016).

In the model, diazotrophs were assumed to release equal amounts of NH_4^+ and DON at a rate which increases non-linearly with the absolute and relative N contents of diazotrophs (Gimenez et al., 2016). During P1, DDN accumulated in the DON pool (nearly up to 40 % of the DDN generated from the beginning of the experiment if found in DON on day 13), whereas the proportion of DDN associated with NH_4^+ decreased rapidly from day 5 as NH_4^+

34 was immediately used by heterotrophic bacteria and phytoplankton. The proportion of DDN

- 1 associated with DON decreased later (i.e. during P2) when the inorganic N pool was depleted.
- 2 The model results are consistent with the ${}^{15}N$ measurements from the NH₄⁺ and DON pools,
- 3 indicating that NH_4^+ was preferentially transferred to non-diazotrophic plankton compared to
- 4 DON, which accumulated in the dissolved pool (Berthelot et al., 2016).
- 5 The model results were further validated in the distribution of the DDN among the biotic compartments. Small-size (pico- and nano-) phytoplankton, heterotrophic prokaryotes, 6 heterotrophic nanoflagellates and ciliates were the main beneficiaries of DDN, as observed by 7 the nanoSIMS studies (Berthelot et al., 2016; Bonnet et al., 2015a). Small-size phytoplankton 8 9 and heterotrophic prokaryotes were indeed the main consumers of NH_4^+ and labile DON (the 10 model excludes DON uptake by large-size phytoplankton), and heterotrophic nanoflagellates 11 and ciliates respectively feed on heterotrophic prokaryotes and small-size phytoplankton. These results therefore indicate that DDN mainly transited through pico-, nanophytoplankton 12 and the actors of the microbial loop during the VAHINE experiment. 13
- 14

Both the *in situ* and modelling work summarized in the previous sections demonstrate the
important contribution and role of the diazotrophic communities to PP (non-diazotrophic) and
BP, to zooplankton feeding, and eventually to C export.

To further assess the role of N_2 fixation on the ecosystem, we used the REF simulation from 18 Gimenez et al. (2016) and compared it to a new simulation in which we removed the N_2 19 fixation capability of diazotrophs (hereafter named 'NOFIX simulation'). The NOFIX 20 21 simulation also included the following changes compared to the REF simulation to be consistent with the new environmental conditions: (i) the initial relative N quotas of 22 diazotrophs have been set to 25 % (instead of 100 % in the reference simulation, i.e. same 23 value as the one used for non-diazotrophs). As the initial total N was identical to the one of 24 25 the REF simulation, the N content of diazotrophs has been allocated to the detrital N compartment; (ii) all along the NOFIX simulation, only the detrital particulate compartment is 26 allowed to sink at a constant rate of 0.7 m d^{-1} (see Gimenez et al. (2016)), whereas in the REF 27 simulation, this was also the case only until day 10 beyond which all the compartments were 28 allowed to sink at a rate increasing with time, in order to mimic the observed increase in the 29 particulate sinking flux due to TEP release and aggregation . 30

When comparing the REF and NOFIX simulations (Fig. 6), we note that the shapes of the PP and BP curves remain the same, showing an increase in PP and PB during P2 in both simulations. However, in the NOFIX simulation, the magnitude of PP and BP is reduced by

- 1 2.5 and 1.5-fold respectively. Furthermore, according to the model, N_2 fixation fueled 43.5 %
- 2 of PP and 8 % of BP during the 23 days of the simulated experiment.
- The fact that the resulting PP was reduced to a larger extent than the BP when N₂ fixation was 3 absent did not necessarily mean that non-diazotrophic autotrophs benefit more from the DDN 4 5 compared to heterotrophs as the DDN was nearly equally distributed between autotrophs and heterotrophs (and slightly higher in heterotrophs) (Gimenez et al., 2016). This higher effect on 6 PP than on BP is derived from the fact that the diazotrophs themselves (and therefore a part of 7 8 PP since only autotrophic diazotrophs were considered in the model) were strongly affected 9 by their inability to fix N₂ as suggested by the far lower abundance of UCYN-C in the NOFIX 10 simulation compared to the REF one (Fig. 6). This also explains why removing N₂ fixation first affected PP (around day 10) compared to BP (around day 15). 11
- We further assumed that, apart from diazotrophs, the organisms mostly influenced by the 12 absence of N_2 fixation (in the simulation) should be those organisms that benefited the most 13 from the DDN (i.e. in which the highest percentages of DDN have been calculated by the 14 15 model (see Fig. 6 in Gimenez et al. (2016)), namely small (< 10 µm) phytoplankton, 16 heterotrophic prokaryotes, heterotrophic nanoflagellates, and ciliates. This was the case for small phytoplankton and heterotrophic bacteria (Fig. 7), and to a lesser extent and later for 17 heterotrophic nanoflagellates. This was also true for ciliate abundance, but only until day 16. 18 After day 16, ciliate abundance was slightly (<5 % between day 16 and 23) higher in the 19 NOFIX simulation compared to the REF one, resulting predominantly from a top-down effect 20 21 due to increased copepod predation in the NOFIX simulation from day 10 to day 23 (results 22 not shown).
- Our model did not include DDAs and did not allow the uptake of DON by large 23 phytoplankton (i.e. diatoms). Thus, the DDN content in diatoms, and therefore in 24 25 mesozooplankton, was probably slightly underestimated by the model in the REF simulation 26 (Gimenez et al., 2016) compared to in situ data (Hunt et al., 2016). As a result, large 27 phytoplankton and mesozooplankton abundances were nearly similar in the REF and NOFIX 28 simulations (not shown). Hence, apart from ciliates (which mortality also fuels the detrital particulate compartment as for large phytoplankton and mesozooplankton), the organisms that 29 mostly benefited from the DDN were small organisms, the mortality of which fuels the 30 31 dissolved organic pool.
- 32
- 33 How does N_2 fixation impact C export? Absence of N_2 fixation (NOFIX simulation) reduced
- 34 export by 30 % on day 23 compared to the REF simulation (Fig. 8). This difference in C

export reaches 50% when the simulation duration is extended until day 35 (not shown). These
 results indicate that N₂ fixation and the subsequent new production promotes C export to
 depth as the experimental VAHINE results demonstrated (Berthelot et al., 2015b; Knapp et al., 2015).

5 A third simulation (not shown) in which the N₂ fixation capability by diazotrophs is still removed but in which the aggregation processes were represented (in the same way as in the 6 REF simulation) indicated that C export is nearly equal to that of the REF simulation after 25 7 days (they differ by only 2.9 %), with 25 % difference reached on day 35. This suggests that 8 9 the higher C export when N₂ fixation is active occurs initially due to aggregation processes 10 mediated diazotrophs-derived TEP release and the subsequent export of diazotrophs (Berman-Frank et al., 2016; Bonnet et al., 2015a). Moreover, it is likely that increased stickiness and 11 aggregate properties also cause further accumulation, aggregation, and enhanced vertical flux 12 from the different compartments in the water column. To represent the latter phenomenon, we 13 14 considered that 10 % of the living and non-living compartments are allowed to sink after day 15 10 in the model (see Gimenez et al. (2016) for more details). In a second step however, the N_2 16 fixation process per se (by supporting PP and BP fluxes) contributes more and more to the enhanced C export as N2 fixation fluxes increase. Hence, on day 30, N2 fixation supports ~50 17 % of the excess C export observed between the REF and the NOFIX simulations, the 18 19 remaining still being attributed to aggregation processes.

To conclude, N_2 fixation has a significant impact on both direct and indirect C export via diazotroph fueling of non-diazotrophic plankton as well as via aggregation processes. The model provides a lower limit of the major role played by N_2 fixation on C export due to an underestimate of the DDN content in diatoms, and in mesozooplankton. Finally, this study also points the need of further investigation on aggregation processes in relation with TEP release and its representation in models since its influence on C export may be of the same order of magnitude as the N_2 fixation process per se.

27 28

6 Conclusions and future work

The VAHINE project provided unique opportunities to study and compare the fate of N_2 fixation associated with different diazotrophs in the marine environment. The results showed that when the diazotroph community was dominated by DDAs, the DDN remained within the symbiotic associations, was poorly transferred to the non-diazotrophic phytoplankton and heterotrophic prokaryotes, yet can be transferred directly to zooplankton through grazing. The project results further substantiated previous data showing rapid export to depth of the

1 recently fixed N₂ by DDAs (Karl et al., 2012). An opportune bloom of UCYN-C during the VAHINE project demonstrated that when UCYN-C dominated the diazotroph community, ~ 2 3 25 % of the DDN was quickly (24 h) transferred to the planktonic food web through the release of DON and NH_4^+ to the dissolved pool. These additional N sources were 4 5 subsequently transferred to zooplankton, both directly (through the grazing of UCYN-C) and indirectly through the grazing of plankton grown on DDN from UCYN-C. Moreover, the 6 VAHINE data explicitly revealed that when UCYN-C dominate the diazotroph community, 7 the efficiency of the system to export POC relative to PP (e-ratio) is higher than when DDAs 8 9 dominate. This export is both direct through the sinking of small (5.7±0.8 µm) UCYN-C cells 10 aggregated into large (100-500 µm) particles having high sinking rates, and indirect through the sinking of plankton benefitting from the enriched source of DDN. Future projects should 11 extend the investigation of DDN export below the photic layer in the open ocean (~70-150 m 12 in the oligotrophic ocean) to confirm the process study obtained during VAHINE in 13 14 mesocosms in an experimental 15 m-depth water column. In particular, are the aggregation processes of UCYN also observed in the open ocean? Although technically and logistically 15 16 challenging, this feat may be accomplished through locating a research vessel in a 1D structure (cyclonic eddy harboring high UCYN abundances for example) where horizontal 17 advection is reduced and sediment traps are deployed to study the biological and 18 biogeochemical characteristics of the photic zone for one to two weeks. 19

The VAHINE project also provided a unique opportunity to compare the transfer efficiency of 20 21 DDN from UCYN and Trichodesmium spp. to the different compartments of the planktonic food web, and revealed that the main beneficiaries of the DDN depend on both the 22 physiological status (e.g. nutritionally balanced, stationary or decline phase) and the type of 23 diazotroph. When *Trichodesmium* spp. bloom decay they release large amounts of NH_4^+ and 24 25 mainly support diatom growth, indicating a large potential of indirect organic matter export 26 during/after Trichodesmium spp. blooms. This is further substantiated by the study of PCD 27 indicating a rapid direct export of Trichodesmium spp. itself but further studies are needed in 28 open ocean Trichodesmium spp. blooms to extrapolate our results to the field.

NH₄⁺ appears to be the main form of DDN transferred to non-diazotrophic plankton. In future studies, it would be necessary to refine the chemical composition of DON released by different diazotrophs to assess its lability as a function of the diazotrophs involved in N_2 fixation and the stage of the bloom. It would also be informative to explore the amount and chemical composition of released DOC and better study the potential of diazotrophs to stimulate heterotrophs and their subsequent impact on the ocean metabolic balance.

- 1 Finally, in the future ocean, some diazotrophs such as *Trichodesmium* spp. (Hutchins et al.,
- 2 2007; Levitan et al., 2007) and UCYN-B (Fu et al., 2008) (no study is available on UCYN-C)
- 3 may develop extensively under high temperature and pCO_2 conditions (Dutkiewicz et al.,
- 4 2015), while other such as UCYN-A would not be affected (Law et al., 2012). The results
- 5 from the VAHINE project revealed that the diazotroph community composition has a
- 6 profound impact in structuring the planktonic food web in the surface ocean, and in the
- 7 efficiency of particulate matter export to depth. Thus, current and predicted global changes
- 8 require further knowledge and understanding of the fate and implications of changing
- 9 scenarios of N_2 fixation in the future oceans.
- 10
- 11

12 Acknowledgements

Funding for this research was provided by the Agence Nationale de la Recherche (ANR 13 starting grant VAHINE ANR-13-JS06-0002), the INSU-LEFE-CYBER program, GOPS and 14 IRD. The authors thank the captain and crew of the R/V Alis. We acknowledge the SEOH 15 diver service from Noumea, as well as the technical service of the IRD research center of 16 Noumea for their helpful technical support together with C. Guieu, J.-M. Grisoni and F. Louis 17 for the mesocosm design and the useful advice. Partial funding to IBF was provided through a 18 19 collaborative grant with SB from MOST Israel and the High Council for Science and Technology (HCST)-France, and a GIF grant No. 1133-13.8/2011. 20

- 21
- 22
- 23
- 24

25

26

- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37

- 1 Figure legends.
- 2

Figure 1. Study site of the VAHINE experiment. Location map of New Caledonia in the
Southwestern Pacific (a), Map of the Noumea lagoon showing the location of mesocosms at
the entrance of the lagoon, 28 km off the coast (b).

6

Figure 2. View of the mesocosms from above (a), from the seafloor (b) and view of the
sediment traps that collect sinking particles (c) (Photos credits: J.M. Boré and E. Folcher,
IRD).

10

Figure 3. Evolution of sea surface temperature (°C) (a), NO₃⁻ (μ mol L⁻¹) (b), DIP (μ mol L⁻¹) (c), Chl a (μ g L⁻¹) (d), N₂ fixation rates (nmol N L⁻¹ d⁻¹) (e), PON concentrations (μ mol L⁻¹) (f), DON concentrations (μ mol L⁻¹) (g) and PON export (μ mol L⁻¹) (h) over the 23 days of the VAHINE mesocosm experiment. Lines represent the average of the three mesocoms and shaded areas represent the measured min and max values.

16

Figure 4. Upper panel: Diazotroph community composition in the VAHINE mesocosm 17 experiment during the experimental period. nifH-based abundances were summed for each 18 sampling day to determine the percent contribution to the total diazotroph community from 19 each major phylotype (data from Turk-Kubo et al. (2015)). Bottom panel: simplified 20 21 evolution of the major standing stocks, rates and plankton abundances measured during P1 (days 5 to 14) and P2 (days 15 to 23) in the mesocosms. Squares are represented in green 22 when a significant (p<0.05) increase was observed between each period (i.e. between P0 and 23 P1 or between P1 and P2, Kruskall-Wallis test, α =0.05), in red when a significant (p<0.05) 24 25 decrease was observed and in grey when no significant change was observed between the 26 different periods.

27

Figure 5. Summary of the simplified pathways of the potential DDN transfer in the first trophic level of the food web and potential of direct *versus* indirect export of particulate matter for DDAs (a), UCYN-C (b) and *Trichodesmium* (c). DDN transfer data from (Bonnet et al., Accepted; Bonnet et al., 2015a)

- Figure 6. Evolution of PP (μmol C L⁻¹ d⁻¹) (a) and bacterial production (ng C L⁻¹ h⁻¹) in the
 REF simulation (black line) and the NOFIX simulation (blue line) (i.e. when the N₂ fixation
 process is removed).

Figure 7. Evolution of plankton abundances (cells L⁻¹) in the REF simulation (black line) and
the NOFIX simulation (blue line) (i.e. when the N₂ fixation process is removed). TRI: *Trichodesmium* spp., UCYN: UCYN-C, BAC: heterotrophic bacteria, PHYS: small
phytoplankton, HNF: heterotrophic nanoflagellates.

Figure 8. Evolution of C content collected in the mesocosm particle traps (mmol C) in the
REF simulation (black line) and the NOFIX simulation (blue line) (i.e. when the N₂ fixation
process is removed).

Figure 1.

(00) ۲ P1: DDAs P2: UCYN-C 26.5 a) 26 Temperature (°C) 25.5 25 24.5 24 2 4 6 8 10 12 14 16 18 20 22 0.5 b) Nitrate (µmol L⁻¹) 0.4 0.3 0.2 0.1 0 8 10 12 14 16 18 20 22 2 4 6 1.2 C) Phosphate (µmol L⁻¹) 1 0.8 0.6 0.4 0.2 0 6 8 10 12 14 16 18 20 22 2 4 1.2 d) 1 Chl a (µg L⁻¹) 0.8 0.6 0.4 0.2 0 10 12 14 16 18 20 22 8 2 4 6

day

Biogeosciences Discussions

P1 P2 (\cdot) 100% 80% Relative abundances (%) 60% DDAs UCYN-C 40% Other diazotrophs 20% 0% 9 11 13 15 17 19 20 23 days 3 5 7 18 Standing stocks NO₃-- - -DIP + + + - - -DON - - -DOP - - -PON +++ POP + + + POC +++ Chl a + + +TEP + + + _ _ _ Rates N₂ fixation - - -+ + + +++ Primary Production +++ **Bacterial Production** +++ PON, POC, POP export +++ APA +++ - - -T-DIP - - -Plankton composition Diatoms Dinoflagellates Prochlorococcus +++ Synechococcus + + +Pico-eukaryotes +++ Nano-eukaryotes + + + Bacteria - - -UCYN-A UCYN-B +++ UCYN-C +++ DDAs + + + - - -Trichodesmium gamma-24774A11 Zooplankton biomass

Figure 4.

References cited

- Alekseenko, E., Raybaud, V., Espinasse, B., Carlotti, F., Queguiner, B., Thouvenin, B., Garreau, P., and Baklouti, M.: Seasonal dynamics and stoichiometry of the planktonic community in the NW Mediterranean Sea; a 3D modeling approach, Ocean Dynamics, 64, 179–207, 2014.
- Altabet, M. A.: Variations in Nitrogen Isotopic Composition between Sinking and Suspended Particles - Implications for Nitrogen Cycling and Particle Transformation in the Open Ocean, Deep Sea Research, 35, 535-554, 1988.
- Baklouti, M., Faure, V., Pawlowski, L., and Sciandra, A.: Investigation and sensitivity analysis 665 of a mechanistic phytoplankton model implemented in a new modular numerical tool (Eco3M) dedicated to biogeochemical modelling, Progress in Oceanography, 71, 34–58, 2006.
- Bandyopadhyay, A., Elvitigala, T., Welsh, E., Stöckel, J., Liberton, M., Min, H., Sherman, L. A. and Pakrasi, H. B.: Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece, MBio, 2, 2011.
- Bar-Zeev, E., Avishay, I., Bidle, K. D., and Berman-Frank, I.: Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export, The ISME journal, 7, 2340-2348, 2013.
- Benavides, M., Agawin, N., Arístegui, J., Peene, J., and Stal, L.: Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium, Aquatic microbial ecology, 69, 69-80, 2013a.
- Benavides, M., Bronk, D. A., Agawin, N. S. R., Pérez-Hernández, M. D., Hernández-Guerra, A., and Arístegui, J.: Longitudinal variability of size-fractionated N2 fixation and DON release rates along 24.5°N in the subtropical North Atlantic, Journal of Geophysical Research, 118, 3406-3415, 2013b.
- Berman-Frank, I., Bidle, K. D., Haramaty, L., and Falkowski, P. G.: The demise of the marine cyanobacterium, Trichodemsium spp., via an autocatalyzed cell death pathway, Limnology and Oceanography, 49, 997-1005, 2004.
- Berman-Frank, I., Rosenberg, G., Levitan, O., Haramaty, L., and X., M.: Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine cyanobacterium *Trichodesmium*, Environmental microbiology, 9, 1415-1422, 2007.
- Berman-Frank, I., Spungin, D., Rahav, E., F., V. W., Turk-Kubo, K., and Moutin, T.: Dynamics of transparent exopolymer particles (TEP) during the VAHINE mesocosm experiment in the New Caledonia lagoon, Biogeosciences Discussions, doi: doi:10.5194/bg-2015-612, 2016. 2016.
- Berthelot, H., Bonnet, S., Camps, M., Grosso, O., and Moutin, T.: Assessment of the dinitrogen released as ammonium and dissolved organic nitrogen by unicellular and filamentous marine diazotrophic cyanobacteria grown in culture, Frontiers in Marine Science, 2, 2015a.
- Berthelot, H., Bonnet, S., Grosso, O., Cornet, V., and Barani, A.: Transfer of diazotroph derived nitrogen towards non-diazotrophic planktonic communities: a comparative study between *Trichodesmium erythraeum*, *Crocosphaera watsonii* and *Cyanothece* sp., Biogeosciences Discussions, doi: doi:10.5194/bg-2015-607, 2016. 2016.
- Berthelot, H., Moutin, T., L'Helguen, S., Leblanc, K., Hélias, S., Grosso, O., Leblond, N., Charrière, B., and Bonnet, S.: Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon), Biogeosciences, 12, 4099-4112, 2015b.
- Biegala, I. C. and Raimbault, P.: High abundance of diazotrophic picocyanobacteria (< 3 μm) in a Southwest Pacific coral lagoon, Aquatic Microbial Ecology, 51, 45-53, 2008.
- Bombar, D., Taylor, C. D., Wilson, S. T., Robidart, J. C., Rabines, A., Turk-Kubo, K. A., Kemp, J. N., Karl, D. M., and Zehr, J. P.: Measurements of nitrogen fixation in the oligotrophic North Pacific Subtropical Gyre using a free-drifting submersible incubation device, Journal of Plankton Research, 37, 727–739, 2015.
- Bonnet, S., Berthelot, H., Turk-Kubo, K., Cornet-Bartaux, V., Fawcett, S. E., Berman-Frank, I., Barani, A., Dekaezemacker, J., Benavides, M., Charriere, B., and Capone, D. G.: Diazotroph derived nitrogen supports diatoms growth in the South West Pacific: a quantitative study using nanoSIMS, Limnology and Oceanography, Accepted. Accepted.

- Bonnet, S., Berthelot, H., Turk-Kubo, K., Fawcett, S. E., Rahav, E., L'Helguen, S., and Berman-Frank, I.: Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low nutrient low chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia) Biogeosciences Discussions, 12, 19579-19626, 2015a.
- Bonnet, S., Biegala, I. C., Dutrieux, P., Slemons, L. O., and Capone, D. G.: Nitrogen fixation in the western equatorial Pacific: Rates, diazotrophic cyanobacterial size class distribution, and biogeochemical significance, Global Biogeochemical Cycles, 23, 1-13, 2009.
- Bonnet, S., Moutin, T., Grisoni, J. M., Helias, S., Rodier, M., Folcher, E., Bourgeois, B., Renaud, A., and Boré, J. M.: Introduction to the project VAHINE: VAriability of vertical and tropHIc transfer of fixed N2 in the south wEst Pacific, Biogeosciences Discussions, In prep., 2016.
- Bonnet, S., Rodier, M., Turk, K., K., Germineaud, C., Menkes, C., Ganachaud, A., Cravatte, S., Raimbault, P., Campbell, E., Quéroué, F., Sarthou, G., Desnues, A., Maes, C., and Eldin, G.: Contrasted geographical distribution of N2 fixation rates and nifH phylotypes in the Coral and Solomon Seas (South-Western Pacific) during austral winter conditions, Global Biogeochemical Cycles, 29, 2015b.
- Bronk, D. A., Sanderson, M. P., Mulholland, M. R., Heil, C. A., and O'Neil, J. M.: Organic and inorganic nitrogen uptake kinetics in field populations dominated by Karenia brevis. In: Harmful Algae, Steidinger K, V. G., Heil CA (Ed.), Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography and Intergovernmental Oceanographic Commission of UNESCO, St. Petersburg, FL, 2004.
- Buesseler, K. O., Antia, A. N., Chen, M., Fowler, S. W., Gardner, W. D., Gustafsson, Ö., Harada, K., Michaels, A. F., V.D., R., Loeff, M., Sarin, M., Steinberg, D. K., and Trull, T.: An assessment of the use of sediment traps for estimating upper ocean particle fluxes, Journal of Marine Research, 65, 345-416 2007.
- Capone, D. G., Ferrier, M. D., and Carpenter, E. J.: Amino Acid Cycling in Colonies of the Planktonic Marine Cyanobacterium *Trichodesmium thiebautii*, Applied and Environmental Microbiology, 60, 3989-3995, 1994.
- Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., and Carpenter, E. J.: *Trichodesmium*, a globally significant marine cyanobacterium, Science, 276, 1221-1229, 1997.
- Chen, Y. L., Tuo, S., and Chen, H. Y.: Co-occurrence and transfer of fixed nitrogen from *Trichodesmium* spp. to diatoms in the low-latitude Kuroshio Current in the North West Pacific., Marine Ecology Progress Series, 421, 25-38, 2011.
- Devassy, V. P., Bhattathiri, P. M. A., and Qasim, S. Z.: Succession of organisms following *Trichodesmium* phenomenon, Indian Journal of Marine Sciences, 8, 89-93, 1979.
- Devassy, V. P., Bhattathiri, P. M. A., and Qasim, S. Z.: *Trichodesmium* phenomenon, Indian Journal of Marine Sciences, 7, 168-186, 1978.
- Dupouy, C., Neveux, J., Subramaniam, A., Mulholland, M. R., Montoya, J. P., Campbell, L., Carpenter, E. J., and Capone, D. G.: Satellite captures trichodesmium blooms in the southwestern tropical Pacific, EOS, 81, 13-16, 2000.
- Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., and Berman-Frank, I.: Impact of ocean acidification on the structure of future phytoplankton communities, Nature Clim. Change, 5, 1002-1006, 2015.
- Farnelid, H., Andersson, A. F., Bertilsson, S., Al-Soud, W. A., Hansen, L. H., Sørensen, S., Steward, G. F., Hagström, A., and Riemann, L.: Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria, PloS one, 6. e19223., 2011.
- Farnelid, H. and Riemann, L.: Heterotrophic N₂-fixing bacteria: overlooked in the marine nitrogen cycle? In: Nitrogen Fixation Research Progress, Nova Science Publishers, New York, 2008.
- Fichez, R., Chifflet, S., Douillet, P., Gérard, P., Gutierrez, F., Jouon, A., Ouillon, S., and Grenz, C.: Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia), Marine Pollution Bulletin, 61, 309-322, 2010.
- Foster, R. A. and O'Mullan, G. D.: Nitrogen-Fixing and Nitrifying Symbioses in the Marine Environment. In: Nitrogen in the Marine Environment, G., C. D., Bronk, D. A., Mulholland, M., and Carpenter, E. J. (Eds.), Elsevier Science, 2008.

- Fu, F. X., Mulholland, M. R., N., G., Beck, A., Bernhardt, P., Warner, M., Sañudo-Wilhelmy, S., and Hutchins, D. A.: Interactions between changing pCO₂, N₂ fixation, and Fe limitation in the marine unicellular cyanobacterium *Crocosphaera*, Limnology and Oceanography, 53, 2008.
- Furnas, M. J. and Mitchell, A. W.: Pelagic primary production in the Coral and southern Solomon Seas, Marine and Freshwater Research, 47, 395-705, 1996.
- Garcia, N., Raimbault, P., and Sandroni, V.: Seasonal nitrogen fixation and primary production in the Southwest Pacific: nanoplankton diazotrophy and transfer of nitrogen to picoplankton organisms, Marine Ecology Progress Series, 343, 25-33, 2007.
- Gimenez, A., Baklouti, M., Bonnet, S., and Moutin, T.: Biogeochemical fluxes and fate of diazotroph derived nitrogen in the food web after a phosphate enrichment: Modeling of the VAHINE mesocosms experiment, Biogeosciences Discussions, doi: doi:10.5194/bg-2015-611, 2016. 2016.
- Glibert, P. M. and Bronk, D.: Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria, *Trichodesmium* spp., Applied and Environmental Microbiology, 60, 3996-4000, 1994.
- Glibert, P. M. and O'Neil, J. M.: Dissolved organic nitrogen release and amino-acid oxidase activity by *Trichodesmium*. In: Marine cyanobacteria, ORSTOM (Ed.), Bulletin de l'Institut Océanographoque, L. Charpy and T. Larkum, Paris, 1999.
- Grenz, C. and LeBorgne, R.: New Caledonia tropical lagoons: an overview of multidisciplinary investigations, Marine Pollution Bulletin, 61, 2010.
- Gruber, N.: The dynamics of the marine nitrogen cycle and its influence on atmospheric CO_2 . In: The ocean carbon cycle and climate., Follows, M. and Oguz, T. (Eds.), Kluwer Academic, Dordrecht, 2004.
- Guieu, C., Dulac, F., Desboeufs, K., Wagener, T., Pulido-Villena, E., Grisoni, J.-M., Louis, F., Ridame, C., Blain, S., Brunet, C., Bon Nguyen, E., Tran, S., Labiadh, M., and Dominici, J.-M.: Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs, Biogeosciences, 7, 2765-2784, 2010.
- Guieu, C., Dulac, F., Ridame, C., and Pondaven, P.: Introduction to project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem, Biogeosciences, 11, 425-442, 2014.
- Hunt, B. P. V., Allain, V., Menkes, C., Lorrain, A., Graham, B., Rodier, M., Pagano, M., and Carlotti, F.: A coupled stable isotope-size spectrum approach to understanding pelagic food-web dynamics: A case study from the southwest sub-tropical Pacific, Deep Sea Research Part II: Topical Studies in Oceanography, 113, 208-224, 2015.
- Hunt, B. P. V., Bonnet, S., Berthelot, H., Conroy, B. J., Foster, R., and Pagano, M.: Contribution and pathways of diazotroph derived nitrogen to zooplankton during the VAHINE mesocosm experiment in the oligotrophic New Caledonia lagoon, Biogeosciences Discussions, doi: doi:10.5194/bg-2015-614, 2016. 2016.
- Hutchins, D. A., Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Portune, K., Bernhardt, P. W., and Mulholland, M. R.: CO₂ control of Trichodesmium N₂ fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry, Limnology and Oceanography, 52, 1293-1304, 2007.
- Karl, D., Michaels, A., Bergman, B., Capone, D. G., Carpenter, E. J., and Letelier, R.: Dinitrogen fixation in the world's oceans, Biogeochemistry, 57/58, 47-98, 2002.
- Karl, D. M., Church, M. J., Dore, J. E., Letelier, R., and Mahaffey, C.: Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation, Proceedings of the National Academy of Sciences, 109, 1842–1849, 2012.
- Karl, D. M., Letelier, R., Hebel, D. V., Bird, D. F., and Winn, C. D.: Trichodesmium blooms and new nitrogen in the North Pacific Gyre, Kluwer Academic Publishers, Dordrecht, 1992.
- Karl, D. M., Letelier, R., Tupas, L., Dore, J., Christian, J., and Hebel, D.: The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean, Nature, 388, 533-538, 1997a.
- Karl, D. M., Letelier, R. M., Tupas, R., Dore, J., Christian, J., and Hebel, D. V.: The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean, Nature, 388, 533-538, 1997b.

- Kerbrat, A. S., Darius, H. T., Pauillac, S., Chinain, M., and Laurent, D.: Detection of ciguatoxin-like and paralysing toxins in *Trichodesmium* spp. from New Caledonia lagoon, Marine Pollution Bulletin, 61, 360-366, 2010.
- Knapp, A. N., Fawcett, S. E., Martinez-Garcia, A., Leblond, N., Moutin, T., and Bonnet, S.: Nitrogen isotopic evidence for a shift from nitrate- to diazotroph-fueled export production in VAHINE mesocosm experiments, Biogeosciences Discussions, 12, 19901-19939, 2015.
- Knapp, A. N., Sigman, D. M., and Lipschultz, F.: N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site, Global Biogeochemical Cycles, 19, 1-15, 2005.
- Konno, U., Tsunogai, U., Komatsu, D. D., Daita, S., Nakagawa, F., Tsuda, A., Matsui, T., Eum, Y. J., and Suzuki, K.: Determination of total N₂ fixation rates in the ocean taking into account both the particulate and filtrate fractions, Biogeosciences, 7, 2369–2377, 2010.
- Landrum, J. P., Altabet, M. A., and Montoya, J. P.: Basin-scale distributions of stable nitrogen isotopes in the subtropical North Atlantic Ocean: Contribution of diazotroph nitrogen to particulate organic matter and mesozooplankton, Deep Sea Research Part I: Oceanographic Research Papers, 58, 615-625, 2011.
- Law, C. S., Breitbarth, E., Hoffmann, L. J., McGraw, C. M., Langlois, R. J., LaRoche, J., Marriner, A., and Safi, K. A.: No stimulation of nitrogen fixation by non-filamentous diazotrophs under elevated CO₂ in the South Pacific, Global Change Biology 18, 3004-3014, 2012.
- Le Borgne, R., Douillet, P., Fichez, R., and Torréton, J. P.: Hydrography and plankton temporal variabilities at different time scales in the southwest lagoon of New Caledonia: A review, Marine Pollution Bulletin, 61, 297-308, 2010.
- Leblanc, K., Cornet-Barthaux, V., Caffin, M., Rodier, M., Desnues, A., Berthelot, H., Turk-Kubo, K., and Héliou, J.: Phytoplankton community structure in the VAHINE MESOCOSM experiment, Biogeosciences Discussions, doi: doi:10.5194/bg-2015-605, 2016. 2016.
- Lenes, J. M., Darrow, B. P., Catrall, C., Heil, C. A., Callahan, L., Vargo, G. A., Byrne, R. H., Prospero, J. M., Bates, D. E., Fanning, K. A., and Walsh, J. J.: Iron fertilization and the *Trichodesmium* response on the West Florida shelf, Limnology and Oceanography, 46, 1261-1277, 2001.
- Lenes, J. M. and Heil, C. A.: A historical analysis of the potential nutrient supply from the N₂ fixing marine cyanobacterium *Trichodesmium* spp. to *Karenia brevis* blooms in the eastern Gulf of Mexico, Journal of Plankton Research, 32, 1421-1431, 2010.
- Levitan, O., Rosenberg, G., Šetlík, I., Šetlíkova, E., Gtigel, J., Klepetar, J., Prášil, O., and Berman-Frank, I.: Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium, Global Change Biology, 13, 1-8, 2007.
- Luo, Y. W., Doney, S. C., Anderson, L. A., Benavides, M., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Maranón, E., McGillicuddy Jr, D. J., Moisander, P. H., Moore, C. M., Mourino-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of diazotrophs in global ocean: abundances, biomass and nitrogen fixation rates, Earth System Science Data 5, 47-106, 2012.
- Mahaffey, C., Michaels, A. F., and Capone, D. G.: The conundrum of marine N_2 fixation, American Journal of Science, 305, 546-595, 2005.
- Meador, T. B., Aluwihare, L. I., and Mahaffey, C.: Isotopic heterogeneity and cycling of organic nitrogen in the oligotrophic ocean, Limnology and Oceanography, 52, 934-947, 2007.
- Messer, L. F., Mahaffey, C., M Robinson, C., Jeffries, T. C., Baker, K. G., Bibiloni Isaksson, J., Ostrowski, M., Doblin, M. A., Brown, M. V., and Seymour, J. R.: High levels of heterogeneity in diazotroph diversity and activity within a putative hotspot for marine nitrogen fixation, The ISME journal, doi: 10.1038/ismej.2015.205, 2015. 2015.

- Mohr, W., Grosskopf, T., Wallace, D. R. W., and LaRoche, J.: Methodological underestimation of oceanic nitrogen fixation rates, PloS one, 9, 1-7, 2010.
- Moisander, A. M., Serros, T., Pearl, R. W., Beinart, A., and Zehr, J. P.: Gammaproteobacterial diazotrophs and *nif*H gene expression in surface waters of the South Pacific Ocean, The ISME journal, doi: doi: 10.1038/ismej.2014.49, 2014. 1-12, 2014.
- Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S., Carlson, C. A., Montoya, J. P., and Zehr, J. P.: Unicellular Cyanobacterial Distributions Broaden the Oceanic N² Fixation Domain, Science, 327, 1512-1514, 2010.
- Mompean, C., Bode, A., Benitez-Barrios, V. M., Dominguez-Yanes, J. F., Escanez, J., and Fraile-Nuez, E.: Spatial patterns of plankton biomass and stable isotopes reflect the influence of the nitrogen-fixer *Trichodesmium* along the subtropical North Atlantic, Journal of Plankton Research, 35, 513-525, 2013.
- Montoya, J. P., Carpenter, E. J., and Capone, D. G.: Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic, Limnology and Oceanography, 47, 1617-1628, 2002a.
- Montoya, J. P., Carpenter, E. J., and Capone, D. G.: Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic Ocean, Limnology and Oceanography, 47, 1617-1628, 2002b.
- Montoya, J. P., Holl, C. M., Zehr, J. P., Hansen, A., Villareal, T. A., and Capone, D. G.: High rates of N₂ fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean, Nature, 430, 1027-1031, 2004.
- Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G.: A simple, high-precision, high-sensitivity tracer assay for N₂ fixation, Applied and Environmental Microbiology, 62, 986-993, 1996.
- Moore, C. M., Mills, M. M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Maranon, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., A., T., and O., U.: Processes and patterns of oceanic nutrient limitation, Nature Geoscience, 6, 701–710, 2013.
- Moutin, T., Karl, D. M., Duhamel, S., Rimmelin, P., Raimbault, P., Van Mooy, B. A. S., and Claustre, H.: Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean, Biogeosciences, 5, 95-109, 2008.
- Moutin, T., Thingstad, T. F., Van Wambeke, F., Marie, D., Slawyk, G., Raimbault, P., and Claustre, H.: Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium *Synechococcus*?, Limnology and Oceanography, 47, 1562-1567, 2002.
- Moutin, T., Van Den Broeck, N., Beker, B., Dupouy, C., Rimmelin, P., and LeBouteiller, A.: Phosphate availability controls Trichodesmium spp. biomass in the SW Pacific ocean, Marine Ecology-Progress Series, 297, 15-21, 2005.
- Mulholland, M. R.: The fate of nitrogen fixed by diazotrophs in the ocean, Biogeosciences, 4, 37-51, 2007.
- Mulholland, M. R. and Bernhardt, P. W.: The effect of growth rate, phosphorus concentration, and temperature on N2 fixation, carbon fixation, and nitrogen release in continuous cultures of Trichodesmium IMS101, Limnology & Oceanography, 50, 839-849, 2005.
- Mulholland, M. R., Bernhardt, P. W., Heil, C. A., Bronk, D. A., and O'Neil, J. M.: Nitrogen fixation and regeneration in the Gulf of Mexico, Limnology and Oceanography, 51, 176-177, 2006.
- Mulholland, M. R., Bronk, D. A., and Capone, D. G.: N₂ fixation and regeneration of NH₄⁺ and dissolved organic N by *Trichodesmium* IMS101, Aquatic Microbial Ecology, 37, 85-94, 2004.
- Nelson, D. M., Treguer, P., Brezezinski, M. A., Leynaert, A., and Queguiner, B.: Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation, Global Biogeochemical Cycles, 9, 359-372, 1995.
- O'Neil, J. M.: Grazer interactions with nitrogen-fixing marine Cyanobacteria: adaptation for Nacquisition?, Bull. Inst. Oceanogr. Monaco, 19, 293-317, 1999.
- O'Neil, J. M., Metzler, P., and Glibert, P. M.: Ingestion of ¹⁵N₂-labelled *Trichodesmium*, and ammonium regeneration by the pelagic harpacticoid copepod *Macrosetella gracilis*, Marine Biology, 125, 89-96, 1996.

- O'Neil, J. and Roman, M. R.: Grazers and Associated Organisms of *Trichodesmium*. In: Marine Pelagic Cyanobacteria: *Trichodesmium* and other Diazotrophs, Carpenter, E. J., Capone, D.G., and Rueter, J.G. (Ed.), NATO ASI Series, Springer Netherlands, 1992.
- Ouillon, S., Douillet, P., Lefebvre, J. P., Le Gendre, R., Jouon, A., Bonneton, P., Fernandez, J. M., Chevillon, C., Magand, O., Lefèvre, J., Le Hir, P., Laganier, R., Dumas, F., Marchesiello, P., Bel Madani, A., Andréfouët, S., Panché, J. Y., and Fichez, R.: Circulation and suspended sediment transport in a coral reef lagoon: The south-west lagoon of New Caledonia, Marine Pollution Bulletin, 61, 269-276, 2010.
- Pfreundt, U., Spungin, D., Berman-Frank, I., Bonnet, S., and Hess, W. R.: Global analysis of gene expression dynamics within the marine microbial community during the VAHINE mesocosm experiment in the South West Pacific, Biogeosciences Discussions, Submitted.
- Pfreundt, U., Van Wambeke, F., Bonnet, S., and Hess, W. R.: Succession within the prokaryotic communities during the VAHINE mesocosms experiment in the New Caledonia lagoon, Biogeosciences Discussions, 12, 20179-20222, 2015.
- Rodier, M. and Le Borgne, R.: Population and trophic dynamics of Trichodesmium thiebautii in the SE lagoon of New Caledonia. Comparison with T. erythraeum in the SW lagoon, Marine Pollution Bulletin, 61, 349-359, 2010.
- Rodier, M. and Le Borgne, R.: Population dynamics and environmental conditions affecting Trichodesmium spp. (filamentous cyanobacteria) blooms in the south-west lagoon of New Caledonia, Journal of Experimental Marine Biology and Ecology, 358, 20-32, 2008.
- Scharek, R., Latasa, M., Karl, D. M., and Bidigare, R. R.: Temporal variations in diatom abundance and downward vertical fux in the oligotrophic North Pacific gyre, Deep Sea Research Part I, 46, 1051-1075, 1999a.
- Sharek, R. M., Tupas, L. M., and Karl, D. M.: Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA, Marine and Ecological Progress Series, 82, 55-67, 1999b.
- Sipler, R. A., Bronk, D. A., Seitzinger, S. P., Lauck, R. J., McGuinness, L. R., Kirkpatrick, G. J., Heil, C. A., Kerkhof, L. J., and Schofield, O. M.: *Trichodesmium*-derived dissolved organic matter is a source of nitrogen capable of supporting the growth of toxic red tide *Karenia brevis*, Marine and Ecological Progress Series, 483, 31-45, 2013.
- Slawyk, G. and Raimbault, P.: Simple procedure for simultaneous recovery of dissolved inorganic and organic nitrogen in ¹⁵N-tracer experiments and improving the isotopic mass balance, Marine and Ecological Progress Series, doi: 10.3354/meps124289, 1995. 1995.
- Sommer, S., Hansen, T., and Sommer, U.: Transfer of diazotrophic nitrogen to mesozooplankton in Kiel Fjord, Western Baltic Sea: a mesocosm study, Marine Ecology Progress Series, 324, 105-112, 2006.
- Spungin, D., Pfreundt, U., Berthelot, H., Bonnet, S., AlRoumi, D., Natale, F., Hess, H. R., Bidle, K. D., and Berman-Frank, I.: Mechanisms of Trichodesmium bloom demise within the New Caledonia Lagoon during the VAHINE mesocosm experiment, doi: doi:10.5194/bg-2015-613, 2016. 2016.
- Torréton, J.-P., Rochelle-Newall, E., Pringault, O., Jacquet, S., Faure, V., and Briand, E.: Variability of primary and bacterial production in a coral reef lagoon (New Caledonia), Marine Pollution Bulletin, 61, 335, 2010.
- Turk-Kubo, K. A., Frank, I. E., Hogan, M. E., Desnues, A., Bonnet, S., and Zehr, J. P.: Diazotroph community succession during the VAHINE mesocosms experiment (New Caledonia Lagoon), Biogeosciences, 12, 7435-7452, 2015.
- Van Wambeke, F., Pfreundt, U., Barani, A., Berthelot, H., Moutin, T., Rodier, M., Hess, W., and Bonnet, S.: Heterotrophic bacterial production and metabolic balance during the VAHINE mesocosm experiment in the New Caledonia lagoon Biogeosciences Discussions, 12, 19861-19900, 2015.
- Walsby, A. E.: The gas vesicles and buoyancy of *Trichodesmium*, Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs, 1992. 141-161, 1992.
- Wannicke, N., Korth, F., Liskow, I., and Voss, M.: Incorporation of diazotrophic fixed N₂ by mesozooplankton Case studies in the southern Baltic Sea, Journal of Marine Systems, 117-118, 1-13, 2013a.

- Wannicke, N., Korth, F., Liskow, I., and Voss, M.: Incorporation of diazotrophic fixed N_2 by mesozooplankton Case studies in the southern Baltic Sea, Journal of Marine Systems, 117-118, 1-13, 2013b.
- White, A. E., Foster, R. A., Benitez-Nelson, C. R., Masqué, P., Verdeny, E., Popp, B. N., Arthur, K. E., and Prahl, F. G.: Nitrogen fixation in the Gulf of California and the Eastern Tropical North Pacific, Progess in Oceanography, 109, 1-17, 2012.