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Note to editors: Response to reviewers pages 1-4, then edited manuscript restarts at page 1 after that 

 

Response to Anonymous Referee #1 

 

We would like to thank anonymous referee #1 for her/his thoughtful review.  Our responses to all of the referee’s comments are 

italicized below. 

 

The study is an attempt to constrain the variability of surface ocean carbonate chemistry via compiling 3-hourly moored 

observations for 12 open ocean, coastal, and coral reef locations. Further, these present-day conditions are compared to biologically 

relevant thresholds associated with ocean acidification. 

These are very relevant topics in the context of anthropogenic climate change and definitely within the scope of BG. The paper is 

detailed and well-written.  I would appreciate a more thorough evaluation of state-of-the-art ESMs against this new set of 

observations, which would be very valuable (as the authors correctly note, ESMs still have issues in capturing the full magnitude 

of variability), but that is perhaps beyond the scope of this paper. 

In the observations-modeling comparisons within this study, our focus was to directly compare seasonal to interannual variability 

of surface ocean Ωaragonite and pH. This limited our comparison to studies that presented modeling results of these parameters 

with statistics of annual amplitude and interannual variability (in this case, we presented SD of annual anomalies).  The more 

recent ESM papers the referee mentions focus primarily on trends and lack these types of statistics on seasonal and interannual 

variability of Ωaragonite and pH.  While we did not focus on detection of long-term trends in this paper (because the paired pH 

observations are not long enough yet to interrogate trends), we do agree that we can make a general evaluation of pre-industrial 

vs. present day moored observations in the context of these more recent ESM studies that explore time of emergence of OA trends 

(e.g., Mora et al. 2013, Keller et al. 2014, and Rodgers et al. 2015).  We also see that Rodgers et al. (2015) do present SD of linear 

trends of surface ocean Ωaragonite (Fig A1[b]), which they attribute to the background natural variability (i.e., all temporal 

variability from sub-seasonal to decadal), so we plan to add a statement about how our open ocean observations compare to the 

variability presented in that study. 

 

p 1 line 18: Looking at "long-term change" in the context of "natural variability", wouldn’t be the challenge the detectability (and 

correct estimation) of these long-term trends in OA - which then in turn affect marine life? 

Yes, we agree and will clarify that the challenge is in detecting and interpreting long term change in the context of natural 

variability. 

 

p 1 line 29: "Modes" refers to ENSO, NAO etc. - I would recommend the usage of "patterns" or something like that. 

We have changed modes to patterns throughout. 

 

p 1 line 35: Although - While? 

We have made this change. 

 

p 2 line 10: than in open.. 

We have made this change. 
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p 2 line 19ff:  Please also include more recent studies, e.g., Keller at al., 2014 and Rodgers et al., 2015. 

We agree to add a review of and reference to more recent modeling studies relevant to the scope of this study (see above response). 

 

p 3 line 15: "and to ground truth carbonate chemistry variability in earth system models." Quite strong wording for what is actually 

done later, also considering the small number of locations and (partly quite old) models. Rewrite. 

Thank you for pointing this out.  We agree to replace this by simply stating this study will compare mooring observations with 

some past modeling estimates of seasonal to interannual variability of Ωaragonite. 

 

p 5 line 1: "or variability" - delete. SD was introduced as variability just one sentence before. 

We have made this change. 

 

p 5 line 34: Q3 + 1.5 x IQR 

Very important catch! We have made this change. 

 

p  7  line  +/-25:  How exactly do you define overlap?  At KEO/Ωarag, the whisker in November seems also to be in the gray. 

We identify overlap whenever present day monthly observations within 1.5xIQR (i.e., within whiskers of the box and whisker plots) 

overlap with pre-industrial range (defined on page 5 lines 21-37).  KEO Ωaragonite observations do overlap very slightly with 

pre-industrial bounds in November and December, and we will add this to the discussion you mention on page 7. 

 

p 8 line 9ff: This paragraph is not really clear, please rephrase. 

We have made this change. 

 

p 8 line 11: Chá b˘a is shown in Fig. 5, not 4. 

We agree this section was confusing and have simplified by focusing on the high subseasonal variability at Chaba. 

 

p 9 line 2: see p 1 line 29 

We have changed modes to patterns throughout. 

 

p 9 line 6: see p 1 line 29 

We have changed modes to patterns throughout. 

 

p 12 line 3: see p 1 line 29 

We have changed modes to patterns throughout. 

 

Tables & Figures: 

The gray and blue features (cells, shades, grids) are hardly visible (printed out, the light gray in Tab. 4 is completely absent, as is 

the grid in Fig. 8). Please replace with stronger colors. 

We would appreciate the advice from Biogeosciences editors on this issue.  We attempted to maximize color differentiation in pdf 

format but, like the reviewer, have found less desirable results on different printers and projectors, so we’re not sure what is best. 
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Response to Anonymous Referee #2 

 

We would like to thank anonymous referee #2 for her/his thoughtful review.  Our responses to all of the referee’s comments are 

italicized below. 

 

The authors observed pH and pCO2 of surface seawater for several years by using moor system and calculated present-day monthly 

omega. Then, they discuss biological thresholds of shellfish using pre-industrial calculated omega.  Overall, I agree with the 

authors.  I also would like to know time series changes of pH and omega during observation, but this would be another topic. Since 

the manuscript is well written, only a few minor comments are attached below. 

We are also very interested in trends of pH and Ωaragonite during the time series; however, because the pH time series are not 

long enough yet to interrogate these trends, we did not focus on detection of long-term trends in this paper.  

 

Fig.2-7 I would like you to add pCO2 data 

Because a major focus of this paper was to better understand present day exposure to known biological thresholds for shellfish 

larvae around coastal moorings, we focused on the parameters for which these thresholds have been established.  We agree that 

pCO2 is also of interest to the ocean acidification community, but in order to maintain this focus and keep the paper to a reasonable 

length, we intend to present the pCO2 analysis is a separate paper. 

 

P4 L1 "Overall uncertainty..." Is it ture ? I think 2 uatm is too small.  

Yes, we have published the uncertainty assessment, which uses lab testing and comparisons to ship-based measurements in the 

field, in the following publication: Sutton et al. A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean 

sites using a moored autonomous system. Earth Syst. Sci. Data, 6, 353–366, 2014. 

 

P4 L30 small errors? 

These small errors could reflect the sensitivity of the pCO2-pH pairing to systematic errors and/or slight mismatches in time and 

space of the pCO2 and pH measurements (Cullison-Gray et al., 2011, Marine Chemistry 125: 82–90). 

 

P11 L8-10 and P12 L4-5: I think these two sentences are inconsistent. Does ship-base observation underestimate or overestimate 

the variability of omega ?  

Thank you for pointing out the inconsistency between these statements.  We will add the clarification in the statement on page 12 

lines 4-5 that ESMs and ship-based observations generally underestimate temporal variability of *open ocean* Ωaragonite. 

 

 

Response to Anonymous Referee #3 

 

We would like to thank anonymous referee #3 for her/his thoughtful review.  Our responses to all of the referee’s comments are 

italicized below. 

 

Sutton and co-authors introduce a valuable, impressive dataset and provide a useful analysis of the range of seasonal variability 

across moored timeseries for pH and Omega aragonite.  They compare across 12 open ocean, coastal and coral reef locations.  In 
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section 2, they carefully assess sources of uncertainty and clearly describe the reasonable choices made in the omega calculations.  

The figures are clear.  It’s a very nice contribution, and I don’t see a need for much revision prior to publication. 

I would suggest the authors add some additional discussion of the degree to which we understand how organisms respond to 

variability outside the preindustrial range, as this is a major focus in the analysis. They discuss a few oyster species with Figure 9 

in section 3.2. I would suggest referring to this in the introduction, so as to better motivate the analysis. And also if there are other 

examples that could be used as motivation, that would be helpful.  The motivation is presently termed primarily in terms of the 

general processes occurring in the coastal zone and the performance of numerical models. 

This is a very useful perspective, and we agree additional background in the introduction on relevance to biological response 

would improve the paper.  While our understanding of how organisms respond to variability outside pre-industrial conditions is 

limited, there are experimental studies that test organism response at pre-industrial, present day, and future ocean acidification 

conditions, which we can summarize to bolster the motivation.  

 

Introduction, page 1, Line 32: Comment: 30% is not incorrect if one takes cumulative FF emission and cumulative land use 

emissions = cumulative anthropogenic emissions. However, with respect to land processes, this does ignore the fact that much of 

the cumulative terrestrial sink is, in fact, regrowth after previous land use clearing. And uncertainty is very large on the mean land 

use source.  That the ocean has absorbed 41,48% of fossil fuel emissions (Ciais et al. 2013, Sabine et al. 2004) has less uncertainty.  

I suggest (but do not insist) the authors consider using either the 41 or 48% "of fossil fuel emissions" as this is better quantified. 

Our estimate takes into consideration a compilation of inventories of anthropogenic carbon (observational and model-based 

estimates), which gives an estimate of the global ocean inventory in 2010 of 155±31 PgC (Khatiwala et al., 2013, 

www.biogeosciences.net/10/2169/2013/).  When combined with the latest, annually-updated Global Carbon Project budget 

estimates for total cumulative emissions from 1870 to 2014 of 400±20 GtC from fossil fuels and cement and 145±50 GtC from land 

use change (Le Quéré et al., 2015), the total global ocean sink is ~30%.  We believe this is the most comprehensive analysis to 

date that takes into consideration the entire global carbon budget.  Now looking at this with a more critical eye, we should modify 

the citations for that statement to Le Quéré et al., 2015 and Khatiwala et al., 2013. 

 

Introduction, page 2, line 34: “is adapated” suggested phrasing 

We have made this change. 

 

Figures 2-7: It would help to add some additional labeling for “Open Ocean”, “Coastal”, etc. This would help the reader to follow 

the discussion, as these figures do all look so similar otherwise. This information is provided already in the captions, so I am 

thinking of something bolder to stand out on the figure itself 

We have made this change. 
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Correspondence to: A. J. Sutton (adrienne.sutton@noaa.gov) 

Abstract. One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting 

long-term change in the context of natural variability.  This study addresses this need through a global synthesis of monthly pH 

and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored 20 

observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010.  Mooring observations 

suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of 

pre-industrial variability throughout most, if not all, of the year.  In general, coastal mooring sites experience more natural 

variability and thus, more overlap with pre-industrial conditions; however, present day Ωarag conditions surpass biologically 

relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag<1.8) and Crassostrea gigas (Ωarag 25 

<2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag<1.6).  At the most 

variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag=1.  Global and regional models 

and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. 

Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing 

present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response 30 

under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader 

impacts of ocean acidification. 

1 Introduction 

The global ocean has absorbed ~30% of anthropogenic carbon dioxide (CO2) emissions released since the beginning of the 

industrial revolution (Khatiwala et al., 2013; Le Quéré et al., 2015). While ocean uptake of CO2 has played a role in mitigating the 35 

atmospheric-associated impacts of anthropogenic CO2, it has also resulted in changes to seawater chemistry.  Seawater pH has 

decreased globally by 0.1 since the pre-industrial era (Feely et al., 2004; Orr et al., 2005) and is predicted to decrease by another 

0.3 by 2100 under Intergovernmental Panel on Climate Change (IPCC) business-as-usual emission scenarios (Caldeira and 

Wickett, 2005; Orr et al., 2005). Ocean acidification also results in reductions in carbonate ion concentrations and the saturation 

states of calcium carbonate minerals utilized by calcifying marine organisms to make their shells or skeletons.  Globally, average 40 
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surface seawater pH change is currently about -0.002 yr-1 and the saturation state of aragonite, a common form of calcium carbonate 

mineral utilized by marine organisms, is approximately -0.008 yr-1 (Bates et al., 2014). 

 

These assessments of ocean-wide change inform global-scale predictions of ocean acidification impacts and provide boundaries 

on carbonate chemistry in designing biological experiments.  However, a major challenge to assessing local- to regional-level 5 

ecological and economic consequences of ocean acidification is the lack of understanding of how global anthropogenic change 

manifests relative to natural variability, especially in dynamic coastal regions (Bauer et al., 2013).  Coastal systems are sites of 

large variability, where terrestrial, atmospheric, and marine nutrient and carbon cycles all interact and where ocean acidification 

conditions can be more extreme than in open ocean environments (Cai et al., 2011; Feely et al, 2010). Important processes that 

affect ocean acidification in the coastal ocean include upwelling, riverine/estuarine input, air-sea gas exchange, production and 10 

respiration, calcification, dissolution, sediment burial, and sea-ice dynamics. Despite the ecological, biological, and economic 

importance of coastal regions, the magnitude and variability of these key biogeochemical processes are poorly quantified.   

 

Earth system models provide some insights into carbon system variability; however, they do not often capture the full magnitude 

of variability, especially at the seasonal to subseasonal time scales (Pilcher et al., 2015; Sasse et al., 2015).  For example, Sasse et 15 

al. (2015) estimated that earth system models underpredict the seasonal cycle of seawater partial pressure of CO2, i.e., p(CO2), by 

30%.  Despite these biases, some studies have made progress utilizing current estimates of Ωarag variability and change in assessing 

ecosystem impact and vulnerability to ocean acidification. Using predicted aragonite saturation state (Ωarag) change between 2005 

and 2050 and an estimate of annual variability from the Community Climate System Model (CCSM) 3.1, Cooley et al. (2009) 

identified that ocean acidification will exceed natural conditions throughout the global ocean by 2050, especially in low-latitude 20 

regions of the Atlantic, Indian, and western Pacific. Applying similar approaches to three other earth system models, Friedrich et 

al. (2012) also concluded these regions are most vulnerable, but also found that present-day ocean acidification already exceeds 

pre-industrial variability by a factor of 5 in shallow water tropical Pacific and Atlantic coral reef ecosystems. Both studies pointed 

out that these global models do not currently resolve coastal processes and therefore lack important sources of natural variability, 

which bias these results when extrapolating to coastal and coral systems. In a vulnerability assessment of U.S. shellfisheries, this 25 

lack of coastal information was addressed by using earth system model output as a baseline for Ωarag conditions but also adding a 

term in the final assessment for amplification of ocean acidification in coastal systems that experience eutrophication, upwelling, 

and river inputs of low Ωarag water (Ekstrom et al., 2015). Although this approach did not resolve all coastal carbonate variability 

and change, it allowed for some of the first regional-level assessments of ocean acidification impact.  Regional models in coastal 

systems are also showing promise at eddy-resolving spatial scales and monthly to seasonal temporal scales. Applied to the 30 

California Current Ecosystem (CCE), regional models predict surface ocean Ωarag has already moved outside the bounds of pre-

industrial variability (Hauri et al., 2013).  Direct measurements of the full range of variability will help parameterize and evaluate 

these models.  

 

Defining present-day seawater carbonate conditions can also contribute to studies addressing how marine life respond to a myriad 35 

of stressors. Biological impacts could manifest, for example, through exposure to conditions beyond the baseline, pre-industrial 

conditions to which marine life is adapted.  In a field experiment within a natural coral reef system, Albright et al. (2016) found 

that net community calcification increased when seawater chemistry was modified to pre-industrial conditions. Pre-industrial 

conditions likely varied among different ecosystems, so designing biological impact studies like this depends on defining the 

natural range of variability and identifying when and where other organisms may be exposed to conditions outside of this range. 40 
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Biological impacts may also manifest once seawater carbonate conditions surpass a certain physiological threshold.  Many 

experiments have focused on measuring biological response to undersaturated Ωarag conditions; however, recent studies have 

identified physiological thresholds for shellfish larvae at Ωarag>1 (Barton et al., 2012; Gaylord et al. 2011; Hettinger et al., 2013; 

Salisbury et al., 2008; Waldbusser et al., 2014, 2015). Knowledge about when and where these corrosive conditions occur and how 

the timing of such conditions relate to key life stages is critical to assessing vulnerability to ocean acidification.  5 

 

Understanding what dominant patterns of variability define the natural range of carbonate chemistry is also critical to future 

predictions of impact. Whether the variability is dominated by stochastic events (e.g., storms), the seasonal cycle, interannual 

variability (e.g., El Niño and La Niña events), or decadal climactic oscillations (e.g., Pacific Decadal Oscillation) will control how 

climate change impacts these natural variations in ocean carbonate chemistry.  By resolving these scales of variability, researchers 10 

can start to refine biological experiments, ecosystem models, and economic vulnerability assessments in the context of full 

ecosystem variability and change. As evidence emerges that some shelled marine organisms are already being impacted by 

corrosive seawater chemistry conditions (Barton et al., 2012; Bednaršek et al., 2014a; Bednaršek et al., 2014b; Bednaršek et al., 

2012; Reum et al., 2015) and stakeholders are seeking locally relevant solutions (Kelly and Caldwell, 2013; Kelly et al., 2011), 

these analyses are becoming increasingly important.   15 

 

High-frequency moored observations can be highly effective in capturing the full range of variability at key locations (Cullison 

Gray et al., 2011; Harris et al., 2013; Hofmann et al., 2011; Reimer et al., in review; Shadwick et al., 2015; Sutton et al., 2014a; 

Xue et al., 2016). Here we present the first global-scale ocean acidification mooring synthesis of 3-hourly surface ocean pH 

observations and Ωarag calculated from direct measurements of p(CO2) and pH collected together on 12 open ocean, coastal, and 20 

coral reef moorings since as early as 2010. We used these observations to define present-day and pre-industrial subseasonal to 

interannual pH and Ωarag variability at each location and compared these observations to past modelling estimates of seasonal to 

interannual variability of Ωarag.  This assessment identifies the patterns in which present-day conditions have exceeded pre-

industrial bounds and biologically relevant thresholds at these mooring locations, and documents when and where marine life 

currently encounter ocean acidification conditions that may impact growth and survival. 25 

2 Methods 

In 2003, the National Oceanographic and Atmospheric Administration’s (NOAA) Pacific Marine Environmental Laboratory 

(PMEL) began to establish a global moored CO2 network that presently includes 38 mooring locations (www.pmel.noaa.gov/co2/).  

With the recent development of autonomous pH sensors, PMEL has been able to expand this network to include pH at 21 of the 

mooring locations.  These moored CO2 and ocean acidification time series are part of a long-term, sustained effort intended to 30 

advance our scientific understanding of the ocean carbon cycle and how it is changing over time.  This network leverages other 

observing system efforts including, but not limited to, the National Data Buoy Center, the Research Moored Array for African-

Asian-Australian Monsoon Analysis and Prediction, and the OceanSITES Network.  This study focuses on 12 of these moorings 

with paired p(CO2) and pH measurements that allow for estimates of subseasonal to interannual variability of pH and Ωarag (Fig. 1, 

Table 1). This set of moorings includes sites in each major ocean basin and in a variety of open ocean, coastal, and coral reef 35 

environments. The time series used in this study include observations primarily between 2010 and 2015, with the exception of the 

WHOTS time series, which goes back to 2004. “Present day” observations used here refer to these time series outlined in Table 1.  
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Each mooring time series summarized in Table 1 included a Moored Autonomous p(CO2) (MAPCO2) system and a Sunburst 

SAMI-pH sensor deployed on the surface buoy. For a detailed description of the MAPCO2 system and data processing, refer to 

Sutton et al. (2014b). In brief, the MAPCO2 system utilizes an automated equilibrator-based gas collection system to measure 

surface seawater x(CO2) (the mole fraction of CO2 in air in equilibrium with surface seawater) every 3 hours in addition to sample 

temperature, pressure, and relative humidity. The x(CO2) measurement is made by a nondispersive infrared gas analyzer (LI-820, 5 

LI-COR) calibrated before, during, and after field deployment with reference gases traceable to World Meteorological 

Organization standards. A Sea-Bird Electronics (SBE) 16plus V2 SeaCAT was also deployed and integrated with the MAPCO2 

system to collect sea surface temperature (SST) and salinity (SSS) measurements used to calculate p(CO2) consistent with ocean 

CO2 standard operating procedures (Dickson, 2007; Weiss, 1974). Overall uncertainty of the MAPCO2 is <2 μatm for seawater 

p(CO2). The SAMI-pH sensor utilizes the spectrophotometric method for measuring seawater pH with a laboratory-based accuracy 10 

of ±0.003 and precision of <0.001 (Seidel et al., 2008). 

 

The SAMI-pH and SBE SeaCAT sensors collected 3-hourly measurements during the MAPCO2 10 min seawater equilibration 

time. All sensors were factory calibrated between each 1 year deployment. Data quality control for the SAMI-pH data involved 

utilizing the sensor software to identify and flag outliers and sensor failures such as bad blanks. We also used the relationship 15 

between total alkalinity (AT) and SSS (Cullison Gray et al., 2011; Fassbender, 2014; Lee et al., 2006; Xue et al., 2016) to calculate 

pH from p(CO2) and AT (using the CO2SYS program) in order to identify sensor drift within a deployment or offsets between 

deployments, which only occurred in 8% of the pH data sets. All pH data are on the total pH scale (Dickson et al., 2007). Data 

quality control for the SBE SeaCAT was limited to flagging and eliminating outliers. All measurements are archived at the relevant 

data centers: the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/oceans/Moorings/) and the National Centers 20 

for Environmental Information (https://www.ncei.noaa.gov/).  

 

In all calculations of Ωarag we used the MATLAB version (v1.1) of the CO2SYS program (Lewis and Wallace, 1998; van Heuven 

et al., 2011) with the carbonic acid dissociation constants of Lueker et al. (2000), sulfate dissociation constants of Dickson (1990), 

and borate-to-salinity ratio of Lee et al. (1974) according to recommended best practices (Dickson, 2007; Orr et al., 2015).  We 25 

also used average surface ocean phosphate and silicate concentrations from the World Ocean Atlas 2009 for each mooring location 

(Garcia et al., 2010). We used two pairs of carbonate system parameters to calculate Ωarag: 1) p(CO2) and pH observations and 2) 

p(CO2) observations and AT estimated from SSS (Cullison Gray et al., 2011 for CCE2 and Chá bă; Fassbender, 2014 for Papa and 

KEO; C. Hunt, University of New Hampshire, personal communication, 2016 for Gulf of Maine; Xue et al., 2016 for Gray’s Reef; 

and Lee et al., 2006 for the remaining sites). We then averaged the two Ωarag data sets for the final present day Ωarag values presented 30 

here. The only exception to the Ωarag calculations was the WHOTS mooring time series where we have good pH data over multiple 

years but only during the months of June to November. For this site we used only p(CO2) and AT estimated according to Lee et al. 

(2006) to calculate Ωarag. Similarly, all pH data presented are direct autonomous measurements of pH except in the case of the 

WHOTS mooring where pH was calculated from p(CO2) observations and estimated AT using CO2SYS. 

 35 

We used this approach of averaging calculated Ωarag from p(CO2) and pH observations (Ωarag: pCO2-pH) and calculated Ωarag from 

p(CO2) observations and estimated AT (Ωarag: pCO2-AT) to minimize the following errors: 1) the covariance of p(CO2) and pH can 

lead to small errors in predicting Ωarag, which can enhance Ωarag variability (Cullison Gray et al., 2011; Millero, 2007) and 2) the 

AT proxies only account for dilution and evaporation processes, which can result in underestimation of AT variability and, when 

combined with other carbon parameters, can reduce surface Ωarag variability. We tested the AT proxies by comparing AT measured 40 
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from discrete bottle samples collected at the surface at each mooring site to AT estimated from the proxies listed above, which 

were developed using AT and SSS measurements throughout the mixed layer. AT estimated from 3-hourly moored SSS was 

generally within stated errors (3 to 20 µmol kg-1) of discrete AT (e.g., Table 2). However, at a few sites where discrete AT was 

measured at the highest frequency (weekly to seasonally; sample size [n] > 100), discrete AT was more variable than AT estimated 

from the AT-SSS proxies (Table 2). At the La Parguera (coral reef) and WHOTS (open ocean) mooring sites, variability of discrete 5 

AT (as measured by 1 standard deviation [SD] of the mean) was greater than estimated AT by 21% and 52%, respectively.  

 

In addition to the discrepancies in discrete and proxy AT data sets, the SD of both Ωarag calculated from discrete measurements 

(Ωarag: discrete) and Ωarag: pCO2-pH were greater than Ωarag calculated from the p(CO2)-AT and pH-AT pairs (Ωarag: pCO2-AT and Ωarag: pH-AT; 

Table 2).  One limitation of the WHOTS data set is that high-frequency, moored pH observations only exist during the months of 10 

June to November; thus, the mean and SD of the Ωarag: pCO2-pH and Ωarag: pH-AT data sets may be biased.  Therefore, we used La 

Parguera as a guide and assumed actual variability (i.e., from high-quality discrete bottle samples) of Ωarag (Ωarag: discrete SD = 0.16) 

lies between Ωarag: pCO2-pH (SD = 0.19) and Ωarag calculated from estimated AT (Ωarag: pCO2-AT SD = 0.12; Ωarag: pH-AT SD = 0.13; Table 

2) and used the approach of averaging mooring ocean acidification data sets to reflect this. Since we are confident in the uncertainty 

of the moored autonomous p(CO2) measurements (Sutton et al., 2014b), for Ωarag calculated from estimated AT we selected Ωarag: 15 

pCO2-AT to average with Ωarag: pCO2-pH.  While there were not enough discrete measurements to do this same comparison at the coastal 

sites, we found that the Ωarag: pCO2-pH, Ωarag: pCO2-AT, and Ωarag: pH-AT data sets were not significantly different (p<0.05) at the coastal 

sites, likely due to high natural variability in the coastal carbon system. This suggests that averaging Ωarag: pCO2-pH and Ωarag: pCO2-AT 

versus using one Ωarag data set will not have a significant impact on results.  

 20 

The ideal method for calculating Ωarag may differ across sites dependent on access to and analysis of high-quality ship-based 

measurements.  However, averaging Ωarag: pCO2-pH and Ωarag: pCO2-AT provides a conservative estimate of monthly Ωarag conditions 

allowing for a broad-scale comparison with consistent methodology across 12 buoys in different marine ecosystems. Continued 

high frequency (ideally, weekly to monthly where feasible) discrete sampling, development and analysis of regional AT proxies, 

and development of autonomous sensors capable of measuring carbonate parameters other than p(CO2) and pH will all help to 25 

further refine these methods for calculating Ωarag from moored autonomous observations. 

 

To estimate pre-industrial pH and Ωarag, we used p(CO2) and AT with the following adjustments to present-day observed p(CO2) 

and SST: 1) a decrease of 105 ppm in surface ocean p(CO2) assuming the delta between atmospheric and surface seawater p(CO2) 

has remained constant from the pre-industrial era to a reference year of 2010 (from: Dr. Pieter Tans, NOAA/ESRL, 30 

www.esrl.noaa.gov/gmd/ccgg/trends/), and 2) changes in SST that vary regionally from 0.5 to 1.5°C consistent with the IPCC Fifth 

Assessment Report (IPCC, 2013). Although magnitudes of atmospheric CO2 uptake can also vary regionally (Bauer et al, 2013), 

for the purposes of this synthesis we assumed that the change in air-sea CO2 differences was consistent globally but that SST 

changes varied regionally as presented by the IPCC (2013). We also assumed small changes in SSS, AT, phosphate, or silicate 

since the pre-industrial era would not have a significant impact on calculated pH and Ωarag. We applied these changes to monthly 35 

mean and range of variability of present-day observations and used CO2SYS to calculate pre-industrial pH and Ωarag. The range of 

monthly variability in pre-industrial and present-day conditions were defined by descriptive statistics used in box and whisker plots 

excluding outliers: 

 

ݐ݈݅݉݅	ݎ݁ݓ݋ܮ ൌ ܳ1 െ 1.5 ൈ  40 (1)        ܴܳܫ
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ݐ݈݅݉݅	ݎ݁݌݌ܷ ൌ ܳ3 ൅ 1.5 ൈ  (2)        ܴܳܫ

 

where Q1 is the 25th percentile (or first quartile), Q3 is the 75th percentile (or third quartile), and IQR is the interquartile range (Q3-

Q1) of pH and Ωarag values. These limits equate to approximately ±2.7 SD of the mean for a normally distributed data set. 

 5 

The variables used to estimate total uncertainty of present day calculated Ωarag are shown in Table 3. This uncertainty estimate 

included a preliminary assessment of in situ validation similar to p(CO2) validation by Sutton et al. (2014b) to estimate pH error 

in the field. The average difference between SAMI-pH measurements and pH calculated from discrete measurements of dissolved 

inorganic carbon and AT was ±0.018, which was larger than laboratory-based assessments of pH measurement error (Seidel et al., 

2008). While this estimate included error caused by slight mismatches in space (<1 km) and time (<1.5 hours) between the moored 10 

and discrete measurements, we used it here to develop a conservative estimate of total estimated uncertainty for calculated Ωarag: 

pCO2-pH from moored observations, which is 0.37 for seawater at SST = 25oC, SSS = 35, p(CO2) = 370 µatm, and pH = 8.1 (Table 

3). This estimate meets the target relative uncertainty for Ωarag of 10% needed to identify relative spatial patterns and short-term 

variation in ocean acidification (Newton et al., 2014).  A more detailed assessment of pH sensor error is planned as more discrete 

and autonomous pH data become available. When the MAPCO2 system is paired with estimated AT, Ωarag: pCO2-AT also meets this 15 

uncertainty target (Table 3); however, natural variability of surface ocean Ωarag: pCO2-AT may be underestimated as discussed 

previously. This estimated uncertainty is likely higher during the months of May through July at the Gulf of Maine mooring site 

where SSS <30 25% of the time due to freshwater inputs; at low salinity, the AT–SSS relationship likely deteriorates.  Total relative 

uncertainty of Ωarag for all mooring data sets, averaged from the Ωarag: pCO2-pH and Ωarag: pCO2-AT data sets, likely falls between 5 and 

10% (at the seawater conditions described in Table 3) and within the target relative uncertainty for describing short-term ocean 20 

acidification variability. From this point on, Ωarag reported here is Ωarag: pCO2-AT for the WHOTS mooring time series and averaged 

Ωarag: pCO2-pH and Ωarag: pCO2-AT for the other mooring time series. 

3 Results and Discussion 

3.1 Observations of variability and change 

Direct observations of p(CO2) and pH revealed present-day conditions of surface ocean carbonate chemistry in 12 different oceanic 25 

and coastal systems. The open ocean mooring time series sites are located in subtropical oligotrophic regions (WHOTS, Stratus), 

biologically productive subtropical regions that experience seasonal monsoons (BOBOA) and tropical cyclones (KEO), and 

subarctic regions with pronounced seasonality of physical and biological conditions (Papa, Iceland). Annual mean Ωarag at these 

sites ranged from 1.83 to 3.56; annual mean pH ranged from 7.99 to 8.12 (Figs. 1–4, Table 4). High biological productivity is a 

feature at each of the four coastal mooring time series sites on the continental shelves of the U.S. East (Gulf of Maine, Gray’s 30 

Reef) and West (CCE2, Chá bă) coasts. Summer upwelling is another important driver of conditions at Chá bă, located mid-shelf 

at 100 m bottom depth offshore of La Push, Washington (Alford et al., 2012). While upwelling can also impact the CCE2 site 

located mid-shelf at 800 m bottom depth farther south in the CCE, this subregion in particular has shown sensitivity to climatic 

drivers, such as the El Niño Southern Oscillation (ENSO; Nam et al., 2011). Seasonal temperature and freshwater inputs impact 

natural variability at the two coastal moorings in the Atlantic with the Gulf of Maine site located 10 km from shore at 65 m bottom 35 

depth (Salisbury et al., 2009) and Gray’s Reef 70 km from shore at 20 m bottom depth (Reimer et al., in review; Xue et al., 2016). 

The Chuuk and La Parguera sites are located in coral reef ecosystems within a semi-closed atoll lagoon in Micronesia in 23 m 

bottom depth and a patch reef in the Caribbean Sea southwest of Puerto Rico in 5 m bottom depth, respectively. Despite the more 

variable coastal and coral reef conditions, the range of annual mean Ωarag at these sites was 1.97 to 3.37, less than the range observed 
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at the more diverse set of ocean regimes represented by the open ocean sites (Figs. 1, 5–7, Table 4).  However, the range of annual 

mean pH was approximately the same as the open ocean sites from 8.01 to 8.15 (Figs. 5–7). 

 

Of the open ocean time series, the moorings located in subtropical oligotrophic regions, WHOTS and Stratus, experienced lower 

seasonal to subseasonal variability in surface pH and Ωarag (Figs. 2–4). Consistent trade winds and shallow mixed layer depth 5 

throughout the year along with the lack of deep winter convection likely contribute to this relatively low open ocean variability. 

Temporal variability was higher at the other four open ocean mooring locations, which was likely driven by 1) more prevalent 

seasonal changes in SST (on average 2 times more variable than WHOTS and Stratus) and productivity, and 2) stochastic events 

such as storms and typhoons.  In general, the range of variability tended to be consistent throughout the annual cycle at each of the 

open ocean sites with exceptions of increased variability at the Iceland location in late summer and early fall and at Papa during 10 

winter (Fig. 4). Present-day Ωarag values were mostly >3 year-round at the subtropical open ocean sites except at Stratus, where 

Ωarag values mostly fell between 2.5 and 3.0 (Figs. 2 and 3). Surface Ωarag conditions were further reduced at Papa and Iceland, the 

subarctic sites, which range from 1.5 to 2.5 (Fig. 4). Present-day pH observations were >8 throughout the average year at these 

mooring sites except at Stratus, where pH fell below 8 half the year from December through May (Fig. 2). Moored observations 

were consistent with seasonal means from ship-based time series observations at the WHOTS and Iceland sites (Bates et al., 2014). 15 

 

The seasonal cycle of surface ocean Ωarag and pH were not always consistent with one another.  Seawater Ωarag is largely determined 

by variations in the concentration of the carbonate ion (CO3
2-); pH is influenced by gas exchange of CO2, physical conditions, and 

biological activity. Observations of surface ocean pH were consistent with a seasonal thermodynamic response, i.e., pH decrease 

(increase) with SST increase (decrease), at the four subtropical open ocean sites and at the Papa mooring (Figs. 2–4). However, 20 

this strong relationship was not consistent at the subarctic Iceland site. At this site, pH and SST were positively correlated (Fig. 4), 

suggesting the seasonality of surface ocean pH was dominated by biological activity in the summer and/or winter mixing of 

upwelled deep water low in temperature and pH (Takahashi et al., 1993). At all open ocean sites, Ωarag was highest during summer 

months, which led to the timing of low Ωarag and low pH conditions to be anticorrelated over the annual cycle at all open ocean 

sites except Iceland (Figs. 2–4).  This pattern at the Iceland mooring was consistent with seasonality of surface Ωarag and pH derived 25 

from quarterly ship-based observations at the same site (Bates et al., 2014). 

 

Comparisons to pre-industrial bounds of variability also revealed differences between open ocean sites. All open oceans sites 

experienced surface Ωarag outside the bounds of pre-industrial variability year-round with the exception of BOBOA and Iceland. 

Present-day surface Ωarag conditions still partially overlapped with pre-industrial conditions at BOBOA during the monsoon season 30 

from June through August (Fig. 3), at Iceland during the summer to fall transition in August and September (Fig. 4), and slightly 

at KEO during November and December (Fig 3). However, present-day surface pH observations fall completely outside pre-

industrial pH conditions at all open ocean sites year-round, except at BOBOA where there was a slight overlap of 4% in August 

(Figs. 2–4). 

 35 

The coastal mooring sites experienced higher subseasonal to seasonal variability in surface pH and Ωarag compared to the open 

ocean sites (Figs. 5 and 6).  Each coastal time series exhibited clear seasonal patterns with annual amplitudes of Ωarag ranging from 

0.66 to 1.32 (Table 4). Gray’s Reef and Chá bă experienced the highest subseasonal to seasonal variability in surface pH and Ωarag, 

likely driven by upwelling/relaxation/downwelling dynamics that can change rapidly at Chá bă (Alford et al., 2012; Hickey and 

Banas, 2003) and high productivity and freshwater inputs in the spring and fall at Gray’s Reef (Reimer et al., in review; Salisbury 40 
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et al., 2009; Xue et al., 2016). We also observed the lowest pH values (7.8) and surface Ωarag values close to undersaturation 

(Ωarag<1) primarily in the winter at Chá bă and in the spring at CCE2 (Fig. 5).  These observations of near-undersaturated conditions 

are consistent with other observations and models within the northern CCE where the Chá bă mooring resides (Harris et al., 2013; 

Hauri et al., 2013) and may indicate respiration in the absence of photosynthetic uptake typical of winter/non-bloom periods.  

 5 

Unlike the subtropical open ocean mooring sites, seasonality of surface ocean pH at these coastal sites showed strong influence of 

factors other than SST and were not always correlated with Ωarag values. At the moorings in the CCE, these parameters (i.e., SST, 

pH, and Ωarag) generally followed similar seasonal patterns, suggesting factors other than seasonal thermodynamic response 

influenced surface ocean pH (Fig. 5). However, surface ocean pH and Ωarag did not always follow the same seasonal pattern at the 

Gray’s Reef and Gulf of Maine mooring sites (Fig. 6). While SST likely influenced some of the seasonal variation in pH at these 10 

sites, biological activity and freshwater input also influenced seasonality of the carbonate system at these U.S. East Coast locations 

(Reimer et al., in review; Salisbury et al., 2009; Xue et al., 2016).   

 

In general, the coastal sites experienced Ωarag outside of pre-industrial range mainly during winter. One exception was Chá bă, the 

coastal site with the highest subseasonal variability (Fig. 5). This high subseasonal variability during spring through fall caused 15 

high month-to-month variability in the overlap with pre-industrial conditions, suggesting this system may be on the threshold of a 

shift outside pre-industrial conditions during this time of the year. Observations of pH at Chá bă followed this same pattern. In 

general, present-day observations of pH fell outside pre-industrial conditions more so than Ωarag at all coastal sites (Figs. 5 and 6).   

 

Finally, similar to the coastal moorings, the coral reef mooring sites also experienced subseasonal to seasonal variability but not 20 

as large as within the subtropical coastal systems (Fig. 7). Mean annual Ωarag at the Caribbean (La Parguera) and Pacific (Chuuk) 

moorings was 3.62 and 3.42, respectively, while mean pH was 8.02 and 8.01, respectively (Fig. 7, Table 4).  With the exception 

of low Ωarag outliers at Chuuk, most Ωarag conditions were >3 throughout the year at both sites, and surface pH observations were 

>7.9. The seasonal cycle of pH and Ωarag was more pronounced at La Parguera with relatively consistent monthly range in 

variability, but the Chuuk site experienced greater variability December through April, likely driven by local mixing during the 25 

trade winds season. Even with small seasonal fluctuations in tropical ocean temperature, both coral mooring sites did show patterns 

of pH and Ωarag seasonality associated with SST, with lower pH and Ωarag values coinciding with slightly warmer summer months 

and higher pH and Ωarag values during winter (Fig. 7). Present-day variability at these sites did not cause extensive overlap with 

pre-industrial conditions. Present-day surface pH observations fell completely outside pre-industrial conditions year-round at both 

coral reef sites (Fig. 7). Present-day Ωarag conditions at La Parguera were largely outside of pre-industrial bounds year round, while 30 

this mainly occurred during the season of lowest variability from May to November at Chuuk (Fig. 7).  

 

The results from these 12 mooring time series highlight the different patterns of variability of surface ocean Ωarag and pH in both 

space and time. Figure 8 compares the relative influence of subseasonal, seasonal, and interannual variability at the mooring 

locations. Since the mooring observations were well distributed throughout the year, we are confident in the subseasonal and 35 

seasonal estimates of variability.  However, considering that most of the time series were only 2 to 5 years long, we expect to refine 

the estimates of interannual variability as we obtain more observations over the coming years. For example, ENSO is a driver of 

ocean conditions, including biogeochemistry, at CCE2 (Nam et al., 2011). While there were weak El Niño-like conditions that 

developed in the tropical Pacific in 2014 (McPhaden, 2015), there were no major La Niña or El Niño anomalies during the CCE2 

time series used in this analysis (March 2012–March 2015). Hence, the estimate of interannual variability presented here is likely 40 
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an underestimate of the true interannual signal at this location. In addition, this was a period of anomalously rapid warming in the 

Gulf of Maine, which may have caused Ωarag to trend higher due the reduced solubility of Ωarag in warmer waters (Mills et al., 2013; 

Pershing et al., 2015). Potenial variations in warming trends over time would also impact interannual variabilty of Ωarag 

observations in the Gulf of Maine as the time series continues. 

 5 

The coastal sites generally experienced higher subseasonal to interannual Ωarag variability than the open ocean and coral reef sites. 

Relative to other patterns of variability, interannual Ωarag variability tended to be low at all sites except for at Chá bă, Gray’s Reef, 

and CCE2 (Fig. 8a). The other sites tended to be equally influenced by subseasonal and seasonal variability with the exception of 

the Iceland mooring site, which was controlled more by seasonal variability over the annual cycle (Fig. 8a); however, subseasonal 

variability played a large role in August through October (Fig. 4). For pH, most mooring sites exhibited similar patterns of 10 

variability with low interannual variability and approximately equal influence from seasonal and subseasonal variability (Fig. 8b). 

Similar to Ωarag, Chá bă, Gray’s Reef, and CCE2 were the clear outliers with the highest values of interannual pH variability. 

3.2 Biologically relevant Ωarag thresholds 

Research on response of shellfish larvae living in nearshore environments of the CCE and Gulf of Maine to changes in carbonate 

chemistry allowed us to investigate when observations at the Chá bă, CCE2, and Gulf of Maine moorings exceeded biological 15 

thresholds. Crassostrea gigas, the Pacific oyster whose larvae are raised in hatcheries in coastal Washington and Oregon, has 

shown sublethal impacts on larval development, such as shell development and growth, when exposed to levels of Ωarag <2.0 

(Barton et al., 2012) and acute impacts when Ωarag <1.5 (Waldbusser et al., 2014; Waldbusser et al., 2015). Other studies suggest 

that chronic exposure thresholds for the larvae of Ostrea lurida, the Olympia oyster, and Mytilus californianus, the California 

mussel, occur at Ωarag <1.4 (Hettinger et al., 2013) and Ωarag <1.8 (Gaylord et al., 2011), respectively. All of these shellfish larvae, 20 

whether naturally occurring or hatchery raised, are found in coastal environments in the region of the Chá bă mooring and M. 

californianus also exist farther south in the nearshore region of the CCE2 mooring.  In addition, larvae of Mya arenaria, the soft-

shell clam commercially harvested on tidal mudflats of the western Gulf of Maine, has shown lack of shell formation and growth 

in laboratory experiments at Ωarag <1.6 (Salisbury et al., 2008). 

 25 

Monthly climatology of Ωarag developed from the mooring observations at Chá bă suggest that present-day Ωarag conditions reached 

chronic exposure levels for C. gigas larvae (Ωarag <2.0) over 50% of the time from November to March, with nearly the entire 

months of December through March at Ωarag values less than 2.0 (Fig. 9b). These present-day conditions prevailed over more of 

the year compared to pre-industrial times, when the most extensive chronic exposure occurred only up to 64% during March (Fig. 

9a). Conditions that cause acute responses in C. gigas larvae (Ωarag <1.5) were miminal year-round at Chá bă except for March, 30 

when these conditions persisted in the present day during 37% of the month (Fig. 9b) and only 14% of the month during the pre-

industrial (Fig. 9a). A similar seasonal pattern also existed for O. lurida larvae (Ωarag <1.4), when chronic exposure levels in March 

exceeded 27% during the present (Fig. 9b) compared to only 11% during pre-industrial (Fig. 9a).  For M. californianus larvae, 

present-day chronic exposure levels (Ωarag <1.8) prevailed over 40% of the time in January through March at Chá bă while there 

was less chronic exposure at CCE2, at 11 to 38% of time in March through July (Fig. 9b). In both cases, present-day exceedance 35 

of these thresholds prevailed over fewer months and at a smaller percentage of the time during those months (Fig. 9a). For M. 

arenaria, present-day Ωarag conditions exceeded chronic exposure levels at the Gulf of Maine mooring between 11 to 31% of the 

time during December through April, with peak exposure levels in February and March (Fig. 9b).  In contrast to the CCE, which 
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experienced corrosive Ωarag conditions before ocean acidification, Gulf of Maine surface water conditions did not exceed biological 

thresholds for M. arenaria at any point during the year in pre-industrial times (Fig. 9a).  

 

These observations suggest that present-day coastal Ωarag conditions exceeded thresholds for sublethal effects on shellfish larvae 

in the Gulf of Maine and during both present-day and pre-industrial times at Chá bă and CCE2. However, present-day coastal 5 

conditions surpass these thresholds more often than pre-industrial times (Fig. 9). In some cases, unfavorable surface ocean Ωarag 

conditions overlap with the spawning season.  Coastal conditions of Ωarag <1.4 at Chá bă do not currently occur during the May to 

August O. lurida larvae spawning season. M. californianus tends to spawn year-round, and while natural populations of C. gigas 

do exist in Washington coastal waters and tend to spawn in the late summer, hatcheries raise C. gigas larvae year-round. Mooring 

observations suggest that present-day chronic exposure effects on M. californianus larvae may be more common in the winter in 10 

the northern CCE and in the spring in the southern CCE (Fig. 9). The summer spawning season of natural populations of C. gigas 

avoids chronic and acute exposure levels during winter months; however, hatcheries may encounter these conditions if raising 

larvae during this time.  In the Gulf of Maine, M. arenaria spawns when seawater temperatures reach 10°C, which during the 

moored time series occurred in May through November (Fig. 6).  According to the Gulf of Maine mooring observations through 

2013, corrosive conditions of Ωarag <1.6 did not occur during this spawning season (Fig. 9b).  However, maximum SST observations 15 

in April of 9.7°C were at the verge of this spawning threshold, and rapid warming in the Gulf of Maine of 0.23°C yr-1 since 2004 

suggest SST as of April 2015 may have exceeded 10°C at the mooring site (Mills et al., 2013; Pershing et al., 2015).  If this 

warming causes M. arenaria to begin spawning in April, larvae may become exposed to Ωarag conditions that limit shell formation 

and growth (Fig. 9b). 

 20 

While these observations on the continental shelf were offshore from the inshore habitats where natural populations of shellfish 

and oyster hatcheries exist, these results provide valuable information on endmember coastal conditions that affect the nearshore 

regions. These monthly climatologies suggest surface water conditions corrosive to shellfish larvae presently exist year-round in 

the CCE (primarily during winter/spring) and during winter/spring in the Gulf of Maine. For shellfish hatcheries that utilize real-

time coastal ocean acidification data and monitor conditions within their facilities, managing the impacts of these corrosive 25 

conditions on larvae may be possible. These climatologies may also inform the development of experiments testing the 

vulnerability of shelled organisms in other coastal regions. For example, target species may include ecologically or economically 

important species that undergo critical life stages when low Ωarag conditions persist during spring in the region around Gray’s Reef 

(Fig. 6). However, the coastal mooring climatologies also illustrate that low Ωarag and low pH conditions do not always coincide 

in the natural environment, and experiments testing how Ωarag, pH, and other stressors independently affect marine organisms are 30 

necessary for understanding ocean acidification impacts under the diversity of present-day conditions (Breitburg et al., 2015). 

3.3 Comparison to models and ship-based data syntheses 

Since high-frequency autonomous ocean acidification time series are relatively new, much of our current knowledge about ocean 

carbonate variability comes from ship-based observations. Due to the limitations of ship-based oceanography, these observations 

can have a seasonal measurement bias leading to errors in seasonal climatology estimates and only capture opportunistic stochastic 35 

events, which has resulted in limited knowledge about the influence of subseasonal processes on ocean carbonate variability. In 

general, we found fairly good agreement between annual mean mooring Ωarag observations and annual mean ship-based data 

syntheses, which primarily used repeat hydrographic cruise data from the Global Data Analysis Project (Key et al., 2004). Both 

the Jiang et al. (2015) and Takahashi et al. (2014) data syntheses overestimated surface ocean Ωarag at the Stratus mooring in the 
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South Pacific by 0.31 (Fig. 1; Table 4). Undersampling likely contributed to this discrepancy. Moored observations revealed the 

lowest Ωarag conditions during August through October; however, ship-based observations were lacking in this region of the 

Southern Hemisphere during this season. Annual mean surface Ωarag at the four U.S. coastal mooring sites tended to reflect mean 

open ocean conditions characterized by the ship-based data synthesis presented in Figure 1; however, direct observations in the 

two coral reef environments suggest open ocean carbonate chemistry was modified on the reefs and in these two cases, resulted in 5 

reduced annual mean Ωarag compared to the ship-based data syntheses (Fig. 1; Table 4). The ship-based data syntheses also slightly 

overestimated annual mean Ωarag at WHOTS, KEO, BOBOA, Iceland, and Chá bă; however, these overestimations were roughly 

within the change in Ωarag expected between the time of the mooring observations (typically 2010–2015) and the ship-based 

observations (adjusted to a reference year of 2000 by Jiang et al. [2015] and 2005 by Takahashi et al. [2014]). Assuming a global 

average rate of change of surface ocean Ωarag of -0.008 yr-1 (Bates et al., 2014), the change over this 5–15 year period would be 10 

0.04–0.12.  

 

Of the 10 mooring locations with observations presented in the Takahashi et al. (2014) data synthesis, seasonal variability was 

overestimated by the ship-based observations at all open ocean sites except Iceland, and underestimated at Iceland and the coastal 

and coral reef sites (Table 4). These differences could be driven by sparse ship-based data in space and time used to estimate 15 

climatological seasonal variability in the Takahashi et al. (2014) synthesis. This analysis demonstrates that in addition to new 

information about subseasonal variability that is not captured by ship-based observations, moored observations can also be used 

to improve ship-based data synthesis estimates of seasonal to annual Ωarag conditions in undersampled regions such as the Southern 

Hemisphere, Iceland Sea, and coastal systems. 

 20 

Overall, earth system models tend to underestimate natural variability of the carbonate system. The series of earth system models 

used by Friedrich et al. (2012) underestimated both seasonal and interannual variability of surface Ωarag at all mooring locations 

except for WHOTS and Stratus, which were the sites with the lowest variability (Table 4). These underestimations are expected at 

the coastal and coral sites since the models do not capture small-scale biogeochemical processes occurring in these environments. 

When Friedrich et al. (2012) extrapolated an average annual Ωarag amplitude of ~0.1 in subtropical oligotrophic open ocean regions 25 

to coral locations, they concluded that present-day coral conditions fell 5 times outside the pre-industrial range of variability.  

However, we found that actual seasonal variability was 2 to 3 times higher than 0.1 at the Chuuk and La Parguera mooring locations 

(Table 4), and present-day Ωarag conditions were only 1 to 2 times below the pre-industrial range of variability (Fig. 7). On the 

other hand, we found CCSM3-based estimates of pre-industrial envelop exceedance by Cooley et al. (2009) to be conservative in 

some regions. They found that by 2050 all regions will experience surface Ωarag conditions outside pre-industrial bounds of 30 

variability with emphasis in low-latitude regions. Our present-day mooring observations suggest that not only has the shift outside 

of pre-industrial conditions already occurred year-round at the low latitude coral reef sites but also at subtropical and subarctic 

open ocean sites.   

 

Some state-of-the-art earth system models have improved the characterization of background natural variability in the open ocean.  35 

A recent study found global mean surface ocean pH conditions (Ωarag not assessed) moved outside pre-industrial bounds of 

variability by 2008 (Mora et al, 2013), which is more consistent with the open ocean moored observations (Figs. 2-4) compared to 

the CCSM3-based estimates (Cooley et al., 2009).  Newer earth systems models may still underestimate the full magnitude of 

variability; however, they can illustrate the relative variability signal between different open ocean regions (Rodgers et al., 2015).  
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Similar to the moored observations, Rodgers et al. (2015) showed that Ωarag variability is higher in the North Pacific and North 

Atlantic regions (KEO, Papa, Iceland) compared to subtropical and tropical regions (i.e., WHOTS, Stratus, BOBOA). 

 

Unlike global earth system models, some regional models are able to resolve small-scale coastal processes and may provide better 

estimates of natural variability in these dynamic systems. We found the highest levels of natural variability at the Chá bă mooring 5 

location with an annual range of surface ocean Ωarag of 3.3, from Ωarag values of 1.06 to 4.36 (Fig. 5). Estimates of this range for 

the northern CCE produced by a regional model were only 0.2, which led to the conclusion that surface ocean Ωarag conditions in 

2005 were already outside the bounds of pre-industrial conditions (Hauri et al., 2013). Observations at Chá bă from 2010 to 2014 

suggest conditions only fell partially outside pre-industrial variability, primarily during the lower-variability season from October 

to February (Fig. 5). 10 

4 Conclusions 

Direct, high-resolution observations of seawater p(CO2) and pH reveal that marine life are currently exposed to surface ocean pH 

and Ωarag values outside the envelope of pre-industrial variability they have adapted to at all 12 study locations.  Marine life at 

several study locations are also exposed to conditions exceeding thresholds that may impact growth and survival of shellfish and 

conditions approaching undersaturation (Ωarag<1). These ocean acidification impacts are occurring at the same time that marine 15 

organisms are also experiencing different patterns of temporal variability and other anthropogenic stressors, which can be unique 

to distinct locations and seasons. This high-resolution mooring work provides a new perspective on variability, since earth system 

models and ship-based observations generally underestimate the temporal variability of surface ocean Ωarag conditions, especially 

in coastal regions. These results highlight the need to further interrogate these biases, which are often the basis for predictions of 

future ocean acidification impact. In most cases, such as the WHOTS mooring time series, ocean carbonate observations are also 20 

paired with additional autonomous physical and biogeochemical measurements at the surface and at depth, as well as long-term 

ship-based time series measurements, which are not as temporally resolved as the moored measurements but often include 

biogeochemical parameters that cannot be measured autonomously. Further synthesis of these data sets from multiple platforms 

will contribute to improving understanding of the biogeochemical processes controlling carbonate chemistry at these time series 

locations and to developing parameterizations for global and regional models. Here we focused on assessing ocean carbonate 25 

variability and change as a step in advancing these efforts; however, future research at these and other ocean acidification mooring 

sites should also include assessments of additional biogeochemical parameters, such as dissolved oxygen and optical properties as 

these new observational data sets become available. 

 

Sustained, autonomous observations resolving sub-seasonal conditions are likely to match timescales relevant to biological 30 

processes in the natural environment such as energy availability, biological threshold exceedance, seasonal spawning, and 

recruitment. This characterization of temporal variability of ocean carbonate is one of the major challenges to understanding how 

anthropogenic change will impact marine life. Impacts to marine life could manifest through one or a combination of the following 

environmental stressors: the slow, steady change over time as pH and Ωarag conditions respond to gradual ocean uptake of 

anthropogenic CO2; the point in time when pH and Ωarag conditions leave the pre-industrial envelope of variability to which 35 

organisms have adapted; when average or seasonal pH and Ωarag conditions pass a certain threshold; or when episodic corrosive 

conditions surpass a tipping point in terms of frequency and duration. Our mooring time series exhibit periods of time when surface 

ocean pH and Ωarag conditions fall outside pre-industrial bounds of variability along with surpassing biologically relevant 

thresholds, but also time periods where none or only one of these stressors is present.  A broad understanding of how this myriad 
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of environmental stressors impact marine life will require a range of approaches including continued and expanded biogeochemical 

observing, research interrogating the fundamental processes underlying organism response to ocean acidification under laboratory 

and field conditions, experiments designed to address how different patterns of variability and change impact organisms, and paired 

chemical and biological observations in the field to assess potential present-day impacts. Characterizing natural variability and 

biological impact of ocean acidification conditions at key locations will also be fundamental to improving vulnerability assessments 5 

seeking to quantify the economic impact of ocean acidification at local to global scales. 
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Table 1. Details on each surface seawater p(CO2) and pH mooring time series including abbreviation, name, coordinates, and dates 

of time series. n is the total number of 3-hourly samples for each pH and Ωarag time series. Finalized data sets can be found organized 

by mooring location by navigating through the clickable CO2 data portal map at http://cdiac.ornl.gov/oceans/Moorings/.  

Abbreviation Full Name Latitude Longitude Dates of time series n

WHOTS WHOI Hawaii Ocean Timeseries Station 22.7 ‐158.0 Dec 2004 ‐ Mar 2014
a

18532

Stratus Stratus ‐19.7 ‐85.6 May 2012 ‐ Jul 2013 3193

BOBOA Bay of Bengal Ocean Acidification Mooring
b

15.0 90.0 Nov 2013 ‐ Aug 2015 4085

Iceland North Atlantic Ocean Acidification Mooring 68.0 ‐12.6 Aug 2013 ‐ Jul 2015 2671

Papa Ocean Station Papa  50.1 ‐144.8 Jun 2010 ‐ Dec 2013 6005

KEO Kuroshio Extension Observatory 32.3 144.6 Nov 2011 ‐ Jun 2015 5540

Chá bă Chá bă Mooring within the Northwest Enhanced Moored Observatory 48.0 ‐125.0 Jul 2010 ‐ Apr 2014 5115

CCE2 California Current Ecosystem 2 34.3 ‐120.8 Mar 2012 ‐ Mar 2015 3197

Gray's Reef National Data Buoy Center buoy at Gray's Reef National Marine Sanctuary 31.4 ‐80.9 Nov 2010 ‐ Sep 2015 4184

Gulf of Maine Coastal Western Gulf of Maine Mooring 43.0 ‐70.5 Sep 2010 ‐ Jul 2013 5392

Chuuk Chuuk Lagoon Mooring 7.5 151.9 Dec 2011 ‐ Sep 2014 2274

La Parguera La Parguera Ocean Acidification Mooring 18.0 ‐67.1 Dec 2012 ‐ Oct 2014 2833

Notes: 
a
 The WHOTS time series includes mooring p (CO2) observations from the Multi‐disciplinary Ocean Sensors for Environmental Analyses and 

Networks station at 22.8
o
N, 158.1

o
W from 2004‐2007.  

b
 The BOBOA mooring is embedded within the Research Moored Array for 

African–Asian–Australian Monsoon Analysis and Prediction (RAMA; McPhaden et al., 2009).
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Table 2. Mean and variability, as measured by 1 SD, for AT and Ωarag data sets at the WHOTS and La Parguera mooring sites. 

Discrete measurements for WHOTS are from the Hawaii Ocean Time series program (http://hahana.soest.hawaii.edu/hot/) and for 

La Parguera are from the Atlantic Ocean Acidification Test-bed project. Proxy AT measurements are estimated from moored SST 

and SSS using Lee et al. (2006) AT-SSS relationships. p(CO2) and pH used to calculate Ωarag are direct observations from the 

mooring time series; AT used to calculate Ωarag are the AT proxy measurements. 

WHOTS La Parguera

mean discrete AT  2307 2290

proxy AT  2310 2298

SD discrete AT  16 44

proxy AT  9 39

mean Ωarag: discrete  3.68 3.60

Ωarag: pCO2‐AT 3.58 3.65

Ωarag: pH‐AT  3.56
a

3.59

Ωarag: pCO2‐pH  3.60
a

3.50

SD Ωarag: discrete  0.11 0.16

Ωarag: pCO2‐AT  0.07 0.12

Ωarag: pH‐AT  0.05
a

0.13

Ωarag: pCO2‐pH  0.08
a

0.19

Notes: 
a
 While other observations listed here span the 

full annual cycle, the WHOTS mooring pH observations 

only cover the months of June to November.
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Table 3. Sources of error to the calculation of Ωarag at SST = 25°C, SSS = 35, p(CO2) = 370 µatm, pH = 8.1, AT = 2350, and Ωarag 

= 3.7. Total estimated absolute (relative) uncertainty was calculated using the root sum of squares (RSS) method: ܴܵܵ ൌ

	ሺ∑ܽଶሻଵ/ଶ. 

Sources of error Variable error (±)

Effect on error of 

Ωarag calculation (ɑ )

pCO 2  and pH pair:

pCO2 measurement 2 µatm
a

0.02

pH measurement 0.018 0.32

K 0 0.004
b

K 1 0.015
b

K 2 0.03
b

0.18
c

Estimated uncertainty of Ω arag: pCO2‐pH : 0.37 (10%)

pCO 2  and A T  pair:

pCO2 measurement 2 µatm
a

0.02

AT proxy 3‐20 µmol kg
‐1 d

0.01‐0.05

K 0 0.004
b

K 1 0.015
b

K 2 0.03
b

0.18
c

Estimated uncertainty of Ω arag: pCO2‐AT : 0.19 (5%)

Notes: 
a
 From Sutton et al. (2014b). 

b
 Error estimates of 

thermodynamic constants from McLaughlin et al. (2015).                
c
 Combined effect of thermodynamic constants (Mucci et al. 

1983). 
d
 Range of error from AT proxies described in methods.  
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Table 4. Descriptive statistics of Ωarag: annual mean, annual amplitude, and 1 SD of annual anomalies from the CO2 and pH 

mooring observations, from a global data synthesis of ship-based observations (Takahashi et al., 2014), and a biogeochemical 

model (Friedrich et al., 2012). Dark gray cells represent values larger than observed values; light gray cells represent values lower 

than observed values. ND signifies no data. 

open ocean 

sites

annual 

mean

annual 

amplitude

SD annual 

anomalies

coastal and coral reef 

sites

annual 

mean

annual 

amplitude

SD annual 

anomalies

WHOTS Chá bă

observations 3.49 0.17 0.05 observations 1.88 1.32 0.45

global synthesis 3.62 0.34 global synthesis 2.06 0.67

model 0.25 0.09 model ND ND

Stratus CCE2

observations 2.67 0.13 0.07 observations 2.53 0.76 0.31

global synthesis 2.98 0.37 global synthesis ND ND

model 0.35 0.11 model ND ND

BOBOA Gray's Reef

observations 3.52 0.20 0.13 observations 3.25 1.09 0.37

global synthesis 3.59 0.24 global synthesis 3.09 0.95

model 0.15 0.06 model ND ND

Iceland Gulf of Maine

observations 1.70 0.71 0.22 observations 1.86 0.64 0.24

global synthesis 1.77 0.64 global synthesis ND ND

model 0.45 0.16 model ND ND

Papa Chuuk K1

observations 2.08 0.49 0.15 observations 3.42 0.21 0.11

global synthesis 1.83 0.55 global synthesis 3.86 0.08

model 0.35 0.09 model 0.05 0.04

KEO La Parguera

observations 3.08 0.48 0.16 observations 3.62 0.33 0.11

global synthesis 3.32 0.61 global synthesis 3.86 0.21

model 0.35 0.06 model 0.15 0.04  
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Figure 1. Locations of moored p(CO2) and pH observations. Base map is adapted from Jiang et al. (2015) and shows annual 

climatological distribution of surface Ωarag throughout the global oceans. Added to this base map are moorings from this study 

where symbol color is annual mean Ωarag (values also listed in Table 4) and size of symbol represents Ωarag variability as measured 

by 1 standard deviation (SD) of the annual mean.   
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Figure 2. Box and whisker plots of present-day monthly surface seawater Ωarag (top) and pH (bottom) and monthly mean SST 

(orange lines) at the open ocean mooring locations in subtropical oligotrophic regions (WHOTS, Stratus). Boxes represent data 

between Q1 and Q3, with the line between representing Q2 (i.e., the median). Whiskers represent 1.5 IQR, or ~2.7 SD; Eqs. (1) 

and (2), of the upper and lower quartiles with data outside that range shown as outliers (open circles). Outliers here represent 

natural deviations in ocean chemistry, not measurement outliers, which were removed in the data quality control process. Estimated 

monthly pre-industrial Ωarag and pH variability (1.5 IQR or ~2.7 SD) is shown in gray (top) and blue (bottom) shaded areas, 

respectively. Shaded portion of the pie charts indicate the percent of present-day Ωarag and pH values falling outside the bounds of 

pre-industrial variability for each month. For mooring location see Fig. 1 and Table 1. 
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Figure 3. Box and whisker plots of present-day monthly surface seawater Ωarag (top) and pH (bottom) and monthly mean SST at 

the open ocean mooring locations in biologically productive subtropical regions that experience seasonal monsoons (BOBOA) and 

tropical cyclones (KEO). See detailed description of figure components in Fig. 2 caption. 

 

 

 

 

 

 

 

 

 

 

 



26 
 

 

Figure 4. Box and whisker plots of present-day monthly surface seawater Ωarag (top) and pH (bottom) and monthly mean SST at 

the open ocean mooring locations in subarctic regions with pronounced seasonality of physical and biological conditions (Papa, 

Iceland). See detailed description of figure components in Fig. 2 caption. 
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Figure 5. Box and whisker plots of present-day monthly surface seawater Ωarag (top) and pH (bottom) and monthly mean SST at 

the coastal mooring locations on the continental shelves of the U.S. West Coast (CCE2, Chá bă). See detailed description of figure 

components in Fig. 2 caption. 
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Figure 6. Box and whisker plots of present-day monthly surface seawater Ωarag (top) and pH (bottom) and monthly mean SST at 

the coastal mooring locations on the continental shelves of the U.S. East Coast (Gulf of Maine, Gray’s Reef). See detailed 

description of figure components in Fig. 2 caption. 
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Figure 7. Box and whisker plots of present-day monthly surface seawater Ωarag (top) and pH (bottom) and monthly mean SST in 

coral reef ecosystems within a semi-closed atoll lagoon in Micronesia (Chuuk) and a patch reef in the Caribbean Sea southwest of 

Puerto Rico (La Parguera). See detailed description of figure components in Fig. 2 caption. 
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Figure 8. Relational plot of different modes of a) Ωarag and b) pH variability for each ocean acidification mooring location. Statistics 

describing variability include 1 SD of monthly anomalies (monthly mean – monthly observations), annual amplitude (maximum 

monthly climatological mean – minimum monthly climatological mean), and 1 SD of annual anomalies (annual mean – mean 

observations).  Circles represent open ocean mooring locations, squares are coastal, and triangles are coral reefs. 
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Figure 9. Percent time that a) pre-industrial and b) present-day surface seawater Ωarag conditions fall below biological thresholds: 

chronic exposure for Ostrea lurida larvae at Ωarag<1.4 in red, acute effect of Crassostrea gigas larvae at Ωarag<1.5 in gray, chronic 

exposure for Mya arenaria larvae at Ωarag<1.6 in gold, chronic exposure for Mytilus californianus larvae at Ωarag<1.8 in blue, and 

chronic exposure for C. gigas larvae at Ωarag <2.0 in black. Thresholds at the Chá bă mooring are shown as circles; thresholds at 

the CCE2 mooring (only for M. californianus larvae) are shown as triangles; thresholds at the Gulf of Maine mooring (only for M. 

arenaria larvae) are shown as squares. The one acute threshold is indicated by a dashed line. 

 

 

 


