

1 **Which are important soil parameters influencing the spatial heterogeneity of**
2 **^{14}C in soil organic matter?**

3

4 Stephan John^{1*}, Gerrit Angst², Kristina Kirfel³, Sebastian Preußen⁴, Carsten W. Mueller²,
5 Christoph Leuschner³, Ellen Kandeler⁴, Janet Rethemeyer¹

6

7 [1] Institute for Geology and Mineralogy, University of Cologne, Zülpicher Straße 49a, 50674
8 Cologne, Germany

9 [2] Lehrstuhl für Bodenkunde, TU München, Emil-Ramann-Straße 2, 85354 Freising,
10 Germany

11 [3] Albrecht von Haller Institute for Plant Sciences, Georg-August-University Göttingen,
12 Untere Karstraße 2, 37073 Göttingen, Germany

13 [4] Institute of Soil Science and Land Evaluation, Soil Biology Section, University of
14 Hohenheim, Emil-Wolff-Straße 27, 70593 Stuttgart, Germany

15

16 Correspondence: Stephan John, E-mail: sjohn1@uni-koeln.de, Tel.: +49 0221 470 7318

17

18 **Abstract**

19 Radiocarbon (^{14}C) analysis is an important tool that can provide information on the dynamics
20 of organic matter in soils. Radiocarbon concentrations of soil organic matter (SOM) however,
21 reflect the heterogeneous mixture of various organic compounds and are affected by different
22 chemical, biological, and physical soil parameters. These parameters can vary strongly in soil
23 profiles and thus affect the spatial distribution of the apparent ^{14}C age of SOM considerably.
24 The heterogeneity of SOM and its ^{14}C signature may be even larger in subsoil horizons, which
25 are thought to receive organic carbon inputs following preferential pathways. This will bias
26 conclusions drawn from ^{14}C analyses of individual soil profiles considerably. We thus
27 investigated important soil parameters, which may influence the ^{14}C distribution of SOM as
28 well as the spatial heterogeneity of ^{14}C distributions in soil profiles. The suspected strong
29 heterogeneity and spatial variability, respectively of bulk SOM is confirmed by the variable ^{14}C
30 distribution in three 185 cm deep profiles in a Dystric Cambisol. The ^{14}C contents are most

31 variable in the C horizons because of large differences in the abundance of roots there. The
32 distribution of root biomass and necromass and its organic carbon input is the most important
33 factor affecting the ^{14}C distribution of bulk SOM. The distance of the soil profiles to a beech
34 did not influence the horizontal and vertical distribution of roots and ^{14}C concentrations. Other
35 parameters were found to be of minor importance including microbial biomass-derived carbon
36 and soil texture. The microbial biomass however, may promote a faster turnover of SOM at hot
37 spots resulting in lower ^{14}C concentration there. Soil texture had no statistically significant
38 influence on the spatial ^{14}C distribution of bulk SOM. However, SOM in fine silt and clay sized
39 particles ($<6.3\text{ }\mu\text{m}$) yields slightly higher ^{14}C concentrations than bulk SOM particularly at
40 greater soil depth, which is in contrast to previous studies where silt and clay fractions contained
41 older SOM stabilized by organo-mineral interaction. ^{14}C contents of fine silt and clay correlate
42 with the microbial biomass-derived carbon suggesting a considerable contribution of microbial-
43 derived organic carbon. In conclusion, ^{14}C analyses of bulk SOM mainly reflect the spatial
44 distribution of roots, which is strongly variable even on a small spatial scale of few meters. This
45 finding should be considered when using ^{14}C analysis to determine SOM.

46

47 **Keywords:** organic matter heterogeneity, radiocarbon, soil carbon dynamic, subsoils

48

49 **1. Introduction**

50 Radiocarbon analysis is a helpful tool to determine the dynamics of organic matter in soils as it
51 provides a direct measure of the time elapsed since atmospheric CO_2 was fixed by plants
52 through photosynthesis (Trumbore, 2009). However, soil organic matter (SOM) is a complex
53 mixture of organic components derived from different sources at various stages of
54 decomposition (Rethemeyer et al., 2004; Trumbore and Zheng, 1996). Consequently, ^{14}C
55 concentrations of SOM reflect the average composition and apparent mean residence time
56 (MRT), respectively of a wide range of compounds turning over on different time scales. The
57 ^{14}C content of SOM is affected by various soil parameters most importantly by the input of
58 carbon from plant litter and roots. Other important factors influencing SOM dynamics and thus
59 ^{14}C contents include physical parameters such as soil texture, various chemical parameters like
60 pH, moisture, nutrients, and biological factors such as the presence of roots and the
61 microorganisms. These factors can vary strongly in soil horizons (Don et al., 2007; Enowashu
62 et al., 2009; Kramer et al., 2013; Schöning et al., 2006b) which is supposed to result in a
63 significant spatial variability in ^{14}C contents of SOM.

64 The heterogeneity of SOM is suggested to increase with increasing soil depth. In contrast to
65 surface soils where the input of organic carbon (OC) derived mainly from fresh plant litter,
66 subsoil horizons receive OC mainly from root biomass (Rasse et al., 2005), dissolved organic
67 matter (Kaiser and Guggenberger, 2000), and particulate organic matter transported downward
68 by physical and/or biological processes (Don et al., 2008). The transport of the OC into deeper
69 horizons was found to follow preferential flow paths like root channels and animal burrows
70 (Bundt et al., 2001; Chabbi et al., 2009; Don et al., 2008), which results in a considerable spatial
71 heterogeneity. Thus ^{14}C contents in subsoil are supposed to vary much stronger on a small
72 spatial scale compared to topsoil. Because of the expense of ^{14}C analysis this has not yet been
73 investigated and most studies rely on ^{14}C analyses of single soil profiles (e.g. Eusterhues et al.,
74 2005, 2007; Rumpel et al., 2002, 2004).

75 Beside a stronger spatial heterogeneity, the turnover of SOM is reduced considerably at greater
76 soil depth as suggested by strongly decreasing ^{14}C concentrations in subsoil horizons (e.g.
77 Eusterhues et al., 2005, 2007; Rumpel and Kögel-Knabner, 2011; Rumpel et al., 2002, 2004;
78 Torn et al., 1997). Until now it is not well understood if the low ^{14}C concentrations in subsoils
79 reflect the accumulation of chemically more refractory organic compounds (Eusterhues et al.,
80 2007), the stabilization of SOM by organo-mineral interaction (Salomé et al., 2010; Schöning
81 and Kögel-Knabner, 2006) or a lower abundance of microbial biomass and a resulting reduced
82 SOM turnover (Fierer et al., 2003; Salomé et al. 2010). Several previous studies suggest that in
83 subsoils the interaction of SOM with the mineral soil matrix is the most important process
84 controlling the increase in the apparent ^{14}C age of SOM with depth rather than the accumulation
85 of degradation resistant compounds. For example Eusterhues et al. (2005) and Mikutta et al.
86 (2006) have shown that OC adsorbed to iron and aluminium oxides and/or clay minerals is
87 several hundred to thousand years older than bulk OC. However, results of Fontaine et al.
88 (2007) suggest that the content of such soil minerals increases only little with depth, which
89 could not explain the large shift in MRT from years to several thousand years (in 0-20 vs. 60-
90 80 cm) observed in this study. The slow turnover of OC thus was assumed to be a result of the
91 significant reduction of the microbial biomass at greater depth. This was also shown by Fierer
92 et al. (2003) who found that the microbial communities inhabiting deeper soil horizons are more
93 carbon limited than those in the surface soil. Thus, the low abundance of the microbial biomass
94 and the lack of fresh substrate may significantly reduce OC turnover in deeper soil horizons
95 promoting high apparent ^{14}C ages. As roots were found to introduce relatively fresh OC into
96 deeper soil horizons, the substrate limitation and the associated slow OC turnover is supposed
97 to be absent near roots resulting in relatively young apparent ^{14}C ages (Chabbi et al., 2009).

98 Our study was designed to clarify the driving factors for the spatial heterogeneity of ^{14}C
99 contents of the organic matter in subsoils. Two main aspects were investigated including a) the
100 analysis of different soil parameters that may affect the ^{14}C distribution in subsoil profiles, and
101 b) the spatial heterogeneity of SOM along a 3.15 m long transect increasing in distance to a
102 beech. The latter makes it possible to investigate the spatial effect of the vegetation, most
103 importantly the distribution of roots, on the distribution of OC and its ^{14}C content. The analysed
104 soil parameters, which may have a significant influence on the ^{14}C depth distribution include
105 biological (root biomass, microbial biomass), chemical (OC and N content, C/N ratio), and
106 physical variables (particle size distribution), which were measured in three profiles along the
107 transect. The influence of the different soil parameter given above on the ^{14}C distribution of
108 SOM was evaluated using principle component analysis (PCA).

109

110 **2. Material and Methods**

111

112 **2.1 Site description and sampling**

113 The study site is located in the Grinderwald in Northern Germany about 40 km north-west of
114 Hannover (52°34'22.115 N, 9°18'49.762 E). The beech forest (*Fagus sylvatica L.*) was
115 established in 1916. The mean annual precipitation is 762 mm and the mean temperature in the
116 period 1981 - 2010 was 9.7 °C measured by the German meteorological service monitoring
117 station (station Nienburg). The soil is classified as Dystric Cambisol (IUSS Working Group
118 WRB, 2014) developed on Pleistocene (Saale Glacial) melt-water deposits (Jordan, 1980) with
119 an acidic pH (3.4 - 4.5) and a mainly sandy texture (77.3 % sand, 18.4 % silt, and 4.4 % clay).

120 Three profiles were sampled on a 3.15 m long and 1.85 m deep transect increasing in distance
121 to a beech (profile A: 0 cm, D: 135 cm, and G: 270 cm). Samples were taken from seven soil
122 depths (10, 35, 60, 85, 110, 135, and 160 cm) below the A horizon (Fig. 1). All samples, with
123 the exception of samples used for density and particle size fractionation, were sieved <2 mm
124 and freeze-dried prior to analysis.

125

126 **2.2 Chemical parameters**

127 Carbon and nitrogen contents were analyzed by dry combustion using elemental analyzer (bulk
128 soil samples: VARIO MAX CNS Elementar Analysensysteme, Hanau, Germany; silt and clay

129 fraction: EA3000 CHNS-O Analysis, EuroVector, Milan, Italy). Since the soil contained no
130 inorganic carbon, carbon contents are equivalent to total organic carbon contents.

131

132 **2.3 Biological parameters**

133

134 **2.3.1 Root biomass**

135 All samples were soaked in water and cleaned from soil residues using a sieve of 0.25 mm mesh
136 size. Fine roots (≤ 2 mm diameter) longer than 10 mm were extracted manually with tweezers
137 and subsequently inspected under a stereomicroscope. Living (biomass) and dead fine roots
138 (necromass) were distinguished by root surface and periderm color, tissue elasticity, cohesion
139 of cortex, and periderm and stele (e.g. Hertel et al., 2013). The separated fine root biomass and
140 necromass was dried at 70 °C for 48 h and weighed. While this method displays fine root
141 biomass with sufficient accuracy, the negligence of root fragments < 10 mm length may lead to
142 an underestimation of fine root necromass. Therefore, the mass of dead fine roots was corrected
143 for this smaller root fraction by extrapolation using soil depth-specific regression equations that
144 relate the mass of small dead roots < 10 mm length to that of large dead roots > 10 mm length.
145 These regression equations were established for other samples from the same site by analyzing
146 the mass of small dead roots following a method introduced by van Praag et al. (1988) and
147 Hertel (1999).

148 In this study the results of the root biomass and necromass were combined (root mass), since
149 no significant differences in ^{14}C contents of root biomass and root necromass were expected
150 because the forest was established in 1916. Moreover, results of previous studies show that both
151 living and dead fine root biomass has similar ^{14}C signature in soil profiles (Gaudinski et al.,
152 2001; Gaul et al., 2009).

153

154 **2.3.2 Microbial biomass carbon**

155 The microbial biomass carbon (C_{mic}) was determined using the chloroform fumigation
156 extraction (CFE) method (Vance et al., 1987). Briefly, ethanol-free chloroform was used to
157 fumigate fresh soil of 10 g for 24 h. After removing the chloroform, 40 ml of 0.5 M K_2SO_4
158 solution was added to the soil, which was shaken for 30 min on a horizontal shaker at 250 rev
159 min^{-1} and centrifuged for 30 min at 4420 $\times g$. A second subsample was treated similarly but
160 without fumigation. OC concentrations in the supernatants are measured using a TOC-TNb

161 Analyzer Multi-N/C 2100S (Analytik Jena, Jena, Germany). 200 µl of 1 M HCl was added to
162 the dilutions to remove inorganic C. Finally C_{mic} was calculated from the difference between
163 OC of the fumigated and the not fumigated samples using a conversion factor (k_{EC}) of 0.45
164 (Joergensen, 1996). Additionally the ratio of C_{mic} to the total OC content in percentage was
165 determined to obtain information on the microbial abundance (Agnelli et al., 2004; Anderson
166 and Domsch, 1989; Bauhus and Khanna, 1999).

167

168 **2.4 Particle size parameters**

169 The density and particle size fractionations were performed with 30 g soil according to Angst
170 et al. (2016). First, the soil samples were saturated with a sodium polytungstate solution (TC
171 Tungsten compounds, Germany) with a density of 1.8 g cm^{-3} , which was subjected to sonication
172 (600 J ml^{-1}) to break up soil aggregates and release particulate organic matter occluded in soil
173 aggregates (oPOM). After sonication the POM fraction was removed using a water jet pump.
174 The remaining mineral residue was repeatedly washed with de-ionized water until the
175 conductivity of the eluted water was below $50 \mu\text{s}$ and then wet sieved to obtain the combined
176 coarse and medium sand ($200\text{-}2000 \mu\text{m}$), fine sand ($63\text{-}200 \mu\text{m}$), and coarse silt ($20\text{-}63 \mu\text{m}$)
177 fractions. The mineral soil that passed through all three sieves, i.e. the medium silt, fine silt and
178 clay fraction, was subjected to sedimentation to separate the medium silt ($6.3\text{-}20 \mu\text{m}$) from the
179 combined fine silt and clay fraction ($<6.3 \mu\text{m}$). All fractions were freeze-dried for further
180 analysis. The density and particle size fractionations were performed on samples down to 110
181 cm depth.

182

183 **2.5 Radiocarbon analysis**

184 Radiocarbon analysis was performed on bulk SOM and on the fine silt and clay fraction ($<6.3 \mu\text{m}$). Prior to the analysis, visible plant residues were removed from the bulk soil under a
185 microscope using tweezers. All samples were treated using a modified protocol according to
186 Rethemeyer et al. (2013). Briefly, all samples were extracted with 0.5 % HCl (instead of 1 %
187 HCl) first for one hour at 60°C and then over night at room temperature. HCl was removed by
188 washing with Milli-Q water. After drying, the samples were combusted and graphitized using
189 an elemental analyser for sample combustion (Rethemeyer et al., 2013), which limits the
190 amount of sample that can be weight into the $8 \times 8 \times 15 \text{ mm}$ small tin boats. ^{14}C contents were
191 measured on a 6 MV Tandetron AMS (HVE, The Netherlands) at the University of Cologne
192

193 (Dewald et al., 2013). The results of the ^{14}C measurements are reported in percent modern
194 carbon (0 pMC, related to 1950) with one-sigma uncertainties.

195

196 **2.6 Statistical methods**

197 The correlation between all soil parameters was analysed using a PCA performed with the
198 software PAST 3.06 for Windows (Hammer et al., 2001). The data set was reduced to 14
199 samples (profiles A and D: 10-110 cm, profile G: 10-60 cm, and 110 cm) by removing those
200 with missing values of some soil parameters. The Kruskal-Wallis test was applied to ensure that
201 all soil profiles (A, D, and G) of the sampling site originated from the same population
202 (significant when $p < 0.05$). If necessary, the variables were transformed to ensure their normal
203 distribution, which was tested using the Shapiro-Wilk test (significant when $p < 0.01$). The
204 statistical tests were performed using R 3.2.0 software (R Core Team, 2015). All measured
205 parameters were standardized (centered and scaled) to ensure their comparability. Furthermore,
206 the average and absolute deviation (range) of ^{14}C values (bulk OC and silt & clay fraction)
207 including measurement errors were calculated from the three soil profiles. These data reflect
208 the combined variability at each sampling depth of the three soil profiles (A, D, and G).

209

210 **3. Results**

211

212 **3.1 Elemental composition of SOM**

213 In each soil profile of the transect OC contents decrease significantly with increasing soil depth
214 from maximal values of 1.54 and 1.69 % in the Bsv horizons (10 cm) of the three profiles to
215 minimal values of 0.02 % (Supplement Tab. S1; Fig. 2). OC contents decrease strongly below
216 the Bsv horizon to values of 0.49 - 0.71 % at 35 cm depth (Bv horizon). At 60 cm depth (Cv
217 horizon) the OC contents are even lower ranging between 0.09 to 0.26 %, with highest values
218 in the profile closest to the beech. In the IICv horizon at 85 to 110 cm soil depth OC contents
219 are extremely low with values between 0.04 and 0.17 % which show no clear relation to the
220 distance from the tree. OC contents increase slightly to 0.26 % in the IIICv horizon at 160 cm
221 depth in profile A close to the beech. This trend is also observable in profile D with 0.13 % OC
222 at 135 and 160 cm and in profile G at 135 cm depth (0.17 % OC).

223 The N contents (Supplement Tab. S1) show a comparable depth distribution to the OC contents
224 with values ranging from 0.002 to 0.072 %. These OC and N distributions result in C/N ratios

225 in the range of 7 to 28 which decrease with increasing depth in the profiles D and G, whereas
226 C/N ratios in profile A (closest to the beech) scatter strongly in a range of 10 to 28.

227

228 **3.2 Biological parameters**

229 The biological parameters, which were analysed include root biomass and necromass and
230 microbial biomass-derived carbon (Supplement Tab. S1, Fig. 2). The root mass density is
231 highest in the uppermost Bv and Bsv horizons and varies between 0.9 and 2.5 g l⁻¹ soil. In the
232 uppermost horizon (at 10 cm depth) root mass decreases with increasing distance from the
233 beech stem from 1.2 to 2.5 g l⁻¹ soil. At greater depth, no trend related to distance from the
234 beech could be observed. No roots could be determined in the IICv horizon at 85 to 110 cm
235 depth, whereas at greater depth (>110 cm depth) root masses of 0.4 to 1.0 g l⁻¹ soil are present.

236 C_{mic} contents are highest in the uppermost Bsv horizon (10 cm). In the Bsv horizon C_{mic}
237 increases by about 49 % with increasing distance to the beech (from 105 to 216 µg g⁻¹ dry
238 weight - DW; Supplement Tab. S1, Fig. 2). C_{mic} contents decrease strongly in the Bv and C
239 horizon and show a considerable spatial variability in some soil profiles. The strongest
240 variability is observed in profile D where C_{mic} contents decline from 203 to 14 µg g⁻¹ DW in 35
241 to 60 cm depth, then increase in 85 cm (125 µg g⁻¹ DW), and stay constant at relatively low
242 concentration (19-26 µg g⁻¹ DW) in 110 to 160 cm depth. This variability is not obviously
243 related to other soil parameters investigated. In profile A, closest to the beech, C_{mic}
244 concentration decline gradually (from 105 to 5 µg g⁻¹ DW) in 10 to 85 cm depth and increase
245 slightly in 110 and 135 cm depth before declining again. In profile G, most distant from the
246 tree, C_{mic} contents decrease strongly in 10 to 35 cm but slightly increase again in 135 cm.

247 The contribution of the microbial biomass to SOM - as an indicator of SOM quality and
248 availability (Anderson and Domsch, 1989; Sparling, 1992) - was determined by the C_{mic}/OC
249 ratio (Tab. 1). This ratio ranges between 0.6 and 3.3 % in the two B horizons (5-45 cm), which
250 is well in the range of values determined in temperate regions for which data are available (0-
251 30 cm; Serna-Chavez et al., 2013). The C_{mic}/OC ratio increases with increasing distance of the
252 tree only in the Bv horizon while in the IICv and IIICv horizons at 110 and 135 cm depth values
253 decrease with increasing distance to the beech. In the five Cv horizons from each profile
254 investigated the C_{mic}/OC ratio is more variable (0.2-23.6 %). Very high ratios of 10.1 and 23.6
255 % were determined in profiles D at 85 cm depth and profile A at 135 cm depth reflecting a high
256 abundance of microbial biomass relative to soil OC.

257

258 **3.3 Particle size distribution**

259 The grain size distribution, which was analysed using the protocol described in chapter 2.4, was
260 measured down to 110 cm soil depth shows considerable differences in the distribution of the
261 sand and coarse silt fractions in the three profiles. While the medium and the fine silt and clay
262 fraction decrease or stay constant with depth in profiles A, D, and G (Supplement Tab. S1, Fig.
263 2), the fine sand fraction strongly increases from 209 and 228 g kg⁻¹ soil in 10 cm to 654 and
264 836 g kg⁻¹ soil in 110 cm depth. Coarse and medium sand contents show a decreasing trend with
265 depth in all profiles. The coarse silt fraction is more variable in the three profiles in the range
266 of 118 to 224 g kg⁻¹ soil with highest contents in the B horizons (10 and 35 cm). Coarse silt
267 contents are lowest in 85 and 110 cm (except in profile A) with 18 to 93 g kg⁻¹ soil. Medium
268 silt and fine silt plus clay contents decrease with increasing depth in all profiles. The medium
269 silt contents range from 15 to 122 g kg⁻¹ soil and those of the fine silt and clay fraction from 25
270 to 66 g kg⁻¹ soil.

271

272 **3.4 Radiocarbon contents in soil profiles**

273 ¹⁴C contents of bulk OC vary in the range of 32.6 to 105.0 pMC (Supplement Tab. S1, Fig. 2),
274 which is equivalent to apparent ¹⁴C ages of >modern (post 1950, containing bomb-¹⁴C) to 9000
275 years BP. Concentrations decrease in all profiles in 10 to 60 cm soil depth (except in 35 cm of
276 profile D) but stay constant or increase at greater depth. Similar to the distribution of the root
277 mass, ¹⁴C contents decrease in profile A in 10 to 135 cm from 101.6 to 46.0 pMC, but increase
278 again at the lowermost sampling depth of 160 cm to 85.5 pMC. In profile D ¹⁴C contents
279 decrease strongest in 10 to 85 cm depth from 100.1 to 32.6 pMC. The large drop in ¹⁴C at 85
280 cm depth is related to strong increase of coarse and medium sized sand and decrease of coarse
281 silt. In 110 to 160 cm depth, ¹⁴C contents rise again from 60.5 to 66.5 pMC parallel to increasing
282 amounts of root mass. In profile G ¹⁴C contents decrease in 10 to 110 cm depth from 100.9 to
283 49.6 pMC, increase again at 135 cm (71.8 pMC) before they drop to 48.7 pMC at 160 cm related
284 also to the distribution of the root mass at these depths.

285 The ¹⁴C contents of the combined fine silt and clay fraction (<6.3 µm) show decreasing values
286 with increasing depth in all soil profiles. In the B horizons (10 to 35 cm) the ¹⁴C concentrations
287 are slightly lower or nearly equal to bulk OC. In the C horizons (below 35 cm) this fine fraction
288 yields higher ¹⁴C concentration than bulk OC which decrease continuously to lowest values of
289 59.8 to 67.3 pMC at 110 cm, the lowest depth analysed. This indicates a higher contribution of
290 younger SOM to this fraction with increasing depth.

291 For each sampling depth of profile A, D, and G average ^{14}C values of bulk OC and of the fine
292 silt and clay fraction and their absolute deviation (including measurement uncertainties, see 2.6)
293 were calculated (Tab. 2). The aim of this approach was to derive information on the spatial
294 variability of ^{14}C contents in the different sampling intervals, i.e. soil horizons. These average
295 ^{14}C contents of bulk OC decrease in 10 to 85 cm from 100.9 to 52.5 pMC and slightly increase
296 in 110 to 160 cm soil depth from 55.9 to 66.9 pMC. The absolute deviation of these average
297 ^{14}C contents increase strongly with increasing depth from ± 1.2 (10 cm) to ± 20.5 pMC (85 cm),
298 with one exception in 110 cm (± 6.5 pMC). The highest variability of ^{14}C contents can be
299 observed in the C horizons.
300 The average ^{14}C contents of the fine silt plus clay fraction decrease less pronounced with
301 increasing depth (from 100.0 to 62.6 pMC) than that of bulk OC. The absolute deviation is
302 much lower compared to that of bulk OC ranging from ± 1.1 (60 cm) to ± 5.5 (85 cm) and
303 showing no trend related to soil depth.

304

305 **3.5 Principle component analysis (PCA)**

306 A PCA was performed to evaluate the correlation and therefore the influence of the different
307 soil parameter on each other. The two principle components (PC) explain in summary 84.2 %
308 of the data variation (PC 1 = 70.0 % and PC 2 = 14.2 %; Fig. 3). All parameters, with the
309 exception of the sand fractions, are positively correlated with PC 1. These parameters all
310 promote high soil OC contents including N content, root mass, C_{mic} , and silt and clay size
311 fractions. Parameters correlate with ^{14}C of bulk OC include the coarse silt fraction, which shows
312 a strong positively correlation followed by N content < root mass < OC content < medium silt
313 fraction. C_{mic} seems to have a smaller effect on the ^{14}C of bulk OC but is more closely related
314 to ^{14}C of the silt and clay fraction. The ^{14}C content this fraction also correlates positively with
315 the medium silt fraction < OC content < root mass < N content, and the coarse silt fraction. PC
316 2 is strongly affected by the sand content. The negative correlation with the coarse and medium
317 sand fraction and the positive relation to the fine sand fraction suggests that PC 2 represents the
318 coarse and organic poor mineral soil matrix.

319

320 **4. Discussion**

321

322 **4.1 Influence of root-derived OC on ^{14}C distribution**

323 The depth distribution of ^{14}C contents of SOM is assumed to be significantly affected by the
324 input of plant-derived OC as the dominant carbon source of SOM. While OC contents in surface
325 soils are largely controlled by the input of aboveground plant litter, subsoils receive OC mainly
326 from root biomass and to a minor extend from particulate and dissolved OC transported through
327 the soil profile (Baisden and Parfitt, 2007; Chabbi et al., 2009; Fröberg et al., 2007, 2009; Rasse
328 et al., 2005). Roots were found to introduce relatively fresh OC into deep soil horizons with
329 $>$ modern ^{14}C contents equivalent to <20 years (Gaudinski et al., 2001; Gaul et al., 2009;
330 Trumbore et al., 2006). This can cause rejuvenation effects of SOM, i.e. lead to younger
331 apparent ^{14}C ages even at greater soil depth, which is particularly important near root channels
332 (Bundt et al., 2001; Chabbi et al., 2009).

333 The importance of roots as an OC source to SOM is confirmed by the strong positive correlation
334 of OC contents with the distribution of the root mass in the three soil profiles (Fig. 2 and 3).
335 However, the highest root mass was determined in the uppermost subsoil horizons, the Bsv (5-
336 15 cm) and Bv horizon (15-45 cm). In the C horizons below (45-160 cm), the root mass per soil
337 volume declines strongly by about 40 to 100 %. The low OC input from living and dead roots
338 is reflected by low OC contents, which decrease strongly from 1.5-1.7 % (in 10 cm) to minimum
339 values of 0.02 % in the deeper subsoil. No roots could be detected between 85 and 110 cm
340 depth probably due to textural changes in the IIICv horizon and resulting shortage in plant-
341 available water (Schenk and Jackson, 2005). Here, a shift toward coarser grain size occurs with
342 increasing amounts of coarse and medium sand and decreasing amounts of coarse and medium
343 silt which reduces the storage capacity for plant-extractable water. The recurrence of live and
344 dead roots in the IIICv and IVCv horizon at 135 and 160 cm depth, respectively, may be
345 associated again with a change in soil texture, i.e. higher silt contents.

346 The strong influence of the distribution of roots on ^{14}C contents is supported by the PCA
347 analysis revealing a close correlation of both parameters (Fig. 3). Both, the root mass and the
348 ^{14}C content of SOM decrease significantly below 35 cm depth. Selectable roots were found
349 again in the IIICv and IVCv horizons and these are most probably responsible for the increase
350 in the apparent ^{14}C ages of bulk SOM, i.e. the rejuvenation of SOM in these lowest horizons
351 investigated (Fig. 2). ^{14}C concentrations however, show a considerable variability in 60 to 135
352 cm depth were only few or no roots could be separated indicating that other soil parameters of
353 of importance in these carbon-poor subsoil horizons.

354 In summary, the ^{14}C concentrations of SOM in the three profiles cannot exclusively be
355 explained by the distribution of roots. ^{14}C contents of bulk SOM shows a quite larger variability
356 compared to that of OC contents and of the root mass suggesting that other factors may be of

357 importance like soil texture (not investigated below 110 cm depth), mineralogical changes and
358 associated stabilization effects, and the microbial activity which could influence ^{14}C contents
359 of SOM.

360

361 **4.2 Effect of microbial biomass distribution on ^{14}C of SOM**

362 Previous studies indicate that the activity, abundance, and diversity of the microbial biomass
363 decreases significantly in subsoil horizons most probably due to the reduced OC content and a
364 lower substrate quality at greater soil depth (Agnelli et al., 2004; Fierer et al., 2003; Fontaine
365 et al., 2007; Struecker and Joergensen, 2015; Taylor et al., 2002). This may promote high
366 apparent ^{14}C ages of bulk SOM. Similar to the results of these studies, we also found strongly
367 declining C_{mic} contents below 35 cm (below the B horizons; Supplement Tab. S1), which most
368 probably indicate less favourable conditions for microorganisms at greater depth. However, in
369 some profiles C_{mic} increases at greater soil depth including profile A (110 cm: $36.6 \mu\text{g g}^{-1}$ DW,
370 135 cm: $51.8 \mu\text{g g}^{-1}$ DW) and profile D (85 cm: $125.3 \mu\text{g g}^{-1}$ DW; Supplement Tab. S1). These
371 relatively high C_{mic} values result in high $\text{C}_{\text{mic}}/\text{OC}$ ratios (Tab. 1), which suggest that here the
372 organic matter is more bioavailable than in other layers of the Cv horizons. The very high C/N
373 ratio of 19 and 29 in profile A (110 and 135 cm) at these potential hot spots, however, does not
374 support a high bioavailability of the SOM suggested by the $\text{C}_{\text{mic}}/\text{OC}$ ratio. Moreover, no roots
375 were present here which may represent a source of fresher, microbe- available OC which is
376 necessary for establishing hot spots (Kuzyakov, 2010; Bundt et al., 2001; Sanaullah et al.,
377 2011). Thus easily degradable OC may have been introduced into the Cv horizon as DOC
378 through preferential flow pathways. Increasing ^{14}C contents in 135 cm (profile D and G) and
379 160 cm depth (profile A) suggest the presence of fresh substrate which most probably is due to
380 a higher abundance of roots (see 4.1), but the higher root mass does not result in higher C_{mic}
381 contents.

382 These observations and the results of the PCA analysis reveal that microbial-derived carbon
383 does not promote higher ^{14}C contents of bulk OC (Fig. 3). However, C_{mic} values correlate much
384 stronger with the ^{14}C contents of the organic-rich fine silt plus clay fraction. This suggests that
385 microbial-derived OC is potentially stabilised by interaction with fine silt and clay particles.
386 Comparable results were obtained by Rumpel et al. (2010) for a Podzol and a Cambisol under
387 forest. Here, microbial-derived polysaccharides were enriched in the mineral fraction ($>2 \text{ g cm}^{-3}$).
388 However, the supposedly microbial-derived, mineral-bound OC in the study of Rumpel et

389 al. (2010) had similar to slightly lower ^{14}C concentrations than the bulk SOM indicating that
390 OC of microbial origin is stabilized over longer time scales by organo-mineral interaction.

391 In the soil profiles of this study, the fine silt and clay fraction yields higher ^{14}C contents than
392 bulk OC in 60 to 110 cm soil depth (where the root mass is lowest) suggesting a relatively fast
393 turnover of the younger, potentially microbial OC. The difference in the ^{14}C contents of bulk
394 OC (32.6 pMC) and the fine silt and clay fraction (66.7 pMC) is most pronounced in profile D
395 at 85 cm (Supplement Tab. S1) and probably indicates a region with limited access to fresh
396 (young) SOM. However, the weak correlation of C_{mic} with the other soil parameters analysed,
397 including the root mass and OC content (Fig. 2, Fig. 3) suggests a minor influence of C_{mic} on
398 the ^{14}C concentrations of SOM.

399

400 **4.3 Influence of grain size on ^{14}C contents**

401 Soil texture, particularly small particle sizes ($< 2 \mu\text{m}$), may considerably influence the ^{14}C
402 concentration of SOM. Their large surface area with which the organic matter can form organo-
403 mineral assemblages promote the protection of OC against microbial and oxidative degradation
404 (e.g. Kleber et al., 2005; Kögel-Knabner et al., 2008; Mikutta et al., 2006; Spielvogel et al.,
405 2008) thus resulting in high OC contents and low ^{14}C concentrations (von Lützow et al., 2006;
406 Rumpel et al., 2004; Trumbore, 2009). This relationship is reflected by a strong positive
407 correlation of the fine silt and clay fraction ($< 6.3 \mu\text{m}$) with the ^{14}C content of bulk OC (Fig. 3).
408 However, the decline of the silt and clay fractions with depth is less variable than the depth
409 distribution of the ^{14}C concentration of bulk SOM.

410 If interaction of OC with soil minerals is an important stabilization mechanism in subsoil, then
411 the ^{14}C concentration of the fine silt and clay fraction should be lower compared to that of bulk
412 OC. This fraction however, has similar or only slightly lower ^{14}C contents in the B horizons (10
413 and 35 cm) and higher contents in the C horizons (60-110 cm) compared to those of bulk OC.
414 These results indicate that younger OC sources, most likely microbial-derived OC are
415 associated with fine silt and clay particles in the C horizons (see 4.3). Moreover, the association
416 of OC with small grain-sizes may be less strong than assumed in previous studies resulting in
417 higher turnover times and ^{14}C contents, respectively. Likewise, relatively high ^{14}C contents
418 were determined for a soil fraction extracted with hydrofluoric acid (HF) which was thought to
419 be the most strongly mineral associated and thus the oldest SOM fraction (Eusterhues et al.,
420 2007). The authors of this study suggested that stabilization by interaction with the mineral
421 matrix is less effective than other stabilization mechanisms like recalcitrance of organic

422 compounds and occlusion of SOM in soil aggregates. They further assumed that the mineral-
423 associated SOM may be diluted by fresher (younger) SOM or the HF-resistant SOM may reflect
424 stable OC, respectively. Therefore, the higher ^{14}C contents of the fine silt and clay fraction can
425 also be a result of the sorption of younger SOM at mineral surfaces or the exchange of older by
426 younger SOM.

427 The major particle size change in the analysed profiles is that of the sand fractions, which
428 however, stores only little OC and thus does not influence the ^{14}C distribution (Angst et al.,
429 2016; von Lützow et al., 2006; Trumbore, 2009). This is confirmed by the PCA showing that
430 the sand fractions does not correlate with any other soil parameter influencing the SOM
431 distribution, including OC content, root mass, C_{mic} , and the particle size fractions $<63 \mu\text{m}$
432 (Supplement Tab. S1, Fig. 2, and 3).

433 In summary the ^{14}C distribution of bulk OC in the soil profiles is mainly affected by the silt and
434 clay sized fractions because these fractions contain the majority of the SOM (Angst et al., 2016).

435

436 **4.4 Spatial heterogeneity of ^{14}C contents**

437 The distribution of the organic matter in the subsoil is thought to be spatially very
438 heterogeneous due to preferential flow paths and local root branches through which OC is
439 transferred into deeper soil horizons (Bundt et al., 2001; Chabbi et al., 2009; Don et al., 2007;
440 Salomé et al., 2010; Syswerda et al., 2011). Accordingly, ^{14}C concentrations of subsoil organic
441 matter are expected to be even more heterogeneously than those in surface soils. This was
442 shown in a study of Chabbi et al. (2009) who found close to modern apparent ^{14}C age near
443 preferential flow paths while the OC of the surrounding soil was several thousand years old.

444 The variability of ^{14}C concentrations of bulk OC in the three soil profiles analysed confirm the
445 supposed large spatial heterogeneity in subsoil horizons even on the small scale of a three meter
446 long soil transect (Fig. 2, Tab. 2). The absolute deviation of ^{14}C contents of bulk OC calculated
447 for each horizon of the three profiles (Tab. 2) indicates a much larger variability in the C
448 horizons compared to the B horizons (except in IICv at 110 cm). In contrast the fine silt and
449 clay fraction show a much smaller variability in their ^{14}C contents in each horizons (Tab. 2)
450 most probably because larger roots have been removed from this fraction by sieving and density
451 separation. The large spatial ^{14}C variability in the deeper C horizons analysed (135 and 160 cm;
452 Tab. 2) thus may be caused by the strong effect of younger root-derived OC on the relatively
453 low ^{14}C concentrations of bulk SOM.

454 The microbial biomass may influence the spatial ^{14}C distribution of bulk SOM indirectly by the
455 mineralization of fresher (younger) OC resulting in low ^{14}C concentration (Supplement Tab.
456 S1, similar to priming effects, e.g. Kuzyakov, 2010). This can lead to a relative enrichment of
457 older organic compounds.

458

459

460 **5. Conclusion**

461 In this study, the influence of roots (bio- and necromass) and its OC input was identified as
462 major factor affecting the spatial ^{14}C distribution of SOM in subsoil horizons of a Dystric
463 Cambisol under beech forest. The distance of the three soil profiles analysed to a beech did not
464 affect the spatial distribution of roots and of ^{14}C contents. Other soil parameters including soil
465 texture and the microbial biomass had no statistically significant influence on the ^{14}C
466 distribution of bulk SOM. Organic matter included in silt and clay sized particles ($<6.3\text{ }\mu\text{m}$),
467 which were thought to stabilise OC on longer time scales, had slightly higher ^{14}C contents in
468 the C horizons than bulk OC and may contain younger, microbial-derived compounds. Thus, in
469 contrast to previous studies, OC stabilization by organo-mineral interaction seems to be of
470 minor importance in this sandy subsoil. We did not observe a continuous increase of apparent
471 ^{14}C ages with depth as in most previous studies, but a large horizontal as well as vertical ^{14}C
472 variability in the three soil profiles. High apparent ^{14}C ages of up to 9000 yrs BP may be a result
473 of a reduced microbial activity or the lack of easily degradable SOM at greater depth. ^{14}C
474 contents of bulk SOM are most variable in the C horizons because of large differences in the
475 abundance of root mass. The fine silt and clay fraction ($<6.3\text{ }\mu\text{m}$) yields less heterogeneous ^{14}C
476 contents due to the absence of larger root fragments and thus may be a more reliable indicator
477 of humified SOM which is less strongly influenced by fresh carbon inputs. These results
478 indicate that estimates of soil OC turnover based on ^{14}C analysis of bulk SOM in an individual
479 soil profile may be misleading as they mainly reflect the local distribution of roots.

480

481 **Acknowledgements**

482 This project was funded by the German Science Foundation (DFG) within the Research Unit
483 1806 “The forgotten part of carbon cycling: Organic matter storage and turnover in subsoil”.
484 We thank Ulrike Patt, Elisabeth Krewer, and Anna Distelrath for their help with ^{14}C sample
485 processing. Thanks also to Stefan Heinze and Alfred Dewald for high quality AMS

486 measurements and all colleagues of the DFG Research Unit for their cooperation and helpful
487 discussions.

488

489 **References**

490 Agnelli, A., Ascher, J., Corti, G., Ceccherini, M. T., Nannipieri, P. and Pietramellara, G.:
491 Distribution of microbial communities in a forest soil profile investigated by microbial
492 biomass, soil respiration and DGGE of total and extracellular DNA, *Soil Biol. Biochem.*,
493 36(5), 859–868, doi:10.1016/j.soilbio.2004.02.004, 2004.

494 Anderson, T.-H. and Domsch, K. H.: Ratios of microbial biomass carbon to total organic
495 carbon in arable soils, *Soil Biol. Biochem.*, 21(4), 471–479, doi:10.1016/0038-
496 0717(89)90117-X, 1989.

497 Angst, G., Kögel-Knabner, I., Kirfel, K., Hertel, D. and Mueller, C. W.: Spatial distribution
498 and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere
499 soil under European beech (*Fagus sylvatica* L.), *Geoderma*, 264, 179–187,
500 doi:10.1016/j.geoderma.2015.10.016, 2016.

501 Baisden, W. T. and Parfitt, R. L.: Bomb ^{14}C enrichment indicates decadal C pool in deep
502 soil?, *Biogeochemistry*, 85(1), 59–68, doi:10.1007/s10533-007-9101-7, 2007.

503 Bauhus, J. and Khanna, P. K.: The significance of microbial biomass in forest soils, *Going
504 Undergr. - Ecol. Stud. For. soils.*, (October), 77–110, doi:10.1007/BF00384442, 1999.

505 Bundt, M., Widmer, F., Pesaro, M., Zeyer, J. and Blaser, P.: Preferential flow paths:
506 Biological “hot spots” in soils, *Soil Biol. Biochem.*, 33(6), 729–738, doi:10.1016/S0038-
507 0717(00)00218-2, 2001.

508 Chabbi, A., Kögel-Knabner, I. and Rumpel, C.: Stabilised carbon in subsoil horizons is
509 located in spatially distinct parts of the soil profile, *Soil Biol. Biochem.*, 41(2), 256–261,
510 doi:10.1016/j.soilbio.2008.10.033, 2009.

511 Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M.,
512 Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., Von Blanckenburg, F. and Klein,
513 M.: CologneAMS, a dedicated center for accelerator mass spectrometry in Germany, *Nucl.
514 Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms*, 294, 18–23,
515 doi:10.1016/j.nimb.2012.04.030, 2013.

516 Don, A., Schumacher, J., Scherer-Lorenzen, M., Scholten, T. and Schulze, E. D.: Spatial and
517 vertical variation of soil carbon at two grassland sites - Implications for measuring soil carbon
518 stocks, *Geoderma*, 141(3-4), 272–282, doi:10.1016/j.geoderma.2007.06.003, 2007.

519 Don, A., Steinberg, B., Schöning, I., Pritsch, K., Joschko, M., Gleixner, G. and Schulze, E.
520 D.: Organic carbon sequestration in earthworm burrows, *Soil Biol. Biochem.*, 40(7), 1803–
521 1812, doi:10.1016/j.soilbio.2008.03.003, 2008.

522 Enowashu, E., Poll, C., Lamersdorf, N. and Kandeler, E.: Microbial biomass and enzyme
523 activities under reduced nitrogen deposition in a spruce forest soil, *Appl. Soil Ecol.*, 43(1),
524 11–21, doi:10.1016/j.apsoil.2009.05.003, 2009.

525 Eusterhues, K., Rumpel, C. and Kögel-Knabner, I.: Stabilization of soil organic matter
526 isolated via oxidative degradation, *Org. Geochem.*, 36(11), 1567–1575,
527 doi:10.1016/j.orggeochem.2005.06.010, 2005.

528 Eusterhues, K., Rumpel, C. and Kögel-Knabner, I.: Composition and radiocarbon age of HF-

529 resistant soil organic matter in a Podzol and a Cambisol, *Org. Geochem.*, 38(8), 1356–1372,
530 doi:10.1016/j.orggeochem.2007.04.001, 2007.

531 Fierer, N., Schimel, J. P. and Holden, P. a: Variations in microbial community composition
532 through two soil depth profiles, *Soil Biol. Biochem.*, 35(1), 167–176, doi:doi:10.1016/S0038-
533 0717(02)00251-1, 2003.

534 Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B. and Rumpel, C.: Stability of organic
535 carbon in deep soil layers controlled by fresh carbon supply., *Nature*, 450(7167), 277–280,
536 doi:10.1038/nature06275, 2007.

537 Fröberg, M., Jardine, P. M., Hanson, P. J., Swanston, C. W., Todd, D. E., Tarver, J. R. and
538 Garten, C. T.: Low dissolved organic carbon input from fresh litter to deep mineral soils, *Soil*
539 *Sci. Soc. Am. J.*, 71(2), 347, doi:10.2136/sssaj2006.0188, 2007.

540 Fröberg, M., Hanson, P. J., Trumbore, S. E., Swanston, C. W., Todd, D. E. and Froberg, M.:
541 Flux of carbon from ^{14}C -enriched leaf litter throughout a forest soil mesocosm, *Geoderma*,
542 149(3-4), 181–188, doi:10.1016/j.geoderma.2008.11.029, 2009.

543 Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., Cook, A. C., Markewitz, D. and Richter,
544 D. D.: The age of fine-root carbon in three forests of the eastern United States measured by
545 radiocarbon, *Oecologia*, 104(3), 420–429, doi:10.1007/s004420100746, 2001.

546 Gaul, D., Hertel, D. and Leuschner, C.: Estimating fine root longevity in a temperate Norway
547 spruce forest using three independent methods, *Funct. Plant Biol.*, 36(1), 11–19,
548 doi:10.1071/FP08195, 2009.

549 Hammer, Ø., Harper, D. a. T. and Ryan, P. D.: Paleontological statistics software package for
550 education and data analysis, *Palaeontol. Electron.*, 4(1), 9–18, doi:10.1016/j.bcp.2008.05.025,
551 2001.

552 Hertel, D.: Das Feinwurzelsystem von Rein- und Mischbeständen der Rotbuche: Struktur,
553 Dynamik und interspezifische Konkurrenz, 1st ed., *Dissertationes Botanicae*, Band 317,
554 Stuttgart., 1999.

555 Hertel, D., Strecker, T., Müller-Haubold, H. and Leuschner, C.: Fine root biomass and
556 dynamics in beech forests across a precipitation gradient - Is optimal resource partitioning
557 theory applicable to water-limited mature trees?, *J. Ecol.*, 101(5), 1183–1200,
558 doi:10.1111/1365-2745.12124, 2013.

559 IUSS Working Group WRB: World Reference Base for Soil Resources 2014. International
560 soil classification system for naming soils and creating legends for soil maps, FAO, Rome.,
561 2014.

562 Joergensen, R. G.: The fumigation-extraction method to estimate soil microbial biomass:
563 Calibration of the kEC value, *Soil Biol. Biochem.*, 28(1), 25–31, doi:10.1016/0038-
564 0717(95)00102-6, 1996.

565 Jordan, H.: Geologische Karte Niedersachsen 1:25000, Erläuterung Blatt 3422 Neustadt am
566 Rübenberge, mit Beiträgen von E. Cosak, E. Dahms, W. Eckelmann, E. Gröba, W. Irrlitz, F.
567 Rockel, H. Schneekloth & J. Tüxen, 14 Abb., 4 Tab., 4 Kt., Hannover, Hannover., 1980.

568 Kaiser, K. and Guggenberger, G.: The role of DOM sorption to mineral surfaces in the
569 preservation of organic matter in soils, *Org. Geochem.*, 31(7–8), 711–725,
570 doi:[http://dx.doi.org/10.1016/S0146-6380\(00\)00046-2](http://dx.doi.org/10.1016/S0146-6380(00)00046-2), 2000.

571 Kleber, M., Mikutta, R., Torn, M. S. and Jahn, R.: Poorly crystalline mineral phases protect
572 organic matter in acid subsoil horizons, *Eur. J. Soil Sci.*, 0(0), 050912034650054,
573 doi:10.1111/j.1365-2389.2005.00706.x, 2005.

574 Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S.,
575 Eusterhues, K. and Leinweber, P.: Organo-mineral associations in temperate soils: Integrating
576 biology, mineralogy, and organic matter chemistry, *J. Plant Nutr. Soil Sci.*, 171(1), 61–82,
577 doi:10.1002/jpln.200700048, 2008.

578 Kramer, S., Marhan, S., Haslwanter, H., Ruess, L. and Kandeler, E.: Temporal variation in
579 surface and subsoil abundance and function of the soil microbial community in an arable soil,
580 *Soil Biol. Biochem.*, 61, 76–85, doi:10.1016/j.soilbio.2013.02.006, 2013.

581 Kuzyakov, Y.: Priming effects: Interactions between living and dead organic matter, *Soil
582 Biol. Biochem.*, 42(9), 1363–1371, doi:<http://dx.doi.org/10.1016/j.soilbio.2010.04.003>, 2010.

583 von Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G.,
584 Marschner, B. and Flessa, H.: Stabilization of organic matter in temperate soils: Mechanisms
585 and their relevance under different soil conditions - A review, *Eur. J. Soil Sci.*, 57(4), 426–
586 445, doi:10.1111/j.1365-2389.2006.00809.x, 2006.

587 Mikutta, R., Kleber, M., Torn, M. S. and Jahn, R.: Stabilization of soil organic matter:
588 Association with minerals or chemical recalcitrance?, *Biogeochemistry*, 77(1), 25–56,
589 doi:10.1007/s10533-005-0712-6, 2006.

590 van Praag, H. J., Sougnez-Remy, S., Weissen, F. and Carletti, G.: Root turnover in a beech
591 and a spruce stand of the Belgian Ardennes, *Plant Soil*, 105(1), 87–103,
592 doi:10.1007/BF02371146, 1988.

593 Rasse, D. P., Rumpel, C. and Dignac, M. F.: Is soil carbon mostly root carbon? Mechanisms
594 for a specific stabilisation, *Plant Soil*, 269(1-2), 341–356, doi:10.1007/s11104-004-0907-y,
595 2005.

596 Rethemeyer, J., Grootes, P. M., Bruhn, F., Andersen, N., Nadeau, M. J., Kramer, C. and
597 Gleixner, G.: Age heterogeneity of soil organic matter, in *Nuclear Instruments and Methods
598 in Physics Research, Section B: Beam Interactions with Materials and Atoms*, vol. 223-224,
599 pp. 521–527., 2004.

600 Rethemeyer, J., Fülop, R. H., Höfle, S., Wacker, L., Heinze, S., Hajdas, I., Patt, U., König, S.,
601 Stapper, B. and Dewald, a.: Status report on sample preparation facilities for ^{14}C analysis at
602 the new CologneAMS center, *Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact.
603 with Mater. Atoms*, 294, 168–172, doi:10.1016/j.nimb.2012.02.012, 2013.

604 Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter-a key but poorly understood
605 component of terrestrial C cycle, *Plant Soil*, 338(1), 143–158, doi:10.1007/s11104-010-0391-
606 5, 2011.

607 Rumpel, C., Ko, I. and Bruhn, F.: Vertical distribution, age, and chemical composition of
608 organic carbon in two forest soils of different pedogenesis, *Org. Geochem.*, 33, 1131–1142,
609 2002.

610 Rumpel, C., Eusterhues, K., Kögel-Knabner, I. and Kogel-Knabner, I.: Location and chemical
611 composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest
612 soils, *Soil Biol. Biochem.*, 36(1), 177–190, doi:10.1016/j.soilbio.2003.09.005, 2004.

613 Rumpel, C., Eusterhues, K. and Kögel-Knabner, I.: Non-cellulosic neutral sugar contribution
614 to mineral associated organic matter in top- and subsoil horizons of two acid forest soils, *Soil
615 Biol. Biochem.*, 42(2), 379–382, doi:<http://dx.doi.org/10.1016/j.soilbio.2009.11.004>, 2010.

616 Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z. and Chenu, C.: Carbon dynamics in topsoil
617 and in subsoil may be controlled by different regulatory mechanisms, *Glob. Chang. Biol.*,
618 16(1), 416–426, doi:10.1111/j.1365-2486.2009.01884.x, 2010.

619 Sanaullah, M., Chabbi, A., Leifeld, J., Bardoux, G., Billou, D. and Rumpel, C.:
620 Decomposition and stabilization of root litter in top- and subsoil horizons: what is the
621 difference?, *Plant Soil*, 338(1-2), 127–141, doi:10.1007/s11104-010-0554-4, 2011.

622 Schöning, I., Kögel-Knabner, I., Schoening, I. and Kogel-Knabner, I.: Chemical composition
623 of young and old carbon pools throughout Cambisol and Luvisol profiles under forests, *Soil*
624 *Biol. Biochem.*, 38(8), 2411–2424, doi:10.1016/j.soilbio.2006.03.005, 2006a.

625 Schöning, I., Totsche, K. U. and Kögel-Knabner, I.: Small scale spatial variability of organic
626 carbon stocks in litter and solum of a forested Luvisol, *Geoderma*, 136(3-4), 631–642,
627 doi:10.1016/j.geoderma.2006.04.023, 2006b.

628 Serna-Chavez, H. M., Fierer, N. and Van Bodegom, P. M.: Global drivers and patterns of
629 microbial abundance in soil, *Glob. Ecol. Biogeogr.*, 22(10), 1162–1172,
630 doi:10.1111/geb.12070, 2013.

631 Sparling, G.: Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator
632 of changes in soil organic matter, *Aust. J. Soil Res.*, 30(2), 195, doi:10.1071/SR9920195,
633 1992.

634 Struecker, J. and Joergensen, R. G.: Microorganisms and their substrate utilization patterns in
635 topsoil and subsoil layers of two silt loams, differing in soil organic C accumulation due to
636 colluvial processes, *Soil Biol. Biochem.*, 91, 310–317, doi:10.1016/j.soilbio.2015.09.011,
637 2015.

638 Syswerda, S. P., Corbin, A. T., Mokma, D. L., Kravchenko, A. N. and Robertson, G. P.:
639 Agricultural management and soil carbon storage in surface vs. deep layers, *Soil Sci. Soc.*
640 *Am. J.*, 75(1), 92, doi:10.2136/sssaj2009.0414, 2011.

641 Taylor, J. P., Wilson, B., Mills, M. S. and Burns, R. G.: Comparison of microbial numbers
642 and enzymatic activities in surface soilsand subsoil using various techniques, *Soil Biol.*
643 *Biochem.*, 34, 387–401, 2002.

644 Team, R. C.: R: A language and environment for statistic computing, [online] Available from:
645 <http://www.r-project.org/>, 2015.

646 Torn, M. S., Trumbore, S. E., Chadwick, O. a., Vitousek, P. M. and Hendricks, D. M.: Mineral
647 control of soil organic carbon storage and turnover content were measured by horizon down
648 to the depth at which, *Nature*, 389(1992), 3601–3603, doi:10.1038/38260, 1997.

649 Trumbore, S.: Radiocarbon and soil carbon dynamics, *Annu. Rev. Earth Planet. Sci.*, 37(1),
650 47–66, doi:10.1146/annurev.earth.36.031207.124300, 2009.

651 Trumbore, S., Da Costa, E. S., Nepstad, D. C., Barbosa De Camargo, P., Martinelli, L. A.,
652 Ray, D., Restom, T. and Silver, W.: Dynamics of fine root carbon in Amazonian tropical
653 ecosystems and the contribution of roots to soil respiration, *Glob. Chang. Biol.*, 12(2), 217–
654 229, doi:10.1111/j.1365-2486.2005.001063.x, 2006.

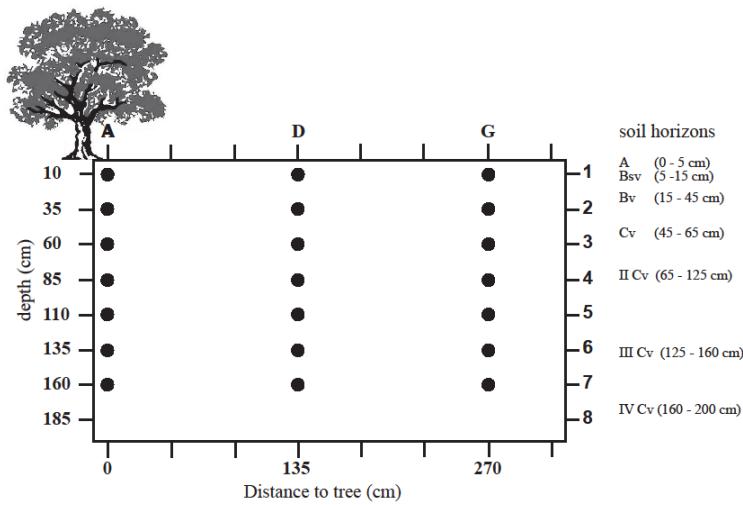
655 Trumbore, S. E. and Zheng, S.: Comparision of fractionation methods for soil organic matter
656 ¹⁴C Analysis, , 38(2), 219–229, 1996.

657

658 **Table 1:** Ratio of microbial biomass-derived carbon (C_{mic}) to total OC
659 content in profiles A, D, and G.

soil depth (cm)	horizon	C_{mic} / OC (%)		
		A	D	G
10	Bsv	0.6	1.1	1.4
35	Bv	0.9	3.3	0.4
60	Cv	0.6	1.1	0.9
85	II Cv	0.8	23.6	-
110	II Cv	7.9	6.4	0.2
135	III Cv	10.1	1.4	0.7
160	IV Cv	0.2	2.0	-

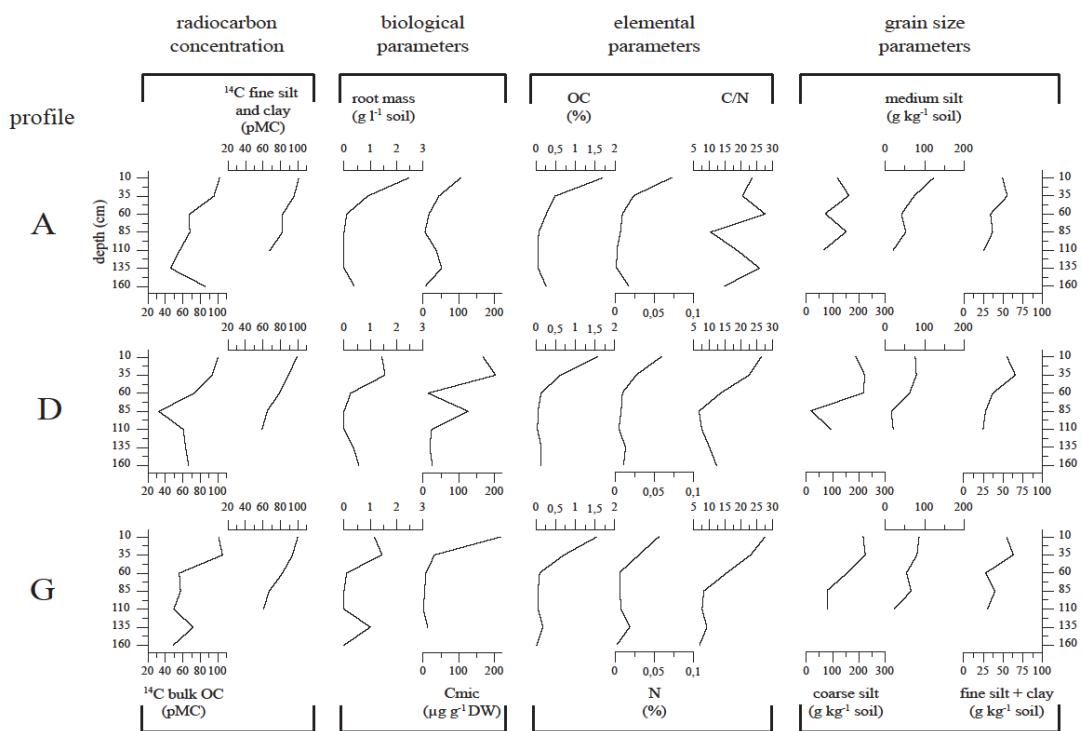
660


661

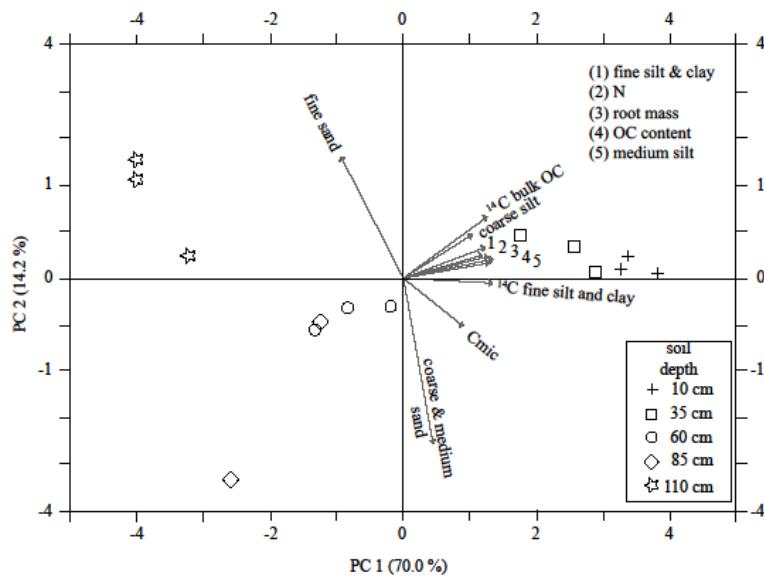
662

663 **Table 2:** Average ^{14}C values of bulk OC and of the silt and clay
664 fraction (<6.3 μm) and absolute deviations for the three soil
665 profiles A, D, and G (n = 3).

depth (cm)	horizon	^{14}C bulk OC (pMC)	^{14}C fine silt & clay (pMC)
10	Bsv	100.9 ± 1.2	100.0 ± 1.5
35	Bv	97.8 ± 7.9	93.1 ± 2.5
60	Cv	65.2 ± 10.1	81.3 ± 1.1
85	II Cv	52.5 ± 20.5	71.6 ± 5.5
110	II Cv	55.5 ± 6.5	62.6 ± 3.1
135	III Cv	60.3 ± 15.1	-
160	IV Cv	66.9 ± 18.9	-


666

667


668 **Figure 1:** Sampling design of the soil transect. Analysed samples from profiles A (0 cm distance to the beech), D (135 cm distance), and
669 G (270 cm distance) are displayed by black dots.

670

671

672 **Figure 2:** Selected soil parameters affecting ^{14}C concentrations of bulk SOM in the three profiles A, D, and G (see Supplement Tab. S1).

673

674 **Figure 3:** PCA biplot of measured soil parameters in samples from different soil depth (represented by symbols). Some parameters are represented
675 by numbers explained in the legend above.