
Letter to the editor regarding the decision on the manuscript “Depth-averaged instantaneous 
currents in a tidally dominated shelf sea from glider observations” by Lucas Merckelbach

Dear Editor,

Thank you for your quick response. As you have seen, I have responded to the public referee reports
for referees #3 and #4. In particular the report by referee I found very useful. In my responses I 
have addressed the concerns of the reviewers, or explained why I did not comply.

As requested, I reproduce the reports in this document, and attach a version of the 
manuscript with track changes.  Herein, black is the original text, red and crossed-out the deleted 
text and in blue, underlined, the added text. The track changes are relative to the revised version 
already in your data base. This is also the document the referees #3 and #4 based their review on. I 
noticed that LaTeX has some some small issues compiling the version with the track changes, 
notably in the section numbering. In the version without track changes this is all correct.

With kind regards,

Lucas Merckelbach



Response to Interactive comment on “Depth-averaged instantaneous currents in a tidally dominated 
shelf sea from glider observations” by Anonmous Referee #3.

I thank the Referee for his time and sharing his thoughts and comments on the manuscript “Depth-
averaged instantaneous currents in a tidally dominated shelf sea from glider observations”. I agree 
with the Referee that at face value the choice of the journal seems ill-chosen. As also noted by the 
Referee, the manuscript, however, is meant to be part of a special issue on Cosyna, a coastal 
observatory in the framework of which this work was carried out.

The Referee asks wether there are any studies published that might use this type of data 
(instantaneous currents observed from gliders), as the introduction only points out the possibility of 
using this type of data. In fact, the incentive for this study was two-fold. First, the operation of 
gliders in the German Bight is controlled by the German shipping authorities, who require 12-hour 
position forecasts during glider operations. The methodology described herein has been used in this 
context for recent glider deployments.  Second, in the German bight sediment resuspension events 
are mainly driven by (tidal) currents and wind waves. Current and yet unpublished research looks at
resuspension rates and their relation with the tidal currents. 

I made a small change to the discussion (now page 16, line 31) where I come back to the 
issue for which studies this method could be applicable. Here I name a few studies that could use 
this type of data, if the would have been done in a tidal setting.

Specific comments:

page 4, line 9. Indeed a great deal of the tidal variance is accounted for by the M2 tide. Although 
not so essential in this context, I supplied the numbers 80% and 65% for the eastward and 
northward currents, respectively.

Page 4. line 16 (I think meant is page 6). Technically adding more tidal frequencies is trivial. The 
phase information is found by the Kalman filter (by means of the amplitudes a cosine and sine 
component). The linear model (eq 9) serves as a model to be used in the Kalman filter. The 
nonlinear terms ommited, notably friction, would, when included in the modelling, lead to 
interaction of signals with different frequencies and generate higher harmonics. The time scale at 
which this evolves is deemed longer than a tidal cycle. For the predictive capability of the method, 
adding nonlinear terms unnecessisarily increases the complexibility. For the reconstruction of the 
instantaneous currents, the Kalman filter is set flexible enough to allow for the tidal components to 
change slowly over time (through the modelling uncertainty). Since gliders can move (slowly) in 
space, it is to be expected that tidal components can change slowly in time, so that also in this case 
the added complexity of nonlinear terms, leaing to a nonlinear Kalman filter, brings no real benefits.
Good point, though.

Page 8, line 23: It is true that there is also an error associated with the ADCP readings. Also that 
these errors might not have a zero mean. In order to test the algorithm per se, I make use of 
syntethetic currents, derived directly from the ADCP data in order to be realistic. Before adding the 
Gaussion noise the synthetic data are assumed to be the true observations.  What the glider observes
is computed from the synthetic data. The reason for this is that then the effect of different 
subsurface times can be estimated, but also the uncertainty in the ADCP measurements can be 
ignored. See also the first paragraph of section 4.2.

Page 8, line 29. I totally agree with the Referee. What was meant here is that buoancy driven 
currents on large scales, because of the fresh water influx of the River Elbe for example, would 



have a non-tidal, but barotropic character (far enough away from the river mouth).  To remove any 
ground for confusion I changed the text to refer to “tidal currents and mesoscale circulation”

page 11, line 1. “The error seem Gaussion”. This has been tested using a standard chi-squared based
test, which does make me believe the hypothesis that the errors are Gaussion, using a level of 
significance of 5%.

page 16. I believe I have confused the author to how the calculated instantaneous currents could 
contribute to the analysis of glider data in terms of mixing. I have rephrased that in the discussion 
so that it should be clear as what is meant. (second paragraph of section 7)



Response to Interactive comment on “Depth-averaged instantaneous currents in a tidally dominated 
shelf sea from glider observations” by Anonmous Referee #4.

I very much appreciate the comments and suggestions from the Referee. Two general comments 
were given. The first comment suggests a fuller discussion on the filter design. I have chosen to 
keep the focus on Butterworth filters only, mainly because they are fairly simple and used 
ubiquitously. Discussing elliptic or more exotic formulations would bring no benefit to sorting the 
problem of eliminating the non-tidal current signal from the measurements. The question why not 
using a lower order filter that has also a lower group delay is a valid one that I took at heart. In fact, 
I looked at it in the early stages of the project, and concluded that the reasoning given in the 
manuscript lead to the better filter of the ones discussed. Until I looked at the issue again and found 
a programming error that, when fixed, to my shock, changed the results significantly. For the better, 
fortunately.  Therefore, I have expanded the section on the filters, to include other settings, and 
chose a first order filter with a cut-off freuquency of 1/24 cph. This filter produces significantly 
better results compared to the one I used in the previous version. I have updated the new results 
throughout the manuscript, and felt that it might be convenient to summarise those in a table for a 
quick overview. I have devoted another paragraph and graph to the discussion, where I address the 
question why I chose this particular filter setting and showed that other settings produce inferior and
some similar results.

Sections modified:
3.1 inclusion of different filters, chosing a different filter than in previous manuscript
4.2 updated the numerical results/graphs
5 idem
6 added paragraph on the influence of the filter setting.

The second general comment is meant to add a discussion of a generalisation of the approach. This, 
to extent the potential readership. I did not follow this up and I will try to explain why. The problem
at hand is that due to the way the glider navigates, time averaged current estimates are available. 
Because of the averaging, information on the variability during the dive is lost. In case of a tidal 
sea, as in this work, the tidal motion is responsible for a big part of the variability of the currents 
during the dive. And since the tidal motion lets itself model well, a Kalman filter can be constructed
from this model to recover most of the information lost. As such, this idea is very general: use a 
model/Kalman filter to improve the knowledge of the state of a system. However, to broaden the 
scope of the paper and discuss how this can be applied to a situation that is non-tidal but has a 
significant variability on time scales that are less than the subsurface times, and is easy to model, 
seemed not so straight-forward. I, at least, could not find a convincing example.  Perhaps when a 
glider would be deployed in a lake where seiches occur.

Specific comments

P.3 line 26-27 : I removed the mention as suggested.
P4. 2-4, 13-14: rephrased as requested.
P5. eqs 2-6. : I have included an explanation of the stepwise execution of the filter. That is, each 
time a measurement becomes available, the eqs 2-6 are computed. It is explained for each step what
it does and why, including the estimation of the initial conditions. (next point)
P6 eqs 7,8 see previous item.
P8. lines 11-18: reworded
P8 28-29: The same point was raised by referee #3, and already addressed.
P9, 6-7. The motivation was already implicit in the manuscript. A clarification is added to make that
explicit. Previously, there is a small discussion on how accurate a depth-time-averaged current 



measurement can be, depending on the errors of GPS and the subsurface time, and navigation 
model errors. The estimate is some 1 cm/s. See also equ 19.

p10 line 3. The forward filter does not remove all the tidal signal, and causes a delay. This is now 
mentioned explicitly. Also the stress on the delay is reduced a bit, because of the different filter 
setting used now, the delay is not that significant anymore. Still visible though.
P11, line 4. Thee error margin is put into context to how much the position can be forcasted for a 3 
hour dive, also the topic of the section on virtual ais.
P11, l13-14. I left this section out, as it is confusing.
P16, lines 1-3. This also confused referee#3 and was already addressed. Basically, no connection to 
mixing is made anymore.

Technical comments:

The use of odd-padded is removed. It is basically an option in a filter call, that has only marginal 
effect if any. Leaving out, or using a different option would not give any different results or 
conclusions. 

Other technical comments have been applied, and last techincal commetn P14, l18 has been 
clarified. With responses is meant how the glider reacts to the environment. Reworded accordingly.

The comments of this reviewer have given me quite a bit of extra work, but I am very thankful for 
that, as it greatly improved the results of this manuscript.

Lucas Merckelbach
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Abstract. Ocean gliders have become ubiquitous observation platforms in the ocean in recent years. They are also increasingly

used in coastal environments. The coastal observatory system COSYNA has pioneered the use of gliders in the North Sea, a

shallow tidally energetic shelf sea.

For operational reasons, the gliders operated in the North Sea are programmed to resurface every 3-5 hours. The glider’s

deadreckoning algorithm yields depth averaged currents,
:::
and

:
averaged in time over each subsurface interval. Under operational5

conditions these averaged currents are a poor approximation of the instantaneous tidal current.

In this work an algorithm is developed that estimates the instantaneous current (tidal and residual) from glider observations

only. The algorithm uses a second-order
::::::::
first-order

:
Butterworth low-pass filter to estimate the residual current component,

and a Kalman filter based on the linear shallow water equations for the tidal component. A comparison of data from a glider

experiment with current data from an ADCP deployed nearby shows that the standard deviations for the east and north current10

components are better than 7 cm · s−1 in near-real time mode, and improve to better than 5
:
6 cm · s−1 in delayed mode, where

the filters can be run forward and backward.

In the near-real time mode the algorithm provides estimates of the currents that the glider is expected to encounter during its

next few dives. Combined with a behavioural and dynamic model of the glider, this yields predicted trajectories, the information

of which is incorporated in warning messages issued to ships by the (German) authorities. In delayed mode the algorithm15

produces useful estimates of the depth averaged currents, which can be used in (process-based) analyses in case no other

source of measured current information is available.

1 Introduction

Ocean gliders, or gliders for short, have become ubiquitous observation platforms in the ocean in recent years. In the Coastal

Observing SYstem for Northern and Arctic seas observatory system, COSYNA, (Baschek et al., 2016) the use of Teledyne Webb20

Research Slocum electric gliders has been pioneered in the North Sea, a tidally energetic shelf sea. The gliders operated within

COSYNA are equipped with CTD, optical backscatter, fluorescence and microstructure sensors, intended to observe more or less

directly parameters such as temperature, salinity, (proxies for) suspended sediment (via optical backscatter) and chlorophyll a

concentrations (via fluorescence), and turbulence dissipation rates.
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Gliders have found application in a wide range of research topics, see (Rudnick, 2016) for a recent review. In particular

the availability of small size and low power optical backscatter and fluorescence sensors makes gliders suitable for studies

on biochemical processes. For example, the occurrence of phytoplankton blooms is strongly influenced by mixing, as mixing

affects light conditions and nutrient budgets in the water column.(e.g., Xu et al., 2013). The structure of the water column in

shelf seas such as the North Sea, is a balance between stabilising surface heating, and destabilising turbulence generated by5

shear close to the sea bed and at the surface by tidal currents and wind driven currents, respectively (Simpson and Hunter,

1974). In addition, pelagic mixing caused by shear across the thermocline couples the euphotic and the eutrophic zones above

and below the thermocline, and therefore has an important effect on the benthic and pelagic foodweb (Rippeth et al., 2005).

Consequently, the analysis and interpretation of the biochemical parameters measured by the glider, requires understanding of

the mixing, which in shelf seas, in turn depends strongly on tidal and wind driven currents.10

Shelf seas are often shallow enough that tidal and wind driven currents lead to resuspension and deposition events of sediment

(Glenn et al., 2008; Tropp, 2013). Similar to fluorescence sensors, optical backscatter or turbidity sensors are commonly fitted

to gliders, often even in the same housing. Optical backscatter intensity, when calibrated against filtrated water samples, is a

proxy for sediment concentration. Also here, the analysis and interpretation of resuspension events and transport of suspended

sediments requires information on the local currents.15

Although currents can be measured from gliders using low power acoustic Doppler current profilers (ADCPs
:::::
ADCPs) (John-

ston et al., 2013), their high cost and (still) relatively high power consumption makes the use of ADCPs
:::::
ADCP

:
s
:
on gliders

prohibitive, except for dedicated experiments. Instead, moored or shipborn ADCPs
::::
ADCP

:
s
:
could be used, however, this would

restrict the moving space of the glider, or the currents measured would not co-locate with the glider data. Alternatively cur-

rent estimates from the glider itself, resulting from its navigation algorithm could be used (Section 2). However, the loss of20

information due to averaging in time can become substantial in situations when subsurface times become of the same order

of magnitude as the time scale of the variability of the current. As an example, in the North Sea, which is dominated by the

semidiurnal M2 tide, the current reverses every 6 hours or so. During glider operations the typical subsurface time is about 3

hours, and therefore poorly resolves the tidal variability.

From an operational point of view, any significant variation in the currents that, from a glider’s perspective, appears to have a25

time scale that is similar to its subsurface time, will cause it to have trouble maintaining the pre-programmed course. Methods

have been developed in order to plan trajectories for optimal sampling purposes (e.g., Garau et al., 2009), or to reconstruct the

underwater trajectory to localise the data that are gathered by the glider (e.g., Smith et al., 2010). The source of information on

the water motion is usually an ocean current model. Elaborating on this work, Smith et al. (2012) developed a system aiming

at the effective execution of a planned path, that is, designing the mission such that the glider is capable of travelling along the30

planned path within given constraints. Effective execution also improves safety at sea, as smaller regions can be defined where

gliders can be present.

Safety at sea is in fact a major aspect in glider operations with the COSYNA coastal observatory. Since glider operations take

place mostly in the German sector of the North Sea, the planning and execution of glider missions need to comply with the

regulations set by the governing German shipping authority Wasser- und Schifffahrtsamt (WSA). This involves the application35
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for permission to run gliders in a given region within a certain time frame. Since there is a risk of a ship-glider collision

(Merckelbach, 2013), which may damage vulnerable fast off-shore vessels (Drücker et al., 2015), WSA requires mitigating

measures to be taken by providing the German Vessel Traffic Control Centre (Seewarndienst) with 12-hourly forecasts of

the region where the glider will be, given by the four coordinates defining a rectangle. The system that has been set up to

provide these forecasts (not discussed herein) relies on a model simulating the behaviour of the glider by emulating the glider5

software and hardware, as well as modelling the dynamics (i.e., its flight through water). However, a realistic prediction requires

information on the local currents up to 12 hours ahead.

In the present work ocean current models are not relied upon to provide information on the water motion. Instead, the aim is

to reconstruct the instantaneous currents by recovering (most of) the information in the observed currents lost due to the time

averaging.10

To that end, an algorithm is proposed that is composed of a simple low pass filter for low frequency variations in the currents

due to atmospheric influence, for example, and a Kalman filter based on the shallow water equations to estimate the tidally

induced variation in the currents.

2 Depth and time averaged currents from the glider platform

The Teledyne Webb Research Slocum electric glider uses a dead-reckoning algorithm for underwater positioning. The algo-15

rithm combines the depth rate of change from the pressure transducer and heading and pitch from the attitude sensor to compute

the horizontal velocity components. The dead-reckoned underwater position follows from integrating the current vectors with

respect to time, starting from the latest known GPS position. The difference between the dead-reckoned resurface position and

the actual GPS position is attributed to a depth and time averaged current, see also Merckelbach et al. (2008), for example. The

glider user can define whether or not the glider navigation algorithm should apply this current estimate to compensate for drift20

when calculating the heading for the current waypoint during the next dive. Doing so only makes sense, however, when the

time variability is sufficiently resolved.

3 An algorithm for short-time current estimates

::
In

:::
this

:::::
work,

::::::::
estimates

::
of

::::
time

:::::::
averaged

:::::::
currents

:::
are

::::
used

::
to

:::::::::
reconstruct

:::::::::::
instantaneous

::::::::
currents.

:::
The

:::::::::::
reconstructed

::::::::::::
instantaneous

::::
time

:::::
series

::::::
contain

:::::
more

::::::::::
information

::::
than

:::
the

:::::::
observed

:::::
time

:::::::
averaged

::::::::
currents.

:::::
Since

:::
the

::::
extra

::::::::::
information

:::::::
required

:::::
does

:::
not25

::::
come

:::::
from

::::
other

::::::::::::
measurements

::
or

:::::::::::
observations,

::
it
::::
will

::::
have

::
to

::
be

::::::::
provided

::
by

::
a
::::::
model.

Even though the currents
:::
The

:::::::
currents

:
in a coastal sea , as considered herein, are dominated by the tide,

:
so

::::
that

:
a
::::::::

(simple)

::::::
model,

:::::
such

::
as

:::
the

::::::
shallow

:::::
water

:::::::::
equations,

:::
can

:::::::
provide

:::
this

:::::::::
additional

:::::::::
information

:::
on

:::
the

::::
tidal

:::::::
motion.

::::::
Besides

::::
tidal

::::::::
currents,

non-tidal currents due to atmospheric conditions and fresh water influx, for example, can have significant effects. In contrast to

the tidal current components, the
:::
The non-tidal components are

::
or

:::::::
residual

::::::
current

::
on

:::
the

:::::
other

:::::
hand,

::
is hard to model without30

resorting to complex numerical models. The non-tidal currents can (but do not have to) vary on short time scales of the order
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of hours. Henceforth, for practical reasons, the currents are decomposed into a tidal component, consisting of
::::::::
Therefore

:::
the

::::::
current

::
is

::::::::::
decomposed

::
in

::
a
::::
tidal

::::::
current

::::
and

:
a
::::::
slowly

::::::
varying

:::::::
residual

:::::::
current.

::::
The

::::
tidal

::::::
current

::::::::::
component

:
is
::::

then
:::::::::

estimated

::::
from

:
a
:::::::
Kalman

::::
filter

:::::
based

:::
on

:::
the

::::::
shallow

:::::
water

:::::::::
equations,

::::::::
including at most a few of the main tidal constituents, and a slowly

varying non-tidal component, or residual current .

3.1 Residual currents5

Due to the stochastic character of the residual current components , .
::::

The
::::::
slowly

:::::::
varying

:::::::
residual

:::::::
current

::
is

::::::::
estimated

:::
by

::::::::
removing

:::
the

::::::::::
semidiurnal

::::
tidal

::::::::::
components

:::
and

::::
their

::::::
higher

:::::::::
harmonics

:::::
using a low pass filteris applied. In practice, .

:

3.1
:::::::

Residual
::::::::
currents

::::::::
Generally,

::::
low

::::
pass

:::::
filters

:::::
show

:
a
:::::::
gradual

:
the transition from pass to no-pass at the cut-off frequency (the transition band)is

gradual. Furthermore, a low pass filter generally does not preserve the phase of the filtered signal and introduces
:
.
::
In

::::::::
addition,10

:::
low

::::
pass

:::::
filters

::::::::
introduce

:
a frequency dependent lag to the filtered signal (the group delay) .

::
so

:::
that

:::
the

:::::
phase

::
of
:::

the
::::::

signal
::
is

:::
not

::::::::
preserved.

::::
The

::::::
design

::
of

:
a
::::
low

::::
pass

:::::
filters

::
is

:
a
::::::::
trade-off

:::::::
between

::::
how

:::::
broad

:::
the

::::::::
transition

:::::
band

:
is
:::::::

allowed
::
to
:::
be,

::::
and

::::
how

::::
much

:::
lag

::
is
::::::::::
acceptable.

For this purpose, an efficient low pass Butterworth filter is implemented (e.g., Oppenheim et al., 1997). The properties of

the filter are determined by cut-off frequency fc and its order
::
N . The order of the filter is a trade-off between

:::::::::
determines the15

width of the transition band and
:::::
affects

:
the group delay. Figure 1 shows the filter responses of

:
a

::::::
number

::
of
:

Butterworth filters

of the order N = {1,2,3}
:::::::::
N = {1,2}. The top panel shows the (power) gain as a function of frequency .

:::
and

:::
the

::::::
bottom

:::::
panel

::
the

::::::
group

:::::
phase

::::
delay

:::
as

:::::::
function

::
of

:::::::::
frequency.

In order to effectively remove the main tidal signals (semidiurnal components and their higher harmonics), the cut-off

frequency of each filter is
::
can

:::
be

:
chosen such that the gain of frequencies with a period of 12 hours or smaller have a gain20

less than 0.01, yielding cut-off frequencies of fc = {1/119,1/38,1/26}::::::::::::::::
fc = {1/119,1/38}:cph forN = {1,2,3}. It is clearly

seen that with increasing order the transition bandfrom pass to no-pass becomes smaller. A narrow transition band comes at a

price of a large group delay (see bottom panel)
:::::::::
N = {1,2}.

::::
The

:::::
figure

:::::
shows

::::
that

:
a
::::::
higher

::::
order

:::::
filter

:::
has

:
a
::::::::
narrower

::::::::
transition

::::
band,

:::
but

::::
also

::::
has

:
a
:::::
larger

:::::::::::
(detrimental)

:::::
effect

:::
on

:::
the

:::::
group

:::::
delay.

::::
The

::::::
effects

::
of

:::::::::
increasing

:::
the

::::::
cut-off

:::::::::
frequency

::
is

:::
that

::::
less

::
of

:::
the

::::
tidal

:::::
signal

::
is
::::::::

damped,
:::
but

::::
also

::::
that

:::
the

:::::
group

:::::
delay

::
is
::::::::
reduced,

::
as

::
is

::::::
shown

::
in

:::
the

::::::
figure

:::
for

:::
the

::::::
cut-off

::::::::::
frequencies25

::::::::
fc = 1/24

::::
and

::::::::
fc = 1/12

::::
cph.

:

::
In

:
a
:::::::
practical

::::::::::
application

:::
the

::::
filter

:::
can

:::
be

:::::::::::
implemented

::::
such

::::
that

::::
every

::::
time

::
a
::::
new

::::::
current

:::::::::::
measurement

::::::::
becomes

::::::::
available,

:::
that

:::
is,

:::::
when

:::
the

:::::
glider

:::::::::
resurfaces,

:::
the

:::::::::
measured

:::::
value

::
is

:::
fed

::::
into

:::
the

:::
low

::::
pass

:::::
filter,

::::
and

:::::
yields

:::
an

:::::::
estimate

:::
of

:::
the

:::::::
residual

::::::
current.

::::
This

::::::::
estimate

:::
has

:::
an

::::
error

:::::::
because

::
of

::
a
::::
time

::::::
delay,

:::
but

::::
also

:::::::
because

::
of

::::
tidal

::::::
signals

::::
that

::::
may

::::
still

::
be

:::::::
present

::
if

:::
the

:::::::::
attenuation

::
is

::::::::::
insufficient.

::
In

:::
the

:::::::::::::
post-processing,

:::::
when

::
all

::::
data

:::
are

::::::::
available,

:::
the

:::::::
filtering

:::
can

::
be

::::::::
improved

:::
by

:::::::
running

::
the

:::::
filter30

::::::
forward

::::
and

:::::::::
backward:

::
the

:::::
time

::::
delay

:::::::::
introduced

::
is
::::::::::::
compensated,

:::
and

::::::::
unwanted

:::::::
signals

::
are

::::::
further

:::::::
damped. The result is that

features with a frequency in the pass-band are retained better, but appear with a significant delay . In practise this would mean

4



Filter responses of Butterworth filters of the first, second and third order. Top panel shows the gain as a function of frequency, and the

bottom panel shows the group delay as a function of frequency.

Figure 1.
::::
Filter

::::::::
responses

::
of

:::::::::
Butterworth

::::
filters

::
of

:::
the

:::
first

:::
and

:::::
second

:::::
order

::
for

::::::
various

:::::
cut-off

:::::::::
frequencies.

:::
Top

:::::
panel

:::::
shows

::
the

:::::
power

::::
gain

:
as
::

a
::::::
function

::
of

::::::::
frequency,

:::
and

:::
the

:::::
bottom

:::::
panel

:::::
shows

::
the

:::::
group

::::
delay

::
as

:
a
:::::::
function

::
of

::::::::
frequency.

that the algorithm would account for a transient feature, but with a given time delayyielding poor results through out the time

span of the delay. As a compromise the

::
At

:::
this

:::::
stage

::
it

::
is

:::
not

::::
clear

:::::
what

::::
filter

::::::
setting

:::::
would

::::
give

:::
the

::::::::
optimum

::::::
results,

:::
so

::::
that,

:::
for

::::
now,

:
a
::::
low

::::
pass filter is designed

according to a second-order Butterworth filter
::
is

:::::::
designed

::::
with

::::::
N = 1

:::
and

:::::::::
fc = 1/24

::::
cph.

::::::::
Although

:::
this

::::
filter

::::::
passes

:::::
about

::::
40%

::
of

:::
the

::::::::::
semidiurnal

::::
tidal

::::::
signal,

::::::::::::
corresponding

::
to

:
a
::::::
power

::::
gain

::
of

:::::
about

::::
0.2,

:::
the

::::
filter

::::::
setting

:::::::::
introduces

::::
little

:::::
group

::::::
delay,

:::
see5

:::
also

::::::
Figure

::
1.

::
In

:::::::
Section

:
6
:::
the

::::::::::
implications

:::
of

:::
this

::::::
choice

:::
are

::::::::
discussed.
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Since a low pass filter inevitably introduces a phase lag to the filtered signal, during post-processing the low pass filter can

run first forwards and then backwards in time in order to compensate for phase lags. To mitigate as best as possible the transient

effects at both boundaries, that are also inevitable, the time series is odd-padded by an equivalent of 12 hours of data points.

3.2 Tidal currents

In contrast to the residual currents, the evolution of tidal currents can be captured to a large extent by a simple model. In this5

section we will cast such a simple model into a Kalman filter to provide an optimal estimate of the tidal current components

that the glider will face during its next dive, based on all previous depth and time-averaged water current data it has collected.

3.2.1 Intermezzo on Kalman filtering

For an introduction on Kalman filters and their derivation, the reader is referred to e.g. Simon (2006). Here, for the sake of

brevity, we will state the general computational procedure only.10

The Kalman filter is formulated as a dynamical system (Simon, 2006)

xk = F k−1xk−1 +wk−1

yk =Hkxk +vk

wk ≈N{0,Qk}

vk ≈N{0,Rk} (1)

where x is the state vector, F the transition matrix, y the measurement vector, H the measurement matrix, w the process

noise vector (normal distributed with zero mean and known variance Qk), v the measurement noise vector (normal distributed

with zero mean and known variance Rk) and k the measurement index number. If, for example, the state vector is composed15

of the eastward and northward velocity components, then the transition matrix describes how the currents would change from

one time step k to the next. The measurement matrix relates the observed parameters, y, to the state vector.

The procedure for the Kalman filter is given by the following equations for k = 1,2,3, ...

P−k = F k−1P
+
k−1F

T
k−1 +Qk−1 (2)

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 (3)20

x̂−k = F k−1x̂
+
k−1 (4)

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k ) (5)

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k , (6)

where x̂−k is the a priori estimate, P−k the a priori covariance, x̂+
k the a posteriori estimate, and P+

k the a posteriori covariance
:
,

:::
Kk:::

the
::::
gain

::::::
matrix,

::::
and

:
I
:::
the

:::::::
identity

::::::
matrix.25

The
::::::::
procedure

:::::::
involves

:::::::::::
sequentially

::::::::
evaluating

::::
the

:::
set

::
of

::::::::
equations

:::
(2)

::
–
:::
(6)

:::::
every

::::
time

::
a
:::::::::::
measurement

::::::
vector

::::::::
becomes

::::::::
available.

::::
First

:::
the

::::::::::::
measurement

:::::
index

::
k

::
is

::::::::
advanced

:::
by

::
1.

:::::
Then

:::
the

:
a
::::::

priori
::::::::
covariance

::::::::
estimate

::
is

::::::::
computed

:::::
from

:::
the

::
a

6



::::::
postiori

::::::::
covariance

:::::::
estimate

::::
and

:::
the

::::::::
transition

:::::
matrix

::
at
:::
the

::::::::
previous

:::::
index,

:::
(2).

::::::::::::
Subsequently,

:::
the

:
a
:::::
priori

:::::::
estimate

::
of

:::
the

::::
state

:::::
vector

::
is

::::::::
computed

:::::
from

:::
the

::::::::
transition

::::::
matrix

:::
and

:::
the

::
a
:::::::
postiori

:::::::
estimate

::
of

:::
the

::::
state

::::::
vector

::
at

:::
the

:::::::
previous

:::::
level,

::::
(4),

:::
that

:::
is,

::::
only

::
the

::::::
model

::
is

::::
used

::
to

:::::::
produce

:
a
::::
first

:::::::
estimate

::
of

:::
the

:::
new

::::
state

::::::
vector.

::::
The

:::::::
estimate

::
of

:::
the

::::
state

:::::
vector

::
is
::::::
further

::::::::
improved

:::
(to

::::
yield

:::
the

:
a
:::::::
postiori

::::::::
estimate)

::
by

::::::::
including

:::
the

:::::::::::
measurement

::::::
vector.

::::
The

:::::::::::
improvement

:
is
:::::
equal

::
to

:::
the

:::::::::
difference

::
of

:::
the

::::::::
measured

::::
value

::::
and

:::
the

::::::::
modelled

:::::
value

:
(
:
a
:::::
priori

::::::::
estimate),

::::::::
multiplied

:::
by

:::
the

::::
gain

::::::
matrix

::::
Kk,

:::
(5).

::::::
Herein

:::
the

:::::
gain

:::::
matrix

::
is
:::::::::
computed5

::::::::
previously

::
in
:::
the

::::::
second

::::
step

:::
(3).

::
In

:::
the

::::
final

::::
step

:::
the

:::::::
estimate

::
of

:::
the

:::::::::
covariance

:
is
::::::::
improved

::::
(the

:
a
:::::::
postiori

:::::::::
covariance

::::::::
estimate)

::::
using

::::
(6).

:::
The

:::::
cycle

::
is

:::::::
repeated

::::
with

:::
the

::::::
arrival

::
of

:::
the

::::
next

:::::::::::
measurement

::::::
vector.

:::
The

:
filter is initialised with estimates for

x̂−0 = x̂0, and (7)

P−0 = P 0. (8)10

:
If
:::
no

::
a

:::::
priori

:::::::::
information

:::
on

:::
the

::::::
system

::
is

::::::::
available,

:::
the

:::::
state

:::::
vector

::::
can

::
be

:::
set

:::
to

:::::
zeros,

:::::::::::
accompanied

:::
by

:
a
:::::::::

relatively
::::
high

:::::
valued

::::::::
diagonal

:::::::::
covariance

::::::
matrix,

:::::::::
expressing

:::
the

:::::::::
uncertainty

:::
of

:::
the

:::::
initial

:::::
guess.

:

3.2.2 Kalman filter formulation

For a model to capture the main tidal oscillation, it is assumed that the shallow water equations are a reasonable model for the

water dynamics:15

∂u

∂t
− fv+ g

∂η

∂x
= 0

∂v

∂t
+ fv+ g

∂η

∂y
= 0, (9)

where u and v are the eastward and northward velocity components, respectively, x and y the eastward and northward coordi-

nates, respectively, f the Coriolis parameter, η the surface elevation and g the acceleration due to gravity. The shallow water

equations (9) can be casted into
:::
cast

::
as

:

∂2u

∂t2
+ f2u=−g

(
f
∂η

∂y
+

∂2η

∂t∂x

)
∂2v

∂t2
+ f2v =−g

(
f
∂η

∂x
+

∂2η

∂t∂y

)
(10)20

The right-hand side terms in (10) can be regarded as the forcing of the system, which we try to seek. To that end, the surface

level gradients are represented by harmonic functions with unknown coefficients A{x,y} and B{x,y},

∂η

∂x
=Ax cosωt+Bx sinωt, and (11)

∂η

∂y
=Ay cosωt+By sinωt, (12)

where ω is the main tidal frequency (M2, for example). The addition of more tidal frequencies is trivial, however.25

7



Defining the dynamical system (1) the state vector is chosen as

x= [Ax,Bx,Ay,By]
T . (13)

Furthermore, the coefficients A{x,y} and B{x,y} are modelled as constants, so that, as an example, the process for Ax becomes

Axk =Axk−1 + process noise, (14)5

leading to the simple transition matrix

F = diag(1,1,1,1). (15)

The measurements (y) are depth averaged water velocities, averaged in time from the time of diving until the time of resur-

facing. In order to determine the elements in the measurement matrix H that relates the measurements to the state vector as

y =Hx, the surface elevation gradients (11) and (12) are substituted into (10), which gives the expressions for the instanta-10

neous current components

u=
1

f2−ω2
[a0 cosωt+ a1 sinωt] (16)

v =
1

f2−ω2
[b0 cosωt+ b1 sinωt] (17)

where

a0 =−gfAy − gωBx15

a1 =−gfBy + gωAx

b0 =−gfAx− gωBy

b1 =−gfBx + gωAy

The averaged currents are then found by integrating the instant current components with respect to time and dividing the

result by the subsurface time T . It follows that20

H =
g

T (f2−ω2)

 −C −S −f/ωS +f/ωC

−f/ωS +f/ωC −C −S

 . (18)

HereinC = cos(ωt1)−cos(ωt0) and S = sin(ωt1)−sin(ωt0), in which t0 and t1 are the dive and resurface times, respectively,

and T = t1− t0.

The measurement error is assumed to be directionally uncorrelated, so that

R= rdiag(1,1), (19)25

where r is the variance of the measurements. The numerical value can be estimated relatively easy. Factors that influence the

accuracy of the measurement are the accuracy of the dive and resurface positions, and the dead-reckoning algorithm. Dive and

8



resurface positions are derived from GPS measurements, which have a finite precision, roughly 10-20 m. However, since it

takes time for a valid GPS position to be received, the resurface position and the position when the first valid GPS value is

acquired do not necessarily co-locate. In addition, the dead-reckoning algorithm uses input data, such as depth rate, heading

and pitch, provided by several sensors, each introducing a degree of uncertainty. A value of 1 cm · s−1 is taken as a reasonable

estimate for the accuracy of the depth and time averaged current measurement from the glider platform.5

It is less obvious how to quantify the process noise matrix Q. The process noise accounts for uncertainties in the model

description of the process. Clearly, using the steady state solution of the shallow water equations, assuming the only forcing is

due to the tides, the model underpinning the Kalman filter is not fully representing reality. The process noise allows for some

distrust in the model description, favouring the measurements, or, put differently, it allows for flexibility of the model to adapt

by “forgetting” old measurements. It is assumed that the process noises for each tidal component and direction is uncorrelated,10

so that

Q= qdiag(1,1,1,1). (20)

The variance parameter q is then regarded as a tuning parameter. The value is considered optimal when the variance or standard

deviation of ε is minimal. The elements in ε are given by (see also (5))

εk = yk −Hkx̂
−
k , (21)15

that is, the averaged current estimate is computed from the measurement matrix H at the current level, but with the estimate

for the amplitudes of the previous level/surfacing. Note that due to the virtue of (15), x̂−k = x̂+
k−1.

4 Assessment of the performance of the algorithm

4.1 Instrumentation and field data

Below, data of measured currents are used to assess the performance of the current prediction algorithm. Two data sets were20

used for this purpose. The first data set was obtained from measured currents from a bottom mounted acoustic Doppler current

profiler, from which synthetic, but realistic, depth and time averaged currents were constructed. These data time series mimick

the glider data, but have predefined and controllable subsurface times. In addition, the synthetic data set removes any uncer-

tainty introduced by the glider’s dead-reckoning algorithm, rendering this a useful data set to assess the performance of the

prediction algorithm per se. The second data set uses current estimates from glider data obtained during a field experiment.25

Analysing the results for both data sets allows us to quantify the effects on accuracy of the subsurface time and the glider’s

dead-reckoning algorithm.

The data used in this study were collected during a field experiment that took place in the German Bight, in the German

sector of the North Sea in August 2014, see Figure 2a. An upwardlooking RDI Workhorse 600 kHz ADCP was bottom mounted

near buoy NSB3 (54◦40.7′ N, 6◦47.1′ E) at about 40 m depth (Figure 2a). The deployment period ranges from 16 July 201430

9



a) b)

Figure 2. Panel a) Track of glider Sebastian during 2014 experiment and location of the bottom mounted ADCP near buoy NSB3; panel b)

distance between glider and bottom mounted ADCP.

until 31 August 2014. The instrument was configured with bin sizes of 40 cm yielding a current profile every 10 minutes. Each

measured profile is the ensemble mean of 32 pings.

The glider Sebastian, a Teledyne Webb Research Slocum Electric littoral glider (Jones. et al., 2005), was deployed on 24

July 2014 and recovered on 26 August 2014. Its tracks are
::::
track

::
is
:
shown in Figure 2a. From 4 August until 10 August and

from 13 August until 17 August, the glider was programmed to fly in a spiralling mode (with the steering fin set to a fixed5

position).

The target area for the glider operation was near the buoy NSB3 and the ADCP. Figure 2b shows that most of the time the

glider was within 10 km distance from the ADCP. Therefore, the tidal currents , as well as mesoscale wind and buoyancy driven

currents
:::
and

:::
the

::::::::
mesoscale

::::::::::
circulation that are subject to the ADCP and glider measurements are expected to be the same.

4.2 Algorithm assessment10

In order
::
As

:
a
::::
first

::::
step,

:::
the ADCP

:::::::::::
measurements

:::::
were

::::
used to evaluate the performance of the filter, first the ADCP measurements

were used. The instantaneous currents measured with the ADCP are considered as the true currents. Synthetic glider measure-

ment data were obtained by time and depth averaging the ADCP measurements, followed by adding white noise. The time

averaging was performed over a window representing the subsurface time of the glider. This interval was set to 3 hours, which

is a typical value during operations in the North Sea. Below, however, the influence of the subsurface time on the accuracy on15

10



Figure 3. Eastward and northward currents are shown in the top and bottom panel, respectively. The synthetic 3-hour averaged currents are

shown in transparent blue, and the forward and forward-backward filtered residual currents are shown in red and green, respectively.

the prediction algorithm is addressed specifically. The added noise is Gaussian with zero mean and a standard deviation of 1

cm · s−1,
::
in

:::::::::::::
correspondence

::::
with

::::
(19).

Firstly, the synthetic measurements were low pass filtered using a second
:::
first

:
order Butterworth filter as outlined above. The

purpose of this filter is to remove the main semidiurnal and faster tidal signatures .
::::
from

:::
the

::::
total

::::::
signal.

:::
For

:::
the

::::::
present

::::
data

:::
set

::
the

::::
M2

::::
tidal

:::::::::
component

::::::::
accounts

::
for

:::::
80%

:::
and

::::
65%

::
of

:::
the

::::
total

:::::::
variance

:::
for

:::
the

::::::::
eastward

:::
and

:::::::::
northward

:::::::
currents,

:::::::::::
respectively.5

The result is shown in Figure 3 for the forward filter (red) and the phase-preserving forward-backward filter (green). The

synthetic measurement data are shown in transparent blue. The figure shows that the residual current does not vary too much,

except for a few short periods, notably in the northward current. One of these periods with significant variation in the residual

current is the time window of some 3 days starting at 10 August, which can be linked to the passage of a low pressure system

(remnants of the hurricane “Bertha”). The graphs clearly show that, compared to the forward-backward filter, the forward filter10

introduces a phase lag of about 10 hours, which has immediate consequences for the accuracy with which the currents can be

estimated during these conditions
:::::
leaves

:::::
about

::::
40%

::
of

:::
the

:::::
main

::::::::::
semidiurnal

::::
tidal

:::::::::
component

:::::::
present

::
in

:::
the

::::::
filtered

::::::
signal,

:::
but

::::::::
introduces

::::
only

::
a
:::::::
marginal

:::::
phase

:::
lag.

Secondly, the synthetic current measurements, corrected for the residual current using the low pass filtered currents, were

subjected to the Kalman filter. The initial conditions were set by the state vector x0 = [0,0,0,0]T (zero tidal amplitude compo-15

nents) and a high covariance matrix P 0 = diag(1000,1000,1000,1000) m2 · s−2, which signifies that the current state of the

11



Figure 4. Standard deviations of the errors of the eastward (blue) and northward (red) current components, as a function of the variance

parameter q (process noise). The solid lines were obtained using a forward low pass filter to remove the residual current (near-real time mode),

whereas the dashed lines were obtained using a forward–backward low pass filter (delayed mode). The black line indicates q = 4× 10−16,

which is the optimal value taking into account eastward and northward currents as well as near-real time and delayed mode scenarios.

system is unknown. Furthermore, the measurement noise variance parameter was set to r = 1× 10−4 m2 · s−2, in correspon-

dence to the added noise, r = σ2.

In order to find the optimal value for the variance parameter q, the Kalman filter was run for a number of different values

of q. The Kalman filter yielded the lowest standard deviation of the error in the estimated currents in both near-real time mode

and delayed mode (see Section 4.1) for q ≈ 4× 10−16, see Figure 4. The value of q = 4× 10−16 is used throughout this work.5

The Kalman filter (2) – (6) was updated when a new current measurement becomes available, i.e. at 3 hour intervals. The

error of the estimate of the depth and time averaged current components for each time step is given by (21). The results are

summarised in histograms in Figure 5. The top and bottom left panels show the histograms of the eastward and northward
::::
(time

:::::::::
integrated) currents, respectively. The distributions of the errors seem Gaussian and have standard deviations of 4.5 and 4.9

:::
3.5

:::
and

:::
3.1 cm · s−1 for the eastward and northward currents, respectively. The means are≈ 0 for both the eastward and northward10

components. The panels on the right-hand side show the cumulative probability density. The mean error is approximately 2.9

:::
2.0

:::
and

:::
2.5 cm · s−1

:::
for

:::
the

:::::::
eastward

:::
and

:::::::::
northward

:::::::::::
components,

::::::::::
respectively. Furthermore, 95% of the estimates have an error

margin smaller than 9.0 and 9.7
::
6.9

::::
and

:::
5.8 cm · s−1 for the eastward and northward components, respectively.

The instantaneous current components are readily computed once the amplitude
::
Put

::::
into

:::::::
context

:::
this

::::::
means

:::
that

:::
for

::
3

::::
hour

:::::::::
subsurface

:::::
times,

:::::
about

::::
95%

::
of

:::
the

:
estimates of the tidal components are computed. Figure 6 shows an example of a 17-day15

12



Figure 5. Errors in the estimated currents. Upper left panel: histogram for eastward direction, bottom left panel: histogram for northward

direction, upper right panel: estimated probability density function for eastward current, and bottom right panel: estimated probability density

function for northward current. The dashed lines indicate the 50% and 95% levels.

period of instantaneous currents. In particular for the north component, two instances where the residual current changes in

time are discernible, namely around 8 and 18 August. Due to the lagging response of the Butterworth filter, the estimated

currents deviate most from the measured currents when sudden changes occur in the residual currents
:::::::::
resurfacing

::::::::
positions

:::
are

:::::::
accurate

:::::
within

:::::
1000

::
m,

:::
see

::::
also

:::
the

:::::::::
application

:::
of

:
a
::::::
virtual

:::
AIS

::
in
:::::::
Section

:
5.

17-Day time series of measured currents and Kalman filter estimated currents for the eastward component (top panel) and5

the northward panel (bottom panel).

Having applied the current prediction algorithm to the synthetic current measurements, mimicking glider subsurface times

of 3 hours, it can be concluded that the algorithm predicts the depth and time integrated current within 9 , and with an average

error of about 4-5 . The sources of these errors are the decomposition of the currents into residual and tidal currents by low

pass filtering on the one hand, and the oversimplified tidal currents model on the other.10

In practice, the errors due to the dead-reckoning algorithm that get absorbed into the current measurements by the glider,

will degrade the performance of the current prediction algorithm. To quantify this degradation, the algorithm is applied to the

observed current measurements from the glider, and compared with the currents as measured by the ADCP, which are considered
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Figure 6.
:::::
17-Day

::::
time

:::::
series

::
of

:::::::
measured

:::::::
currents

:::
and

::::::
Kalman

::::
filter

::::::::
estimated

::::::
currents

:::
for

:::
the

::::::
eastward

:::::::::
component

::::
(top

:::::
panel)

:::
and

:::
the

:::::::
northward

:::::
panel

::::::
(bottom

:::::
panel).

the ground truth. Since the glider operated within 10 km of the ADCP during most of the mission time, see Figure 2b, this seems

a reasonable assumption.

In contrast to the synthetic data, the glider data do not have a fixed interval. For the present glider dataset, most of the

subsurface times were between 2.6 and 3.0 hours, as during most of the mission the glider was programmed to resurface at

three hour intervals, interpreted as resurface time-to-resurface time. The reason for the mean subsurface time to be less than 35

hours is due to the fact that at resurfacing the glider spent about 10-15 minutes afloat to transmit data. Leaving all parameter

settings of the low pass filter and the Kalman filter unchanged, the depth and time averaged current estimates are compared

with those computed from the ADCP current measurements, where time intervals for averaging the ADCP data were matched

to the factual subsurface times of the glider. The results are summarised in Figure 7. In this figure the left panel represents the

eastward current error and the right panel the northward current error. Comparing the near-real time glider data results (black10

curves), that is forward-filtered only, with the results of the synthetic dataset from ADCP data (red curves), it is seen that the

performance dropped, as expected. On average the errors (50% and 95% levels) increase by a factor of 1.3
::
1.4.

:::
The

::::::::::::
instantaneous

::::::
currents

:::
are

:::::::
readily

::::::::
computed

:::::
once

:::
the

:::::::::
amplitude

::::::::
estimates

:::
of

:::
the

::::
tidal

:::::::::::
components

:::
are

:::::::::
computed.

:::
At

::::::::
surfacing,

:::::
when

:
a
::::
new

::::
time

::::
and

:::::
depth

::::::::
averaged

::::::
current

:::::::
estimate

::::::::
becomes

::::::::
available,

:::
the

::::
low

::::
pass

::::
filter

:::
and

:::
the

:::::::
Kalman

:::::
filter

::::::
provide

::::
new

::::::::
estimates

:::
for

:::
the

:::::::
residual

:::::::
current

:::::::::
component

::::
and

:::
the

::
a

:::::::
postiori

::::
state

::::::
vector,

:::::::::::
respectively.

:::
The

:::::::
residual

:::::::
current15

:::::::::
component

::::::
during

:::
the

::::
dive

::
is
:::::::::

computed
:::::
from

:::::
linear

:::::::::::
interpolation

:::
of

:::
the

::::::::
estimates

::::::::
obtained

:::::
prior

::
to

::::::
diving

::::
and

:::
just

:::::
after

14



:::::::::
resurfacing.

::::
The

::::
time

:::::::
varying

::::
tidal

:::::::::
component

::
is

::::::::
computed

:::::
from

::::
(16)

:::
and

::::
(17),

::::
with

:::
the

::::::::::
amplitudes

::::::
linearly

::::::::::
interpolated

:::::
from

::
the

::
a
:::::::
postiori

::::::::
estimates,

:::
also

::::::::
obtained

::::
just

:::::
before

::::::
diving

::::
and

:::
just

::::
after

:::::::::::
resurfacing.

:::::
Figure

::
6
::::::
shows

::
an

::::::::
example

::
of

::
a

::::::
17-day

:::::
period

::
of
::::::::::::

instantaneous
:::::::
currents

:::::::::
(synthetic

:::::::
dataset).

:::
In

::::::::
particular

:::
for

:::
the

:::::
north

::::::::::
component,

::::
one

:::::::
instance

::::::
where

:::
the

:::::::
residual

::::::
current

:::::::
changes

::
in

::::
time

::
is
::::::::::

discernible,
:::::::

namely
::::::
around

::
8
:::::::
August.

::::
Due

::
to

:::
the

:::::::
lagging

::::::::
response

::
of

:::
the

:::::::::::
Butterworth

:::::
filter,

:::
the

::::::::
estimated

:::::::
currents

::::::
deviate

::::
most

:::::
from

:::
the

::::::::
measured

:::::::
currents

::::
when

:::::::
sudden

:::::::
changes

:::::
occur

::
in

:::
the

::::::
residual

::::::::
currents.5

The near-real time
:::::::::::
instantaneous current estimates are potentially useful for assimilation into circulation models, see for

example Stanev et al. (2015). Every time the glider surfaces, the
:::
low

::::
pass

:::::
filter

:::
and

:::
the

:
Kalman filter can be run, using the

latest available measurement estimate of the depth and time averaged current. Since the state vector x contains the amplitudes

of the surface slopes of the main tidal components, the instantaneous currents can easily be computed from (16) and (17),

which yield a more applicable measure for the current than a timeaveraged value.
:
In

::::
this

::::
way,

::::::::
estimates

::
of

:::
the

::::::::::::
instantaneous10

::::::
current

:::::
during

:::
the

::::
dive

:::
can

:::
be

::::
used

::
in

:::
the

::::::::::
assimilation

:::::::
process,

:::::::
whereas

:::::::::
depending

::
on

:::
the

:::::::::
subsurface

::::
time,

::::
time

::::::::
averaged

:::::
value

::
of

:::
the

::::::
current

::::
may

::::::
provide

::::
little

::::::
useful

::::::::::
information.

:

Comparing the estimates of the instantaneous
:::::::::::::
(depth-averaged)

:
current components with the instantaneous currents mea-

sured with the ADCP, the standard deviations of the (depth averaged) currents amount to 6.6 and 6.8
:::::::::
differences

:::::::
amount

::
to

:::
6.5 cm · s−1 for

::::
both

:
the eastward and northward components, respectively, see also

:
.
:::
The

::::::
linear

:::::::::
correlation

::::::::::
coefficients

:::
for15

::
the

::::::::
observed

::::
and

::::::::
estimated

::::::
current

::::::::::
components

:::
are

::
in

:::
the

:::::
range

::::::::::
[0.93,0.97],

:::::::::
confirming

:::
the

::::::
strong

:::::
linear

::::::::::
relationship

:::::::
between

:::::::
estimates

::::
and

:::::::::::
observations

::::::::
suggested

:::
by

:::
the

:::
data

:::
in

:::::
Figure

::
6.
::
A
::::::::
summary

:::
of

:::::
mean

:::
and

:::::::
standard

:::::::::
deviations

::
of

:::
the

::::::::::
differences

:::::::
between

::::::
current

::::::::
estimates

:::
and

:::::::::::
observations

::
in

:::::::
near-real

::::
time

:::::
mode

::
is
:::::
given

::
in

:::::
Table

::
1,

:::
top

:::::
panel.

:

:
It
::
is
:::::
noted

:::::
that,

::::
since

:::
for

::::
the

::::::::
synthetic

::::
data

:::
set

:::
the

::::::::::::
“measurement

:::::
data”

::::
and

::::::::::::
“observations”

:::
are

::::::::::
constructed

:::::
from

:::
the

:::::
same

::::::
source,

::::::
namely

:::
the

::::::
ADCP

:::::::
currents,

:::
any

::::
bias

::
in

::::::
ADCP

:::::::
currents

::::
will

::
go

::::::::::
unnoticed.

::::::
Indeed,

:::
the

:::::
mean

:::::
value

:::
of

:::
the

:::::::::
difference20

:::::::
between

::::::::
estimated

:::
and

::::::::
observed

::::::
current

:::
for

:::
the

:::::::
synthetic

::::
data

:::
set

:::::::
amounts

::
to

::
0,

:::
see

:
Table 1.

:::
For

:::
the

:::::
glider

::::
data

:::
set

::
on

:::
the

:::::
other

::::
hand,

:::
the

:::::
table

::::::
shows

:::
that

:::
the

:::::
mean

::::::
values

:::
are

:::
not

:::::
equal

::
to

::
0.
:::

In
:::
this

::::
case

:::
the

::::::::::::
measurement

::::
data

::::::
(glider)

::::
and

::::::::
reference

::::
data

:
(
::::
ADCP

:
)
:::
are

:::::::::::
independent.

::::
The

:::::::
non-zero

::::::
means

:::
can

:::
be

::::::
caused

::
by

::
a
::::
bias

::
in

:::
the

:::::
ADCP

::::::::::::
measurements,

:::::
which

::
is

::
in

:::
the

:::::
order

::
of

::
1

cm · s−1,
::
or

::
a
:::
bias

:::
in

::
the

:::::::::::::
dead-reckoning

:::::::::
algorithm

::
of

:::
the

:::::
glider

::::
(see

:::
also

:::::::
Section

::::
4.1).

:

5 Glider derived currents in delayed mode (post-processing)25

4.1
:::::

Glider
:::::::
derived

::::::::
currents

::
in

:::::::
delayed

:::::
mode

:::::::::::::::
(post-processing)

The approach proposed herein can also be used to reprocess the glider data to obtain estimates of the instantaneous barotropic

currents once the glider mission has been completed. In delayed mode, a number of improvements can be applied. First, the

depth and time averaged current estimates can be improved by recalculating the dead-reckoned position. The glider’s dead-

reckoning algorithm computes the horizontal velocity component from the pitch and the pressure rate, ignoring the angle of30

attack. Although the angle of attack is generally small, the glider algorithm may overestimate its horizontal speed by a few

15



Figure 7. Probability density function estimates of the errors for the eastward current component (left panel) and the northward component

(right panel). The black and red curves are derived from the results of the Kalman filter run in near-real time mode for the glider data and

ADCP data, respectively. The blue and green curves are derived from the Kalman filter modified for delayed mode (post-processing), see

Section 4.1.

cm · s−1. An improved dead-reckoning calculation can be done post-mission by implementing the dynamical glider model of

Merckelbach et al. (2010).

Second, a significant
:::::::
Another source of error in the estimated currents is the phase lag introduced by the Butterworth filter,

see Section 3.1. This effect can be mitigated by running the filter forwards and backwards in time, as demonstrated in Figure 3.

Third, a Kalman filter can be formulated that uses both “historic” and “future” observations. To that end the Kalman filter5

described above is run forward and backward, whereas the final estimate of the vector x̂k for time index k is combined from

the forward and backward quantities (Simon, 2006):

K = P−b,k(P
+
f,k +P−b,k)

−1, (22)

x̂k =Kx+
f,k +(I −K)x−b,k, (23)

where the subscripts “f” and “b” denote forward and backward filter results, respectively.10

Figure 7 shows the improvement achieved due to additional backward filtering step. For both the synthetic and the glider

data sets, the errors in the depth and time averaged currents are reduced. The averaged factor of improvement for the glider

data (synthetic data) is approximately 1.7 (2.6)
::::::::
synthetic

:::
and

:::::
glider

::::
data

::
is
:::::::::::::
approximately

::::::
1.2–1.3. The improvement for the

instantaneous current estimates is similarand yields a standard deviation of less than 5 , see
:
.
:::
The

:::::
mean

::::
and

:::::::
standard

::::::::
deviation
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:::::::
Near-real

::::
time

::::::
Dataset

:::
Time

::::
base Eastward current Northward current

:
µ
: :

σ
: :

ρ
:
µ
: :

σ
: :

ρ

:
(cm · s−1

:
)

:
(cm · s−1

:
)

:
(-)

: :
(cm · s−1

:
)

:
(cm · s−1

:
)

::
(-)

Synthetic data ::::
Dive

:::::::
averaged

::
0.0

::
3.5

::
0.0

::
3.1

::::::::::
Instantaneous

: ::
0.0

::
4.8

:::
0.97

::
0.0

::
4.1

:::
0.96

Glider data ::::
Dive

:::::::
averaged

::
1.4

::
5.2

::
0.2

::
5.7

::::::::::
Instantaneous

: ::
1.5

::
6.5

:::
0.96

::
0.8

::
6.5

:::
0.93

:

::::::
Delayed

:::::
mode

::::::
Dataset

:::
Time

::::
base Eastward current Northward current

:
µ
: :

σ
: :

ρ
:
µ
: :

σ
: :

ρ

:
(cm · s−1

:
)

:
(cm · s−1

:
)

:
(-)

: :
(cm · s−1

:
)

:
(cm · s−1

:
)

::
(-)

Synthetic data ::::
Dive

:::::::
averaged

::
0.0

::
1.6

::
0.0

::
1.1

::::::::::
Instantaneous

: ::
0.0

::
3.5

:::
0.99

::
0.0

::
2.6

:::
0.99

Glider data ::::
Dive

:::::::
averaged

::
0.7

::
4.3

::
1.6

::
4.6

::::::::::
Instantaneous

: ::
0.6

::
5.7

:::
0.97

::
1.6

::
5.5

:::
0.95

Table 1.
::::
Mean

:::
(µ)

:::
and

:::::::
standard

:::::::
deviation

::
(σ)

::
of
:::
the

::::::::
difference

::::::
between

:::::
ADCP

:::::::::
observations

:::
and

::
a)

:::::::
near-real

:::
time

:::::
current

:::::::
estimates

:::
(top

:::::
table)

:::
and

::
b)

::::::
delayed

::::
mode

:::::
current

:::::::
estimates

::::::
(bottom

:::::
table).

::::
The

::::::::
correlation

::::::::
coefficient

:::
(ρ)

:
is
::::::::
calculated

::::
from

:::
the

::::::::::
instantaneous

::::::::
estimated

:::::
values

:::
and

::::::::::
observations,

::
for

::::
both

::
the

:::::::
near-real

::::
time

:::
and

::::::
delayed

::::
mode

::::
data.

:::
The

:::::::
synthetic

::::
data

::
set

::
is

::::::
derived

::::
from

::::
ADCP

::::::::::
measurements,

::::
with

:::::
added

::::
noise

:::
(see

::::
text).

::::
Dive

:::::::
averaged

::::::
current

:::::::
estimates

::::::
assume

:::::
3-hour

::::
dives.

:::::
values

::
of

:::
the

::::::::::
differences

:::::::
between

:::::::
observed

::::
and

::::::::
estimated

:::::::
currents

:::
for

:::
the

::::::
delayed

:::::
mode

:::::::::
algorithm

:::
are

::::::::::
summarised

::
in Table 1

:
,

::::::
bottom

::::
panel.

µ () σ () µ ()σ () near-real time -1.0 6.6 -0.9 6.8 delayed mode -0.1 4.9 -0.9 4.8 Means and standard deviations of

instantaneous current estimates in near-real time and delayed mode.

5 Virtual AIS5

Developed in the 1990’s, the automatic identification system (AIS), which is based on VHF radio communications, allows ships

to both see and be seen by other marine traffic in their area. The system augments radar and has increased the safety at sea.

Since AIS instrumentation is generally bulky and would take a substantial cut from the glider’s energy resources, and the fact

that AIS signals do not penetrate water, it is for technical reasons not feasible to equip a glider with an AIS transmitter. Being

able to broadcast its position to surrounding ships would, however, reduce the probability of a collision between a glider and10

a ship drastically. An alternative to AIS is virtual AIS, whereby the position of an object (glider) is broadcasted from an AIS
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transmitter elsewhere (a land station). In Germany the authority Wasser-und-Schifffahrtsverbund (WSV) regulates the use of

virtual AIS, and has shown interest in this approach.

The principle of operation of a virtual AIS system is as follows. Two situations are discerned, namely the period when

the glider is at the surface, and when it is underwater. When the glider is at the surface, and has established a (satellite)

communication link with a server on shore, its actual GPS position is known. This information is instantly and automatically5

relayed to an operator room of WSV, from which the positional information of the glider is broadcasted as an AIS message.

When the glider is underwater, and no actual GPS position is available, an estimated position can be broadcasted. To estimate a

position, information is required on the local current field
::::
(drift), and the behaviour of the glider in terms of hardware behaviour

(how it is programmed and responses
:::::::::::
consequently,

::::
how

:
it
::::::
reacts

::
to

:::
the

:::::::::::
environment), and the dynamic behaviour (how and

how fast it flies through the water). The modelling of the glider behaviour is considered beyond the scope of this study and10

therefore not discussed.

Assuming
:::
that an adequate model of the glider behaviour is available, it is

::::::::::
furthermore

:::::::
required

::
to

:::::::
quantify

:::
the

::::
drift

:::
due

::
to

:::
the

::::::
current

:::::
whilst

:::
the

:::::
glider

::
is

:::::::::
underwater.

::::
The

::::
drift

:::
can

::
be

::::::::
estimated

:::::
from

:::::::::
integrating

::
the

::::::::
estimated

::::::::::::
instantaneous

::::::::::::::
(depth-averaged)

::::::
currents

:::::
over

:::
the

::::::
period

::
of

:::
the

:::::
dive.

::::
The

:::::::::::
instantaneous

:::::::
current

::
is

::::::::
computed

:::
as

:::::::
outlined

::
in

:::
the

::::::::
previous

:::::::
section,

::::::
except

:::
for

::::
some

::::::::::::
modifications.

:::::
Since

:::
no

:::
new

::::::::::
information

::::
can

::
be

:::::
taken

::::
into

::::::
account

:::::
until

:::
the

:::::
glider

::::::::
resurfaces

::::::
again,

:::
the

:::::::
residual

::::::
current15

:::::::::
component

::::::
cannot

::
be

:::::::::
computed

::::
from

::
a
:::::
linear

:::::::::::
interpolation

::::::
during

:::
the

::::
dive.

:::::::
Instead,

:::
the

:::::::
residual

::::::
current

::::::::::
component

::
is

:::::
taken

::::
equal

::
to
:::
its

:::::::
estimate

::
at

:::
the

::::
time

::
of

::::::
diving,

:::
and

::::
held

:::::::
constant

::::::
during

:::
the

::::
dive.

::::
For

:::
the

::::
same

::::::
reason,

:::::
using

::::
(16)

:::
and

:::::
(17),

:::
the

::::
tidal

::::::
current

:::::::::
component

::
is

::::::::
computed

:::::
from

:::
the

:
a
:::::::
postiori

:::::::
estimate

::
of

:::
the

::::
state

::::::
vector

::
at

:::
the

::::
time

::
of

:::::
diving

::::
only1

:
.

:
It
::
is
:
expected that the uncertainty in the underwater glider position grows the longer it is underwater. The synthetic data

set can be used to quantify the effect of subsurface time on the uncertainty in position, as this dataset can easily be divided in20

predefined subsurface times. Running the (forward) filter
::
low

::::
pass

::::
and

::::::
Kalman

:::::
filters

:
repeatedly for subsurface times, spanning

12 hours with 10 minute intervals, ensembles of six consecutive runs are formed.

Figure 8 shows the ensemble averaged errors in estimated position for the mean, the 75 and 95 percentile errors, drawn by

blue, green and red solid curves, respectively. The identically shaded areas indicate the variation present in each ensemble.

As anticipated the errors increase with increasing subsurface time. Because of the longer integration times, the errors in the25

estimated velocities in fact reduce slightly with increasing subsurface time, expressed by the flattening of the curves for longer

subsurface times.

As the position error increases from zero at the time of diving, the errors shown in Figure 8 are the maximum errors, i.e. the

expected errors just prior to resurfacing. Depending on the required limit of this error, the maximum allowable subsurface time

can be defined. Here the data suggest that for a subsurface time of 3 hours, the average error is less than 650
:::
700

:
m and that30

virtually all estimates are within double that distance.

Presently, this system is not implemented yet. The authority WSV has expressed its interest, and also indicated that the

errors in the prediction for 3 hourly dives are acceptable. Technical limitations of the AIS system in use by WSV prevents a

1
:
It
::
is,

::
in

:::
fact,

::::::
possible

::
to

::
use

::::::::
interpolated

::::::::
amplitudes,

:::::
based

::
on

::
the

::
a
:::::
postiori

::::::
estimates

:
at
:::

the
:::
time

::
of
:::::
diving

:::
and

::
the

:
a
:::::

priori
::::::
estimates

::
at

::
the

::::
time

::
of

::::::::
resurfacing,

::::::
however,

::
this

:::::
brings

::
no

:::::
benefit

:::::
because

::
of

:
(
::
15),

:::
see

:::
also

::
the

:::::::
conclusion

::
of

:::::
Section

:::
4.1.

18



Figure 8. Error in estimated resurfacing position as a function of subsurface time.

(semi-)automatic implementation. Furthermore, the range of the landstations
::::
land

::::::
stations

:
to broadcast the AIS messages is

limited to about 70 km offshore, and would not reach far enough to cover the outerparts of the German sector of the German

Bight.

6 Discussion

The approach presented herein comes with a number of advantages. First, with a focus on glider path prediction, previous5

experience has shown that an unjustifiable amount of effort is required to guarantee current model output to be available at

all times. Using glider estimated currents removes this vulnerability, as this information is always available, assuming a glider

operates normally. Second, the proposed algorithm provides independent estimates of the instantaneous currents. In near-real

time these estimated currents can be assimilated into the COSYNA-run ocean current models of the German Bight, in a similar

fashion as radar observations of surface currents are assimilated (Stanev et al., 2015).10

In delayed mode, when all data are available, the accuracy of the current estimates can be further improved. Still, the accu-

racy would remain inferior to the accuracy that can be achieved with direct measurements from devices such as ADCPs
::::
ADCP

:
s.

However, as often, for practical and logistical reasons, few, if any at all, independent current data are available that co-locate

with glider data, so that a third advantage is that for many applications the improved glider based current estimates may be the

only information on instantaneous currents available. Thus, this method may allow the aspect of mixing being incorporated15

in the data analysis , which is crucial for the interpretation of observations of
:::
This

::::
can

:::::::
facilitate

:::
the

::::
data

:::::::
analysis

:::
in

::::::
studies
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::::::::
involving

::::::
gliders

::
in

::::
tidal

::::::
waters,

::::::
similar

:::
to

::::
those

:::::::::
published

::
on

:
phytoplankton blooms (e.g., Xu et al., 2013), sediment resus-

pension events (e.g., Glenn et al., 2008), or oxygen depletion events (e.g., Queste et al., 2016).

We chose to decompose the currents into a tidally driven part and a residual current. Lacking a realistic model for the residual

currents, this component was quantified by a simple low pass filter, whereas the tidally driven currents were estimated using a

Kalman filter based on the shallow water equations. Instead of this approach, a variety of other formulations could have been5

considered.

Instead of using a low pass filter, a Kalman filter for the residual current could be formulated based on the model

u̇r = 0 (24)

where the subscript “r” refers to residual. This model states that the current is constant. The Kalman filter will update the

prediction of the current with every new measurement. How much the measurements are trusted over residual current modelled10

as a constant, depends on the predefined model noise. Similar to the forward low pass filter, this Kalman filter introduces a

lag, the magnitude of which depends on the model uncertainty. As the purpose of this Kalman filter is to filter out the residual

component of the current, it is not straight forward to set the process noise such that right model stiffness is achieved. This is in

contrast with the low pass filter, the behaviour of which is well-defined given the order and the cut-off frequency. If the model

would be based on the assumption that ȧr = 0, the same arguments still would apply, although this variant has the advantage15

that between measurements the estimated residual current is assumed to vary linearly, rather than being constant.

A different approach could be to incorporate the residual current Kalman filter based on (24) directly in the Kalman filter

developed in Section 3.2, by modifying (15) – (18). The major drawback of this formulation is that the filter has no means to

discriminate between the residual and tidal components of the measured currents, other than specifying different model noises

for the tidal and residual current models and may therefore not converge. In conclusion, applying20

:::
The

::::::
robust

:::::::
solution,

::::::::
therefore,

::
is

::
to

:::::
apply

:
a low pass filter to the measured currents to separate the residual and tidal current

componentsis the simplest and most robust approach, and therefore preferred.
:
.
::::::::::
Butterworth

:::
low

::::
pass

::::::
filters

::
of

::::::
various

::::::
orders

:::
and

::::::
cut-off

:::::::::
frequencies

:::::
were

:::::::::
considered.

::
A
::::
first

:::::
order

::::
filter

::::
with

:
a
::::::
cut-off

::::::::
frequency

::
of
:::::
1/24

:::
cph

:::
was

::::::
chosen

::
a
:::::
priori.

::::
This

:::::
filter

::::::::
introduces

::
a
::::
small

::::::
group

::::
delay

::
at
:::
the

:::::::
expense

::
of

::::::::::
attenuating

::::
only

:::
part

::
of

:::
the

:::::
main

::::
tidal

::::::
signal.

::::
This

:::::
raises

:::
the

:::::::
question

:::::::
whether

::
or

:::
not

:
a
::::
filter

::::
with

:::::
other

::::::
settings

:::::
could

::::
fare

:::::
better.

:::::
Each

::
of

:::
the

:::::
filters

::::::::
discussed

::
in

:::::::
Section

:::
3.1

:::
(see

::::
also

::::::
Figure

::
1)

:::
was

:::::::
applied

::
to25

:::::::
compute

:::
the

::::
time

:::
and

:::::
depth

::::::::
averaged

:::::::
currents

::
in

:::::::
near-real

::::
time

:::::
mode

:::::
from

:::
the

:::::::
synthetic

:::::
data.

The current estimation algorithm described herein could also be implemented on board a Slocum glider to benefit its

underwater navigation capabilities in tidal waters. However, as the navigation software of the Teledyne Slocum glider is

closed-source, this has not been pursued. If the algorithm were to be implemented, the key advantage would be that the

glider would be able to keep a straighter course during its mission, which would facilitate the data analysis. As the algorithm30

would not fare well in regions that are not dominated by the tides, the usefulness of such an implementation is limited to the

relatively small coastal glider community,
::::::
Figure

:
9
::::::
shows

:::
the

:::::
mean

:::::::
absolute

::::
error

:::
in

:::
the

:::::::
velocity

:::::::
estimate

::
as

:::::::
function

:::
of

:::
the

:::::::::
subsurface

::::
time

::
for

:::::::
various

::::
filter

:::::::
settings.

::::
For

::
the

:::::
sake

::
of

:::::::::::
convenience,

:::
the

::::
filter

::::::
setting

::
is

::::::
denoted

:::
by

:
a
:::::
tuple

:::::::::
consisting

::
of

:::
the
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Figure 9.
::::
Mean

::::
error

::
in

:::::::
estimated

:::::::::
resurfacing

::::::
position

::
as

:
a
:::::::
function

::
of

::::::::
subsurface

:::
time

:::
for

::::::
various

:::::::::
Butterworth

:::
low

:::
pass

:::::
filters

:::
with

:::::
order

::
N

:::
and

:::::
cut-off

::::::::
frequency

:::
1/Tc::::

cph.

::::
order

::::
and

:::::
cut-off

:::::::::
frequency

::
in

::::
cph.

:::
The

::::::
figure

:::::
shows

:::
that

::
if
:::
the

::::
filter

::::::
design

::
is

:::::
based

::
on

:::::::::
removing

:::::
almost

:::
all

::
of

:::
the

::::
tidal

::::::
signal,

:::
that

::
is

::::
filter

:::::::
settings

:::::::::
(1,1/119)

:
and unlikely to materialise.

::::::::
(2,1/38),

::::
both

:::::
filters

:::::::
perform

:::::::
equally

::::
well.

:::
An

:::::::::
improved

::::::
overall

::::::::::
performance

::
is

::::::::
achieved,

::::::::
however,

::
if

:::
the

::::::
cut-off

::::::::
frequency

::
is
:::::::::
increased.

::::
This

:::::::
increase

:::::::
reduces

:::
the

:::::
group

:::::
delay

:::::::::
introduced

:::
by

::
the

:::::
filter,

::::
but

:
it
::::
also

:::::::::
decreases

:::
the

:::::::::::
effectiveness

::
of

::::::::
damping

:::
the

::::
main

:::::
tidal

::::::
signal.

::::::::
Although

:::
the

::::
filter

:::::::
settings

::::::::
(1,1/12)

::::
and

:::::::
(2,1/12)

::::::
would

:::
also

:::
be

:::::::::
acceptable,

:::
the

::::
filter

::::::
setting

::::::::
(1,1/24)

::
is

:::::::::
considered

:::::::::
performing

::::
best

::::
and

:::
has

::::
been

::::
used

:::::::::
throughout

::::
this5

:::::
work.

::::::::
Increasing

:::
the

:::::::::
frequency

::::::
further,

::::::::
however,

:::::::
degrades

:::
the

:::::::
results,

::
as

::
is

:::::
shown

:::
by

:::
the

::::
filter

::::
with

::::::
setting

:::::::
(1,1/6).

:

7 Conclusions

Although the navigational algorithm implemented on board the (Slocum) glider yields depth and time averaged currents, the

time resolution, set by the subsurface time, is often too coarse for the purpose of data analysis. This is particularly the case

in regions where the currents are dominated by the tides. In this work an algorithm, tailored to coastal seas with strong tidal10

currents, was presented that can be used to estimate the instantaneous currents from the time averaged current measurements

obtained by the glider. The algorithm considers a current component driven by the tides, and a residual current, varying on

longer timescales than the main (semidiurnal) tides.

During the
:
a
::::::
glider mission, the algorithm can be used to predict the currents, which is essential to make a projection of

the glider trajectory up to 12 hours or so ahead. Run as a predictive tool, both the low pass filter and the Kalman filter are15
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run forward in time only, which inevitably leads to lagging effects. This is particularly
:::
can

::::::::::
particularly

:::
be apparent in the

residual currents resulting from the low pass filter. For a typical application of a glider run in the North Sea, a second
:::
first

order Butterworth filter was chosen as
::::
with

:
a
::::::
cut-off

:::::::::
frequency

::
of

::::
1/24

:::
cph

::::
was

::::::::
selected,

:::::
being a trade-off between the width

of the transition band and the group delay. To achieve the required amount of damping of the semidiurnal tidal signals and their

higher harmonics, a group delayof about 10 hours needs to be accepted
::::
main

::::
tidal

:::::
signal

::::
and

:::
the

:::::
group

:::::
delay.5

To assess its performance, the algorithm was first applied to depth and time averaged currents, constructed from instanta-

neous currents measured with an ADCP, with known noise levels added (synthetic data). By averaging over time, information

is lost, so that the measurements presented to the Kalman filter contain less information than the original ADCP measurements.

The loss of this information is mostly compensated by information provided by the shallow water model. For an anticipated

subsurface time of 3 hours, the correlation coefficients calculated for the estimated and ADCP measured instantaneous currents10

were found to be 0.97 and 0.94
::::
0.96 for the eastward and northward components, respectively. This result indicates that the

algorithm as such lives up to the expectations and is capable of reconstructing the instantaneous currents to a large extent.

When applied to the glider derived current measurement, and compared with ADCP data measured within a radius of about 10

km, the algorithm performs slightly worse, with correlation coefficients of 0.96 and 0.90
:::
0.93

:
for the eastward and northward

current components, respectively. This regression is attributed to the additional uncertainty caused by the navigation algorithm.15

Still, for subsurface times of three hours, which is a typical operational setting, the estimate of the instantaneous current has

standard deviation of 6-7 cm · s−1, which is considered low enough to be used for data assimilation procedures.

A further application could be to incorporate the present algorithm in a virtual AIS system to enhance the safety at sea.

Herein the glider’s position between surfacings can be estimated. The uncertainty in the estimated position grows with the

time that the glider is underwater. Quantifying the effect of the uncertainty in the currents on the positional accuracy, it was20

found that subsurface times up to 3 hours would yield a positional accuracy that was still acceptable for the German authority

Wasser-und Schifffahrtsverbund.

In delayed mode, the performance of the algorithm can be increased by running the low pass filter and the Kalman filter in

forward-backward mode. The backward run in effect counters the lag introduced in the forward sweep. The standard deviation

of the instantaneous current estimate was found to drop below 5
:
6
:
cm · s−1. This means that for the purpose of data analysis,25

where the (depth-averaged) current is often regarded as an important driving force, the proposed algorithm provides a way to

reconstruct the instantaneous currents with a sufficiently degree of accuracy.
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