



Title page

- 2 Title: Response of soil respiration to nitrogen addition along a degradation gradient in a temperate steppe
- 3 of northern China

1

- 4 Jinbin Chen, Xiaotian Xu, Hongyan Liu, Wei Wang\*
- 5 Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth
- 6 Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
- 7 \*Corresponding author: Wei Wang
- 8 Tel: +861062755923
- 9 Fax: +861062755923
- 10 E-mail: wangw@urban.pku.edu.cn
- 11





## 12 Abstract

| 13 | Although numerous studies have been conducted on the responses of soil respiration $(Rs)$ to nitrogen                              |
|----|------------------------------------------------------------------------------------------------------------------------------------|
| 14 | (N) addition in grassland ecosystems, it remains unclear whether a nonlinear relationship between Rs                               |
| 15 | and N addition exists and whether there is a uniform response across grasslands with different                                     |
| 16 | degradation status. We established a field experiment with six N treatments (0, 10, 20, 30, 40, and 50 g                           |
| 17 | N m <sup>-2</sup> y <sup>-1</sup> ) on four grassland sites, each with a varied degradation states in the Inner Mongolia steppe of |
| 18 | northern China during the growing seasons of 2012 and 2013. Rs and its major influential factors,                                  |
| 19 | including aboveground biomass, root biomass, plant tissues carbon (C) and N concentrations, soil organic                           |
| 20 | carbon (SOC) and soil total nitrogen (STN), microbial biomass and soil pH, were measured. Results                                  |
| 21 | show that N fertilization did not change the seasonal patterns of $Rs$ but it changed the magnitude of $Rs$                        |
| 22 | in grasslands with a different degradation status and only degradation had signification effects on Rs.                            |
| 23 | This shows that variations of $Rs$ in degraded grasslands were due to the difference in SOC content. The                           |
| 24 | response of $Rs$ to N addition differed with the severity of degradation. Furthermore, the response of $Rs$                        |
| 25 | to N addition slowed down over time. The dominant factor controlling Rs changed across different                                   |
| 26 | degradation grasslands. The leading factors for <i>Rs</i> were SOC and STN in non-degraded and moderately                          |
| 27 | degraded grassland; soil pH in severely degraded grassland; and aboveground biomass and root biomass                               |
| 28 | in extremely degraded grassland. Our results highlight the importance of considering the degradation                               |
| 29 | level of grassland to identify soil carbon emissions in grassland ecosystems, and N addition may alter                             |
| 30 | the difference of soil carbon emissions in different degraded grasslands and change its soil carbon                                |
| 31 | emissions pattern.                                                                                                                 |

32 Keywords: nitrogen addition; soil respiration; soil organic carbon; degraded grassland





## 33 1 Introduction

| 34 | Soil respiration ( $Rs$ ) consists mainly of microbial respiration and root respiration. As an important              |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 35 | part of the underground carbon (C) cycle, Rs is a major process of C exchange between the atmosphere                  |
| 36 | and soil, as well as a vital source of atmospheric carbon dioxide (CO <sub>2</sub> ) (Fang et al., 2001; Shao et al., |
| 37 | 2014). Approximately 10% of the global annual atmospheric CO <sub>2</sub> release is derived from Rs, and the         |
| 38 | carbon emission from Rs is more than 10-fold that released from fossil fuel combustion (Bond-Lamberty                 |
| 39 | and Thomson, 2010; IPCC, 2007; Silver, 2014). Consequently, a minor variation in the rate of Rs can                   |
| 40 | result in a large change in the turnover rate of soil organic carbon (SOC), greatly altering atmospheric              |
| 41 | CO <sub>2</sub> concentrations (Riley et al., 2005). This minor variation, therefore, may have implications for the   |
| 42 | future global climate (Knops and Reinhart, 2000).                                                                     |
| 43 | Grassland is the second largest area of green vegetation on land after forest. Unlike other ecosystem                 |
| 44 | types, grassland has a large root system (Soussana et al., 2004), and approximately 90% of C is stored in             |
| 45 | the soil (Soussana et al., 2004). The major process of C cycling is completed in the soil (Sharrow and                |
| 46 | Ismail, 2004; Soussana et al., 2004). Hence, regulations and mechanisms of grassland Rs are crucial for               |
| 47 | evaluating the response of C release to global changes, which has significant effects on the assessment               |
| 48 | and prediction of global change, as well as the pattern of C cycling (Asner et al., 2004; Jia et al., 2013).          |
| 49 | In the coming decades, an increasing amount of nitrogen (N) is predicted to enter grassland                           |
| 50 | ecosystems due to the increase of atmospheric N deposition (Galloway et al., 2004; Galloway et al., 2008)             |
| 51 | and anthropogenic N fertilization (Field et al., 2014; Law, 2013). N addition will change soil nutrient               |
| 52 | conditions (Lu et al., 2013; Zhang et al., 2014), affecting plant growth (Nadelhoffer et al., 1999; Zong et           |
| 53 | al., 2013), plant tissue N content (Iversen et al., 2010; Li et al., 2015), microbial biomass (Compton et             |
| 54 | al., 2004; Frey et al., 2004), soil extracellular enzyme activity (Esch et al., 2013; Wang et al., 2014), soil        |





| 55 | physical and chemical properties such as soil pH (Janssens et al., 2010), soil organic carbon (SOC) and              |
|----|----------------------------------------------------------------------------------------------------------------------|
| 56 | soil total nitrogen (STN) (He et al., 2013; Mueller et al., 2013). All of these factors will affect the              |
| 57 | magnitude of Rs by influencing microbial respiration (Ramirez et al., 2012) and root respiration (Vose               |
| 58 | and Ryan, 2002). Numerous studies have investigated the responses of Rs to N addition in forests (Fan                |
| 59 | et al., 2014; Hogberg, 2007; Li et al., 2014; Thomas et al., 2010). However, there are fewer studies on              |
| 60 | the grassland ecosystem, and these have commonly focused on Europe and North America (Jones et al.,                  |
| 61 | 2006; Li et al., 2013). Moreover, previous research has focused on the effects of hydrothermal factors               |
| 62 | (Jia et al., 2006; Luo et al., 2001), grazing (Cao et al., 2004), land-use change (Qi et al., 2007), and fire        |
| 63 | (Xu and Wan, 2008) on Rs, while reporting fewer details on the effect of N addition on Rs. Specifically,             |
| 64 | the effect of <i>Rs</i> to N addition in different degraded grasslands has been rarely reported (Peng et al., 2011). |
| 65 | The response of <i>Rs</i> to N addition may differ in grasslands with a different degradation status. On             |
| 66 | the one hand, degradation causes the death of aboveground biomass and root biomass (Cheng et al., 2007;              |
| 67 | Yan et al., 2006), which may reduce photosynthetic products from above- to below-ground and the                      |
| 68 | substrate of Rs. With N addition, the increase of plant growth and photosynthetic products from above-               |
| 69 | to below-ground (Du et al., 2014) is inevitably influenced by the increase in the availability of N in the           |
| 70 | soil (Keuter et al., 2013; Ladwig et al., 2012), enhancing the substrate of Rs. Thus, the differences                |
| 71 | between non-degraded grassland (NDG) and degraded grasslands are likely to reduce following N                        |
| 72 | addition and promote Rs rate by increasing the growth of aboveground plants. On the other hand, with                 |
| 73 | the increase of N, the excess N can cause soil acidification (Yao et al., 2014), the inhibition of microbial         |
| 74 | respiration (Janssens and Luyssaert, 2009; Phillips and Fahey, 2007), plant root growth (Liu et al., 2013)           |
| 75 | and root respiration (Högberg et al., 2010) in non-degraded grassland. Therefore, Rs may have a                      |
| 76 | nonlinear response to N addition, increasing at first and then declining in non-degraded grassland. Rs in            |





- 57 severely degraded grassland may increase linearly with N addition. However, the responses of Rs to N
- 78 addition in grasslands with a different degradation status are rarely studied.
- 79 In China, grassland is one of the most widespread vegetation types, occupying approximately 40%
- 80 of the national total land area (Kang et al., 2007). Approximately 78% of the grasslands are in the northern
- 81 temperate and semiarid areas (Chen and Wang, 2000). Severe climate conditions together with human
- 82 activities cause most of the areas to suffer from desertification or degradation, and maintain N-deficient
- 83 status (Cao et al., 2004; Hooper and Johnson, 1999; Zhang and Han, 2008). At present, 61.49% of
- 84 northern grasslands in China have different degradation gradients (Zhou et al., 2014). However, it is
- 85 unclear how increasing N availability affects the process of soil carbon emissions of grasslands with a
- 86 different degradation status.

87 In this study, we conducted a controlled experiment on the Ulan Buton steppe at the southeastern 88 edge of the Inner Mongolian Plateau, China, by selecting four experimental sites in different stages of 89 degradation. Each site had six N-treatments to determine the response of Rs to N addition and the 90 mechanisms involved. Specifically, we aimed to determine (1) how degradation affects grassland Rs; and 91 (2) if the effects of N addition on the grassland Rs differ with degradation status. Our hypotheses were: 92 (1) Rs would reduce with the degradation because of decreased plant biomass and photosynthetic product 93 transport; and (2) Rs in grassland with a lower degradation level would increase at first and then decrease, 94 while Rs with a higher degradation level would increase linearly as N is added; and finally, N addition 95 would affect Rs mainly via the change in plant growth.

96 2. Materials and methods

#### 97 2.1 Site description

98 The study was conducted on the Ulan Buton steppe, Inner Mongolian Plateau, China (Fig. 1).





| 99  | Annual mean air temperature and precipitation are $-1.4^{\circ}$ C and 400 mm, respectively. The soil was      |
|-----|----------------------------------------------------------------------------------------------------------------|
| 100 | classified as Chernozems, with sand and silt dominating its surface layer (Liu et al., 2008). Four 100 m       |
| 101 | $\times$ 100 m experimental fields were fenced on the flat land surface in 2011 after communication with local |
| 102 | people about history of human disturbances at each site. The details about our study site can be found in      |
| 103 | Xu et al. (2015). The distances between these fields were no more than 10 km, which ensured that they          |
| 104 | shared similar climatic conditions (e.g., temperature and precipitation) and original vegetation types. In     |
| 105 | fact, among all vegetation and soil features, plant species composition and community structure can            |
| 106 | indicate the status of grassland degradation well. Liu et al. (2008) found that in this region, the herb       |
| 107 | species of grassland could be categorized into three groups: annuals (mainly appearing in the seriously        |
| 108 | degraded steppe), moderate grazing degradation indicators, and climax species in mature steppe. we             |
| 109 | followed the method in the study of Xu et.al. (2015) to quantify the grassland degradation level.              |
| 110 | Specifically, extremely degraded grassland had the highest proportion of annuals among the four fields         |
| 111 | and non-degraded grassland had the highest proportion of climax species, while the proportion of               |
| 112 | moderately grazing degradation indicators was high in the other two fields. The relative covers (ranging       |
| 113 | from 0 to 1) of climax species were: 0.34 in extremely degraded grassland (EDG), 0.40 in severely              |
| 114 | degraded grassland (SDG), 0.54 in moderately degraded grassland (MDG), and 0.74 in non-degraded                |
| 115 | grassland (NDG) (Xu et al., 2015).                                                                             |
| 116 | The plant species composition is shown in Table 1. The EDG was open to local grazing and resulted              |
| 117 | in low species richness. The SDG was a high-pasture two decades ago, while it became degraded with             |
| 118 | overgrazing until 2011. The MDG was a pasture under managed grazing along with relatively low                  |
| 119 | biomass. The NDG has been fenced for preventing grazing since 2000 and the species richness was high.          |

120 2.2 Experimental design





- 121 We divided each of the fields into three blocks, separated by a 2 m buffer zone. In each block, we
- 122 selected 12 plots of 6 m  $\times$  6 m, separated by a 1 m buffer zone for different treatments. Each plot was
- 123 further divided into four parts with observation, plant sampling, soil sampling, and Rs measurement areas
- 124 (Fig. 2).
- 125 N addition began in May 2011, and urea was added as the fertilizer. There were six N addition
- 126 amounts: 0 (CK, control check), 10, 20, 30, 40, and 50 g N m<sup>-2</sup> y<sup>-1</sup>. We followed the N-treatment design
- 127 of Xu et al. (2015). N was applied four times in the first 10 days of May, June, July, and August using a
- 128 quarter of the annual amount each time.
- 129 2.3 Soil respiration

130 *Rs* was measured using a Li-8100 soil CO<sub>2</sub> flux system (LI-COR Inc. Lincoln, NE, USA).

- 131 Measurements were conducted at least once per month during the growing season (July-September) in
- 132 2012 and 2013. Every field had three experimental replications and there were two polyvinyl chloride
- 133 (PVC) collars in each plot. The PVC collar (20 cm inner diameter, 6 cm height) was inserted 3 cm into
- the soil to measure *Rs*.

We used the single measured value of Rs as the average of the day. However, Rs obviously changes dynamically and the Rs measured at a different time of the day may result in a large bias. Based on previous studies on the Rs of grassland (Eler et al., 2013; Plestenjak et al., 2012) and field conditions, we selected the fine sunny days and measured Rs between 9:00 and 14:00 in the daytime to minimize the influence of the dynamic changes to Rs.

140 *Rs* in the growing season was obtained from the field data using linear extrapolation methods with141 following equation:

142  $R = \sum (R_i \cdot \Delta t) \tag{1}$ 





- 143 where, R is the soil respiration during the growing season;  $R_i$  is the Rs at the measurement time in
- 144 the growing season; and  $\Delta t$  is the measurement time interval (Gomez-Casanovas et al., 2013).
- 145 2.4 Sampling and measurements
- 146 2.4.1 Soil sampling
- 147 Soils were sampled from all plots in mid-August 2012 to a soil depth of 10 cm using a 5.8 cm
- 148 diameter soil corer. The root, litter, and small stones were removed from the samples by hand and sieved
- 149 with a 2 mm mesh sieve. The samplings were divided into two parts: fresh, 2 mm sieved soil was used
- 150 to measure microbial biomass; and air-dried, 2 mm sieved soil was used to measure SOC, STN, and soil
- 151 pH. All measurements were repeated independently in triplicate.
- 152 Microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were measured using the
- 153 chloroform fumigation extraction technique (Brookes et al., 1985; Vance et al., 1987). Briefly, two
- 154 replicate samples were taken; one was fumigated with alcohol-free CHCl<sub>3</sub> for 24 h, while the other
- 155 remained unfumigated. Fumigated and unfumigated samples were extracted using 0.5 mol L<sup>-1</sup> K<sub>2</sub>SO<sub>4</sub>
- 156 (1:2.5 w/v) with agitation for 30 min. The extracts were analyzed for total dissolved C and N using a
- 157 total C analyzer (TOC-500; Shimadzu, Kyoto, Japan). The microbial biomass was calculated as the
- 158 difference in extractable C and N between the fumigated and unfumigated soils.
- 159 The soil pH value was determined using air-dried soil by a 1:5 soil:water ratio with a pH meter
  160 (Model PHS-2; INESA Instrument, Shanghai, China). The SOC and STN were measured by an element
- 161 analyzer (Vario EL III, Elementar, Hanau, Germany).
- 162 2.4.2 Plant sampling

163 Aboveground and root biomass were sampled in the middle of August. Aboveground biomass was

164 collected by clipping with a 50 cm × 50 cm sampling frame, dried, and weighed in each replicate plot.





- 165 Root biomass was collected from a soil depth of 30 cm using a 5.8 cm diameter soil corer with three
- 166 repetitions. The roots were separated from the soil by washing, and then dried at 60°C for 48 h, and
- 167 weighed. Root samples were ground and analyzed for total C and N using an element analyzer (Vario EL
- 168 III, Elementar, Hanau, Germany).
- 169 2.5 Data analysis
- 170 All statistical analyses were performed using SPSS statistical software (SPSS 17.0 for Windows;
- 171 SPSS Inc., Chicago, IL, USA). One-way analysis of variance (ANOVA) was performed to compare the
- 172 differences of abiotic and biotic variables among different N addition treatments and degradation levels.
- 173 Factorial ANOVA with Duncan's test was applied to identify independent and their interaction effects of
- 174 degradation and N addition treatments on *Rs* and abiotic and biotic variables. Piecewise linear regression
- 175 analysis was used to determine the relationship between Rs and pH. Simple linear regression was
- 176 performed to determine the relationship between Rs and SOC, STN, MBC, MBN, root C and N
- 177 concentrations, above ground biomass, and root biomass. Significant effects were determined at P < 0.05,
- 178 unless otherwise stated. Data were expressed as mean values  $\pm$  S.E. (standard error).
- 179 3. Results
- 180 3.1 Seasonal dynamics of Rs
- 181 There was no significant difference in seasonal dynamics of *Rs* between non-degraded grassland
- 182 (NDG) and grasslands with a varied degradation status, with the highest rates of Rs in June and the lowest
- 183 in autumn for all treatments in both 2012 and 2013. Compared with degraded grassland, non-degraded
- 184 grassland had a greater variation of *Rs* rate in the growing season (Fig. 3).

#### 185 **3.2 Response of** *Rs* **to different** N **addition gradients**

186 Response of *Rs* to N addition differed with the severity of degradation, and the intensity of response





- 187 slowed down with increasing time (Fig. 4). In 2012, the Rs of NDG, MDG, and SDG reached its
- 188 maximum with an N addition amount of 20 or 30 g N m<sup>-2</sup> y<sup>-1</sup>, and then decreased. In EDG, Rs maintained
- 189 an increasing trend although no significant difference was observed (P > 0.05). However, no significant
- 190 effect of N addition on Rs was found in all treatments in 2013 (P > 0.05).
- 191 **3.3 Difference of** *Rs* in different degraded grasslands
- 192 The intensity of N addition changed the relative magnitude of Rs in grasslands with a varied
- 193 degradation status (Fig. 5). Usually, Rs decreased with degradation without fertilization. With an
- 194 increasing amount of N addition, the Rs of EDG increased to a similar magnitude as NDG. Moreover,
- 195 the Rs of EDG was significantly higher than NDG in 2013 (P < 0.05). In addition, factorial ANOVA
- 196 showed that degradation had significant effects on *Rs*, while N addition did not significantly affect *Rs*.
- 197 Finally, no significant interaction between N addition and degradation was observed for Rs (Table 2).
- 198 3.4 Biotic and abiotic variables

| 199 | Soil pH decreased significantly with the N addition treatment ( $P < 0.05$ , Table 3). No significant               |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 200 | effect on SOC and root C concentration was found in all the N fertilization treatments ( $P > 0.05$ , Table         |
| 201 | 3). N addition did not significantly alter STN and root biomass, but changed those in SDG ( $P > 0.05$ ,            |
| 202 | Table 3). The response of soil microbial biomass to N fertilization differed with the severity of                   |
| 203 | degradation (Table 3). Except for MDG, the variation of root N concentration did not reach a significant            |
| 204 | level under N addition ( $P > 0.05$ , Table 3). Furthermore, the effects of N fertilization on aboveground          |
| 205 | biomass were greater than its effect on <i>Rs</i> , and there was no significant difference with degradation levels |
| 206 | (Fig. 6).                                                                                                           |

Factorial ANOVA (Table S1) showed expect root N concentrations and belowground biomass,
 degradation significantly affected nearly all abiotic and biotic factors. N addition did not significantly





| 000 |                |                 |                |             |               |                  | m . ) (D G ) (D) I |
|-----|----------------|-----------------|----------------|-------------|---------------|------------------|--------------------|
| 209 | affect SOC, ST | N, root C conce | entrations and | belowground | l biomass, bu | it significantly | affect MBC, MBN,   |

- 210 root N concentrations, aboveground biomass and soil pH value. In addition, there was a significantly
- 211 interaction effect between N fertilization and degradation on MBC, MBN and aboveground biomass.
- 212 Correlations between Rs and abiotic and biotic factors varied in grasslands with different
- 213 degradation statuses. Specifically, there was a significant linear relationship between Rs and SOC, STN
- 214 in NDG and MDG (Figs. S1 and S2, P < 0.05); while Rs and soil pH were significantly correlated in
- 215 SDG (Fig. S3, P < 0.05). Piecewise linear regression showed that *Rs* reached its maximum at a pH value
- 216 of 6.28 and then decreased with the increase of pH. In EDG, a significant linear correlation was found
- 217 between Rs and vegetation factors, including aboveground biomass and root biomass (Fig. S4, P < 0.05).
- 218 4 Discussion

Previous studies have reported that short-term N addition increased soil CO2 fluxes (Bowden et al., 219 220 2004; Fang et al., 2012). Our results showed that Rs responded non-linearly to short-term N fertilization. Rs reached its maximum with an N addition amount of 20 or 30 g N m<sup>-2</sup> y<sup>-1</sup> from NDG to SDG and then 221 222 decreased, and Rs was inhibited at the higher-N treatments. The initial increase at lower-N treatments 223 may be due to the reduced soil C:N ratio from increased N availability, which therefore accelerated the 224 decomposition of SOM (Gundersen, 1998). However, we did not find that the soil C:N ratio decreased 225 significantly due to N addition (Fig. S5). In addition, the increased plant biomass with fertilization may 226 account for the initial increase of Rs. Previous research has demonstrated that our study area is an N-227 limited ecosystem (Xu et al., 2015) and degradation deteriorates N deficiency. N addition would increase 228 the availability of N in soil, promoting plant growth, and resulting in increased photosynthetic products 229 transported from above- to below-ground (Du et al., 2014). Consequently, plant C may prime the growth 230 and activity of mycorrhizal fungi (Craine et al., 2007) and rhizospheric microbes (Högberg et al., 2010),





| 231 | thus | increasing | g Rs. |
|-----|------|------------|-------|
| 201 |      | mereasing  |       |

252

| 232                             | Rs reduced from NDG to SDG at high N amounts, potentially due to the saturation phenomenon in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 233                             | these three fields. When N addition surpassed its saturation point, the increase of plant growth slowed,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 234                             | and photosynthetic products from aboveground decreased. As a result, the deficiency of carbon for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 235                             | microbial decomposition will affect microbial growth (Table 3). Thus, higher N addition will instead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 236                             | reduce Rs. Furthermore, we found that the response of plant growth to N fertilization was greater than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 237                             | the impact of N fertilization on Rs (Fig. 6). With an increasing amount of N, the proportion of N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 238                             | fertilization to promote plant growth slowed down (Fig. S6). In other words, under high N treatment,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 239                             | aboveground biomass tends to have a lower increase than that under low N treatment. We therefore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 240                             | conclude that the effect of Rs on N addition is mainly due to the variation of plant growth by N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 241                             | fertilization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 242                             | We also found that the dominant factor influencing Rs changed with the severity of degradation. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 243                             | NDG and MDG, SOC and STN were the dominant factors influencing Rs, which was consistent with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 244                             | result of Bazzaz and Williams (1991). However, other studies have reported that no significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 245                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 | relationship was found between soil organic matter (SOM) and Rs (Zhang et al., 2009). In SDG, soil pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 246                             | relationship was found between soil organic matter (SOM) and <i>Rs</i> (Zhang et al., 2009). In SDG, soil pH became the dominant factor. Numerous studies have shown that there is a significant positive correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 246<br>247                      | relationship was found between soil organic matter (SOM) and <i>Rs</i> (Zhang et al., 2009). In SDG, soil pH became the dominant factor. Numerous studies have shown that there is a significant positive correlation between <i>Rs</i> and soil pH (Bowden et al., 2004; Phillips and Fahey, 2007; Vanhala, 2002). In our study,                                                                                                                                                                                                                                                                                                                                             |
| 246<br>247<br>248               | relationship was found between soil organic matter (SOM) and <i>Rs</i> (Zhang et al., 2009). In SDG, soil pH became the dominant factor. Numerous studies have shown that there is a significant positive correlation between <i>Rs</i> and soil pH (Bowden et al., 2004; Phillips and Fahey, 2007; Vanhala, 2002). In our study, there was a threshold of 6.28 in the soil pH value. Specifically, a positive correlation occurred before and                                                                                                                                                                                                                                |
| 246<br>247<br>248<br>249        | relationship was found between soil organic matter (SOM) and <i>Rs</i> (Zhang et al., 2009). In SDG, soil pH became the dominant factor. Numerous studies have shown that there is a significant positive correlation between <i>Rs</i> and soil pH (Bowden et al., 2004; Phillips and Fahey, 2007; Vanhala, 2002). In our study, there was a threshold of 6.28 in the soil pH value. Specifically, a positive correlation occurred before and a negative correlation after the threshold was reached. This suggests that <i>Rs</i> requires a suitable soil pH.                                                                                                              |
| 246<br>247<br>248<br>249<br>250 | relationship was found between soil organic matter (SOM) and <i>Rs</i> (Zhang et al., 2009). In SDG, soil pH became the dominant factor. Numerous studies have shown that there is a significant positive correlation between <i>Rs</i> and soil pH (Bowden et al., 2004; Phillips and Fahey, 2007; Vanhala, 2002). In our study, there was a threshold of 6.28 in the soil pH value. Specifically, a positive correlation occurred before and a negative correlation after the threshold was reached. This suggests that <i>Rs</i> requires a suitable soil pH. Xie et al. (2009) also found that higher soil pH inhibits <i>Rs</i> . In EDG, the dominant factor changed to |

for the change of the dominant factor in different degraded grasslands may be because SOC and STN are





| 253 | the substrates of <i>Rs</i> at the low degradation level, and they mainly determine the magnitude of <i>Rs</i> (Bazzaz |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 254 | and Williams, 1991). With N addition, microorganisms accelerate decomposition due to the increased                     |
| 255 | availability of substrate N. When a grassland is severely degraded, due to the lack of soil nutrients, Rs              |
| 256 | may be mainly dependent on the plant growth, including above- and belowground biomass, to supply the                   |
| 257 | substrate for rhizospheric and microbial respiration (Wardle et al., 2004).                                            |
| 258 | In addition, we found that the response of Rs to N fertilization slowed down with time. In 2012, Rs                    |
| 259 | increased, and then decreased with N addition in NDG, MDG, and SDG. However, in EDG, Rs was not                        |
| 260 | significantly elevated by the N addition. Variations of Rs responding to N addition did not reach                      |
| 261 | significant levels in all fields following the second year. Firstly, this is partly because after the first year       |
| 262 | of fertilization, much of the available soil C had been consumed, and thus large amounts of $\text{CO}_2$ were         |
| 263 | emitted from the soil. Meanwhile, due to low precipitation, high evaporation, and wind erosion in our                  |
| 264 | study area, the accumulation of SOC was relatively slow. Thus, if the external C input could not replenish             |
| 265 | the consumable soil C, the previous N-limited status may have become a limitation of C resources.                      |
| 266 | Former study observed that microbial respiration was rarely affected by N addition in the C-limited status             |
| 267 | (Micks et al., 2004). Borton et al. (2004) also found that N addition did not affect root biomass and root             |
| 268 | respiration, and <i>Rs</i> was influenced by the limitation of other nutrient resources. With changes to limiting      |
| 269 | nutrient resources, the response of Rs to N addition would become weaker (Peng et al., 2011).                          |
| 270 | Consequently, the response of $Rs$ to N addition is a result of multiple factors other than N availability             |
| 271 | alone. Secondly, due to the disturbance history of grazing in our degraded grasslands, the experiment                  |
| 272 | itself (for which plot were fenced) would be interfere with the disturbance, causing confounding                       |
| 273 | influences of short-term recovery and N addition. The decreased temporal response to N addition may                    |
| 274 | also partly arise from the reduced/remove disturbance element in degraded grasslands. Lastly, it is                    |





- 275 noteworthy that our study only measured total *Rs*, however, N addition have had a different effect on its
- 276 heterotrophic and autotrophic components. Therefore, we need to separate soil autotrophic and
- 277 heterotrophic components in future research to better understand *Rs* variation with degradation and N
- 278 fertilization.
- 279 **5.** Conclusions
- 280 The response of *Rs* to N addition differed in grasslands with different degradation levels, which was
- 281 related to soil nutrient status before N fertilization. With N addition, Rs increased at first and then
- 282 decreased from NDG to SDG; whereas there was a linear increase in EDG. The response of Rs to N
- 283 addition in degraded grassland was consistent with aboveground biomass, emphasizing the close
- 284 association of above- and belowground C processes. Furthermore, effect of N fertilization on Rs slowed
- 285 down with time. This suggests the importance of substrate quantity for Rs. Finally, the response of Rs to
- 286 N addition differed with the severity of degradation, emphasizing that the degree of degradation is a key
- 287 factor to consider when assessing grassland ecosystem soil carbon emissions.
- 288 Author contributions

W.W. designed the experiment, J.C. conducted the experiment and wrote the main manuscript text
as well as prepared the figures. X.X., H.L. and W.W. revised the first drafts. All authors reviewed the

291 manuscript.

Acknowledgements. This research was supported by the Project of the National Science Foundation of
China (Nos.31222011, 31270363, and 31321061), National Basic Research Program of China
(Nos.2013CB956303), Research Fund of State Key Laboratory of Soil and Sustainable Agriculture,
Nanjing Institute of Soil Science, Chinese Academy of Science (Y412201439) and University

296 Construction Projects from Central Authorities in Beijing.





# 297 References

| 298 | Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E., and Harris, A. T.: Grazing systems, ecosystem    |
|-----|--------------------------------------------------------------------------------------------------------------|
| 299 | responses, and global change, Annu Rev Env Resour, 29, 261-299, 2004.                                        |
| 300 | Bazzaz, F. A. and Williams, W. E.: Atmospheric CO2 concentrations within a mixed forest -                    |
| 301 | implications for seedling growth, Ecology, 72, 12-16, 1991.                                                  |
| 302 | Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the global soil respiration           |
| 303 | record, Nature, 464, 579-U132, 2010.                                                                         |
| 304 | Bowden, R. D., Davidson, E., Savage, K., Arabia, C., and Steudler, P.: Chronic nitrogen additions            |
| 305 | reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest,     |
| 306 | Forest Ecol Manag, 196, 43-56, 2004.                                                                         |
| 307 | Brookes, P. C., Landman, A., Pruden, G., and Jenkinson, D. S.: Chloroform fumigation and the release         |
| 308 | of soil-nitrogen - a rapid direct extraction method to measure microbial biomass nitrogen in soil,           |
| 309 | Soil Biol Biochem, 17, 837-842, 1985.                                                                        |
| 310 | Cao, G. M., Tang, Y. H., Mo, W. H., Wang, Y. A., Li, Y. N., and Zhao, X. Q.: Grazing intensity alters        |
| 311 | soil respiration in an alpine meadow on the Tibetan plateau, Soil Biol Biochem, 36, 237-243, 2004.           |
| 312 | Chen, Z. and Wang, S.: Typical steppe ecosystems of China, Beijng, 2000.                                     |
| 313 | Cheng, X., An, S., Chen, J., Li, B., Liu, Y., and Liu, S.: Spatial relationships among species, above-       |
| 314 | ground biomass, N, and P in degraded grasslands in Ordos Plateau, northwestern China, J Arid                 |
| 315 | Environ, 68, 652-667, 2007.                                                                                  |
| 316 | Compton, J. E., Watrud, L. S., Porteous, L. A., and DeGrood, S.: Response of soil microbial biomass          |
| 317 | and community composition to chronic nitrogen additions at Harvard forest, Forest Ecol Manag,                |
| 318 | 196, 143-158, 2004.                                                                                          |
| 319 | Craine, J. M., Morrow, C., and Fierer, N.: Microbial nitrogen limitation increases decomposition,            |
| 320 | Ecology, 88, 2105-2113, 2007.                                                                                |
| 321 | Du, Z. H., Wang, W., Zeng, W. J., and Zeng, H.: Nitrogen deposition enhances carbon sequestration by         |
| 322 | plantations in northern China, Plos One, 9, 2014.                                                            |
| 323 | Eler, K., Plestenjak, G., Ferlan, M., Cater, M., Simoncic, P., and Vodnik, D.: Soil respiration of karst     |
| 324 | grasslands subjected to woody-plant encroachment, Eur J Soil Sci, 64, 210-218, 2013.                         |
| 325 | Esch, E. H., Hernandez, D. L., Pasari, J. R., Kantor, R. S. G., and Selmants, P. C.: Response of soil        |
| 326 | microbial activity to grazing, nitrogen deposition, and exotic cover in a serpentine grassland, Plant        |
| 327 | Soil, 366, 671-682, 2013.                                                                                    |
| 328 | Fan, H. B., Wu, J. P., Liu, W. F., Yuan, Y. H., Huang, R. Z., Liao, Y. C., and Li, Y. Y.: Nitrogen           |
| 329 | deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a                      |
| 330 | subtropical forest, Plant Soil, 379, 361-371, 2014.                                                          |
| 331 | Fang, H. J., Cheng, S. L., Yu, G. R., Zheng, J. J., Zhang, P. L., Xu, M. J., Li, Y. N., and Yang, X. M.:     |
| 332 | Responses of CO <sub>2</sub> efflux from an alpine meadow soil on the Qinghai Tibetan Plateau to multi-form  |
| 333 | and low-level N addition, Plant Soil, 351, 177-190, 2012.                                                    |
| 334 | Fang, J. Y., Chen, A. P., Peng, C. H., Zhao, S. Q., and Ci, L.: Changes in forest biomass carbon storage     |
| 335 | in China between 1949 and 1998, Science, 292, 2320-2322, 2001.                                               |
| 336 | Field, C. D., Dise, N. B., Payne, R. J., Britton, A. J., Emmett, B. A., Helliwell, R. C., Hughes, S., Jones, |
| 337 | L., Lees, S., Leake, J. R., Leith, I. D., Phoenix, G. K., Power, S. A., Sheppard, L. J., Southon, G. E.,     |
| 338 | Stevens, C. J., and Caporn, S. J. M.: The role of nitrogen deposition in widespread plant community          |
| 339 | change across semi-natural habitats, Ecosystems, 17, 864-877, 2014.                                          |

Biogeosciences



| 340 | Frey, S. D., Knorr, M., Parrent, J. L., and Simpson, R. T.: Chronic nitrogen enrichment affects the           |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 341 | structure and function of the soil microbial community in temperate hardwood and pine forests,                |  |  |  |  |
| 342 | Forest Ecol Manag, 196, 159-171, 2004.                                                                        |  |  |  |  |
| 343 | Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner,      |  |  |  |  |
| 344 | G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H.,           |  |  |  |  |
| 345 | Townsend, A. R., and Vorosmarty, C. J.: Nitrogen cycles: past, present, and future, Biogeochemistry,          |  |  |  |  |
| 346 | 70, 153-226, 2004.                                                                                            |  |  |  |  |
| 347 | Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C., Freney, J. R., Martinelli, L.      |  |  |  |  |
| 348 | A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the nitrogen cycle: recent trends,                |  |  |  |  |
| 349 | questions, and potential solutions, Science, 320, 889-892, 2008.                                              |  |  |  |  |
| 350 | Gomez-Casanovas, N., Anderson-Teixeira, K., Zeri, M., Bernacchi, C. J., and DeLucia, E. H.: Gap               |  |  |  |  |
| 351 | filling strategies and error in estimating annual soil respiration, Global Change Biol, 19, 1941-1952,        |  |  |  |  |
| 352 | 2013.                                                                                                         |  |  |  |  |
| 353 | Gundersen, P.: Effects of enhanced nitrogen deposition in a spruce forest at Klosterhede, Denmark,            |  |  |  |  |
| 354 | examined by moderate NH4NO3 addition, Forest Ecol Manag, 101, 251-268, 1998.                                  |  |  |  |  |
| 355 | He, Y. T., Qi, Y. C., Dong, Y. S., Xiao, S. S., Peng, Q., Liu, X. C., and Sun, L. J.: Effects of nitrogen     |  |  |  |  |
| 356 | fertilization on soil microbial biomass and community functional diversity in temperate grassland in          |  |  |  |  |
| 357 | Inner Mongolia, China, Clean-Soil Air Water, 41, 1216-1221, 2013.                                             |  |  |  |  |
| 358 | Högberg, M. N., Briones, M. J. I., Keel, S. G., Metcalfe, D. B., Campbell, C., Midwood, A. J.,                |  |  |  |  |
| 359 | Thornton, B., Hurry, V., Linder, S., Nasholm, T., and Hogberg, P.: Quantification of effects of season        |  |  |  |  |
| 360 | and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil              |  |  |  |  |
| 361 | organisms in a boreal pine forest, New Phytol, 187, 485-493, 2010.                                            |  |  |  |  |
| 362 | Hogberg, P.: Environmental science - nitrogen impacts on forest carbon, Nature, 447, 781-782, 2007.           |  |  |  |  |
| 363 | Hooper, D. U. and Johnson, L.: Nitrogen limitation in dryland ecosystems: responses to geographical           |  |  |  |  |
| 364 | and temporal variation in precipitation, Biogeochemistry, 46, 247-293, 1999.                                  |  |  |  |  |
| 365 | IPCC: Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge,                 |  |  |  |  |
| 366 | UK, 2007. 2007.                                                                                               |  |  |  |  |
| 367 | Iversen, C. M., Bridgham, S. D., and Kellogg, L. E.: Scaling plant nitrogen use and uptake efficiencies       |  |  |  |  |
| 368 | in response to nutrient addition in peatlands, Ecology, 91, 693-707, 2010.                                    |  |  |  |  |
| 369 | Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J. A., Reichstein, M., Ceulemans, R., Ciais, P.,         |  |  |  |  |
| 370 | Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E. D., Tang, J., and Law, B.       |  |  |  |  |
| 371 | E.: Reduction of forest soil respiration in response to nitrogen deposition, Nat Geosci, 3, 315-322,          |  |  |  |  |
| 372 | 2010.                                                                                                         |  |  |  |  |
| 373 | Janssens, I. A. and Luyssaert, S.: Nitrogen's carbon bonus, Nat Geosci, 2, 318-319, 2009.                     |  |  |  |  |
| 374 | Jia, B., Zhou, G., Wang, Y., Wang, F., and Wang, X.: Effects of temperature and soil water-content on         |  |  |  |  |
| 375 | soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia, J Arid Environ,             |  |  |  |  |
| 376 | 67, 60-76, 2006.                                                                                              |  |  |  |  |
| 377 | Jia, X. X., Shao, M. A., and Wei, X. R.: Soil CO <sub>2</sub> efflux in response to the addition of water and |  |  |  |  |
| 378 | fertilizer in temperate semiarid grassland in northern China, Plant Soil, 373, 125-141, 2013.                 |  |  |  |  |
| 379 | Jones, S. K., Rees, R. M., Kosmas, D., Ball, B. C., and Skiba, U. M.: Carbon sequestration in a               |  |  |  |  |
| 380 | temperate grassland; management and climatic controls, Soil Use Manage, 22, 132-142, 2006.                    |  |  |  |  |
| 381 | Kang, L., Han, X. G., Zhang, Z. B., and Sun, O. J.: Grassland ecosystems in China: review of current          |  |  |  |  |
| 382 | knowledge and research advancement, Philos T R Soc B, 362, 997-1008, 2007.                                    |  |  |  |  |
| 383 | Keuter, A., Hoeft, I., Veldkamp, E., and Corre, M. D.: Nitrogen response efficiency of a managed and          |  |  |  |  |

Biogeosciences



| 201        | neutodiverse temperate grassland Plant Soil 264 102 206 2012                                                       |
|------------|--------------------------------------------------------------------------------------------------------------------|
| 304<br>205 | phytodiverse temperate grassiand, Plant Soft, 504, 195-200, 2015.                                                  |
| 385        | Knops, J. M. H. and Keinnart, K.: Specific leaf area along a nitrogen fertilization gradient, Am Midi              |
| 380        | Nal, 144, 205-272, 2000.                                                                                           |
| 387        | Ladwig, L. M., Collins, S. L., Swann, A. L., Xia, Y., Allen, M. F., and Allen, E. B.: Above- and                   |
| 388        | belowground responses to nitrogen addition in a Chihuahuan desert grassland, Oecologia, 169, 177-                  |
| 389        | 185, 2012.                                                                                                         |
| 390        | Law, B.: Biogeochemistry: nitrogen deposition and forest carbon, Nature, 496, 307-308, 2013.                       |
| 391        | Li, D. J., Watson, C. J., Yan, M. J., Lalor, S., Rafique, R., Hyde, B., Lanigan, G., Richards, K. G.,              |
| 392        | Holden, N. M., and Humphreys, J.: A review of nitrous oxide mitigation by farm nitrogen                            |
| 393        | management in temperate grassland-based agriculture, J Environ Manage, 128, 893-903, 2013.                         |
| 394        | Li, H. S., Wang, J. S., Zhao, X. H., Kang, F. F., Zhang, C. Y., Liu, X., Wang, N., and Zhao, B.: Effects           |
| 395        | of litter removal on soil respiration under simulated nitrogen deposition in a Pinus tabuliformis                  |
| 396        | forest in Taiyue Mountain, China, Shengtaixue Zazhi, 33, 857-866, 2014.                                            |
| 397        | Li, K. H., Liu, X. J., Song, L., Gong, Y. M., Lu, C. F., Yue, P., Tian, C. Y., and Zhang, F. S.: Response          |
| 398        | of alpine grassland to elevated nitrogen deposition and water supply in China, Oecologia, 177, 65-                 |
| 399        | 72, 2015.                                                                                                          |
| 400        | Liu, H. Y., Yin, Y., Tian, Y. H., Ren, J., and Wang, H. Y.: Climatic and anthropogenic controls of topsoil         |
| 401        | features in the semi-arid East Asian steppe, Geophys Res Lett, 35, 2008.                                           |
| 402        | Liu, Y. W., Xu-Ri, Xu, X. L., Wei, D., Wang, Y. H., and Wang, Y. S.: Plant and soil responses of an                |
| 403        | alpine steppe on the Tibetan Plateau to multi-level nitrogen addition, Plant Soil, 373, 515-529, 2013.             |
| 404        | Lu, X. T., Reed, S., Yu, Q., He, N. P., Wang, Z. W., and Han, X. G.: Convergent responses of nitrogen              |
| 405        | and phosphorus resorption to nitrogen inputs in a semiarid grassland, Global Change Biol, 19, 2775-                |
| 406        | 2784, 2013.                                                                                                        |
| 407        | Luo, Y. Q., Wan, S. Q., Hui, D. F., and Wallace, L. L.: Acclimatization of soil respiration to warming in          |
| 408        | a tall grass prairie, Nature, 413, 622-625, 2001.                                                                  |
| 409        | Micks, P., Aber, J. D., Boone, R. D., and Davidson, E. A.: Short-term soil respiration and nitrogen                |
| 410        | immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests,               |
| 411        | Forest Ecol Manag, 196, 57-70, 2004.                                                                               |
| 412        | Mueller, K. E., Hobbie, S. E., Tilman, D., and Reich, P. B.: Effects of plant diversity, N fertilization,          |
| 413        | and elevated carbon dioxide on grassland soil N cycling in a long-term experiment, Global Change                   |
| 414        | Biol, 19, 1249-1261, 2013.                                                                                         |
| 415        | Nadelhoffer, K. J., Downs, M. R., and Fry, B.: Sinks for <sup>15</sup> N-enriched additions to an oak forest and a |
| 416        | red pine plantation, Ecol Appl, 9, 72-86, 1999.                                                                    |
| 417        | Peng, Q., Dong, Y. S., Qi, Y. C., Xiao, S. S., He, Y. T., and Ma, T.: Effects of nitrogen fertilization on         |
| 418        | soil respiration in temperate grassland in Inner Mongolia, China, Environ Earth Sci, 62, 1163-1171,                |
| 419        | 2011.                                                                                                              |
| 420        | Phillips, R. P. and Fahey, T. J.: Fertilization effects on fineroot biomass, rhizosphere microbes and              |
| 421        | respiratory fluxes in hardwood forest soils. New Phytol, 176, 655-664, 2007.                                       |
| 422        | Plesteniak, G., Eler, K., Vodnik, D., Ferlan, M., Cater, M., Kanduc, T., Simoncic, P., and Ogrinc, N.:             |
| 423        | Sources of soil CO <sub>2</sub> in calcareous grassland with woody plant encroachment. J Soil Sediment, 12.        |
| 424        | 1327-1338, 2012.                                                                                                   |
| 425        | Oi, Y. C., Dong, Y. S., Liu, J. Y., Domroes, M., Geng, Y. B., Liu, L. X., Liu, X. R., and Yang, X. H.:             |
| 426        | Effect of the conversion of grassland to spring wheat field on the CO <sub>2</sub> emission characteristics in     |
| 427        | Inner Mongolia, China, Soil Till Res, 94, 310-320, 2007.                                                           |





| 428 | Ramirez, K. S., Craine, J. M., and Fierer, N.: Consistent effects of nitrogen amendments on soil                   |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 429 | microbial communities and processes across biomes, Global Change Biol, 18, 1918-1927, 2012.                        |
| 430 | Riley, W. J., Randerson, J. T., Foster, P. N., and Lueker, T. J.: Influence of terrestrial ecosystems and          |
| 431 | topography on coastal CO2 measurements: A case study at Trinidad Head, California, J Geophys                       |
| 432 | Res-Biogeo, 110, 2005.                                                                                             |
| 433 | Shao, R., Deng, L., Yang, Q. H., and Shangguan, Z. P.: Nitrogen fertilization increase soil carbon                 |
| 434 | dioxide efflux of winter wheat field: A case study in Northwest China, Soil Till Res, 143, 164-171,                |
| 435 | 2014.                                                                                                              |
| 436 | Sharrow, S. H. and Ismail, S.: Carbon and nitrogen storage in agroforests, tree plantations, and pastures          |
| 437 | in western Oregon, USA, Agroforest Syst, 60, 123-130, 2004.                                                        |
| 438 | Silver, W. L.: Biogeochemistry: a faulty fertilizer, Nat Geosci, 7, 857-858, 2014.                                 |
| 439 | Soussana, J. F., Loiseau, P., Vuichard, N., Ceschia, E., Balesdent, J., Chevallier, T., and Arrouays, D.:          |
| 440 | Carbon cycling and sequestration opportunities in temperate grasslands, Soil Use Manage, 20, 219-                  |
| 441 | 230, 2004.                                                                                                         |
| 442 | Thomas, R. Q., Canham, C. D., Weathers, K. C., and Goodale, C. L.: Increased tree carbon storage in                |
| 443 | response to nitrogen deposition in the US, Nat Geosci, 3, 13-17, 2010.                                             |
| 444 | Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An extraction method for measuring soil microbial              |
| 445 | biomass C, Soil Biol Biochem, 19, 703-707, 1987.                                                                   |
| 446 | Vanhala, P.: Seasonal variation in the soil respiration rate in coniferous forest soils, Soil Biol Biochem,        |
| 447 | 34, 1375-1379, 2002.                                                                                               |
| 448 | Vose, J. M. and Ryan, M. G.: Seasonal respiration of foliage, fine roots, and woody tissues in relation            |
| 449 | to growth, tissue N, and photosynthesis, Global Change Biol, 8, 182-193, 2002.                                     |
| 450 | Wang, R. Z., Filley, T. R., Xu, Z. W., Wang, X., Li, M. H., Zhang, Y. G., Luo, W. T., and Jiang, Y.:               |
| 451 | Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water                     |
| 452 | addition in a semi-arid grassland of Inner Mongolia, Plant Soil, 381, 323-336, 2014.                               |
| 453 | Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setala, H., van der Putten, W. H., and Wall, D. H.:             |
| 454 | Ecological linkages between aboveground and belowground biota, Science, 304, 1629-1633, 2004.                      |
| 455 | Xu, W. H. and Wan, S. Q.: Water- and plant-mediated responses of soil respiration to topography, fire,             |
| 456 | and nitrogen fertilization in a semiarid grassland in northern China, Soil Biol Biochem, 40, 679-687,              |
| 457 | 2008.                                                                                                              |
| 458 | Xu, X. T., Liu, H. Y., Song, Z. L., Wang, W., Hu, G. Z., and Qi, Z. H.: Response of aboveground                    |
| 459 | biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian                     |
| 460 | steppe, China, Sci Rep-Uk, 5, 2015.                                                                                |
| 461 | Yan, V., Liu, S., and Zhou, W.: Dynamic of grassland biomass in different degenerative stages, Wuhan               |
| 462 | Univ. J. Nat. Sci., 11, 958-962, 2006.                                                                             |
| 463 | Yao, M. J., Rui, J. P., Li, J. B., Dai, Y. M., Bai, Y. F., Hedenec, P., Wang, J. M., Zhang, S. H., Pei, K. Q.,     |
| 464 | Liu, C., Wang, Y. F., He, Z. L., Frouz, J., and Li, X. Z.: Rate-specific responses of prokaryotic                  |
| 465 | diversity and structure to nitrogen deposition in the Leymus chinensis steppe, Soil Biol Biochem, 79,              |
| 466 | 81-90, 2014.                                                                                                       |
| 467 | Zhang, J. F. and Han, X. G.: N <sub>2</sub> O emission from the semi-arid ecosystem under mineral fertilizer (urea |
| 468 | and superphosphate) and increased precipitation in northern China, Atmos Environ, 42, 291-302,                     |
| 469 | 2008.                                                                                                              |
| 470 | Zhang, L. H., Chen, Y. I., Li, W. H., and Zhao, R. F.: Abiotic regulators of soil respiration in desert            |
| 471 | ecosystems, Environ Geol, 57, 1855-1864, 2009.                                                                     |
|     |                                                                                                                    |





- 472 Zhang, L. H., Huo, Y. W., Guo, D. F., Wang, Q. B., Bao, Y., and Li, L. H.: Effects of multi-nutrient
- 473 additions on GHG fluxes in a temperate grassland of northern China, Ecosystems, 17, 657-672,
- 474 2014.
- 475 Zhou, W., Gang, C. C., Zhou, L., Chen, Y. Z., Li, J. L., Ju, W. M., and Odeh, I.: Dynamic of grassland
- vegetation degradation and its quantitative assessment in the northwest China, Acta Oecol, 55, 86-96, 2014.
- 478 Zong, N., Shi, P. L., Jiang, J., Song, M. H., Xiong, D. P., Ma, W. L., Fu, G., Zhang, X. Z., and Shen, Z.
- 479 X.: Responses of ecosystem CO<sub>2</sub> fluxes to short-term experimental warming and nitrogen
- 480 enrichment in an alpine meadow, Northern Tibet Plateau, Sci World J, 2013.
- 481
- 482





| 483 Table 1. Species of | omposition in different degraded grasslands |
|-------------------------|---------------------------------------------|
|-------------------------|---------------------------------------------|

| Degradation degree           | Species composition                                                                                                                                                               | Dominant species            |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Extremely degraded grassland | Carex regescens 、Leymus<br>chinensis 、Setaria viridis                                                                                                                             | L. chinensis                |
| Moderately                   | C. regescens, L. chinensis,                                                                                                                                                       | C regescens,                |
| degraded grassland           | Potentilla longifolia、Poa<br>sphondylodes 、Stipa baicalensis                                                                                                                      | L. chinensis                |
| Non-degraded<br>grassland    | Bromus japonicas<br>Bromus inermis, Bupleurum<br>chinense, C. regescens,<br>Cleistogenes squarrosa, L.<br>chinensis, P. sphondylodes,<br>Sanguisorba officinalis, Vicia<br>sepium | S officinalis 、<br>V sepium |
|                              | Artemisia capillaris , Artemisia                                                                                                                                                  |                             |
| Severely degraded            | frigida, B. japonicas, C.                                                                                                                                                         | C. regescens                |
| grassland                    | chinensis Potentilla acaulis P.                                                                                                                                                   | C. squarrosa                |
|                              | longifolia, P. sphondylodes, S.                                                                                                                                                   | L. chinensis                |
|                              | baicalensis                                                                                                                                                                       |                             |

484





| 405 | $T_1 1_1 2_1 A NOVA - C_1 - C_1 + C_2 + C_2$ | f 1'1' 1'               | 1             | 1            | 11              |
|-----|----------------------------------------------|-------------------------|---------------|--------------|-----------------|
| 485 | - Lable / A NUVA of the effects of hitroge   | n tertuization and      | I degradation | degree on sc | iii respiration |
| 400 | fuole 2.7 fille fille effects of milege      | ii ioitiiii.atioii aila | acgradation   | actice on be | in respination  |

| Term                   | Df | F- Value | P -Value |
|------------------------|----|----------|----------|
| N-treatment (N)        | 5  | 0.711    | 0.618    |
| Degradation status (D) | 3  | 9.123    | < 0.001  |
| N×D                    | 15 | 0.44     | 0.956    |

486





| Table 3. Effects of nitro                 | gen (N) additio  | n on soil respiration, n      | nicrobial biomass carbor      | 1, microbial biomass ni        | itrogen, and soil organic       | carbon (SOC), soil tot           | al nitrogen (STN),            |
|-------------------------------------------|------------------|-------------------------------|-------------------------------|--------------------------------|---------------------------------|----------------------------------|-------------------------------|
| root C and N concentrat                   | ion, soil pH, ar | nd above- and belowgr         | ound biomass. Data are        | expressed as mean valu         | $ie \pm S.E.$ (Standard Erro    | r). Different letters in t       | he same row                   |
| indicate significant diff                 | crences among    | N treatments, while dif       | fferent capital letters in t  | the same column indic          | ate significant difference      | es among degradation le          | evels at 0.05 level           |
| of P-value. DG = desert                   | ification grassl | and, SDG = severely d         | egraded grassland, MDC        | 3 = moderately degrad          | ed grassland, NDG = no          | n-degraded grassland.            |                               |
| Item                                      | Degradation      |                               |                               | Nitrogen fertilizat            | ion (g N $m^{-2} y^{-1}$ )      |                                  |                               |
| TICHT                                     | degree           | 0                             | 10                            | 20                             | 30                              | 40                               | 50                            |
| C - 1 1 1                                 | NDG              | $33.36\pm 2.32^{aA}$          | $32.81{\pm}10.01^{aA}$        | 97.63±33.53 <sup>b A</sup>     | 27.66±5.23 <sup>a A</sup>       | $61.14\pm1.11^{aA}$              | $39.49\pm0.21^{aA}$           |
| Soli microbial                            | MDG              | $14.24\pm6.33^{aB}$           | $38.22 \pm 17.59^{aA}$        | $19.14{\pm}1.36^{aB}$          | $13.20{\pm}2.60^{a\mathrm{BC}}$ | $16.51{\pm}8.14^{aB}$            | $22.99 \pm 8.44^{a  AB}$      |
| $(\frac{1}{1}, \frac{1}{2}, \frac{1}{2})$ | SDG              | $9.03{\pm}0.97^{aB}$          | $7.49{\pm}1.38^{aA}$          | $8.15\pm 3.29^{aB}$            | $3.73\pm2.21^{a}$ C             | $7.37 \pm 4.52^{a B}$            | $12.44\pm 2.81^{a B}$         |
| (mg kg -)                                 | EDG              | $13.80{\pm}2.19^{aB}$         | $27.71 \pm 3.37^{aA}$         | $18.74{\pm}1.81^{aB}$          | $20.16{\pm}3.67^{aAB}$          | $56.42\pm20.29^{bA}$             | $28.83 \pm 4.16^{a  AB}$      |
| r - 1                                     | NDG              | $3.84{\pm}0.32^{aA}$          | $7.73\pm 2.63^{aA}$           | $10.30\pm 2.75^{aA}$           | $34.27\pm13.52^{aA}$            | $15.27 \pm 4.11^{aAB}$           | $21.50 \pm 2.43^{aA}$         |
|                                           | MDG              | $2.16{\pm}0.24^{aA}$          | $2.40{\pm}1.71^{aA}$          | $8.81{\pm}2.42^{abA}$          | $16.98 \pm 3.76^{ab}$ AB        | $13.74{\pm}4.01^{\mathrm{abAB}}$ | $21.15\pm 8.45^{bA}$          |
| 010mass nurogen                           | SDG              | $5.02{\pm}1.04^{aA}$          | $2.65\pm0.41^{aA}$            | $3.38 \pm 0.26^{a  A}$         | $4.21{\pm}0.44^{aB}$            | $3.61{\pm}2.08^{a}{}^{B}$        | $2.76{\pm}0.97^{aA}$          |
| ( III KR )                                | EDG              | $3.00{\pm}1.29^{aA}$          | $6.10 \pm 2.81^{a A}$         | $11.51\pm 5.62^{aA}$           | $4.98{\pm}1.09^{aB}$            | $63.82 \pm 31.99^{b A}$          | $22.61{\pm}12.60^{abA}$       |
|                                           | NDG              | $4.49\pm0.11^{aA}$            | $5.36{\pm}1.66^{aA}$          | $5.17\pm0.38^{aA}$             | $5.43\pm0.63^{aA}$              | $4.44{\pm}1.23^{aA}$             | $4.79 \pm 0.75^{aA}$          |
| Soil organic                              | MDG              | $0.87{\pm}0.18^{ m aC}$       | $0.86{\pm}0.15^{a{ m B}}$     | $1.06{\pm}0.08^{a{ m B}}$      | $0.75{\pm}0.12^{aB}$            | $0.62{\pm}0.26^{a{ m B}}$        | $0.89{\pm}0.15^{a{ m B}}$     |
| carbon content                            | SDG              | $1.37 \pm 0.21^{a B}$         | $1.75{\pm}0.30^{a}$ B         | $1.26\pm0.21^{a}B$             | $1.02\pm0.13^{aB}$              | $1.13{\pm}0.08^{a}{}^{B}$        | $0.88{\pm}0.06^{a{ m B}}$     |
| (0/)                                      | EDG              | $0.18{\pm}0.05^{a{ m D}}$     | $0.27{\pm}0.17^{a B}$         | $0.13{\pm}0.03^{aB}$           | $0.12 \pm 0.05^{aB}$            | $0.24{\pm}0.04^{a{ m B}}$        | $0.14{\pm}0.03^{aB}$          |
| I                                         | NDG              | $0.37\pm0.01^{aA}$            | $0.43\pm0.14^{aA}$            | $0.41{\pm}0.04^{a{ m A}}$      | $0.44{\pm}0.05^{aA}$            | $0.35{\pm}0.10^{a{ m A}}$        | $0.38 \pm 0.06^{a\mathrm{A}}$ |
| Soil total nitrogen                       | MDG              | $0.07{\pm}0.02^{aB}$          | $0.08{\pm}0.02^{a{ m B}}$     | $0.09{\pm}0.01^{a{ m B}}$      | $0.08\pm0.01^{a\mathrm{B}}$     | $0.06{\pm}0.03^{aB}$             | $0.09{\pm}0.01^{a{ m B}}$     |
| content (%)                               | SDG              | $0.11{\pm}0.01^{abB}$         | $0.14{\pm}0.02^{b{ m B}}$     | $0.10{\pm}0.01^{a}{}^{B}$      | $0.10{\pm}0.01^{aB}$            | $0.10{\pm}0.01^{a\mathrm{B}}$    | $0.07{\pm}0.01^{aB}$          |
|                                           | EDG              | $0.02\pm0.01^{a}$ C           | $0.03{\pm}0.01^{a}{}^{B}$     | $0.02{\pm}0.01^{a}{}^{B}$      | $0.02\pm0.01^{aB}$              | $0.02{\pm}0.01^{aB}$             | $0.02{\pm}0.01^{aB}$          |
|                                           | NDG              | $21.89 \pm 4.81^{aA}$         | $29.39\pm 5.18^{aA}$          | $20.87 \pm 4.88^{a A}$         | $18.10{\pm}1.67^{a{ m A}}$      | $21.46\pm 3.63^{aA}$             | $17.65 \pm 1.35^{aA}$         |
|                                           | MDG              | $19.88 \pm 2.99^{aA}$         | $22.98\pm2.30^{aAB}$          | $18.44{\pm}2.16^{a\mathrm{A}}$ | $18.82 \pm 4.49^{aA}$           | $18.20{\pm}1.79^{aA}$            | $24.82 \pm 4.00^{aA}$         |
|                                           | SDG              | $20.90 \pm 3.85^{aA}$         | $22.91 \pm 3.29^{a AB}$       | $18.70{\pm}0.63^{aA}$          | $27.81 \pm 3.27^{aA}$           | $25.48 \pm 0.45^{a  A}$          | $25.53 \pm 4.75^{aA}$         |
|                                           | EDG              | $17.25 \pm 3.66^{aA}$         | $12.35{\pm}3.04^{aB}$         | $16.95 \pm 4.81^{a\mathrm{A}}$ | $20.53\pm 5.82^{aA}$            | $21.43{\pm}6.76^{aA}$            | $14.24 \pm 2.23^{aA}$         |
| root N                                    | NDG              | $0.58{\pm}0.14^{\mathrm{aA}}$ | $0.82{\pm}0.17^{aA}$          | $0.81{\pm}0.19^{aA}$           | $0.78 \pm 0.23^{aA}$            | $1.05{\pm}0.32^{aA}$             | $0.76{\pm}0.13^{aA}$          |
| concentration                             | MDG              | $0.45{\pm}0.04^{aA}$          | $0.80{\pm}0.06^{ m bA}$       | $0.63{\pm}0.08^{abA}$          | $0.62{\pm}0.13^{abA}$           | $0.63{\pm}0.07^{ m ab A}$        | $0.84{\pm}0.05^{ m bA}$       |
| (0%)                                      | SDG              | $0.55 \pm 0.09^{aA}$          | $0.67{\pm}0.08^{a\mathrm{A}}$ | $0.53{\pm}0.03^{aA}$           | $0.73{\pm}0.07^{aA}$            | $0.75{\pm}0.02^{a{ m A}}$        | $0.79{\pm}0.16^{aA}$          |





|                              | EDG | $0.38{\pm}0.06^{aA}$              | $0.49\pm0.17^{\mathrm{aA}}$     | $0.58{\pm}0.12^{aA}$          | $0.77{\pm}0.19^{aA}$            | $1.09{\pm}0.28^{a{ m A}}$     | $0.74{\pm}0.20^{a{ m A}}$ |
|------------------------------|-----|-----------------------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|---------------------------|
| I                            | NDG | $6.13 \pm 0.21^{abA}$             | $6.19{\pm}0.06^{bA}$            | $5.78{\pm}0.20^{abA}$         | $5.82{\pm}0.19^{ m ab A}$       | $5.58 \pm 0.15^{a A}$         | $5.72\pm0.13^{ab A}$      |
|                              | MDG | $6.55\pm0.05^{ m cAB}$            | $6.30{\pm}0.07^{\mathrm{bcAB}}$ | $6.40{\pm}0.13^{ m bcB}$      | $6.33{\pm}0.12^{{ m bc}{ m A}}$ | $6.18\pm0.15^{bA}$            | $5.81{\pm}0.11^{aA}$      |
| нd                           | SDG | $6.61\pm0.10^{c B}$               | $6.53 \pm 0.06^{\circ B}$       | $6.35{\pm}0.06^{ m bcB}$      | $6.16{\pm}0.19^{\mathrm{abA}}$  | $5.99\pm0.11^{aA}$            | $5.93{\pm}0.02^{aA}$      |
|                              | EDG | $6.58\pm0.09^{\circ\mathrm{B}}$   | $6.38{\pm}0.15^{cAB}$           | $6.17\pm0.10^{\mathrm{bcAB}}$ | $6.17{\pm}0.02^{bcA}$           | $5.70{\pm}0.34^{ m ab}{ m A}$ | $5.32{\pm}0.17^{aB}$      |
|                              | NDG | $1146.14 \pm 386.9^{a\mathrm{A}}$ | $1022.44 \pm 567.9^{aA}$        | $802.81{\pm}291.07^{aA}$      | $525.11{\pm}178.91^{aA}$        | $405.19{\pm}15.30^{aA}$       | $355.96 \pm 57.97^{aA}$   |
| Belowground                  | MDG | $720.76\pm222.86^{aA}$            | $974.47\pm566.11^{aA}$          | $578.12\pm156.22^{aA}$        | $724.54{\pm}107.32^{aA}$        | $922.72\pm 254.09^{aA}$       | $1317.81{\pm}174.04^{aB}$ |
| biomass $(g m^{-2})$         | SDG | $1048.95{\pm}200.8^{abA}$         | $850.77 \pm 430.53^{aA}$        | $592.01{\pm}89.78^{aA}$       | $830.58{\pm}176.14^{aA}$        | $1664.94\pm154.9^{b B}$       | $600.84 \pm 172.83^{aA}$  |
|                              | EDG | $424.12\pm184.33^{aA}$            | $419.07\pm 203.18^{aA}$         | $661.43\pm 255.91^{aA}$       | $521.32{\pm}185.60^{aA}$        | $859.61 \pm 272.55^{a A}$     | $977.0 \pm 324.5^{a AB}$  |
| A L                          | NDG | $498.13 \pm 32.47^{a A}$          | $713.33\pm151.80^{aA}$          | $768.00\pm90.19^{aA}$         | $819.87 \pm 126.07^{aA}$        | $552.80 \pm 72.05^{aA}$       | $549.73\pm93.07^{aA}$     |
| hiomose( a m <sup>-2</sup> ) | MDG | $236.93\pm13.69^{aB}$             | $248.26{\pm}21.82^{aB}$         | $241.60\pm 28.11^{aB}$        | $272.40{\pm}32.31^{aB}$         | $287.60 \pm 34.11^{a  A}$     | $258.40{\pm}15.37^{aA}$   |
|                              | SDG | $212.00\pm62.01^{a B}$            | $357.07\pm19.54^{bB}$           | $363.20\pm30.32^{bB}$         | $416.53\pm 27.72^{bcB}$         | $391.47\pm45.13^{bcA}$        | $499.20\pm34.58^{cA}$     |
|                              | EDG | $295.87{\pm}59.04^{aB}$           | $233.60{\pm}84.20^{aB}$         | $414.27\pm 28.54^{a B}$       | $354.40{\pm}23.63^{aB}$         | $505.33 \pm 36.46^{aA}$       | $391.87 \pm 94.77^{aA}$   |
|                              |     |                                   |                                 |                               |                                 |                               |                           |





## 492 Figure legends

- 493 Fig. 1. Locations of the study area and grassland.
- 494 Fig. 2. Experimental setup of control and fertilized treatments in different degraded grasslands. 10 50
- 495 represents 10, 20, 30, 40, and 50 g N  $m^{-2} y^{-1}$ , respectively. A, B, and C indicate the three replicates.
- 496 Fig. 3. Soil respiration rate of degraded grasslands in control (red circle), 10 g N m<sup>-2</sup> y<sup>-1</sup> (green circle),
- $497 \qquad 20 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (yellow triangle), } 30 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (white triangle), } 40 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), and } 50 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ g}^{-1} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ y}^{-1} \text{ (black square), } 10 \text{ g N } m^{-2} \text{ g}^{-1} \text{ g$
- 498 g N m<sup>-2</sup> y<sup>-1</sup> (blue square) fertilized plots during the growing seasons of 2012 and 2013.
- 499 Fig. 4. Comparison of growing season soil respiration between the control and fertilized treatments in
- 500 2012 and 2013. Significant differences between N treatments are indicated by different letters.
- 501 Fig. 5. Comparison of growing-season soil respiration between different degraded grasslands in 2012
- 502 (yellow) and 2013 (green). Significant differences between degradation levels are indicated by different
- 503 letters. EDG = extremely degraded grassland, SDG = severely degraded grassland, MDG = moderately
- 504 degraded grassland, NDG = non-degraded grassland.
- 505 Fig. 6. Relationship between the proportion of change of total aboveground biomass and the proportion
- 506 of change of growing season soil respiration. EDG = extremely degraded grassland, SDG = severely
- 507 degraded grassland, MDG = moderately degraded grassland, NDG = non-degraded grassland.



































