

1 **Seasonal changes in the D/H ratio of fatty acids of pelagic**
2 **microorganisms in the coastal North Sea**

3 Sandra Mariam Heinzelmann^{#1}, Nicole Jane Bale¹, Laura Villanueva¹, Danielle Sinke-Schoen¹,
4 Catharina Johanna Maria Philippart^{2,3}, Jaap Smede Sinnenhe Damsté^{1,4}, Stefan Schouten^{1,4},
5 Marcel Teunis Jan van der Meer¹

6 [1] Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands
7 Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The
8 Netherlands

9 [2] Department of Coastal Systems Sciences, NIOZ Royal Netherlands Institute for Sea
10 Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands

11 [3] Utrecht University, Faculty of Geosciences, Department of Physical Geography, Coastal
12 Processes, P.O. box 80.115, 3508 TC Utrecht, The Netherlands

13 [4] Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Geochemistry,
14 P.O. Box 80.021, 3508 TA Utrecht, The Netherlands

15 [#]corresponding author: sandra.m.heinzelmann@gmail.com

16

17 Running title: Fatty acid D/H ratio of coastal microbial communities

18 Keywords: metabolism, fatty acids, photoautotrophs, heterotrophs, algal bloom, 16S rRNA
19 gene amplicon pyrosequencing, bacterial diversity, coastal environment, hydrogen isotopes

20

21 **Abstract**

22 Culture studies of microorganisms have shown that the hydrogen isotopic composition of fatty
23 acids depends on their metabolism, but there are only few environmental studies available to
24 confirm this observation. Here we studied the seasonal variability of the deuterium/hydrogen
25 (D/H) ratio of fatty acids in the coastal Dutch North Sea and compared this with the diversity
26 of the phyto- and bacterioplankton. Over the year, the stable hydrogen isotopic fractionation
27 factor ϵ between fatty acids and water ($\epsilon_{\text{lipid/water}}$) ranged between -172 ‰ and -237 ‰, the algal-
28 derived polyunsaturated fatty acid *n*C20:5 generally being the most D-depleted (-177 ‰ to -
29 235 ‰) and *n*C18:0 the least D-depleted fatty acid (-172 ‰ to -210 ‰). The in general highly
30 D-depleted *n*C20:5 is in agreement with culture studies, which indicates that photoautotrophic
31 microorganisms produce fatty acids which are significantly depleted in D relative to water. The
32 $\epsilon_{\text{lipid/water}}$ of all fatty acids showed a transient shift towards increased fractionation during the
33 spring phytoplankton bloom, indicated by increasing chlorophyll *a* concentrations and relative
34 abundance of the *n*C20:5 PUFA, suggesting increased contributions of photoautotrophy. Time
35 periods with decreased fractionation (less negative $\epsilon_{\text{lipid/water}}$ values) can potentially be explained
36 by an increased contribution of heterotrophy to the fatty acid pool. Our results show that the
37 hydrogen isotopic composition of fatty acids is a promising tool to assess the community
38 metabolism of coastal plankton potentially in combination with the isotopic analysis of more
39 specific biomarker lipids.

40 **1. Introduction**

41 The hydrogen isotopic composition of fatty acids of microorganisms has been shown to depend
42 on different factors like metabolism, salinity, biosynthetic pathways, growth phase and
43 temperature (Dirghangi and Pagani, 2013; Fang et al., 2014; Heinzelmann et al., 2015a;
44 Heinzelmann et al., 2015b; Zhang et al., 2009a; Zhang et al., 2009b). While most of these factors
45 lead to relatively small variations in the deuterium to hydrogen (D/H) ratio of fatty acids (10-

46 20 ‰), differences in the central metabolism of microorganisms have a much more pronounced
47 effect (Zhang et al., 2009a). Both photo- and chemoautotrophs produce fatty acids depleted in
48 D compared to growth water with the stable hydrogen isotopic fractionation factor ϵ between
49 the *n*C16:0 fatty acid, the most commonly occurring fatty acid in microorganisms, and water
50 ($\epsilon_{\text{lipid/water}}$) ranging between -160 ‰ to -220 ‰ and -250 ‰ and -400 ‰, respectively (Campbell
51 et al., 2009; Chikaraishi et al., 2004; Heinzelmann et al., 2015a; Heinzelmann et al., 2015b;
52 Sessions et al., 2002; Valentine et al., 2004; Zhang et al., 2009a; Zhang and Sachs, 2007). In
53 contrast, heterotrophs produce *n*C16:0 fatty acid with either a relatively minor depletion or an
54 enrichment in D compared to the growth water with $\epsilon_{\text{lipid/water}}$ values ranging between -150 ‰
55 and +200 ‰ (Dirghangi and Pagani, 2013; Fang et al., 2014; Heinzelmann et al., 2015a;
56 Heinzelmann et al., 2015b; Sessions et al., 2002; Zhang et al., 2009a). It has been speculated
57 that the differences in hydrogen isotopic composition of fatty acids produced by organisms
58 expressing different core metabolisms, i.e. heterotrophy and photo- and chemoautotrophy are
59 mainly due to the D/H ratio of the H added to nicotinamide adenine dinucleotide phosphate
60 (NADP⁺) and the hydrogen isotope fractionation associated with the reduction of NADP⁺ to
61 NADPH and is used during fatty acid biosynthesis (Zhang et al., 2009a). NADP⁺ is reduced to
62 NADPH during a number of different reactions in multiple different metabolic pathways (each
63 associated with different hydrogen isotopic fractionations) and is subsequently used as a major
64 source of hydrogen in lipid biosynthesis (Robins et al., 2003; Saito et al., 1980; Schmidt et al.,
65 2003).

66 Although the metabolism of a microorganism in pure culture is reflected by the D/H ratio of its
67 fatty acids, it is not clear if the D/H ratio of fatty acids from environmental microbial
68 communities can be used to assess the community ‘integrated’ core metabolisms and changes
69 therein in nature. Culture conditions rarely represent environmental conditions since cultures
70 are typically axenic and use a single substrate, they do not take into account microbial

71 interactions, which have been shown to affect the hydrogen isotopic composition of lipids
72 (Dawson et al., 2015) and they test a limited number of potential substrates, energy sources and
73 core metabolisms. Previous studies of environmental samples observed a wide range in the D/H
74 ratio of lipids in both the marine water column and sediment (Jones et al., 2008; Li et al., 2009),
75 suggesting inputs of organisms with a variety of metabolisms. Osburn et al. (2011) showed that
76 different microbial communities from various hot springs in Yellowstone National Park
77 produce fatty acids with hydrogen isotopic compositions in line with the metabolism expressed
78 by the source organism. The D/H ratio of specific fatty acids, which could be attributed to
79 microorganisms expressing a specific core metabolism, was within the range expected for that
80 metabolism. On the other hand, the D/H ratio of common or general fatty acids (e.g. *n*C16:0)
81 allowed for assessing the metabolism of the main contributors of these more general fatty acid,
82 but not necessarily the metabolism of the dominant community members (Osburn et al., 2011).
83 These first environmental results indicate the applicability of this new method, and clearly
84 indicates the limitation of looking only at general occurring fatty acids.

85 Here, we studied the seasonal variability of the hydrogen isotopic composition of fatty acids
86 from coastal North Sea water sampled from the jetty at the Royal Netherlands Institute for Sea
87 Research (NIOZ) in order to examine the relationship between hydrogen isotope fractionation
88 in fatty acids and the general metabolism of the microbial community. Time series studies have
89 been previously performed at the NIOZ jetty to determine phytoplankton and prokaryotic
90 abundances and composition (Alderkamp et al., 2006; Brandsma et al., 2012; Brussaard et al.,
91 1996; Philippart et al., 2010; Philippart et al., 2000; Pitcher et al., 2011; Sintes et al., 2013),
92 lipid composition (Brandsma et al., 2012; Pitcher et al., 2011), and chlorophyll *a* concentration
93 (Philippart et al., 2010). Typically, the spring bloom in the coastal North Sea is predominantly
94 comprised of *Phaeocystis globosa*, followed directly by a bloom of various diatom species, a
95 second moderate diatom bloom of *Thalassiosira* spp. and *Chaetoceros socialis* that occurs in

96 early summer and an autumn bloom is formed by *Thalassiosira* spp., *C. socialis*, cryptophytes
97 and cyanobacteria (Brandsma et al., 2012; Cadée and Hegeman, 2002). However the autumn
98 bloom seems to have weakened over the last years (Philippart et al., 2010). The abundance of
99 bacteria increases following the algal blooms and the bacteria are dominated by heterotrophs,
100 e.g. bacteria belonging to the *Bacteroidetes* (Alderkamp et al., 2006), using released organic
101 matter from declining phytoplankton blooms as carbon, nitrogen and phosphate sources. The
102 intact polar lipid (IPL) composition of the microbial community was shown to be composed
103 mainly of phospholipids, sulfoquinovosyldiacylglycerol and betaine lipids with a limited
104 taxonomic potential (Brandsma et al., 2012). The main source of those lipids was assumed to
105 be the eukaryotic plankton.

106 This well studied site should allow us to trace the shift from an environment dominated by
107 photoautotrophs during major phytoplankton blooms, towards an environment with a higher
108 abundance of heterotrophic bacteria following the end of the bloom (Brandsma et al., 2012).
109 These shifts in the community structure should be reflected in the D/H ratio of fatty acids. We,
110 therefore, analysed the D/H ratio of polar lipid derived fatty acids (PLFA) over a seasonal cycle
111 and compared this with phytoplankton composition data and abundance and information on the
112 bacterial diversity obtained by 16S rRNA gene amplicon sequencing.

113 **2. Material and Methods**

114 **2.1. Study site and sampling**

115 From September 2010 until December 2011 water samples were taken from the NIOZ sampling
116 jetty in the Marsdiep at the western entrance of the North Sea into the Wadden Sea at the island
117 of Texel (53°00'06" N 4°47'21" E). Surface water samples (depth max ±50 cm below surface)
118 were collected for suspended particulate matter (SPM) biweekly during high tide to ensure that
119 water sampled was from the North Sea.

120 For lipid analysis measured volumes of water (ca. 9-11 L) were filtered consecutively, without
121 pre filtration, through pre-ashed 3 and 0.7 μm pore size glass fibre filters (GF/F, Whatman; 142
122 mm diameter) and stored at -20 °C until lipid extraction. For DNA analysis approximately 1 L
123 seawater was filtered through a polycarbonate filter (0.2 μm pore size; 142 mm diameter;
124 Millipore filters) and stored at -80 °C until extraction.

125 Salinity measurements were done during the time of sampling with either an Aanderaa
126 Conductivity/Temperature sensor 3211 connected to an Aanderaa datalogger DL3634
127 (Aanderaa Data Instruments AS, Norway) or a Refractometer/Salinometer Endeco type 102
128 handheld (Endeco, USA).

129 For chlorophyll *a* measurements 500 mL sea water was filtered through a 47 mm GF/F filter
130 (0.7 μm pore size, Whatman, GE Healthcare Life Sciences, Little Chalfont, UK) and
131 immediately frozen in liquid nitrogen. Samples were thawed and homogenised with glass beads
132 and extracted with methanol. Chlorophyll *a* concentration was measured with a Dionex high-
133 performance liquid chromatograph (HPLC) (Philippart et al., 2010).

134 Water samples for salinity versus $\delta\text{D}_{\text{water}}$ calibration (see below) were sampled weekly between
135 March and September 2013 at high tide. Salinity was determined using a conductivity meter
136 (VWR EC300) calibrated to IAPSO standard seawater of salinities 10, 30, 35 and 37.

137 **2.2. Polar lipid derived fatty acids**

138 Filters were extracted for IPLs and eventually fatty acid analysis. The 0.7 μm filters did not
139 yield enough total lipid extract for analysis. Therefore, only fatty acids obtained from the 3 μm
140 filters were analysed. Due to fast clogging of the filters and a corresponding decrease of the
141 pore size (Sørensen et al., 2013), the 3 μm filters will most likely contain most of the
142 microorganisms present in North Sea water, although it cannot be excluded that the
143 microorganisms retained on the filter are biased towards a larger cell size. Freeze dried filters

144 were extracted via a modified Bligh-Dyer method (Bligh and Dyer, 1959; Rütters et al., 2002)
145 with methanol (MeOH)/dichloromethane (DCM)/phosphate buffer (2:1:0.8, vol/vol/vol) using
146 ultrasonication (Heinzelmann et al., 2014). Approximately 0.5 - 1 mg of the Bligh-Dyer extract
147 (BDE) was separated into a neutral and polar lipid fraction using silica column chromatography
148 (Heinzelmann et al., 2014). The BDE was added onto a DCM pre-rinsed silica column (0.5 g;
149 activated for 3 h at 150°C) and eluted with 7 mL of DCM and 15 mL of MeOH. The resulting
150 fractions were dried under nitrogen and stored at -20 °C. PLFAs were obtained via
151 saponification of the MeOH fraction with 1 N KOH in MeOH (96%). The samples were
152 refluxed at 140 °C for 1 h. Afterwards the pH was adjusted to 5 with 2 N HCl/MeOH (1/1),
153 bidistilled H₂O and DCM were added. The MeOH/H₂O layer was washed twice with DCM, the
154 DCM layers were combined and water removed using Na₂SO₄. The sample was dried under
155 nitrogen and stored in the fridge. The PLFAs were methylated with boron trifluoride-methanol
156 (BF₃-MeOH) for 5 min at 60 °C. Afterwards H₂O and DCM were added. The H₂O/MeOH layer
157 was washed three times with DCM, and potential traces of water were removed over a small
158 Na₂SO₄ column after which the DCM was evaporated under a stream of nitrogen. In order to
159 obtain a clean PLFA fraction for isotope analysis, the methylated extract was separated over an
160 aluminium oxide (Al₂O₃) column, eluting the methylated PLFAs with three column volumes of
161 DCM. For identification of the position of double bonds in unsaturated fatty acids, the
162 methylated PLFAs were derivatised with dimethyldisulfide (DMDS) (Nichols et al., 1986).
163 Hexane, DMDS and I₂/ether (60 mg/mL) were added to the fatty acids and incubated at 40 °C
164 overnight. After adding hexane, the iodine was deactivated by addition of a 5% aqueous solution
165 of Na₂S₂O₃. The aqueous phase was washed twice with hexane. The combined hexane layers
166 were cleaned over Na₂SO₄ and dried under a stream of nitrogen. The dried extracts were stored
167 at 4 °C.

168 **2.3. Fatty acid and hydrogen isotope analysis**

169 The fatty acid fractions were analysed by gas chromatography (GC) using an Agilent 6890 GC
170 with a flame ionization detector (FID) using a fused silica capillary column (25 m x 320 μ m)
171 coated with CP Sil-5 (film thickness 0.12 μ m) with helium as carrier gas. The temperature
172 program was as follows: initial temperature 70 °C, increase of temperature to 130 °C with 20
173 °C min⁻¹, and then to 320 °C with 4 °C min⁻¹ which was kept for 10 min. Individual compounds
174 and double bond positions (see above) were identified using GC/mass spectrometry (MS)
175 (Schouten et al., 1998).

176 Hydrogen isotope analysis of the fatty acid fraction was performed by GC thermal conversion
177 (TC) isotope ratio monitoring (ir) MS using an Agilent 7890 GC connected via Thermo GC
178 Isolink and Conflo IV interfaces to a Thermo Delta V MS according to Chivall et al. (2014).
179 Samples were injected onto an Agilent CP-Sil 5 CB column (25 m x 0.32 mm ID; 0.4 μ m film
180 thickness; He carrier gas, 1.0 mL min⁻¹). The GC temperature program was 70 °C to 145 °C at
181 20 °C min⁻¹, then to 320 °C at 4 °C min⁻¹ where it was kept for 15 min. Eluting compounds
182 were converted to H₂ at 1420°C in an Al₂O₃ tube before introduction into the mass spectrometer.
183 The H³⁺ correction factor was determined daily and was constant at 5.3±0.2. A set of standard
184 *n*-alkanes with known isotopic composition (Mixture B prepared by Arndt Schimmelmann,
185 University of Indiana) was analyzed daily prior to analyzing samples in order to monitor the
186 system performance. Samples were only analyzed when the *n*-alkanes in Mix B had an average
187 deviation from their off-line determined value of <5 %. An internal standard, squalane (δ D = -
188 170 ‰) was co-injected with each fatty acid sample fraction in order to monitor the accuracy
189 of the measurements over time with δ D = -164±4 ‰. The δ D of the individual fatty acids was
190 measured in duplicates and corrected for the added methyl group (Heinzelmann et al., 2015b).
191 δ D of water samples was determined by elemental analysis (EA)/TC/irMS according to Chivall
192 et al. (2014).

193 **2.4. Phytoplankton abundance and diversity**

194 Phytoplankton samples were preserved with acid Lugol's iodine, and cells were counted with a
195 Zeiss inverted microscope using 3 mL counting chambers. Most photoautotrophic
196 microorganisms were identified to species level, but some were clustered into taxonomic and
197 size groups (Philippart et al., 2000). For each sampling date in the period from September 2010
198 to December 2011, the densities of the most abundant phytoplankton species or species' groups
199 were calculated. The three most dominant phytoplankton species (or groups) together
200 comprised, on average, more than 60% of the total numbers of marine phytoplankton in the
201 Marsdiep during this study period.

202 **2.5. DNA extraction**

203 The 0.2 μ m polycarbonate filters were defrosted and cut into small pieces with sterile scissors
204 and then transferred into a 50 mL falcon tube. Filter pieces were lysed by bead-beating with \sim 1
205 g of sterile 0.1 mm zirconium beads (Biospec, Bartlesville, OK) in 10 mL RLT buffer (Qiagen)
206 and 100 μ L β -mercaptoethanol for 10 min. 1/60 volume RNase A (5 μ g/ μ L) was added to the
207 lysate, incubated for 30 min at 37 °C and afterwards cooled down for 5 min on ice. The lysate
208 was purified with the DNeasy Blood and Tissue kit (Qiagen, Hilden). DNA was eluted with 3x
209 100 μ L AE buffer, the eluates pooled and reconcentrated. DNA quality and concentration was
210 estimated by Nanodrop (Thermo Scientific, Waltham, MA) quantification.

211 **2.6. 16S rRNA gene amplicon sequencing and analysis**

212 The general bacterial diversity was assessed by 16S rRNA gene amplicon pyrotag sequencing.
213 The extracted DNA was quantified fluorometrically with Quant-iTTM PicoGreen[®] dsDNA
214 Assay Kit (Life Technologies, The Netherlands).

215 PCR reactions were performed with the universal (Bacteria and Archaea) primers S-D-Arch
216 0519-a-S-15 (5'-CAG CMG CCG CGG TAA-3') and S-D-Bact-785-a-A-21 (5'-GAC TAC
217 HVG GGT ATC TAA TCC-3') (Klindworth et al., 2012) adapted for pyrosequencing by the
218 addition of sequencing adapters and multiplex identifier (MID) sequences. To minimize bias
219 three independent PCR reactions were performed containing: 16.3 µL H₂O, 6 µL HF Phusion
220 buffer, 2.4 µL dNTP (25 mM), 1.5 µL forward and reverse primer (10 µM; each containing an
221 unique MID tail), 0.5 µL Phusion Taq and 2 µL DNA (6 ng/µL). The PCR conditions were
222 following: 98 °C, 30 s; 25× [98 °C, 10 s; 53 °C, 20 s; 72 °C, 30 s]; 72 °C, 7 min and 4 °C, 5 min.

223 The PCR products were loaded on a 1% agarose gel and stained with SYBR® Safe (Life
224 Technologies, The Netherlands). Bands were excised with a sterile scalpel and purified with
225 Qiaquick Gel Extraction Kit (QIAGEN, Valencia, CA) following the manufacturer's
226 instructions. PCR purified products were quantified with Quant-iT™ PicoGreen® dsDNA
227 Assay Kit (Life Technologies, The Netherlands). Equimolar concentrations of the barcoded
228 PCR products were pooled and sequenced on GS FLX Titanium platform (454 Life Sciences)
229 by Macrogen Inc. Korea.

230 Samples were analyzed using the QIIME pipeline (Caporaso et al., 2010). Raw sequences were
231 demultiplexed and then quality-filtered with a minimum quality score of 25, length between
232 250–350 bp, and allowing maximum two errors in the barcode sequence. Sequences were then
233 clustered into operational taxonomic units (OTUs, 97% similarity) with UCLUST (Edgar,
234 2010). Reads were aligned to the Greengenes Core reference alignment (DeSantis et al., 2006)
235 using the PyNAST_algorithm (Caporaso et al., 2010). Taxonomy was assigned based on the
236 Greengenes taxonomy and a Greengenes reference database (version 12_10) (McDonald et al.,
237 2012; Werner et al., 2012). Representative OTU sequences assigned to the specific taxonomic
238 groups were extracted through classify.seqs and get.lineage in Mothur (Schloss et al., 2009) by
239 using the Greengenes reference and taxonomy files. The 16S rRNA gene amplicon reads (raw

240 data) have been deposited in the NCBI Sequence Read Archive (SRA) under BioProject number
241 PRJNA293285.

242 **2.7. Phylogenetic analyses**

243 The phylogenetic affiliation of the 16S rRNA gene sequences was compared to release 119 of
244 the Silva NR SSU Ref database (<http://www.arb-silva.de/>; Quast, 2012) using the ARB
245 software package (Ludwig et al., 2004). Sequences were added to the reference tree supplied
246 by the Silva database using the ARB Parsimony tool.

247 **3. Results**

248

249 **3.1. Chlorophyll *a* concentration and phytoplankton abundance and diversity**

250 Chlorophyll *a* concentrations ranged between 0.4 and 22.2 $\mu\text{g L}^{-1}$ (Fig. 1; Table S1). During
251 late autumn, winter and early spring concentrations were low at $\sim 4 \mu\text{g L}^{-1}$. A peak in the
252 chlorophyll *a* concentration occurred in the beginning of April and values stayed relatively high
253 during this month, indicative of the spring bloom. Subsequently, the chlorophyll *a* concentration
254 decreased again, reaching pre-bloom levels and stayed relatively constant thereafter.

255 Phytoplankton diversity and abundance was determined using light microscopy and the two to
256 three most abundant phytoplankton species were identified and counted (Table S2). The
257 majority of the phytoplankton was composed of *Phaeocystis globosa*, diatoms and
258 cyanobacteria (Fig. 2), with the spring bloom primarily being made up of *P. globosa*. The
259 highest abundance of diatoms was also during spring, while the cyanobacteria reached the
260 highest abundance in the beginning of the sampling period from autumn until late winter and
261 again during summer.

262 **3.2. Bacterial diversity**

263 To assess bacterial diversity, 16S rRNA gene amplicon sequencing was performed on
264 approximately half of the SPM samples (Table S3a+b).

265 The bacteria detected consisted mainly of members of *Actinobacteria*, *Bacteriodes*,
266 *Planctomycetes*, α -*Proteobacteria*, β -*Proteobacteria*, γ -*Proteobacteria* and *Verrucomicrobia*
267 (Fig. 3; Table S3a). The majority of the reads belonged to the orders of the *Flavobacteriales*,
268 *Rhodobacteriales*, *Rickettsiales*, *Alteromonadales* and *Oceanospirillales*. The *Flavobacteriales*
269 clade were one of the main contributors (12 to 32 %) to the total bacteria reads with a maximum
270 from beginning of April until the end of May. The percentage of reads attributed to the
271 *Flavobacteriales* decreased during summer and early autumn. Sequence reads affiliated to the
272 *Rhodobacteriales* (6 to 12 %) and *Rickettsiales* (3 to 17 %) were the most represented within
273 the α -*Proteobacteria*. *Alteromonadales* reads made up between 9 and 17 % of all bacteria reads
274 and the percentage of *Oceanospirillales* reads were between 3 and 12 % of the total bacteria
275 reads (Fig. 3; Table S3b).

276 For a more accurate taxonomic classification of the bacterial groups, sequence reads of the
277 *Bacteriodes*, α -*Proteobacteria* and γ -*Proteobacteria* were extracted from the dataset and a
278 phylogenetic tree was constructed (Fig. S1-S3a+b). Within the *Flavobacteriales*
279 (*Bacteroides*) the majority of the reads fell either within the *Cryomorphaceae* or the
280 *Flavobacteriaceae* with sequences clustering within *Fluviicola* and *Crocinitomix*,
281 *Flavobacterium* and *Tenacibaculum*, respectively. Within the *Rhodobacterales* (α -
282 *Proteobacteria*) most of the reads belonged to *Rhodobacteraceae* and sequences within this
283 family were closely related to the genus *Octadecabacter*. Within the *Rickettsiales* most of the
284 reads were affiliated to the *Pelagibacteraceae* (SAR11 cluster). The majority of the γ -
285 *Proteobacteria* reads were classified within the *Alteromonadales* and *Oceanospirillales*. The

286 *Alteromonadales* reads and sequences fell within the lineage of the uncultured *HTCC2188*-
287 isolate and *OM60*-clade and various members of the *Alteromonadaceae*-family. The
288 *Halomonadaceae* family comprised most of the *Oceanospirillales* reads and additionally
289 sequences clustered with various members of the *Oceanospirillaceae*.

290 **3.3. Fatty acid distribution in North Sea SPM**

291 Polar lipid derived fatty acids were comprised of *n*C14:0, *n*C16:1 ω 7, *n*C16:0, *n*C18:0, the
292 polyunsaturated fatty acid (PUFA) *n*C20:5, and various unsaturated *n*C18 fatty acids (Fig. 4;
293 Table S4). The *n*C14:0 fatty acid followed a seasonal cycle with the lowest relative abundance
294 during winter, and the highest from June to August (Fig. 4a). The *n*C16:0 fatty acid was the
295 dominant fatty acid (21–38 %) with no clear seasonal pattern (Fig. 4c). The *n*C16:1 fatty acid
296 was the next most abundant fatty acid (13–35 %) with a maximum from March to April (Fig.
297 4b). Various unsaturated *n*C18:x fatty acids were observed throughout the season. Due to low
298 abundance of the individual fatty acids and co-elutions the double bond positions could not be
299 determined. These unsaturated fatty acids made up 9–30 % of all fatty acids (Fig. 4d). The
300 *n*C18:0 fatty acid had relative abundances varying between 2–18 % with the highest relative
301 abundance during autumn months (10–18 %) and the lowest during spring, 2–6 % (Fig. 4e). A
302 *n*C20:5 PUFA (Fig. 4f) was observed in most samples with the highest relative abundance
303 during March and April (11–14 %) and early August (18 %). Trace amounts of *n*C15:0, *i*C15:0
304 and *ai*C15:0 fatty acids were also detected.

305 **3.4. Hydrogen isotopic composition of fatty acids**

306 δ D values of *n*C14:0, *n*C16:1 ω 7, *n*C16:0, *n*C18:0 and *n*C20:5 fatty acids were obtained for most
307 of the samples (Table S5). The D/H ratio of the other fatty acids could not be determined with
308 sufficient accuracy due to either incomplete separation or low abundance.

309 In general, *n*C14:0 and *n*C20:5 were the most depleted fatty acids with δ D values ranging
310 between -198 to -241 ‰ and -180 to -241 ‰, respectively. The *n*C18:0 was typically the fatty
311 acid with the highest δ D values ranging between -175 to -212 ‰ (Table S5).

312 **4. Discussion**

313 **4.1. Hydrogen isotopic fractionation expressed in fatty acids**

314 For the proper assessment of the impact of metabolism on the hydrogen isotopic composition
315 of fatty acids the hydrogen isotopic fractionation of the fatty acids versus water is required
316 ($\epsilon_{\text{lipid/water}}$). For this, the δ D of the water (δ D_{water}) at the time of sampling is needed. However,
317 at the time of sampling of the SPM unfortunately no water samples were taken and preserved
318 for δ D analysis. Therefore, we used an alternative approach to estimate δ D_{water} using the salinity
319 of the water measured at the time of sampling. A strong correlation between salinity and δ D_{water}
320 is generally observed in marine environments since both parameters depend on evaporation,
321 precipitation and freshwater influx (Craig and Gordon, 1965; Mook, 2001). To establish a local
322 salinity - δ D_{water} correlation, water samples were collected weekly during high tide (March to
323 September 2013) and salinity and δ D_{water} were measured. Indeed, a strong correlation between
324 salinity and δ D_{water} is observed ($R^2=0.68$; Fig. S4). Using this correlation and the salinities
325 measured, we reconstructed δ D_{water} values at the time of sampling of the biomass (Table 1). The
326 error in the estimate of δ D_{water} values resulting from this approach is approximately 1.5 ‰,
327 which is less than the error in the determination of δ D of the fatty acids (1-12 ‰) and minor
328 compared to the entire range in fatty acid δ D (-174 to -241 ‰) and $\epsilon_{\text{lipid/water}}$ (-173 to -237 ‰).

329 All fatty acids were depleted in D compared to water with the fractionation factor $\epsilon_{\text{lipid/water}}$
330 ranging from -173 to -237 ‰, all following a similar seasonal trend with the highest degree of
331 fractionation during spring to early summer, and early autumn (Fig. 5; Table 1). The lowest

332 degree of fractionation (most positive $\varepsilon_{\text{lipid/water}}$ values) was in general during late autumn and
333 the winter months.

334 **4.2. Source affects the hydrogen isotopic composition of individual fatty acids**

335 The *n*C20:5 PUFA is the most specific fatty acid detected in North Sea SPM and is exclusively
336 produced by algae (Carrie et al., 1998). Here the *n*C20:5 PUFA is generally one of the most D-
337 depleted fatty acids (Fig. 5), which is in agreement with culture studies that show that
338 photoautotrophic microorganisms produce fatty acids that are depleted in D with $\varepsilon_{\text{lipid/water}}$ values
339 between -160 and -220 ‰ (Heinzelmann et al., 2015b and references therein), while
340 heterotrophic microorganisms on the other hand produce fatty acids with $\varepsilon_{\text{lipid/water}}$ values
341 ranging between -150 to +200 ‰ (Heinzelmann et al., 2015b and references therein).
342 Furthermore, its concentration increased at the time of the phytoplankton bloom (Fig. 4).
343 Interestingly, after the phytoplankton bloom, when the abundance of pelagic algae had
344 decreased (Fig. 4), it became more enriched in D (Fig. 5). This enrichment might be due to
345 changes in the relative contribution of source organisms. In diatoms *n*C20:5 PUFA can be one
346 of the most abundant fatty acids, while *Phaeocystis* produces it in minor amounts only (Table
347 S6). During the spring bloom both organisms will contribute to the fatty acid pool, while
348 afterwards diatoms are the main source (Fig. 2; Table S2). A changing contribution from
349 different species could potentially affect the hydrogen isotopic composition of a fatty acid even
350 if the source organisms are all photoautotrophic phytoplankton. For instance, colony forming
351 algae such as *Eudorina unicocca* and *Volvox aureus*, have been shown to fractionate much less
352 against D than other algae (Zhang et al., 2007; Heinzelmann et al., 2015b). Indeed, *Phaeocystis*,
353 although belonging to a different phylum, is also a colony forming algae. However, if this would
354 be the reason for the changing D content of the *n*C20:5 PUFA following the spring bloom it
355 would then be expected to become more D depleted with a reduced contribution from
356 *Phaeocystis*, not a D enriched. A potential reason for the relatively D enriched *Phaeocystis*

357 lipids could be excretion of large amounts of D depleted organic matter, leading directly or
358 indirectly, through the isotopic composition of cell water, to D enriched lipids (Sachs et al.,
359 2016), as has been observed for colony forming algae. Increased organic matter excretion by
360 phytoplankton at the end of the bloom could therefore be another mechanism explaining the D
361 enrichment of the *n*C20:5 PUFA. Another possible reason could be that after the bloom and due
362 to nutrient limitation, phytoplankton hypothetically might use more storage products potentially
363 leading to an increased production of NADPH via other pathways than photosynthesis. The
364 NADPH produced by photoautotrophs via photosystem I is depleted in D (Zhang et al., 2009a),
365 while NADPH produced via the pentose phosphate (OPP) pathway and the tricarboxylic acid
366 (TCA) cycle is relatively enriched in D (Heinzelmann et al., 2015b; Zhang et al., 2009a). The
367 utilization of storage products would lead to an increased reduction of NADP⁺ to NADPH via
368 both the OPP pathway and the TCA cycle leading to more positive $\varepsilon_{\text{lipid/water}}$ values of the *n*C20:5
369 PUFA after the bloom. In batch culture with increasing nutrient limitation fatty acids of algae
370 became enriched in D with increasing age of the culture (Heinzelmann et al., 2015b) potentially
371 due to a shift in the origin of NADPH or the excretion of organic matter or a combination of
372 multiple factors.

373 Of all other fatty acids *n*C14:0 was generally the most D-depleted fatty acid, possibly suggesting
374 a higher contribution of photoautotrophic organisms to this fatty acid. However, it has been
375 reported that fatty acids in general seem to become more enriched in D with chain length both
376 in cultures and in environmental samples which might play a minor role here as well (Jones et
377 al., 2008; Campbell et al., 2009; Osburn et al., 2011). The quite similar $\varepsilon_{\text{lipid/water}}$ values of
378 *n*C16:0 (-179 to -224 ‰) and *n*C16:1 (-173 to -215 ‰) suggest similar sources for the two fatty
379 acids. The least negative $\varepsilon_{\text{lipid/water}}$ values for *n*C18:0 suggest that the sources of this fatty acid
380 might differ from the other fatty acids i.e. with a higher contribution of heterotrophs compared
381 to the other fatty acids. Alternatively, as discussed above fatty acids become more enriched in

382 D with increasing chain length both in cultures and environmental samples (Jones et al., 2008;
383 Campbell et al., 2009; Osburn et al., 2011) which could be part of the reason why the *n*C18:0
384 is relatively enriched in D.

385 Fatty acids profiles of representatives of most members of the phytoplankton and bacterial
386 community observed at our site have been previously reported (Table S6) and can be used to
387 assess the main sources of the different fatty acid pools. The main bacterial contributors to the
388 *n*C16:0 and *n*C16:1 ω 7 fatty acids are most likely members of the *Alteromonadales* and the
389 *Halomonadaceae*, while the majority of bacterial contributors to the *n*C14:0 and *n*C18:0 fatty
390 acid are derived from the *Puniceicoccales* (Table S6). Both the *Flavobacteriales* and the
391 *Rhodobacteriaceae*, which make up a large part of the total bacteria reads, will hardly contribute
392 to the measured isotopic signal as they have been reported to produce only traces of *n*C14:0,
393 *n*C16:0, *n*C16:1 ω 7 or *n*C18:0 fatty acids (Table S6). The observed phytoplankton species are
394 main contributors to the *n*C14:0, *n*C16:0 and *n*C16:1 ω 7 fatty acid pools, but contribute
395 relatively little to the *n*C18:0 fatty acid pools. *Phaeocystis* produces mainly the *n*C14:0 and
396 *n*C16:0 fatty acids (Hamm and Rousseau, 2003; Nichols et al., 1991).

397 Overall, the majority of the *n*C14:0 fatty acid pool will likely be predominately derived from
398 photoautotrophs (Table S6), which potentially explains why the *n*C14:0 is almost always the
399 most depleted fatty acid. The *n*C18:0 fatty acid on the other hand, will be largely derived from
400 heterotrophic bacteria (Table S6) resulting in more D enriched signal compared to that of the
401 *n*C14:0 fatty acid. However, the hydrogen isotopic composition of the *n*C18:0 fatty acid still
402 falls within the range for photoautotrophic organisms, albeit at the higher end, suggesting that
403 although it is only produced in minor amounts by phytoplankton, a relatively high abundance
404 of phytoplankton could still determine its isotopic composition.

405 None of the fatty acids measured in the North Sea SPM have $\epsilon_{\text{lipid/water}}$ values which fall in the
406 range of those predicted for chemoautotrophs (-264 to -345 ‰; Heinzelmann et al., 2015b and
407 references therein). This fits with the observation that sequence reads of chemoautotrophic
408 bacteria accounted for < 3 % of the total bacterial reads (Fig. 3; Table S3a+b), and thus it is
409 unlikely that this metabolism plays an important role in this environment.

410 **4.3. Linking seasonal changes of hydrogen isotope fractionation to changes in community**
411 **metabolism**

412 In general most fatty acids showed a similar seasonal trend with the most negative ϵ values in
413 spring and the most positive ϵ values in the winter (Fig. 5). In order to assess the dominant
414 metabolism of the whole microbial community we calculated a weighted average ϵ of all
415 measured fatty acids apart from the specific *n*C20:5 PUFA. The weighted average $\epsilon_{\text{lipid/water}}$
416 ($\epsilon_{\Sigma\text{FA}}$) followed the same seasonal trend as the $\epsilon_{\text{lipid/water}}$ values of the individual fatty acids (Fig.
417 1+5), and ranged between -180 and -225 ‰ with an average of -199 ‰.

418 Compared to the chlorophyll *a* concentration, the $\epsilon_{\Sigma\text{FA}}$ followed an opposite seasonal trend i.e.
419 when the chlorophyll *a* concentration increased in early April, $\epsilon_{\Sigma\text{FA}}$ decreased (Fig. 5). The
420 chlorophyll *a* maximum in April-May indicates a spring bloom (Fig. 1), which is known to
421 occur annually in North Sea coastal waters (Brandsma et al., 2012; Philippart et al., 2010) and
422 corresponds with a shift towards more negative values for $\epsilon_{\Sigma\text{FA}}$, as well as a high abundance of
423 the algal-derived *n*C20:5 PUFA (Fig. 4). It is likely that at least during the spring bloom the
424 majority of the fatty acids are derived from the dominant algae, i.e. *Phaeocystis* and diatoms,
425 which make up the majority of the bloom, leading to a D depleted signal. Thus, the observation
426 that the value of $\epsilon_{\Sigma\text{FA}}$ was more negative during the spring bloom when the environment is
427 dominated by photoautotrophic microorganisms (Fig. 3) fits with an increased contribution by
428 photoautotrophs relative to heterotrophic microorganisms to the fatty acid pool. At the end of

429 the bloom more positive $\varepsilon_{\Sigma FA}$ values were observed, which is in agreement with an increased
430 abundance of heterotrophic bacterioplankton in previous studies (Sintes et al., 2013), living on
431 released organic material (Alderkamp et al., 2006). This fits well with previous observations by
432 Brandsma et al. (2012) who studied both the phytoplankton and bacterial communities during
433 a period of twelve months. Cell counts contained in their study showed that the bacterial cell
434 counts were lowest during the spring bloom, increased right after and stayed more or less stable
435 throughout the rest of the sampling period. Phytoplankton cell counts on the other hand were
436 highest during the bloom and dropped extremely afterwards with only the cyanobacteria cell
437 counts increasing slightly in late summer/early autumn. At the same time they showed that in
438 general the bacteria cell count was ten times higher than the phytoplankton cell count. This
439 suggests that the whole environment after the bloom might be dominated by heterotrophic
440 bacteria. The relative stability of the system throughout the last decades (Philippart et al., 2000)
441 suggests that the situation might have been similar during the sampling period described here.

442 Thus, $\varepsilon_{\Sigma FA}$ values reflect a mixed signal derived from mainly photoautotrophic and, to a lesser
443 extent, heterotrophic microorganisms. Nevertheless, $\varepsilon_{lipid/water}$ values for all fatty acids remain
444 in the range of photoautotrophic metabolism (Heinzelmann et al., 2015b and references therein),
445 indicating that, overall, the fatty acids in this coastal seawater are mostly derived from
446 phototrophic organisms. This is in accordance with the assumption that IPLs (containing fatty
447 acids) in coastal North Sea waters over the annual cycle were predominantly derived from
448 phytoplankton (Brandsma et al., 2012). Our results show that it is possible to study whole
449 community core metabolism in a natural environment by determining the weighted average D/H
450 ratio of all fatty acids.

451 **5. Conclusion**

452 A seasonal study of fatty acids derived from the coastal Dutch North Sea shows that all fatty
453 acids are depleted in D with δD ranging between -174 and -241 ‰. The most negative values
454 were observed during the spring bloom, when the biomass is dominated by photoautotrophic
455 microorganisms. The subsequent higher relative contribution of heterotrophs to the general fatty
456 acid pools leads to shift in $\varepsilon_{\text{lipid/water}}$ towards more positive values by up to 20 ‰. This shift
457 towards more positive values is in agreement with observations from culture studies where
458 heterotrophic organisms fractionate much less or even opposite to photoautotrophic organisms,
459 although we cannot exclude the possibility of nutrient limitation affecting phytoplankton
460 growth, leading to a shift in NADPH origin or excretion of organic matter, for instance, which
461 could also affect the hydrogen isotope signal. This study confirms that hydrogen isotopic
462 fractionation as observed in general fatty acids can be used to study the core metabolism of
463 complex environments and to track seasonal changes therein. The combination of hydrogen
464 isotope analysis of general fatty acids with those of more specific biomarker lipids might help
465 further improve the assessment of core metabolisms in present and past environments.

466 **Data availability**

467 Data is available on Pangea under doi:10.1594/PANGAEA.859031

468 **Author Contribution**

469 N.J. Bale helped by providing samples and helped with sampling; L. Villanueva helped with
470 carrying out sequencing experiments and analysis of subsequent data; D. Sinke-Schoen helped
471 with measuring the hydrogen isotopic composition of North Sea water samples; C. J. M.
472 Philippart provided chlorophyll *a* and phytoplankton data; J. S. Sinninghe Damsté, S. Schouten
473 and M. T. J. van der Meer helped design experiments and contributed to the manuscript as

474 supervisors of S.M. Heinzelmann; S.M. Heinzelmann prepared the manuscript with
475 contributions of all co-authors.

476

477 **Acknowledgment**

478 The authors would like to thank the editor, Alex Sessions and the two anonymous reviewers for
479 their constructive comments. We thank also Y. A. Lipsewers, E. Svensson and K. K. Sliwinska
480 for their help with sampling, E. Wagemaakers for providing salinity data, M. Veenstra and A.
481 van den Oever for assistance with the phytoplankton sampling and analyses, and M. Verweij
482 for assistance with the GC-MS measurements.. MvdM was funded by the Dutch Organisation
483 for Scientific Research (NWO) through a VIDI grant.

484 **References**

485 Alderkamp, A. C., Sintes, E., and Herndl, G. J.: Abundance and activity of major groups of
486 prokaryotic plankton in the coastal North Sea during spring and summer, *Aquat. Microb. Ecol.*,
487 45, 237-246, 10.3354/ame045237, 2006.

488 Bligh, E. G., and Dyer, W. J.: A rapid method of total lipid extraction and purification, *Can J
489 Biochem Physiol*, 37, 911-917, 10.1139/o59-099, 1959.

490 Brandsma, J., Hopmans, E. C., Philippart, C. J. M., Veldhuis, M. J. W., Schouten, S., and
491 Sinninghe Damsté, J. S.: Low temporal variation in the intact polar lipid composition of North
492 Sea coastal marine water reveals limited chemotaxonomic value, *Biogeosciences*, 9, 1073-
493 1084, 10.5194/bg-9-1073-2012, 2012.

494 Brussaard, C. P. D., Gast, G. J., van Duyl, F. C., and Riegman, R.: Impact of phytoplankton
495 bloom magnitude on a pelagic microbial food web, *Mar Ecol Prog Ser*, 144, 211-221,
496 10.3354/meps144211, 1996.

497 Cadée, G. C., and Hegeman, J.: Phytoplankton in the Marsdiep at the end of the 20th century;
498 30 years monitoring biomass, primary production, and *Phaeocystis* blooms, *J Sea Res*, 48, 97-
499 110, 10.1016/S1385-1101(02)00161-2, 2002.

500 Campbell, B. J., Li, C., Sessions, A. L., and Valentine, D. L.: Hydrogen isotopic fractionation
501 in lipid biosynthesis by H₂-consuming *Desulfobacterium autotrophicum*, *Geochim Cosmochim
502 Ac*, 73, 2744-2757, 10.1016/j.gca.2009.02.034, 2009.

503 Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K.,
504 Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D.,
505 Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder,
506 J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld,
507 J., and Knight, R.: QIIME allows analysis of high-throughput community sequencing data, *Nat
508 Methods*, 7, 335-336, 10.1038/nmeth.f.303, 2010.

509 Chikaraishi, Y., Suzuki, Y., and Naraoka, H.: Hydrogen isotopic fractionations during
510 desaturation and elongation associated with polyunsaturated fatty acid biosynthesis in marine
511 macroalgae, *Phytochemistry*, 65, 2293-2300, 10.1016/j.phytochem.2004.06.030, 2004.

512 Chivall, D., M'Boule, D., Sinke-Schoen, D., Sinninghe Damsté, J. S., Schouten, S., and van der
513 Meer, M. T. J.: The effects of growth phase and salinity on the hydrogen isotopic composition
514 of alkenones produced by coastal haptophyte algae, *Geochim Cosmochim Ac*, 140, 381-390,
515 10.1016/j.gca.2014.05.043, 2014.

516 Craig, H., and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean and the marine
517 atmosphere, in: *Stable Isotopes in Oceanographic Studies and Paleotemperatures*, edited by:
518 Tongiogi, E., Consiglio Nazionale Delle Ricerche, Laboratorio Di Geologia Nucleare, Pisa, 9-
519 130, 1965.

520 Dawson, K. S., Osburn, M. R., Sessions, A. L., Orphan, V. J.: Metabolic associations with
521 archaea drive shifts in hydrogen isotopic fractionation in sulfate-reducing bacterial lipids in
522 cocultures and methane seeps, *Geobiology*, 13.5, 462-477, 10.1111/gbi.12140, 2015

523 DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T.,
524 Dalevi, D., Hu, P., and Andersen, G. L.: Greengenes, a chimera-checked 16S rRNA gene
525 database and workbench compatible with ARB, *Appl Environ Microbiol*, 72, 5069-5072,
526 10.1128/aem.03006-05, 2006.

527 Dirghangi, S. S., and Pagani, M.: Hydrogen isotope fractionation during lipid biosynthesis by
528 *Tetrahymena thermophila*, *Org Geochem*, 64, 105-111, 10.1016/j.orggeochem.2013.09.007,
529 2013.

530 Edgar, R. C.: Search and clustering orders of magnitude faster than BLAST, *Bioinformatics*,
531 26, 2460-2461, 10.1093/bioinformatics/btq461, 2010.

532 Fang, J., Li, C., Zhang, L., Davis, T., Kato, C., and Bartlett, D. H.: Hydrogen isotope
533 fractionation in lipid biosynthesis by the piezophilic bacterium *Moritella japonica* DSK1, *Chem*
534 *Geol*, 367, 34-38, 10.1016/j.chemgeo.2013.12.018, 2014.

535 Hamm, C. E., and Rousseau, V.: Composition, assimilation and degradation of *Phaeocystis*
536 *globosa*-derived fatty acids in the North Sea, *J Sea Res*, 50, 271-283, 10.1016/s1385-
537 1101(03)00044-3, 2003.

538 Heinzemann, S. M., Bale, N. J., Hopmans, E. C., Sinninghe Damsté, J. S., Schouten, S., and
539 van der Meer, M. T. J.: Critical assessment of glyco- and phospholipid separation by using silica
540 chromatography, *Appl Environ Microbiol*, 80, 360-365, 10.1128/aem.02817-13, 2014.

541 Heinzemann, S. M., Chivall, D., M'Boule, D., Sinke-Schoen, D., Villanueva, L., Damsté, J. S.,
542 Schouten, S., and van der Meer, M. T. J.: Comparison of the effect of salinity on the D/H
543 ratio of fatty acids of heterotrophic and photoautotrophic microorganisms, *FEMS Microbiol*
544 *Lett*, 362, 10.1093/femsle/fnv065, 2015a.

545 Heinzelmann, S. M., Villanueva, L., Sinke-Schoen, D., Sininghe Damsté, J. S., Schouten, S.,
546 and van der Meer, M. T. J.: Impact of metabolism and growth phase on the hydrogen isotopic
547 composition of microbial fatty acids, *Front Microbiol*, 6, 1-11, 10.3389/fmicb.2015.00408,
548 2015b.

549 Jones, A. A., Sessions, A. L., Campbell, B. J., Li, C., and Valentine, D. L.: D/H ratios of fatty
550 acids from marine particulate organic matter in the California Borderland Basins, *Org*
551 *Geochem*, 39, 485-500, 10.1016/j.orggeochem.2007.11.001, 2008.

552 Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and Glöckner, F. O.:
553 Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation
554 sequencing-based diversity studies, *Nucleic Acids Res*, 10.1093/nar/gks808, 2012.

555 Li, C., Sessions, A. L., Kinnaman, F. S., and Valentine, D. L.: Hydrogen-isotopic variability in
556 lipids from Santa Barbara Basin sediments, *Geochim Cosmochim Ac*, 73, 4803-4823,
557 10.1016/j.gca.2009.05.056, 2009.

558 Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai,
559 T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S., Ginhart, A. W., Gross, O.,
560 Grumann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüßmann, R., May, M., Nonhoff, B.,
561 Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T.,
562 Bode, A., and Schleifer, K. H.: ARB: a software environment for sequence data, *Nucleic Acids*
563 *Res*, 32, 1363-1371, 10.1093/nar/gkh293, 2004.

564 McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A.,
565 Andersen, G. L., Knight, R., and Hugenholtz, P.: An improved Greengenes taxonomy with
566 explicit ranks for ecological and evolutionary analyses of bacteria and archaea, *ISMEJ*, 6, 610-
567 618, 10.1038/ismej.2011.139, 2012.

568 Mook, W.: Estuaries and the sea, in: Rozanski, K., Froehlich, K., Mook, W.G. (Eds.), Volume
569 III: Surface Water, UNESCO, Paris, 49-56, 2001.

570 Nichols, P. D., Guckert, J. B., and White, D. C.: Determination of monosaturated fatty acid
571 double-bond position and geometry for microbial monocultures and complex consortia by
572 capillary GC-MS of their dimethyl disulphide adducts, *J Microbiol Meth*, 5, 49-55,
573 10.1016/0167-7012(86)90023-0, 1986.

574 Nichols, P. D., Skerratt, J. H., Davidson, A., Burton, H., and McMeekin, T. A.: Lipids of
575 cultured *Phaeocystis pouchetii*: Signatures for food-web, biogeochemical and environmental
576 studies in Antarctica and the Southern ocean, *Phytochemistry*, 30, 3209-3214, 10.1016/0031-
577 9422(91)83177-M, 1991.

578 Osburn, M. R., Sessions, A. L., Pepe-Ranney, C., and Spear, J. R.: Hydrogen-isotopic
579 variability in fatty acids from Yellowstone National Park hot spring microbial communities,
580 *Geochim Cosmochim Ac*, 75, 4830-4845, 10.1016/j.gca.2011.05.038, 2011.

581 Philippart, C., van Iperen, J., Cadée, G., and Zuur, A.: Long-term field observations on
582 seasonality in chlorophyll-a concentrations in a shallow coastal marine ecosystem, the Wadden
583 Sea, *Estuaries and Coasts*, 33, 286-294, 10.1007/s12237-009-9236-y, 2010.

584 Philippart, C. J. M., Cadee, G. C., van Raaphorst, W., and Riegman, R.: Long-term
585 phytoplankton-nutrient interactions in a shallow coastal sea: Algal community structure,
586 nutrient budgets, and denitrification potential, *Limnol Oceanogr*, 45, 131-144, 2000.

587 Pitcher, A., Wuchter, C., Siedenberg, K., Schouten, S., and Sinninghe Damsté, J. S.:
588 Crenarchaeol tracks winter blooms of ammonia-oxidizing Thaumarchaeota in the coastal North
589 Sea, *Limnol Oceanogr*, 56, 2308-2318, 10.4319/lo.2011.56.6.2308, 2011.

590 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner,
591 F. O.: The SILVA ribosomal RNA gene database project: improved data processing and web-
592 based tools, *Nucleic Acids Res*, 10.1093/nar/gks1219, 2012.

593 Robins, R. J., Billault, I., Duan, J.-R., Guiet, S., Pionnier, S., and Zhang, B.-L.: Measurement
594 of ^2H distribution in natural products by quantitative ^2H NMR: An approach to understanding

595 metabolism and enzyme mechanism, Phytochem Rev, 2, 87-102,
596 10.1023/B:PHYT.0000004301.52646.a8, 2003.

597 Rüters, H., Sass, H., Cypionka, H., and Rullkötter, J.: Phospholipid analysis as a tool to study
598 complex microbial communities in marine sediments, J Microbiol Meth, 48, 149-160,
599 10.1016/s0167-7012(01)00319-0, 2002.

600 Sachs, J. P., Maloney, A. E., Gregersen, J., Paschall, C.: Effect of salinity on $^2\text{H}/^1\text{H}$ fractionation
601 in lipids from continuous cultures of the coccolithophorid *Emiliania huxleyi*, Geochim
602 Cosmochim Ac, 189, 96-109, 10.1016/j.gca.2016.05.041, 2016.

603 Saito, K., Kawaguchi, A., Okuda, S., Seyama, Y., and Yamakawa, T.: Incorporation of
604 hydrogen atoms from deuterated water and stereospecifically deuterium labeled nicotinamide
605 nucleotides into fatty acids with the *Escherichia coli* fatty acid synthetase system, Biochim
606 Biophys Acta, 618, 202-213, 1980.

607 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B.,
608 Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B.,
609 Thallinger, G. G., Van Horn, D. J., and Weber, C. F.: Introducing mothur: Open-source,
610 platform-independent, community-supported software for describing and comparing microbial
611 communities, Appl Environ Microbiol, 75, 7537-7541, 10.1128/aem.01541-09, 2009.

612 Schmidt, H.-L., Werner, R. A., and Eisenreich, W.: Systematics of ^2H patterns in natural
613 compounds and its importance for the elucidation of biosynthetic pathways, Phytochem Rev, 2,
614 61-85, 10.1023/B:PHYT.0000004185.92648.ae, 2003.

615 Schouten, S., Klein Breteler, W. C. M., Blokker, P., Schogt, N., Rijpstra, W. I. C., Grice, K.,
616 Baas, M., and Sinninghe Damsté, J. S.: Biosynthetic effects on the stable carbon isotopic
617 compositions of algal lipids: Implications for deciphering the carbon isotopic biomarker record,
618 Geochim Cosmochim Ac, 62, 1397-1406, 10.1016/S0016-7037(98)00076-3, 1998.

619 Sessions, A. L., Jahnke, L. L., Schimmelmann, A., and Hayes, J. M.: Hydrogen isotope
620 fractionation in lipids of the methane-oxidizing bacterium *Methylococcus capsulatus*, Geochim
621 Cosmochim Ac, 66, 3955-3969, 10.1016/s0016-7037(02)00981-x, 2002.

622 Sintes, E., Witte, H., Stodderegger, K., Steiner, P., and Herndl, G. J.: Temporal dynamics in the
623 free-living bacterial community composition in the coastal North Sea, FEMS Microbiol Ecol,
624 83, 413-424, 10.1111/1574-6941.12003, 2013.

625 Sørensen, N., Daugbjerg, N., and Richardson, K.: Choice of pores size can introduce artefacts
626 when filtering picoeukaryotes for molecular biodiversity studies, Microb Ecol, 65, 964-968,
627 10.1007/s00248-012-0174-z, 2013.

628 Vaezi, R., Napier, J. A., and Sayanova, O.: Identification and functional characterization of
629 genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular
630 microalgae, Marine Drugs, 11, 5116-5129, 10.3390/md11125116, 2013.

631 Valentine, D. L., Sessions, A. L., Tyler, S. C., and Chidthaisong, A.: Hydrogen isotope
632 fractionation during H₂/CO₂ acetogenesis: hydrogen utilization efficiency and the origin of
633 lipid-bound hydrogen, Geobiology, 2, 179-188, 10.1111/j.1472-4677.2004.00030.x, 2004.

634 Werner, J. J., Koren, O., Hugenholtz, P., DeSantis, T. Z., Walters, W. A., Caporaso, J. G.,
635 Angenent, L. T., Knight, R., and Ley, R. E.: Impact of training sets on classification of high-
636 throughput bacterial 16s rRNA gene surveys, ISMEJ, 6, 94-103, 10.1038/ismej.2011.82, 2012.

637 Zhang, X. N., Gillespie, A. L., and Sessions, A. L.: Large D/H variations in bacterial lipids
638 reflect central metabolic pathways, Proc Natl Acad Sci USA, 106, 12580-12586,
639 10.1073/pnas.0903030106, 2009a.

640 Zhang, Z., and Sachs, J. P.: Hydrogen isotope fractionation in freshwater algae: I. Variations
641 among lipids and species, Org Geochem, 38, 582-608, 10.1016/j.orggeochem.2006.12.004,
642 2007.

643 Zhang, Z., Sachs, J. P., and Marchetti, A.: Hydrogen isotope fractionation in freshwater and
644 marine algae: II. Temperature and nitrogen limited growth rate effects, *Org Geochem*, 40, 428-
645 439, 10.1016/j.orggeochem.2008.11.002, 2009b.

646

647 **Figure and tables legends**

648 **Figure 1**

649 Values of $\varepsilon_{\Sigma FA}$ compared to chlorophyll *a* concentrations. $\varepsilon_{\Sigma FA}$ is the weighted average of
650 *n*C14:0, *n*C16:1, *n*C16:0, *n*C18:0 fatty acids and the *n*C20:5 PUFA from Jetty samples taken
651 from August 2010 – December 2011.

652 **Figure 2**

653 Phytoplankton diversity and abundance (measured in cells L⁻¹) observed in the coastal North
654 Sea between August 2010 – December 2011.

655 **Figure 3**

656 Order-level bacterial diversity and abundance in North Sea water based on the 16S rRNA gene
657 sequence.

658 **Figure 4**

659 Relative abundance of fatty acids and chlorophyll *a* concentration in North Sea SPM. (a)
660 *n*C14:0, (b) *n*C16:1, (c) *n*C16:0, (d) *n*C18:x, (e) *n*C18:0, (f) *n*C20:5 PUFA and chlorophyll *a*.

661 **Figure 5**

662 The D/H fractionation between fatty acids and North Sea water for fatty acids derived from
663 suspended particulate matter in North Sea water samples. Plotted are the the $\varepsilon_{\text{lipid/water}}$ values of
664 *n*C14:0, *n*C16:1, *n*C16:0, *n*C18:0 fatty acids and *n*C20:5 PUFA..

665 **Table 1**

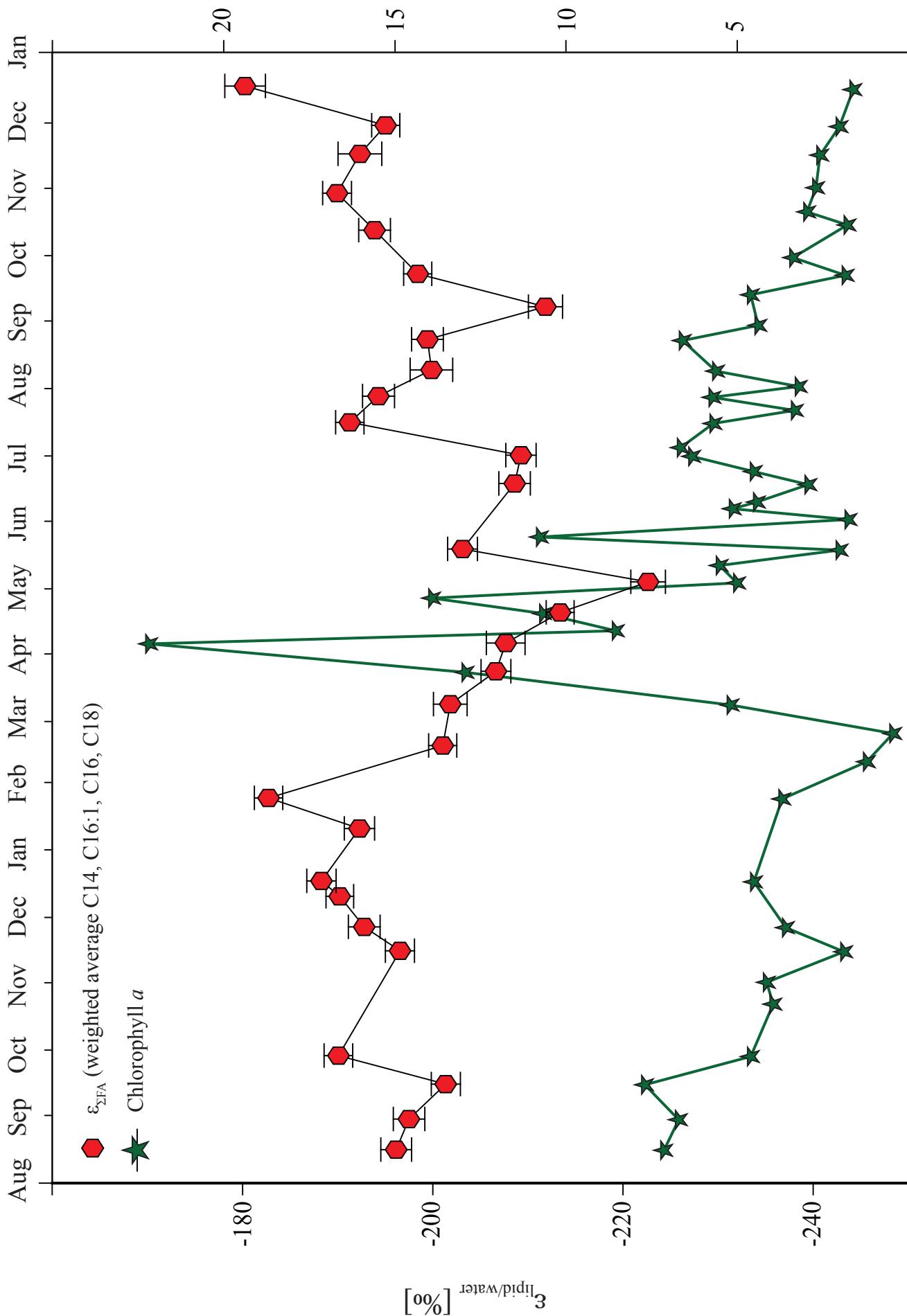
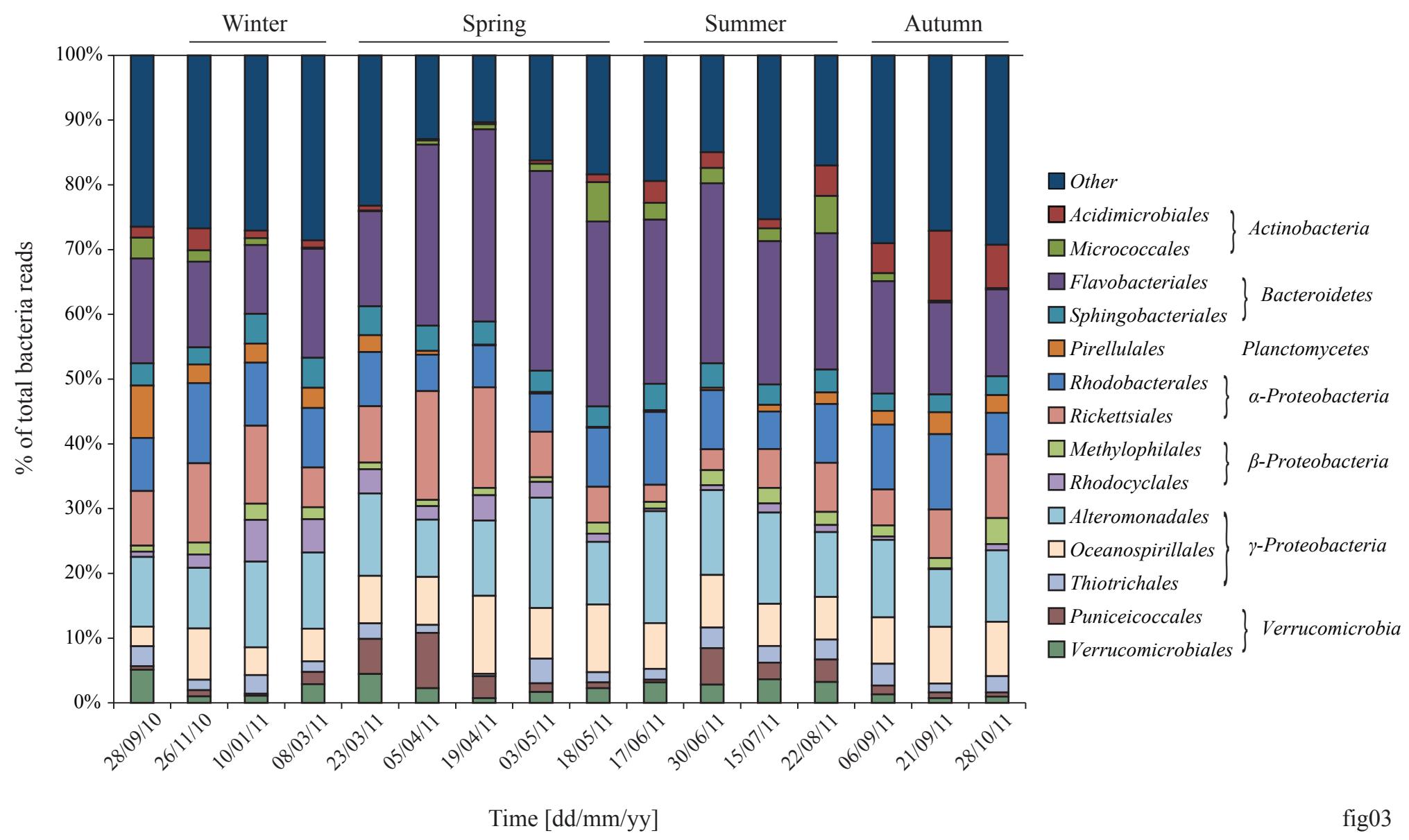
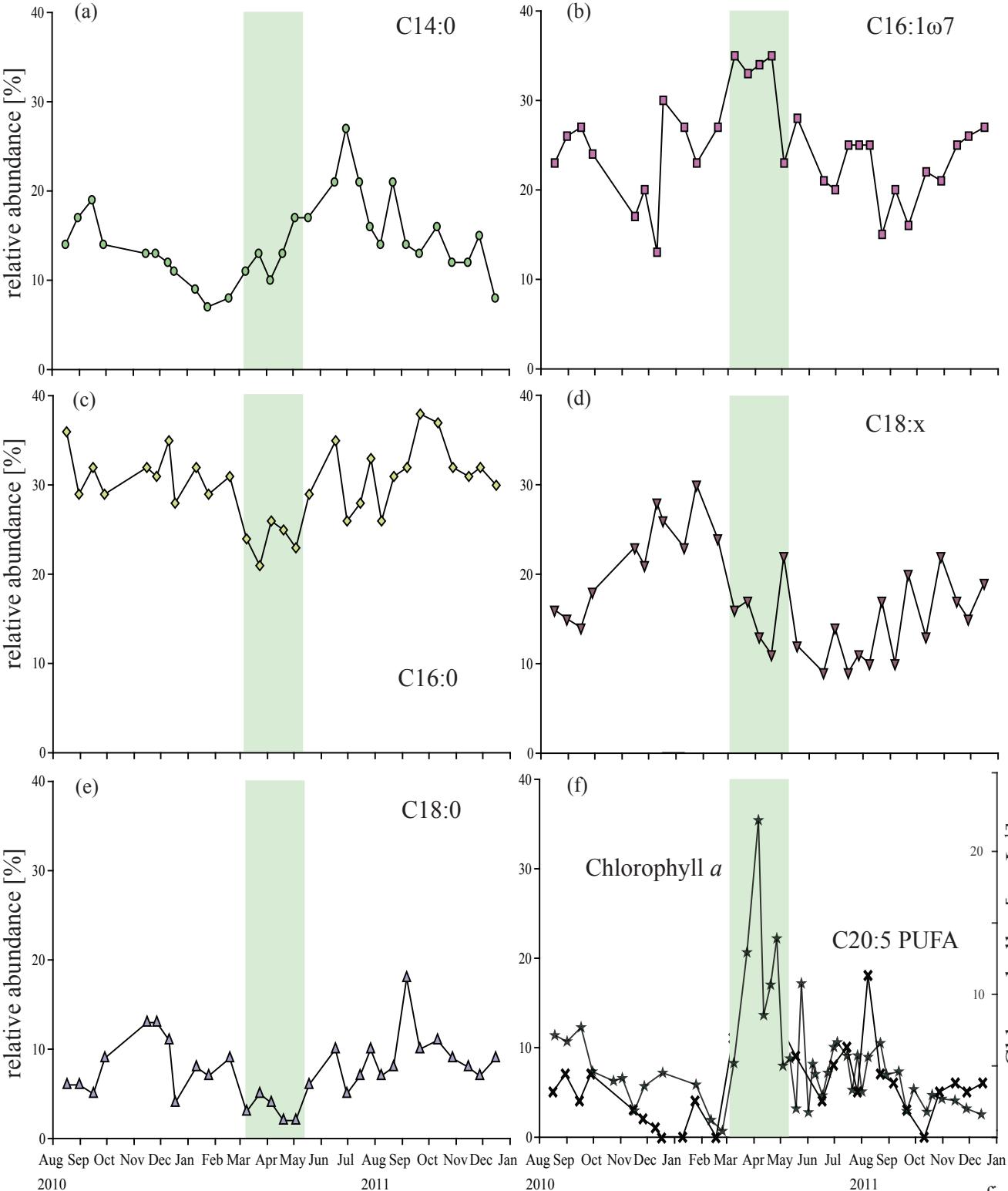
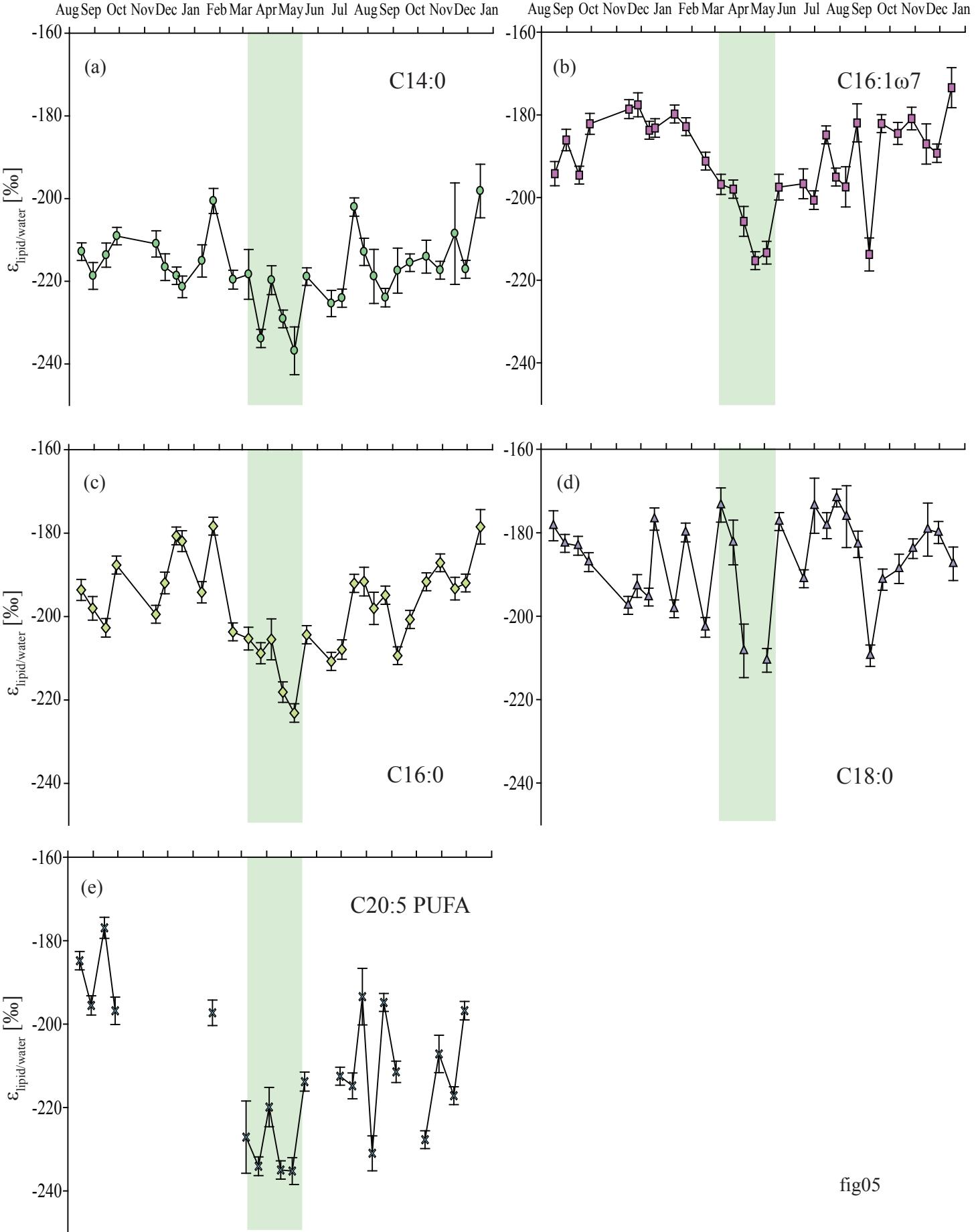

666 D/H fractionation between fatty acids and North Sea water for fatty acids derived from
667 suspended particulate matter in North Sea water samples.

Table 1


Date	Salinity	δD_{water} [‰] (estimated)	$\varepsilon_{\text{l lipid/water}}$ [%]					$\varepsilon_{\Sigma \text{FA}}$ [%] weighted average C14, C16:1, C16, C18
			C14:0	C16:0	C16:1*	C18:0	C20:5 PUFA	
16/08/10	27.3	-8.2	-212±2	-194±3	-194±3	-178±4	-185±2	-196±2
30/08/10	29.7	-4.1	-218±3	-198±3	-186±3	-182±2	-195±2	-197±2
15/09/10	30	-3.6	-213±3	-203±2	-194±2	-183±2	-177±3	-201±2
28/09/10	24.7	-12.6	-209±2	-188±2	-182±2	-187±2	-197±3	-190±2
15/11/10	30	-3.6	-211±3	-200±2	-179±2	-197±2	N.D.	-196±2
26/11/10	24.8	-12.4	-216±3	-192±3	-178±3	-193±3	N.D.	-193±2
10/12/10	27.1	-8.5	-218±2	-181±2	-184±2	-195±2	N.D.	-190±1
17/12/10	24.1	-13.6	-221±3	-182±2	-183±2	-177±3	N.D.	-188±2
10/01/11	27.8	-7.3	-215±4	-195±3	-180±2	-198±2	N.D.	-192±2
24/01/11	23.0	-15.5	-200±3	-179±2	-183±2	-180±2	-197±3	-183±2
17/02/11	29.3	-4.8	-219±2	-204±2	-191±2	-203±2	N.D.	-201±1
08/03/11	25.8	-10.7	-218±6	-206±3	-197±2	-173±4	-227±9	-202±2
23/03/11	26.8	-9.0	-234±2	-209±3	-198±2	-182±5	-234±2	-207±2
05/04/11	29.2	-4.9	-219±4	-206±5	-205±4	-208±6	-220±5	-208±2
19/04/11	27.7	-7.5	-229±2	-219±2	-215±2	N.D.	-235±2	-213±1
03/05/11	31.1	-1.7	-237±6	-224±2	-213±3	-210±3	-235±3	-223±2
18/05/11	31.8	-0.5	-219±2	-205±2	-197±3	-177±2	-213±2	-203±2
17/06/11	32.0	0.7	-225±3	-211±2	-196±4	-191±2	N.D.	-209±2
30/06/11	31.2	-1.6	-224±2	-208±2	-200±2	-173±7	-212±2	-209±2
15/07/11	30.0	-3.6	-202±2	-192±2	-185±2	-178±3	-215±3	-191±2
27/07/11	26.3	-9.9	-213±3	-192±3	-195±2	-172±2	-193±7	-194±2
08/08/11	29.4	-4.6	-219±7	-198±4	-197±5	-176±7	-231±4	-200±2
22/08/11	26.9	-8.9	-224±2	-195±2	-182±5	-183±3	-195±2	-199±2
06/09/11	26.8	-9.0	-217±6	-210±2	-213±4	-209±3	-211±3	-212±2
21/09/11	30.1	-3.4	-215±2	-201±2	-182±2	-191±3	N.D.	-198±1
11/10/11	32.8	1.2	-214±4	-192±2	-184±3	-189±4	-227±2	-194±2
28/10/11	32.2	0.1	-217±2	-188±2	-181±3	-184±2	-207±4	-190±2
15/11/11	28.9	-5.5	-208±12	-194±3	-187±5	-179±6	-217±2	-192±2
28/11/11	31.7	-0.7	-217±2	-192±2	-189±2	-180±3	-197±2	-195±1
16/12/11	31.7	-0.7	-198±7	-179±4	-173±5	-187±4	N.D.	-180±2


*n*C16:1*: double bond at the ω7 position


Time [month]

