

1 Patterns of carbon processing at the seafloor: the role of faunal
2 and microbial communities in moderating carbon flows

3

4 C. Woulds¹, S. Bouillon², G. L. Cowie³, E. Drake¹, Jack J. Middelburg^{4, 5}, U. Witte⁶

5 ¹water@leeds, School of Geography, University of Leeds, Leeds, LS2 9JT, UK

6 ²Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

7 ³School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, UK

8 ⁴Royal Netherlands Institute of Sea Research (NIOZ-Yerseke), PO Box 140, 4400 AC Yerseke, The
9 Netherlands

10 ⁵Department of Earth Sciences, Utrecht University, PO Box 80021, 3508 TA Utrecht, The Netherlands

11 ⁶Institute of Biological and Environmental Sciences, Oceanlab, University of Aberdeen, AB41 6AA,
12 UK

13 *Correspondence to:* C. Woulds (c.woulds@leeds.ac.uk)

14

15 **Abstract**

16 Marine sediments, particularly those located in estuarine and coastal zones, are key locations for the burial of
17 organic carbon (C). However, organic C delivered to the sediment is subjected to a range of biological C-cycling
18 processes, the rates and relative importance of which vary markedly between sites, and which are thus difficult
19 to predict.

20 In this study, stable isotope tracer experiments were used to quantify the processing of C by microbial and
21 faunal communities in two contrasting Scottish estuarine sites: a subtidal, organic C rich site in Loch Etive with
22 cohesive fine-grained sediment, and an intertidal, organic C poor site on an Ythan estuary sand flat with coarse-
23 grained permeable sediments.

24 In both experiments, sediment cores were recovered and amended with ^{13}C labelled phytodetritus to quantify
25 whole community respiration of the added C and to trace the isotope label into faunal and bacterial biomass.
26 Similar respiration rates were found in Loch Etive and on the Ythan sand flat (0.64 ± 0.04 and 0.63 ± 0.12 mg C
27 $\text{m}^{-2}\text{h}^{-1}$, respectively), which we attribute to the experiments being conducted at the same temperature. Faunal
28 uptake of added C over the whole experiment was markedly greater in Loch Etive (204 ± 72 mg C m^{-2}) than on
29 the Ythan sand flat (0.96 ± 0.3 mg C m^{-2}), and this difference was driven by a difference in both faunal biomass
30 and activity. Conversely, bacterial C uptake over the whole experiment in Loch Etive was much lower than that
31 on the Ythan sand flat (1.80 ± 1.66 and 127 ± 89 mg C m^{-2} respectively). This was not driven by differences in
32 biomass, indicating that the bacterial community in the permeable Ythan sediments was particularly active,
33 being responsible for $48\pm18\%$ of total biologically processed C. This type of biological C processing appears to
34 be favoured in permeable sediments. The total amount of biologically processed C was greatest in Loch Etive,
35 largely due to greater faunal C uptake, which was in turn a result of higher faunal biomass. When comparing
36 results from this study with a wide range of previously published isotope tracing experiments, we found a strong
37 correlation between total benthic biomass (fauna plus bacteria) and total biological C processing rates.
38 Therefore, we suggest that the total C cycling capacity of benthic environments is primarily determined by total
39 biomass.

40

41 **1 Introduction**

42 The burial of organic carbon in marine sediments is a key flux in the global carbon (C) cycle, linking the surface
43 reactive C reservoirs to long term storage in the geological loop. In addition, organic detritus is the main food
44 source for most benthic ecosystems, and its supply and cycling are thus important controlling factors for benthic
45 ecology. Furthermore, the degradation of organic carbon (OC) in sediments usually drives their redox state, and
46 together these determine nutrient regeneration rates and resupply to the water column. Estuarine sediments are
47 particularly important locations for these functions. Of all marine benthic environments, estuarine (particularly
48 fjordic) and shelf sediments host the largest proportion of marine sediment C burial (Berner, 1982; Duarte et al.,
49 2005, Smith et al., 2015). The shallow water depths in estuaries result in the potential of benthic C burial and
50 nutrient regeneration to control water column biogeochemistry and productivity (e.g. Middelburg and Levin,
51 2009). Therefore, there is a need to understand OC cycling and burial in marine sediments, and in estuarine
52 sediments in particular.

53 Previous work has established that factors such as OC loading and degradation state, sediment grain size, and
54 the time for which OC is exposed to oxygen before being buried below the oxycline combine to control the
55 relative importance of remineralization and burial as a fate of C in marine sediments (Canfield et al., 1994;
56 Mayer, 1994; Hedges and Keil, 1995; Hartnett et al., 1998). However, the pathways along which OC may travel
57 towards burial or remineralisation must be elucidated in order to further our understanding of benthic C cycling
58 and burial.

59 There are many processes to which OM arriving at the sediment surface, either of terrestrial origin delivered
60 through riverine inputs or from surface phytoplankton production, may be subjected. First, a major fraction of
61 fresh OC inputs may be fed upon by benthic fauna (Herman et al., 1999; Kristensen, 2001). Thus, C may be
62 assimilated into faunal biomass, and may be transferred through benthic and/or pelagic food webs. Alternately,
63 ingested sedimentary OC may survive gut transit and be egested back into the sediment, in which case it is
64 likely to have been biochemically altered and physically re-packaged (e.g. Bradshaw et al., 1990 a, b; 1991 a, b;
65 Woulds et al., 2012; 2014). In addition, at any trophic level of the food web, C may be metabolised and returned
66 to the water column as CO₂. Further, during bioturbation many fauna transport OC through the sediment
67 column, which may subject it to fluctuating redox conditions and accelerate decay, or sequester it at depth below
68 the digenetically active zone (Aller, 1994; Sun et al., 2002). Secondly, deposited OC will be subject to microbial
69 decay, and may thus be incorporated into microbial biomass, which itself may then progress through the
70 foodweb, or may be returned to the water column as CO₂ through microbial respiration. In addition, it may be
71 released as dissolved organic C (DOC) and re-incorporated into microbial and, subsequently, faunal biomass
72 through the microbial loop (Pozzato et al., 2013 and references therein).

73 As the processes described above are all biologically driven, we will refer to them collectively as biological C
74 processing (as opposed to long term C burial). The relative importance of the different processes, in turn, will be
75 referred to as the biological C processing pattern.

76 Isotope tracer experiments, in which organic matter labelled with an enriched level of a naturally uncommon
77 stable isotope (typically ¹³C and/or ¹⁵N) are an excellent tool to derive direct quantitative data on biological C

78 processing patterns and rates (Middelburg, 2014). Such experiments have been conducted in a wide range of
79 benthic environments, from estuarine sites (Moodley et al., 2000) to the deep abyssal plain (Witte et al., 2003 b),
80 from OC rich sediments (Woulds et al., 2007) to oligotrophic sites (Buhring et al., 2006 b), and from polar
81 regions (Gontikaki et al., 2011) to the tropics (Aspetsberger et al., 2007; Sweetman et al., 2010).

82 Many isotope tracer studies have found remineralisation by the entire benthic community (i.e. bacterial, meio-,
83 and macrofauna combined) to form the dominant fate of the OC supplied (e.g., Woulds et al., 2009; Gontikaki et
84 al., 2011c). It is reasonably well established that such benthic respiration rates are strongly controlled by
85 temperature (Moodley et al., 2005), and also respond to OC input (Witte et al., 2003 b) and benthic community
86 biomass (e.g. Sweetman et al., 2010)

87 However, considerable variations in carbon processing patterns and rates have been found between sites, with
88 considerable differences in, for example, the biomass pools into which OC is dominantly routed. Thus, some
89 studies have shown that OC uptake by foraminifera and/or bacteria can dominate in both the short and long term
90 (Moodley et al., 2002; Nomaki et al., 2005; Aspetsberger et al., 2007), and others have shown a more prominent
91 role for macrofauna (Witte et al., 2003 a). In some cases macrofaunal uptake can even be equal to total
92 respiration (Woulds et al., 2009). Trends in faunal OC uptake are usually strongly determined by trends in the
93 biomass of different faunal groups (e.g. Woulds et al., 2007; Hunter et al., 2012), although this is not always the
94 case. For example, in sandy subtidal sediments, Evrard et al. (2010) found that more microphytobenthos C was
95 consumed by meiofauna than by macrofauna, despite the lower biomass of the former. In cohesive sediments
96 from a deep fjord, however, the opposite pattern was observed, when macrofaunal foraminifera ingested less OC
97 than expected based on their importance in terms of biomass (Sweetman et al., 2009). This was thought to be
98 due to their relatively deep dwelling lifestyle, suggesting they were not adapted for rapid feeding on freshly
99 deposited OM. Thus, the ecology and community structure of any site is thought to exert significant control on
100 its biological C processing pathways and rates. Furthermore, the examples given above illustrate how the
101 extreme variability in the abundance and characteristics of organisms found at seafloor sites throughout the
102 marine environment has resulted in the lack of a general understanding of how benthic communities impact
103 seafloor C cycling patterns and rates.

104 In a review of isotope tracer experiments carried out in marine sediments, Woulds et al. (2009) proposed a
105 categorisation of biological C processing patterns into three main types. ‘Respiration dominated’ sites were
106 defined as systems in which >75% of biologically processed C was found as respired CO₂, and this tended to
107 occur mostly in deep, cold, OM-poor sites with relatively low faunal biomass. ‘Active faunal uptake’ systems
108 were described as sites in which respiration was still the major fate of biologically processed C, but where
109 faunal uptake accounted for 10-25%. This pattern was found in shallower, more nearshore and estuarine sites,
110 which were richer in OM, and which hosted correspondingly higher benthic faunal biomass. A third category
111 labelled ‘metazoan macrofaunal dominated’ displayed an unusual pattern in which uptake by metazoan
112 macrofauna accounted for >50% of biological C processing, and was chiefly exhibited in a lower oxygen
113 minimum zone site on the Pakistan margin, where high OC concentrations and just sufficient oxygen supported
114 an unusually high macrofaunal biomass (an ‘edge effect’, Mullins, 1985). This categorisation allowed
115 predictions to be made regarding C processing patterns at a range of sites, but this ability was limited to the
116 types of benthic environment in which isotope-tracing experiments had been conducted to that date.

117 The previously proposed categorisation was limited in the types of benthic environments covered, and was
118 biased towards subtidal and deep-sea settings characterized by cohesive sediments. Therefore, a particular
119 environment missing in previous syntheses was coarse-grained, permeable sediments, such as are typically
120 found in coastal and shelf environments. One study in subtidal sandy sediments of the German Bight found
121 unexpectedly rapid C processing rates, and suggested a C processing pattern that was dominated by bacterial
122 uptake (Buhring et al., 2006 a). However, variation in results between different experiment durations implies
123 that it could not be used to propose an additional category. The result was however consistent with findings that
124 coarse-grained, permeable sediments are capable of more dynamic biogeochemical cycling than was previously
125 assumed from their generally low OC contents (Huettel et al., 2014). The rapid biogeochemical cycling is driven
126 by water flow over roughness on the sediment surface creating local pressure gradients, which lead to advective
127 exchange of porewaters. This introduces fresh organic substrates and electron acceptors into the sediment, and
128 removes metabolites, enhancing OC turnover (Huettel et al., 2014, and references therein). Therefore, further
129 investigation of biological C processing in previously understudied permeable sediments is warranted.

130 Our study aimed broadly to investigate biological C processing rates and patterns in estuarine sediments. In
131 particular, we aimed to compare biological C processing in cohesive, fine-grained sediments with that in
132 permeable, coarse-grained sediments and to contrast the roles played by two communities with different
133 compositions and structures. We hypothesised that, in keeping with previous subtidal/shelf/fjordic sites, the
134 cohesive sediments would exhibit a C processing pattern dominated by respiration but with a marked role for
135 faunal uptake, while permeable sediments would exhibit rapid OC turnover, and an OC processing pattern
136 dominated by bacterial uptake. Further, we hypothesised that while faunal C uptake at the two sites would
137 necessarily involve different taxa, the overall contribution of fauna to biological C processing would be related
138 to their total biomass.

139 **2 Methods**

140 **2.1 Study sites**

141 Two sites were selected for study: one fine-grained, organic carbon-rich site in Loch Etive and a sandy site with
142 low organic carbon content in the Ythan estuary.

143 Loch Etive lies on the west coast of Scotland (Fig. 1). It is a glacier carved feature, 30 km long, and is divided
144 into three basins by two shallow sills at Bonawe and Connel. The loch exhibits positive estuarine circulation,
145 with a strong outflow of freshwater in the surface 10m, and tidal exchange of seawater beneath (tidal range is 2
146 m, Wood et al. 1973). Phytoplankton standing stock has been found to be relatively high (Wood et al 1973).
147 This, combined with input of substantial amounts of terrestrial OC and the tendency of fine sediment to be
148 resuspended from the shallower areas and redeposited in the deeper areas (Ansoll 1974) leads to relatively OC
149 rich sediments in the deep basins. The site chosen for this study lies at the deepest point (Airds Bay, 70 m) of
150 the middle basin of Loch Etive (Fig. 1). While the bottom water here is regularly renewed and is therefore well
151 oxygenated, the sediment has a relatively high oxygen demand, and sulphate reduction occurs within 5 cm of the
152 sediment-water interface (Overnell et al., 1996). The experiment was conducted during July 2004, at which
153 point the bottom water dissolved oxygen saturation was close to 100%. The sediment had a median grain size of

154 21 m with 78 % fines (<63 m) and contained ~4.9wt % organic C (Loh et al., 2008). The benthic community
155 was dominated by ophuroids, with polychaetes and molluscs also being abundant (Gage 1972, C. Whitcraft
156 unpubl. data).

157 The Ythan estuary is a well-mixed estuary on the East coast of Scotland (Fig. 1), 20 km north of Aberdeen. It is
158 ~8 km long, with a mean width of 300 m. The Ythan sand flat study site was located around halfway along the
159 estuary on an intertidal sand bar, and exhibited sandy, permeable and OC poor (~0.1 wt % organic C) sediments
160 (Zetsche et al., 2011b) which were subject to semi-diurnal tides and seasonal storms. The median grain size was
161 336 μ m with 11% fines (<63 μ m, varying through the year), and the sand is described as well sorted (Zetsche et
162 al., 2011 a). The study site was exposed at low tide, and covered by 1-2 m of water at high tide. The benthic
163 community was dominated by oligochaetes, with polychaetes, molluscs, nematodes and crustaceans also present
164 (Zetsche et al., 2012). The Ythan sand flat experiment was conducted during May 2008.

165 **2.2 Isotope tracing experiments**

166 The experimental setup varied slightly between sites, to account for the differences in their depth and sediment
167 grain size.

168 **2.2.1 Loch Etive**

169 Four replicate sediment cores (up to 50 cm depth, 10 cm i.d.) were collected and placed in a controlled
170 temperature laboratory set to the ambient temperature of 11°C. Phytodetritus (*Thalassiosira*, a representative
171 pelagic species) labelled with ^{13}C (~25%) was added to the sediment surface of intact cores to give a dose of
172 $1050 \pm 25 \text{ mg C m}^{-2}$ (the standard deviation stated is due to variation between replicate cores). The cores were
173 then sealed with water columns of 14-16.5 cm and incubated in the dark for 7 days (156 h). During the
174 incubation, the oxygen concentration in core-top water was maintained by pumping the water through an
175 'oxystat' gill, composed of gas permeable tubing submerged in a reservoir of 100% oxygenated seawater (see
176 Woulds et al., 2007), and monitored with Clark type electrodes. As the tubing used in the oxystat gill was
177 permeable to all gases there was the potential for loss of some $^{13}\text{CO}_2$ generated during the experiment. However,
178 the dissolved inorganic carbon (DIC) concentration difference between the incubation water and oxygenated
179 reservoir will have remained small, thus this effect is thought to be minor. Samples of the overlying water were
180 taken at 0, 24, 48, 72, 96, 120 and 144 hours after the introduction of the labelled phytodetritus. These were
181 preserved in glass vials without a headspace and poisoned with HgCl_2 for DIC and $\delta^{13}\text{C}$ - DIC analysis.

182 At the end of the incubation period, cores were sectioned at intervals of 0.5 cm up to 2 cm depth, then in 1 cm
183 sections up to 10 cm depth, and finally in 2 cm sections up to 20 cm depth. Half of each sediment slice was
184 sieved, with >300 μ m (macrofauna) and 150-300 μ m (meiofauna) fractions retained. The other half of each slice
185 was stored frozen in plastic bags. Sieve residues were examined under the microscope and all fauna were
186 extracted. Organisms were sorted to the lowest taxonomic level possible and preserved frozen in pre-weighed
187 tin boats and pre-combusted glass vials. Fauna from two of the four cores were allowed to void their guts before
188 preservation. This was achieved by allowing them to remain in dishes of filtered seawater for several hours
189 before freezing.

190 **2.2.2 The Ythan sand flat**

191 Four replicate sediment cores were collected by pushing 25 cm diameter acrylic core tubes into the sediment at
192 low tide, and digging them out to obtain intact sediment cores 14-15 cm in length. These were returned to a
193 controlled temperature laboratory set to 11°C at Oceanlab, University of Aberdeen. Filtered Ythan estuary water
194 was added to each core to create a water column. A lid was placed on each core, leaving a headspace, with
195 exhaust ports open. Fully oxygenated conditions were maintained by gentle bubbling with air, except during
196 respiration measurements (see below). Lids were mounted with stirring disks, the rotation rates of which were
197 calibrated to generate appropriate pressure gradients to prompt porewater advection (Erenhauss and Huettel,
198 2004). The overlying water was changed daily. Isotopically labelled (34 % ^{13}C) phytodetritus (freeze-dried
199 *Navicula incerta*, a representative benthic species) was added to the water column and allowed to sink onto the
200 sediment-water interface to give a dose of $753 \pm 9.4 \text{ mg C m}^{-2}$. Twice during the subsequent 7 days (immediately
201 after phytodetritus addition and 5 days later) the respiration rate in each core was measured. This involved
202 filling the headspace in each core to exclude all air bubbles and sealing all lids. Time series water samples were
203 taken over the subsequent 24 h and preserved for $\delta^{13}\text{C}$ DIC analysis as described above. At the end of each
204 respiration measurement, lids were removed and dissolved oxygen was measured by Winkler titration to ensure
205 it had not declined by more than 20%.

206 The experiment lasted 7 days (162 h), after which the overlying water was removed and a 5 cm diameter sub-
207 core was taken from each core. This was sectioned at 1 cm intervals and frozen. The remaining sediment was
208 sectioned at intervals of 0-1, 1-2, 2-3 and 3-5 cm, and sieved on a 500 μm mesh. Sediment and fauna remaining
209 on the sieve was preserved in buffered 10% formaldehyde in seawater. Fauna were picked from sieve residues
210 under a microscope, identified, and placed in glass vials or pre-weighed silver capsules.

211 **2.3 Analysis**

212 **2.3.1 Bulk stable isotope analyses**

213 Fauna samples were oven-dried at 45°C. Fauna with calcite skeletons (ophiuroids, molluscs and foraminifera)
214 were de-carbonated by the addition of a few drops of 6 N HCl. For soft-bodied fauna, 1 N HCl was used to
215 eliminate possible traces of carbonates. In all cases whole organisms were analysed. In the Loch Etive
216 experiment fauna from two replicate cores were allowed time to void their guts, but it was not clear that they
217 actually did so (see below). All samples were dried at $\sim 50^\circ\text{C}$ before analysis for OC content and $\delta^{13}\text{C}$.

218 Loch Etive samples were analysed on a Europa Scientific (Crew, UK) Tracermass isotope ratio mass
219 spectrometer (IRMS) with a Roboprep Dumas combustion sample converter. Appropriately sized samples of
220 acetanilide were used for quantification, and all C abundance data were blank corrected. Replicate analyses
221 revealed relative standard deviations of 4.6 % for C abundance and 0.7 ‰ for $\delta^{13}\text{C}$. Ythan sand flat samples were
222 analysed using a Flash EA 1112 Series Elemental Analyser connected via a Conflo III to a Delta^{Plus} XP isotope
223 ratio mass spectrometer (all ThermoFinnigan, Bremen, Germany). Carbon contents of the samples were
224 calculated from the area output of the mass spectrometer calibrated against National Institute of Standards and
225 Technology standard reference material 1547 (peach leaves), which was analysed with every batch of ten
226 samples. The isotope ratios were traceable to International Atomic Energy Agency reference materials USGS40

227 and USGS41 (both L-glutamic acid); certified for $\delta^{13}\text{C}$ (‰). Long-term precisions for a quality control standard
228 (milled flour) were: total carbon 40.3 ± 0.35 %, and $\delta^{13}\text{C} -25.4 \pm 0.13$ ‰.

229 Overlying water samples were analysed for concentration and $\delta^{13}\text{C}$ of DIC as described by Moodley et al.
230 (2000). Briefly, a He headspace was created in sample vials, the CO_2 and $\delta^{13}\text{C}$ of which were quantified using a
231 Carlo Erba MEGA 540 gas chromatograph, and a Finnigan Delta S isotope ratio mass spectrometer,
232 respectively. The system was calibrated with acetanilide (Schimmelmann et al., 2009) and the IAEA-CH-6
233 standard. Repeat analyses of standard materials gave a relative standard deviation of 4.4% for DIC
234 concentrations, and a standard deviation of ± 0.09 ‰ for $\delta^{13}\text{C}$.

235 **2.3.2 Bacterial phospholipid fatty acids(PLFA)**

236 Aliquots of sediment were treated with a Bligh and Dyer extraction, involving shaking at room temperature in a
237 2:1:1 mix of methanol, chloroform and water. Lipids were recovered in the chloroform layer, and were loaded
238 onto silica gel columns. Polar lipids were eluted in methanol, and methylated in the presence of methanolic
239 NaOH . The C12:0 and C19:0 fatty acid methyl esters were used as internal standards. Fatty acids were separated
240 by gas chromatography on a 30 m, 0.25mm i.d., 25 μm film thickness BPX70 column and combusted in a
241 Thermo GC-combustion II interface. Isotope ratios were then determined using a Thermo Delta+ isotope ratio
242 mass spectrometer (for further details see Woulds et al., 2014).

243 **2.4 Data treatment**

244 Uptake of added C by fauna is reported in absolute terms (see below), and as isotopic enrichments over the
245 natural background faunal isotopic composition. Isotopic compositions were expressed as $\delta^{13}\text{C}$, derived using
246 Eq. (1).

$$247 \delta\text{‰} = \left(\frac{R_s}{R_r} - 1 \right) \times 1000 \quad (1)$$

249 Where R_s and R_r are the $^{13}\text{C}/^{12}\text{C}$ ratio in the sample and the reference standard respectively. Isotopic
250 enrichments ($\Delta\delta$) were then calculated using Eq. (2).

$$251 \Delta\delta = \delta^{13}\text{C sample} - \delta^{13}\text{C background} \quad (2)$$

253 Carbon uptake by faunal groups was calculated by subtracting naturally occurring ^{13}C , multiplying by the
254 sample C contents, and correcting for the fact that the added phytodetritus was not 100 % ^{13}C labelled, as shown
255 in Eq. (3):

256

$$257 C\ Uptake_{sample}\ (\mu\text{g}) = \frac{(At\ \%_{sample} - At\ \%_{background}) \times C\ Contents_{sample}}{At\ \%_{phytodetritus}} \times 100$$

258

(3)

259 Where At % is the ^{13}C atoms present as a percentage of the total C atoms present. Data from individual
260 specimens was summed to produce faunal C uptake by different groups of fauna. For Loch Etive, background
261 ^{13}C was subtracted based on natural faunal isotopic data collected concurrently with the C tracing experiment.
262 For the Ythan sand flat natural faunal isotopic data were not available, and instead the natural C isotopic
263 signature of sedimentary organic C (-20.2 ‰) was used. Isotopic signatures of fauna at the end of the
264 experiment had a maximum of 2460‰ and a mean of 175‰. Therefore the small inaccuracies introduced by the
265 use of this natural background value will not have been significant.

266 The DIC concentrations and $\delta^{13}\text{C}$ -DIC were used to calculate the total amount of added ^{13}C present as DIC in
267 experimental chambers at each sampling time. A linear regression was applied to these to yield a separate
268 respiration rate for each core and for each period of respiration measurement (mean $R^2 = 0.909$, with the
269 exception of one measurement showing poor linearity with $R^2 = 0.368$), and the rate was multiplied by
270 experiment duration to calculate total respiration of added C during the experiment. In the case of the Ythan
271 sand flat respiration was measured during two separate 24 h periods through the experiment. In this case average
272 rates from the two measurements were used to calculate total respiration of added C throughout the experiment.

273 Bacterial C uptake was quantified using the compounds iC14:0, iC15:0, aiC15:0 and iC16:0 as bacterial
274 markers. Bacterial uptake of added C was calculated from their concentrations and isotopic compositions
275 (corrected for natural ^{13}C occurrence using data from unlabelled sediment), based on these compounds
276 representing 14% of total bacterial PLFAs, and bacterial PLFA comprising 5.6% of total bacterial biomass
277 (Boschker and Middelburg, 2002). In the case of Loch Etive, the sediments from which PLFAs were extracted
278 had previously been centrifuged (10 mins, 3500 rpm, room temperature) for porewater extraction, which could
279 have led to a slight reduction in the bacterial biomass and C uptake measured.

280 3. Results

281 The mean recovery of added C from the bacterial, faunal and respiration pools together was $30 \pm 6\%$ and $31 \pm 10\%$
282 of that which was added for Loch Etive and the Ythan sand flat respectively. This is a good recovery rate
283 compared to other similar experiments (e.g. Woulds et al., 2007). Most of the remaining C was likely left in the
284 sediment as particulate organic C or as dissolved organic C.

285 3.1 Remineralisation

286 The average respiration rate of the added OC was similar in Loch Etive and the Ythan sand flat, and reached
287 0.64 ± 0.4 and 0.63 ± 0.12 mg C m⁻²h⁻¹, respectively. Thus, the total amount of added C that was respiration at each
288 site (over 156 h in Loch Etive and 162 h on the Ythan sand flat) was 99.5 ± 6.5 and 102.6 ± 19.4 mg C m⁻² for
289 Loch Etive and the Ythan sand flat, respectively (Fig. 2). In both experiments, respiration rates measured in the
290 first 48 h (1.41 ± 0.14 and 0.74 ± 0.02 mg C m⁻²h⁻¹ for Etive and the Ythan sand flat, respectively) were higher
291 than those measured in the last 48 h of the experiment (0.31 ± 0.04 and 0.52 ± 0.22 mg C m⁻²h⁻¹ for Etive and the
292 Ythan sand flat, respectively; this difference was significant only for Loch Etive, t-test, $P < 0.001$). The increase
293 in labelled DIC over time for each chamber is shown in Fig. S1.

294 **3.2 Faunal biomass and C uptake**

295 Macrofaunal biomass in the experimental cores was $4337 \pm 1202 \text{ mg C m}^{-2}$ in Loch Etive and $455 \pm 167 \text{ mg C m}^{-2}$
296 on the Ythan sand flat. Macrofaunal $\delta^{13}\text{C}$ signatures (for individual specimens) reached maximal values of 7647
297 ‰ and 2460 ‰ in Loch Etive and on the Ythan sand flat, respectively. Total faunal C uptake was orders of
298 magnitude greater in Loch Etive ($204 \pm 72 \text{ mg C m}^{-2}$) than on the Ythan sand flat ($0.96 \pm 0.3 \text{ mg C m}^{-2}$) (Fig. 2).
299 This difference was driven partly by a difference in biomass, but fauna on the Ythan sand flat were also
300 comparatively less active, as reflected by biomass specific C uptake at the two sites (0.047 ± 0.01 and
301 $0.0022 \pm 0.0006 \text{ mg C uptake per mg C biomass}$ for Loch Etive and the Ythan sand flat respectively).

302 In Loch Etive, both faunal biomass and carbon uptake were dominated by two ophuroids, *Amphiura fillaformis*
303 and *A. chiajei*, which contributed 75 % and 95 % to the total biomass and to faunal C uptake, respectively (Fig.
304 3). The molluscs and polychaetes contributed 11 % and 6 % to biomass, but only 1.6 % and 1 % to faunal C
305 uptake, respectively. Amongst the polychaetes, the *Flabelligeridae* and *Harmothoe* tended to show lower ^{13}C
306 enrichment (i.e. a lower specific uptake of labelled C), while representatives of all other families (*Capitellidae*,
307 *Syllidae*, *Cirratulidae*, *Cossura* and *Terebellidae*) showed much higher levels of labelling.

308 On the Ythan sand flat, the macrofaunal community was dominated by oligochaetes and nematodes (Fig. 3). The
309 proportion of total faunal C uptake accounted for by oligochaetes (48%) approximately matched their
310 contribution to faunal biomass (51%). However, nematodes contributed slightly less towards total faunal uptake
311 (14%) than they did to total biomass (19%). Other minor groups included amphipods (0.3% of biomass),
312 polychaetes (2% of biomass) and gastropods (1.5% of biomass). Of these groups, the polychaetes and
313 gastropods made disproportionately large contributions to faunal C uptake, accounting for 10% and 18%
314 respectively (Fig. 3).

315 In the Loch Etive experiment, metazoan meiofaunal and foraminiferal data were also collected. Metazoan
316 meiofaunal and foraminiferal biomass in experimental cores were $47 \pm 14 \text{ mg C m}^{-2}$ and $343 \pm 625 \text{ mg C m}^{-2}$,
317 respectively. These two groups showed maximal $\Delta\delta^{13}\text{C}$ values of 1360 ‰ and 3313 ‰, respectively. Metazoan
318 meiofauna were not taxonomically sorted, but amongst the foraminifera the highest labelling was observed in
319 *Criithionina sp.*, while *Pelosina* did not show measurable label uptake. Compared to the macrofauna, meiofaunal
320 C uptake was minor, at 0.18 ± 0.20 and $5.21 \pm 5.15 \text{ mg C m}^{-2}$ for metazoans and foraminifera, respectively (Fig.
321 2). Thus, metazoan meiofauna and foraminifera contributed 1 % and 7 % to the total faunal biomass, and 0.1 %
322 and 2.5 % to faunal C uptake, respectively.

323 **3.3 Bacterial biomass and C uptake**

324 Bacterial biomass in the surface 5 cm of sediment in Loch Etive was $5515 \pm 3121 \text{ mg C m}^{-2}$, and on the Ythan
325 sand flat was $7657 \pm 3315 \text{ mg C m}^{-2}$. The amount of added C incorporated into bacterial biomass was two orders
326 of magnitude greater on the Ythan sand flat ($127 \pm 89 \text{ mg C m}^{-2}$) than in Loch Etive ($1.80 \pm 1.66 \text{ mg C m}^{-2}$, Fig. 2).
327 In the majority of cores, >90% of bacterial uptake occurred in the top 3 cm of sediment. However in one core
328 from Loch Etive, 28% of bacterial uptake occurred between 3 and 6 cm depth. In comparison, 52% of the
329 bacterial biomass from the top 5 cm occurred shallower than 3 cm for Loch Etive, and this value was 66% on
330 the Ythan sand flat. Biomass specific uptake for the bacteria was two orders of magnitude greater on the Ythan

331 sand flat (0.016 ± 0.004 mg C uptake per mg C biomass) than in Loch Etive (0.00023 ± 0.00013 mg C uptake per
332 mg C biomass). Thus it appears that the rapid uptake of added C by bacteria at the sandy site was primarily
333 driven by a more active bacterial community, rather than by a larger bacterial biomass.

334 **3.4 Biological carbon processing patterns**

335 The large differences in macrofaunal and bacterial C uptake rates between the two sites resulted in markedly
336 different biological C processing patterns (Fig. 2). In both cases, respiration was an important, but usually not
337 the dominant, fate of biologically processed C, accounting for 25-60 %. In the case of Loch Etive, the dominant
338 fate of biologically processed C was macrofaunal uptake (64 ± 10 %), and this also resulted in a greater amount
339 of total biological C processing (Fig. 2) than on the Ythan sand flat. On the Ythan sand flat bacterial uptake
340 (48 ± 18 %) was the dominant fate of biologically processed C. In Loch Etive, uptake of C by bacterial, metazoan
341 meiofaunal and foraminiferal communities made only minor contributions to total biological C processing (Fig.
342 2). On the Ythan sand flat, macrofaunal uptake made a relatively minor contribution (Fig. 2). Unfortunately,
343 uptake by meiofaunal organisms could not be quantified at the latter site.

344 **4 Discussion**

345 **4.1 Experimental approach**

346 This study compares data from two experiments which, while following the same principle, nevertheless had
347 slightly different experimental setups. The water depth, core size, stirring regime, light availability and C dose
348 added all differed between the two study sites. The differences in stirring regime, and light availability were
349 enforced to properly replicate natural conditions in each experiment, thus any contrasts caused by these
350 conditions reflect differences in functioning of the two habitats. The presence of light in the Ythan sand flat
351 experiment means it is possible that some labelled DIC produced by respiration may have been utilised during
352 photosynthesis, leading to an underestimation of respiration rate. However, as the isotopic labelling level of DIC
353 always remained below 1.33 at % this is unlikely to have had a measurable effect. The difference in water depth
354 and core diameters was driven by the practicality of collecting undisturbed sediment cores from the two
355 contrasting sediment types. While the difference in depth means that photosynthesis and flux of CO₂ gas to the
356 atmosphere during emergent periods would normally occur on the Ythan sand flat but not in Loch Etive, they
357 remain comparable in their temperatures and estuarine locations. The difference in C dose added was minor
358 (~25%) and also driven by practical constraints. Previous studies have found little impact of such minor
359 differences in C dose (Woulds et al., 2009). Where the amount of added C has been observed to control
360 biological processing patterns and rates, the difference in C dose has been much more pronounced (10-fold,
361 Buhring et al., 2006 b). We acknowledge that the C dose represented a different proportion of naturally present
362 OC at each site, and this could have led to an enhanced response at the Ythan sand flat. However, surface
363 sediment OC concentrations are not necessarily a good reflection of actual C delivery to the seafloor, given the
364 different transport mechanisms in permeable and cohesive sediments (see below). Further, there is a sparsity of
365 data available on primary production rates, particularly for the Ythan sand flat. Therefore maintaining a uniform
366 C addition was judged to yield the most comparable data. Thus, while experimental details varied between Loch

367 Etive and the Ythan sand flat, we are confident that direct comparisons between the results of the two
368 experiments are valid.

369 Due to practical constraints, meiofauna were not included in the analysis of the Ythan sand flat experiment.
370 Previous studies have found both that meiofauna consume disproportionate amounts of C relative to their
371 biomass (Evrard et al., 2010), and that nematodes (a major meiofaunal group) made a negligible contribution to
372 C cycling (Moens et al., 2007). We are unable to speculate how active the meiofauna were in C cycling in the
373 present study but, despite wide variations in the importance of meiofaunal uptake (Nomaki et al., 2005;
374 Sweetman et al., 2009; Evrard et al., 2010), it is usually similar to or less than macrofaunal C uptake (Nomaki et
375 al., 2005; Evrard et al., 2010). Thus, we consider it unlikely that the meiofaunal community was involved in C
376 processing on the same scale as observed for bacterial uptake and total respiration, and exclusion of meiofauna
377 in the Ythan sand flat experiment is unlikely to have markedly altered the overall pattern of biological C
378 processing that we observed.

379 There was a difference in the sieve mesh sizes used to collect macrofauna in the two experiments (300 µm in
380 Loch Etive and 500 µm on the Ythan sand flat). The use of larger mesh sizes is more conventional and practical
381 in coarser grained sediments. The larger mesh used on the Ythan sand flat is likely to have reduced the
382 macrofaunal biomass and C uptake measured. However, the effect is likely to have been insufficient to explain
383 the striking differences in macrofaunal C uptake and biomass specific uptake seen between the two sites.

384 Finally, the majority of fauna were too small for manual removal of gut contents, and were therefore analysed
385 with their gut contents in place. The exception to this was two of the Loch Etive cores, which were allowed
386 time to void their guts before freezing. However, this did not produce a significant difference in the
387 macrofaunal ^{13}C pool between those cores and the other two in which fauna retained their gut contents (Mann-
388 Whitney U, $p = 0.245$). Some infauna respond to starvation by retaining their gut contents for days or weeks.
389 Therefore it is possible that organisms either voided their guts incompletely, or not at all. It is also possible that
390 the amount of added C residing in macrofaunal guts was comparatively small as shown by Herman et al. (2000),
391 and thus not measurable above variation caused by faunal patchiness. Thus the values reported here as faunal C
392 uptake include C in both gut contents faunal tissue.

393 **4.2 Respiration rates**

394 The respiration rates observed in Loch Etive and on the Ythan sand flat were very similar (Fig. 2). This is
395 unsurprising, as the two experiments were conducted at the same temperature, and similar C loadings were
396 applied. Temperature is known to control sediment respiration rates through impacts on diffusion and microbial
397 process rates (Yvon-Durochet et al., 2015), and benthic respiration has been shown to respond to temperature
398 changes with a Q_{10} of 2-3 (Kristensen 2000). Further, after manipulating the temperatures at which cores from
399 both a deep-sea and an estuarine site were incubated, Moodley et al. (2005) found similar respiration rates of
400 added phytodetritus at similar temperatures, despite differences in water depth and faunal community. Our
401 finding of similar rates of respiration, despite marked differences in influential factors such as macrofaunal
402 biomass, organic C concentration, and solute transport processes (Kristensen, 2000; Hubas et al., 2007; Huettel
403 et al., 2014), supports the suggestion that temperature is the dominant control.

404 **4.3 Faunal uptake**

405 In Loch Etive, the macrofauna overwhelmingly dominated total faunal C uptake (accounting for 97 %),
406 compared to metazoan meiofauna (0.1 %) and foraminifera (2.5 %,). These contributions were broadly similar
407 to their contributions to total faunal biomass (92 %, 1 % and 7 % for macrofauna, metazoan meiofauna and
408 foraminifera respectively). Thus, in line with previous findings (Middelburg et al., 2000; Woulds et al., 2007;
409 Hunter et al., 2012), the distribution of C uptake amongst faunal classes was largely determined by the relative
410 biomass of each group. The dominance of faunal C uptake by macrofauna has been observed previously. For
411 example, in shorter experiments on the Porcupine Abyssal Plain (Witte et al., 2003b), in the deep Sognefjord
412 (Witte et al., 2003 a) and at certain sites on the Pakistan margin (Woulds et al., 2007), macrofauna dominated
413 faunal C uptake, and at an Antarctic site Moens et al. (2007) found that meiofaunal nematodes made a negligible
414 contribution to C uptake. However, uptake into the macrofaunal pool can be most important during the initial
415 response to an OC pulse, with bacterial uptake and respiration becoming more important over longer timescales
416 (Moodley et al., 2002; Witte et al., 2003 b). Also in contrast to the findings above, metazoan meiofaunal and
417 foraminiferal uptake have previously been shown to be more important pathways for C (e.g. Moodley et al.,
418 2000). Where macrofauna are absent, or where conditions are unfavourable, smaller taxa can dominate C
419 uptake, such as within the Arabian Sea oxygen minimum zone (Woulds et al., 2007). At other sites, meiofauna
420 and foraminifera have been shown to take up more C than macrofauna without the presence of a stress factor.
421 This was the case at 2170 m water depth in the NE Atlantic, in Sagami Bay and at a subtidal Wadden Sea site,
422 foraminifera and meiofauna have been observed to consume more C than macrofauna, sometimes despite having
423 lower biomass (Moodley et al., 2002; Nomaki et al. 2005; Evrard et al., 2010).

424 The marked uptake of C by macrofauna in Loch Etive was largely driven by two species of ophuroid, which
425 also dominated the macrofaunal biomass (Fig. 3). However, the ophuroids accounted for a greater percentage of
426 macrofaunal C uptake than they accounted for macrofaunal biomass (Fig. 3), and thus were disproportionately
427 responsible for macrofaunal C uptake. On the Ythan sand flat, the contribution to C uptake by the dominant
428 oligochaetes was in line with and their biomass (both ~50%, Fig. 3). However, other faunal groups contributed
429 differently to biomass and C uptake. Nematodes were responsible for less C uptake than expected, while the
430 polychaetes, amphipods and molluscs fed comparatively efficiently on the added C. This is in line with previous
431 studies in which certain polychaete families have been found to be selective or rapid feeders on fresh algal
432 detritus (e.g. Woulds et al., 2007).

433 When C uptake is plotted against biomass for each faunal specimen analysed across both study sites, a positive
434 correlation is apparent (Fig. 4). This correlation has been reported previously (Moodley et al., 2005; Woulds et
435 al., 2007), and suggests that faunal C uptake is largely driven by faunal biomass, despite the fact they are auto-
436 correlations (uptake data are derived by multiplying C contents of a specimen by its isotopic signature). Within
437 each site the distribution of C uptake amongst faunal groups was also dominantly driven by biomass. However,
438 the lower faunal biomass on the Ythan sand flat does not fully explain the lower faunal C uptake observed there,
439 as biomass specific C uptake was also considerably lower than in Loch Etive. We suggest that the low OC
440 standing stock in the permeable sediment of the Ythan sand flat supports a lower biomass and less active faunal
441 community with lower metabolic rates.

442 The identity of fauna responsible for C uptake was in line with expectations from some previous studies, but not
443 with others, and the reasons for this variation are not clear. Therefore, while overall faunal uptake is dictated by
444 biomass, it remains challenging to predict which faunal groups and taxa will dominate C uptake in a particular
445 benthic setting. This appears to be determined by the complex interplay of factors that determine benthic
446 community composition, such as the nature and timing of food supply (Witte et al., 2003 a, b), environmental
447 stressors (Woulds et al., 2007), feeding strategies and competition (Hunter et al., 2012).

448 **4.4 Total biological C processing rates**

449 Loch Etive showed the largest amount of total biologically processed C (Fig. 2). As both sites showed very
450 similar respiration rates, the difference in total biological C processing was driven by greater faunal uptake in
451 Loch Etive (Fig. 2), and this was a result of greater faunal biomass. The relationship between biomass and total
452 biological C processing is also shown by data gathered from previously published isotope tracing experiments
453 (Table 1), which show a correlation between total biomass (faunal plus bacterial) and total biological C
454 processing rate (Pearson's correlation, $r=0.499$, $p=0.002$). We therefore suggest that benthic community
455 structure impacts the total C processing capacity of benthic environments, through a relationship between
456 biomass and total biological C processing rates, with an emphasis on the importance of macrofaunal biomass as
457 indicated by the importance of macrofauna in Loch Etive, and the fact that the proportion of the bacterial
458 biomass which is active can be rather variable (see below).

459 **4.5 Short term biological C processing categories**

460 The distribution of biologically processed C between different C pools (biological C processing pattern, Fig. 2)
461 varied markedly between the two sites. While they both showed respiration to be an important process, the
462 dominant fate of biologically processed C in Loch Etive was uptake by macrofauna, while on the Ythan sand
463 flat it was uptake by bacteria (Fig. 2).

464 A review of previous isotope tracing experiments proposed a categorisation of short term biological C
465 processing patterns (Woulds et al., 2009), which can be used as a framework to explain patterns observed in this
466 study.

467 Loch Etive was expected to show a short term biological C processing pattern in line with the category labelled
468 'active faunal uptake'. In this category, biological C processing is dominated by respiration, but faunal uptake
469 accounts for 10-25 % (Woulds et al., 2009). This category is found in estuarine and nearshore sites which are
470 warmer than the deep sea, have slightly more abundant OM, and thus support higher biomass and more active
471 faunal communities. However, the short term biological C processing pattern observed in Loch Etive was most
472 similar to the category labelled 'macrofaunal uptake dominated' (Fig. 5), in which uptake of C by macrofauna
473 accounts for a greater proportion of biologically processed C than total community respiration (Woulds et al.,
474 2009). This is an unusual pattern, previously only observed in the lower margin of the Arabian Sea oxygen
475 minimum zone. It was hypothesised in that case that the occurrence of a macrofaunal population capable of this
476 magnitude of C uptake was due to the presence of particularly high OC concentrations in the sediment, coupled
477 with sufficient oxygen for larger organisms. This explanation also applies to Loch Etive, where the sediment OC
478 concentration was nearly 5 %. In contrast to the Arabian Sea site however, Loch Etive featured fully oxygenated

479 bottom water. Thus, the occurrence of macrofaunal uptake dominated short term biological C processing
480 appears to be facilitated by high OC availability, rather than by low oxygen conditions. Experiments conducted
481 in Pearl Harbour sites impacted by invasive mangroves also show OC availability controlling the relative
482 importance of faunal C uptake (Sweetman et al., 2010). A control site was OC poor (0.5% wt % OC) and
483 showed respiration dominated biological C processing (Fig. 5), while a nearby site from which invasive
484 mangroves had been removed showed active (macro)faunal uptake (Fig. 5), in line with higher sediment OC
485 content (3.1% wt % OC) and an elevated macrofaunal biomass.

486 We hypothesised that the Ythan sand flat would show a short term biological C processing pattern that did not
487 fit with the categories suggested by Woulds et al. (2009). Our hypothesis was supported, as biological C
488 processing on the Ythan sand flat was dominated by bacterial C uptake (Fig. 2). There have been indications in
489 previous isotope tracing experiments in sandy sediments of the German Bight that bacterial C uptake may be
490 particularly important in sandy sediments (Buhring et al., 2006a). Thus we now combine the previous and
491 current results and propose a new biological C processing category labelled 'bacterial uptake dominated' (Fig.
492 5). In the new category, bacterial uptake is the dominant short term fate of biologically processed C, accounting
493 for ~35-70 %. Respiration remains important, accounting for 25-40% of biologically processed C, and faunal
494 uptake tends to account for~5-20 %.

495 The new category of biological C processing so far has only been observed in two experiments targeting sandy,
496 permeable sediments, and so the features of such sediments appear to favour bacterial C uptake. Advective
497 porewater exchange in permeable sediments has been shown to enhance the rates of microbial processes such as
498 remineralisation and nitrification (Huettel et al., 2014) through rapid supply of oxygen and flushing of
499 respiratory metabolites. This is balanced by introduction of fresh OC as algal cells are filtered out of advecting
500 porewater (Ehrenhauss and Huettel, 2004), thus substrate and electron acceptors for bacterial respiration are
501 supplied.

502 While permeable sediments generally have similar or lower bacterial abundances than muddy sediments, their
503 bacterial communities tend to be highly active, and it has been suggested that, because they are subjected to
504 rapidly changing biogeochemical conditions, they are poised to respond rapidly to OC input (Huettel et al.,
505 2014). Notably however, the rapid rates of bacterial activity observed in permeable sediments do not typically
506 lead to build-up of bacterial biomass (Huettel et al., 2014). This may be due to regular removal of bacterial
507 biomass during sediment reworking, in line with observations of seasonal changes in clogging of pore spaces in
508 sandy sediment (Zetsche et al., 2011).

509 The domination of short term biological C processing by bacterial uptake implies a high value for bacterial
510 growth efficiency (BGE). This is calculated as bacterial secondary production divided by the sum of bacterial
511 secondary production and bacterial respiration. Bacterial respiration is not quantified here, however, it is likely
512 that a large proportion of total community respiration is attributable to bacteria (Schwinghamer et al., 1986;
513 Hubas et al., 2006). For the sake of discussion, BGE has been approximated for the Ythan sand flat experiments
514 as bacterial C uptake divided by the sum of bacterial C uptake and total community respiration, giving a
515 conservative estimate of 0.51 ± 0.18 . This is at the high end of the range of values (<0.05 to >0.5) reported in a
516 review of growth efficiency for planktonic bacteria (Del Giorgio and Cole, 1998), but is in line with the

517 modelled value of >0.5 for the most productive coastal and estuarine sites (Del Giorgio and Cole, 1998).
518 Bacterial growth efficiency is widely variable, both spatially and temporally, and the factors that control it are
519 not well understood. However both the rate of supply of organic substrate and its composition (bioavailable
520 energy) seem to be positively correlated with BGE, and it tends to increase from oligotrophic to eutrophic
521 environments (Del Giorgio and Cole, 1998). This is consistent with high BGE in permeable sediments, which
522 have a high input of fresh OC from filtering during advective porewater flow (Ehrenhauss and Huettel, 2004),
523 and where a high proportion of bacterial cells may be active (as indicated by higher biomass specific uptake on
524 the Ythan sand flat).

525 Finally, faunal uptake was relatively minor in the Ythan sand flat experiment, and this suggests that bacterial C
526 uptake may have been favoured by a lack of competition from or grazing by macrofauna. A negative
527 relationship has previously been observed between macrofaunal biomass and bacterial C and N uptake in the
528 Arabian Sea, and a similar effect has been observed in the Whittard canyon (Hunter et al., 2012; 2013).

529 The short term biological C processing patterns presented in Fig.5 can accommodate most observations in the
530 literature, but some findings do not fit in this conceptual scheme. For example, an experiment conducted in
531 permeable sediments of the Gulf of Gdansk does not show the expected bacterial dominated biological C
532 processing pattern. Instead it shows respiration dominated biological C processing, with bacterial uptake
533 responsible for only 16% (Fig. 5). Further, an OC rich site with invasive mangroves in Hawaii shows respiration
534 dominated biological C processing, instead of ‘active faunal uptake’ pattern (Fig. 5, Sweetman et al., 2010), due
535 to mangrove roots and detritus making the sediment inhospitable to macrofauna.

536 Finally, bacterial uptake dominated short term biological C processing has also been observed over 3 days in
537 sediments from the Faero-Shetland channel at a depth of 1080 m (Gontikaki et al., 2011). This is considerably
538 deeper than all other observations, and the sediments contained a muddy fraction, although also featuring grains
539 up to gravel size. Thus this site does not fit the same general description as others showing bacterial uptake
540 dominated biological C processing. In this case bacterial uptake dominated C processing was observed over the
541 initial 3 days of the experiment, and after 6 days biological C processing was respiration dominated, in line with
542 expectations. The authors explained the initial rapid uptake of C by bacteria as a reaction to the initially
543 available reactive fraction of the added OM, before hydrolysis of the remaining OC began in earnest (Gontikaki
544 et al., 2011). The Porcupine Abyssal plain also showed a change in short term biological C processing category
545 between different experiment durations, showing an unexpected active faunal uptake pattern after 60 h, and the
546 more expected ‘respiration dominated’ pattern after 192 h and 552 h (Table 1). This was explained as being due
547 to the motility and selective feeding abilities of the macrofauna allowing them to initially outcompete bacteria.
548 The majority of studies which have included experiments of multiple short term durations at the same site have
549 showed consistency of short term biological C processing pattern (Table 1; Witte et al., 2003; Bhuring et al.,
550 2006; Woulds et al., 2009), therefore, variation in experiment duration amongst the studies cited is not thought
551 to be a major driver of short term biological C processing pattern.

552 In summary, the proposed categorisation of short term biological C processing patterns works well across many
553 different sites, but variation in characteristics of individual sites can still lead to some unexpected results.

554 **5 Conclusions**

555 The rate of respiration of added phytodetritus was dominantly controlled by temperature, rather than other
556 factors such as benthic community biomass, sediment OC concentration, or solute transport mechanism.

557 Faunal C uptake was related to faunal biomass. Further, total biological C processing rates in this and previous
558 studies appear to be dominantly determined by benthic biomass. Therefore benthic community structure has a
559 role in controlling the C processing capacity of benthic environments.

560 A new biological C processing pattern category was proposed titled 'bacterial uptake dominated', which seems
561 usually to be observed in permeable sediments, where conditions are particularly conducive to active bacterial
562 populations.

563

564 **Author contributions**

565 C. Woulds designed and conducted the experiments with input from G. Cowie, J. Middelburg and U. Witte.
566 Sample analysis was completed by C. Woulds, S. Bouillon and E. Drake. C. Woulds prepared the manuscript
567 with the assistance of all co-authors.

568 **Acknowledgements**

569 The authors would like to thank Eva-Maria Zetsche, Val Johnson, Owen McPherson, Caroline Gill and Gwylim
570 Lynn for assistance with the Ythan sand flat fieldwork, and Matthew Schwartz, Rachel Jeffreys, Kate Larkin,
571 Andy Gooday and Christine Whitcraft for assistance with the Loch Etive fieldwork. Jonathan Carrivick created
572 Figure 1. The work was funded by the Natural Environment Research Council and the Netherlands Earth
573 System Science Center. We would also like to thank two anonymous reviewers for their comments which
574 helped to improve the manuscript.

575

576 **References**

577 ALLER, R. C. 1994. Bioturbation and remineralisation of sedimentary organic matter: Effects of redox
578 oscillation. *Chemical Geology*, 114, 331-345.

579 ANDERSSON, J. H., WOULD, C., SCHWARTZ, M., COWIE, G. L., LEVIN, L. A., SOETAERT, K. &
580 MIDDELBURG, J. J. 2008. Short-term fate of phytodetritus in sediments across the Arabian sea oxygen
581 minimum zone. *Biogeosciences*, 5, 43-53.

582 ANSELL, A. D. 1974. SEDIMENTATION OF ORGANIC DETRITUS IN LOCHS-ETIVE AND CRERAN,
583 ARGYLL, SCOTLAND. *Marine Biology*, 27, 263-273.

584 ASPETSBERGER, F., ZABEL, M., FERDELMAN, T., STRUCK, U., MACKENSEN, A., AHKE, A. &
585 WITTE, U. 2007. Instantaneous benthic response to different organic matter quality: in situ experiments in the
586 Benguela Upwelling System. *Marine Biology Research*, 3, 342-356.

587 BERNER, R. A. 1982. Burial of organic carbon and pyritic sulphur in the modern ocean: Its geochemical and
588 environmental significance. *American Journal of Science*, 282, 451-473.

589 BOLAM, S. G., FERNANDES, T. F. & HUXHAM, M. 2002. Diversity, biomass, and ecosystem processes in
590 the marine benthos. *Ecological Monographs*, 72, 599-615.

591 BOSCHKER, H. T. S. & MIDDELBURG, J. J. 2002. Stable isotopes and biomarkers in microbial
592 ecology. *FEMS Microbiology Ecology*, 40, 85-95.

593 BRADSHAW, S. A., EGLINTON, G., O'HARA, S. C. M. & CORNER, E. D. S. 1991. Biogeochemical changes
594 in lipids in a model marine food chain. In: BERTHELIN, J. (ed.) *Diversity of Environmental Biogeochemistry*.
595 Amsterdam: Elsevier.

596 BRADSHAW, S. A., O'HARA, S. C. M., CORNER, E. D. S. & EGLINTON, G. 1990. Changes in lipids during
597 simulated herbivorous feeding by the marine crustacean *Neomysis integer*. *Journal of the Marine Biological
598 Association of the United Kingdom*, 70, 225-243.

599 BRADSHAW, S. A., O'HARA, S. C. M., CORNER, E. D. S. & EGLINTON, G. 1990. Dietary lipid changes
600 during herbivory and corophagy by the marine invertebrate *Nereisdiversicolor*. *Journal of the Marine Biological
601 Association of the United Kingdom*, 70, 771-787.

602 BRADSHAW, S. A., O'HARA, S. C. M., CORNER, E. D. S. & EGLINTON, G. 1991. Effects on dietary lipids
603 of the marine bivalve *Scrobicularioplana* feeding in different modes. *Journal of the Marine Biological
604 Association of the United Kingdom*, 71, 635-653.

605 BUHRING, S. I., EHRENHAUSS, S., KAMP, A., MOODLEY, L. & WITTE, U. 2006a. Enhanced benthic
606 activity in sandy sublittoral sediments: Evidence from ^{13}C tracer experiments. *Marine Biology Research*, 2, 120-
607 129.

608 BUHRING, S. I., LAMPADARIOU, N., MOODLEY, L., TSELEPIDES, A. & WITTE, U. 2006b. Benthic
609 microbial and whole-community responses to different amounts of ^{13}C -enriched algae: In situ experiments in the
610 deep Cretan Sea (Eastern Mediterranean). *Limnology and Oceanography*, 51, 157-165.

611 CANFIELD, D. E. 1994. Factors influencing organic carbon preservation in marine sediments. *Chemical
612 Geology*, 114, 315-329.

613 DUARTE, C. M., MIDDELBURG, J. J. & CARACO, N. 2005. Major role of marine vegetation on the oceanic
614 carbon cycle. *Biogeosciences*, 2, 1-8.

615 EHRENHAUSS, S. & HUETTEL, M. 2004. Advective transport and decomposition of chain-forming planktonic
616 diatoms in permeable sediments. *Journal of Sea Research*, 52, 179-197.

617 EVRARD, V., SOETAERT, K., HEIP, C. H. R., HUETTEL, M., XENOPPOULOS, M. A. & MIDDELBURG, J.
618 J. 2010. Carbon and nitrogen flows through the benthic food web of a photic subtidal sandy sediment. *Marine
619 Ecology-Progress Series*, 416, 1-16.

620

621 EVRARD, V., HUETTEL, M., COOK, P. L. M., SOETAERT, K., HEIP, C. H. R. & MIDDELBURG, J. J.
622 2012. Importance of phytodetritus and microphytobenthos for heterotrophs in a shallow subtidal sandy
623 sediment. *Marine Ecology Progress Series*, 455, 13-31.

624 GAGE, J. D. 1972. Community structure of the benthos in Scottish sea-lochs. I Introduction and species
625 diversity. *Journal of Marine Biology*, 14, 281-297.

626 DEL GIORGIO, P. A. & COLE, J. J. 1998. Bacterial growth efficiency in natural aquatic systems. *Annual
627 Review of Ecology and Systematics*, 29, 503-541.

628 GONTIKAKI, E., MAYOR, D. J., NARAYANASWAMY, B. E. & WITTE, U. 2011. Feeding strategies of
629 deep-sea sub-Arctic macrofauna of the Faroe-Shetland Channel: Combining natural stable isotopes and
630 enrichment techniques. *Deep-Sea Research Part I-Oceanographic Research Papers*, 58, 160-172.

631 GONTIKAKI, E., MAYOR, D. J., THORNTON, B., BLACK, K. & WITTE, U. 2011. Processing of C-13-
632 labelled diatoms by a bathyal community at sub-zero temperatures. *Marine Ecology Progress Series*, 421, 39-50.

633 GONTIKAKI, E., POLYMERAKOU, P. N., THORNTON, B., NARAYANASWAMY, B. E., BLACK, K.,
634 TSELEPIDES, A. & WITTE, U. 2012. Microbial Response to Organic Matter Enrichment in the Oligotrophic
635 Levantine Basin (Eastern Mediterranean). *Geomicrobiology Journal*, 29, 648-655.

636 GONTIKAKI, E., VAN OEVELEN, D., SOETAERT, K. & WITTE, U. 2011. Food web flows through a sub-
637 arctic deep-sea benthic community. *Progress in Oceanography*, 91, 245-259.

638 HARTNETT, H. E., KEIL, R. G., HEDGES, J. I. & DEVOL, A. H. 1998. Influence of oxygen exposure time on
639 organic carbon preservation in continental margin sediments. *Nature*, 391, 572-574.

640 HEDGES, J. I. & KEIL, R. G. 1995. Sedimentary organic matter preservation: an assessment and speculative
641 synthesis. *Marine Chemistry*, 49, 81-115.

642 HERMAN, P. M. J., MIDDELBURG, J. J., VAN DE KOPPEL, J. & HEIP, C. H. R. 1999. Ecology of estuarine
643 macrobenthos. In: NEDWELL, D. B. & RAFFAELLI, D. G. (eds.) *Advances in Ecological Research*, Vol 29:
644 Estuaries.

645 HERMAN, P. M. J., MIDDELBURG, J. J., WIDDOWS, J., LUCAS, C. H. & HEIP, C. H. R. 2000. Stable
646 isotopes' as trophic tracers: combining field sampling and manipulative labelling of food resources for
647 macrobenthos. *Marine Ecology-Progress Series*, 204, 79-92.

648 HUBAS, C., DAVOULT, D., CARIOU, T. & ARTIGAS, L. F. 2006. Factors controlling benthic metabolism
649 during low tide along a granulometric gradient in an intertidal bay (Roscoff Aber Bay, France). *Marine Ecology
650 Progress Series*, 316, 53-68.

651 HUBAS, C., ARTIGAS, L. F. & DAVOULT, D. 2007. Role of the bacterial community in the annual benthic
652 metabolism of two contrasted temperate intertidal sites (Roscoff Aber Bay, France). *Marine Ecology Progress
653 Series*, 344, 39-48.

654 HUETTEL, M., BERG, P. & KOSTKA, J. E. 2014. Benthic Exchange and Biogeochemical Cycling in
655 Permeable Sediments. *Annual Review of Marine Science*, Vol 6, 6, 23-51.

656 HUNTER, W. R., JAMIESON, A., HUVENNE, V. A. I. & WITTE, U. 2013. Sediment community responses to
657 marine vs. terrigenous organic matter in a submarine canyon. *Biogeosciences*, 10, 67-80.

658 HUNTER, W. R., LEVIN, L. A., KITAZATO, H. & WITTE, U. 2012. Macrofaunal assemblage structure and
659 organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen
660 minimum zone sediments. *Biogeosciences*, 9, 993-1006.

661 KRISTENSEN, E. 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments with
662 emphasis on the role of burrowing animals. *Hydrobiologia*, 426, 1-24.

663 KRISTENSEN, E. 2001. Impact of polychaetes (*Nereis* spp. and *Arenicola marina*) on carbon biogeochemistry
664 in coastal marine sediments. *Geochem Trans*, 2, 92.

665 LOH, P. S., REEVES, A. D., HARVEY, S. M., OVERNELL, J. & MILLER, A. E. J. 2008. The fate of
666 terrestrial organic matter in two Scottish sea lochs. *Estuarine Coastal and Shelf Science*, 76, 566-579.

667 MAYER, L. M. 1994. Surface area control of organic carbon accumulation in continental shelf
668 sediments. *Geochemica et Cosmochimica Acta*, 58, 1271-1284.

669 MIDDELBURG, J. J. & LEVIN, L. A. 2009. Coastal hypoxia and sediment biogeochemistry. *Biogeosciences*, 6,
670 1273-1293.

671 MIDDELBURG, J. J. 2014. Stable isotopes dissect aquatic food webs from the top to the bottom.
672 *Biogeosciences*, 11, 2357-2371.

673 MIDDELBURG, J. J., BARRANGUET, C., BOSCHKER, H. T. S., HERMAN, P. M., MOENS, T. & HEIP, C.
674 H. R. 2000. The fate of intertidalmicrophytobenthos carbon: An in situ ^{13}C -labeling study. Limnology and
675 Oceanography, 45, 1224-1234.

676 MOENS, T., VANHOVE, S., DE MESEL, I., KELEMEN, B., JANSSENS, T., DEWICKE, A. &
677 VANREUSEL, A. 2007. Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and
678 a pulse-chase experiment. Polar Biology, 31, 1-13.

679 MOODLEY, L., BOSCHKER, H. T. S., MIDDELBURG, J. J., PEL, R., HERMAN, P. M. J., DE DECKERE,
680 E. & HEIP, C. H. R. 2000. Ecological significance of benthic foraminifera: ^{13}C labelling experiments. Marine
681 Ecology Progress Series, 202, 289-295.

682 MOODLEY, L., MIDDELBURG, J. J., BOSCHKER, H. T. S., DUINEVELD, G. C. A., PEL, R., HERMAN, P.
683 M. & HEIP, C. H. R. 2002. Bacteria and foraminifera: Key players in a short-term deep-sea benthic response to
684 phytodetritus. Marine Ecology Progress Series, 236, 23-29.

685 MOODLEY, L., MIDDELBURG, J. J., SOETAERT, K., BOSCHKER, H. T. S., HERMAN, P. M. & HEIP, C.
686 H. R. 2005. Similar rapid response to phytodetritus deposition on shallow and deep-sea sediments. Journal of
687 Marine Research, 63, 457-469.

688 MULLINS, H. T., THOMPSON, J. B., MCDOUGALL, K. & VERCOUTERE, T. L. 1985. OXYGEN-
689 MINIMUM ZONE EDGE EFFECTS - EVIDENCE FROM THE CENTRAL CALIFORNIA COASTAL
690 UPWELLING SYSTEM. Geology, 13, 491-494.

691 NOMAKI, H., HEINZ, P., HEMLEBEN, C. & KITAZATO, H. 2005a. Behaviour and response of deep-sea
692 benthic foraminifera to freshly supplied organic matter: A laboratory feeding experiment in microcosm
693 environments. Journal of Foraminiferal Research, 35, 103-113.

694 OVERNELL, J., HARVEY, S. M. & PARKES, R. J. 1996. A biogeochemical comparison of sea loch
695 sediments. Manganese and iron contents, sulphate reduction and oxygen uptake rates. Oceanologica Acta, 19, 41-
696 55.

697 POZZATO, L., VAN OEVELEN, D., MOODLEY, L., SOETAERT, K. & MIDDELBURG, J. J. 2013. Sink or
698 link? The bacterial role in benthic carbon cycling in the Arabian Sea's oxygen minimum zone. Biogeosciences,
699 10, 6879-6891.

700 SCHIMMELMANN, A., ALBERTINO, A., SAUER, P. E., QI, H., MOLINIE, R. & MESNARD, F.
701 2009. Nicotine, acetanilide and urea multi-level H-2-, C-13- and N-15-abundance reference materials for
702 continuous-flow isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 23, 3513-3521.

703 SCHWINGHAMER, P., HARGRAVE, B., PEER, D. & HAWKINS, C. M. 1986. PARTITIONING OF
704 PRODUCTION AND RESPIRATION AMONG SIZE GROUPS OF ORGANISMS IN AN INTERTIDAL
705 BENTHIC COMMUNITY. Marine Ecology Progress Series, 31, 131-142.

706 SMITH, R. W., BIANCHI, T. S., ALLISON, M., SAVAGE, C. & GALY, V. 2015. High rates of organic
707 carbon burial in fjord sediments globally. *Nature Geoscience*, 8, 450-U46.

708 SUN, M. Y., CAI, W. J., JOYE, S. B., DING, H., DAI, J. & HOLLINBAUGH, J. T. 2002. Degradation of algal
709 lipids in microcosm sediments with different mixing regimes. *Organic Geochemistry*, 33, 445-459.

710 SWEETMAN, A. K., MIDDELBURG, J. J., BERLE, A. M., BERNARDINO, A. F., SCHANDER, C.,
711 DEMOPOULOS, A. W. J. & SMITH, C. R. 2010. Impacts of exotic mangrove forests and mangrove
712 deforestation on carbon remineralization and ecosystem functioning in marine sediments. *Biogeosciences*, 7,
713 2129-2145.

714 SWEETMAN, A. K., SOMMER, S., PFANNKUCHE, O. & WITTE, U. 2009. RETARDED RESPONSE BY
715 MACROFAUNA-SIZE FORAMINIFERA TO PHYTODETTRITUS IN A DEEP NORWEGIAN
716 FJORD. *Journal of Foraminiferal Research*, 39, 15-22.

717 WITTE, U., ABERLE, N., SAND, M. & WENZHOFER, F. 2003 a. Rapid response of a deep-sea benthic
718 community to POM enrichment: an in situ experimental study. *Marine Ecology Progress Series*, 251, 27-36.

719 WITTE, U., WENZHOFER, F., SOMMER, S., BOETIUS, A., HEINZ, P., ABERLE, N., SAND, M.,
720 CREMER, A., ABRAHAM, W.-R., JORGENSEN, B. B. & PFANNKUCHE, O. 2003 b. In situ experimental
721 evidence of the fate of a phytodetritus pulse at the abyssal sea floor. *Nature*, 424, 763-766.

722 WOOD, B. J. B., TETT, P. B. & EDWARDS, A. 1973. INTRODUCTION TO PHYTOPLANKTON,
723 PRIMARY PRODUCTION AND RELEVANT HYDROGRAPHY OF LOCH ETIVE. *Journal of Ecology*, 61,
724 569-585.

725 WOULD, C., ANDERSSON, J. H., COWIE, G. L., MIDDELBURG, J. J. & LEVIN, L. A. 2009. The short-
726 term fate of organic carbon in marine sediments: Comparing the Pakistan margin to other regions. *Deep Sea*
727 *Research Part II: Topical Studies in Oceanography*, 56, 393-402.

728 WOULD, C., COWIE, G. L., LEVIN, L. A., ANDERSSON, J. H., MIDDELBURG, J. J., VANDEWIELE, S.,
729 LAMONT, P. A., LARKIN, K. E., GOODAY, A. J., SCHUMACHER, S., WHITCRAFT, C., JEFFREYS, R.
730 M. & SCHWARTZ, M. C. 2007. Oxygen as a control on seafloor biological communities and their roles in
731 sedimentary carbon cycling. *Limnology and Oceanography*, 52, 1698-1709.

732 WOULD, C., MIDDELBURG, J. J. & COWIE, G. L. 2012. Alteration of organic matter during infaunal
733 polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids.
734 *Geochimica Et Cosmochimica Acta*, 77, 396-414.

735 WOULD, C., MIDDELBURG, J. J. & COWIE, G. L. 2014. Alteration of organic matter during infaunal
736 polychaete gut passage and links to sediment organic geochemistry. Part II: Fatty acids and aldoses.
737 *Geochimica Et Cosmochimica Acta*, 136, 38-59.

738 YVON-DUROCHER, G., CAFFREY, J. M., CESCATTI, A., DOSSENA, M., DEL GIORGIO, P., GASOL, J.
739 M., MONTOYA, J. M., PUMPANEN, J., STAEBER, P. A., TRIMMER, M., WOODWARD, G. & ALLEN, A.

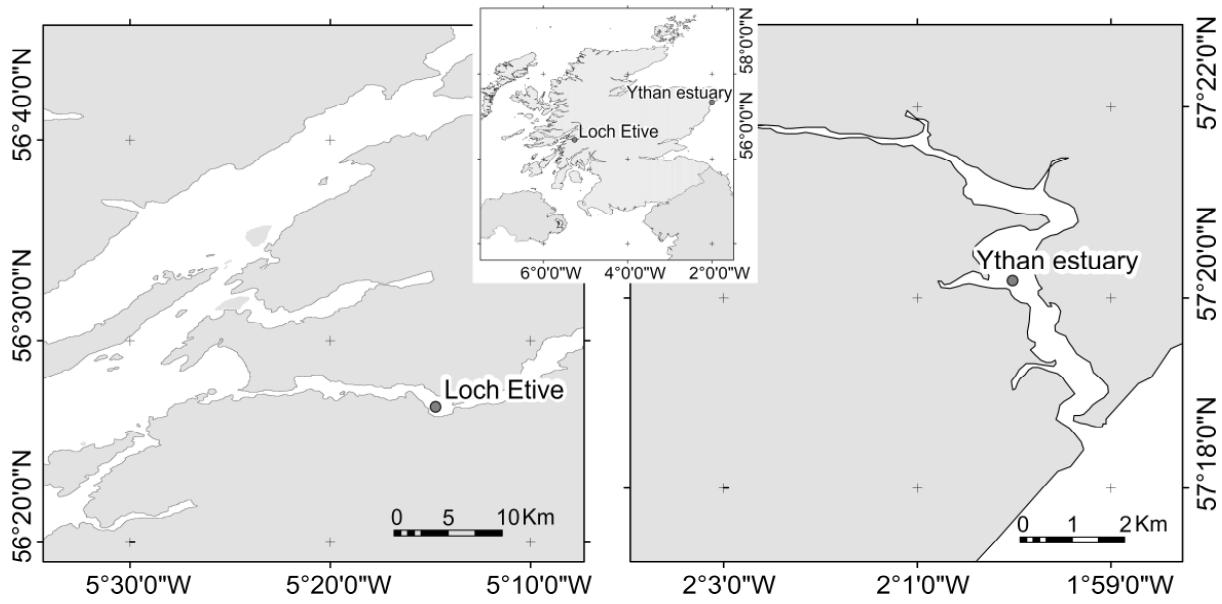
740 P. 2012. Reconciling the temperature dependence of respiration across timescales and ecosystem types. *Nature*,
741 487, 472-476.

742 ZETSCHE, E., BULLING, M. T. & WITTE, U. 2012. Permeability of intertidal sandflats: Impact of temporal
743 variability on sediment metabolism. *Continental Shelf Research*, 42, 41-50.

744 ZETSCHE, E., PATERSON, D. M., LUMSDON, D. G. & WITTE, U. 2011. Temporal variation in the sediment
745 permeability of an intertidal sandflat. *Marine Ecology Progress Series*, 441, 49-63.

746 ZETSCHE, E., THORNTON, B., MIDWOOD, A. J. & WITTE, U. 2011. Utilisation of different carbon sources
747 in a shallow estuary identified through stable isotope techniques. *Continental Shelf Research*, 31, 832-840.

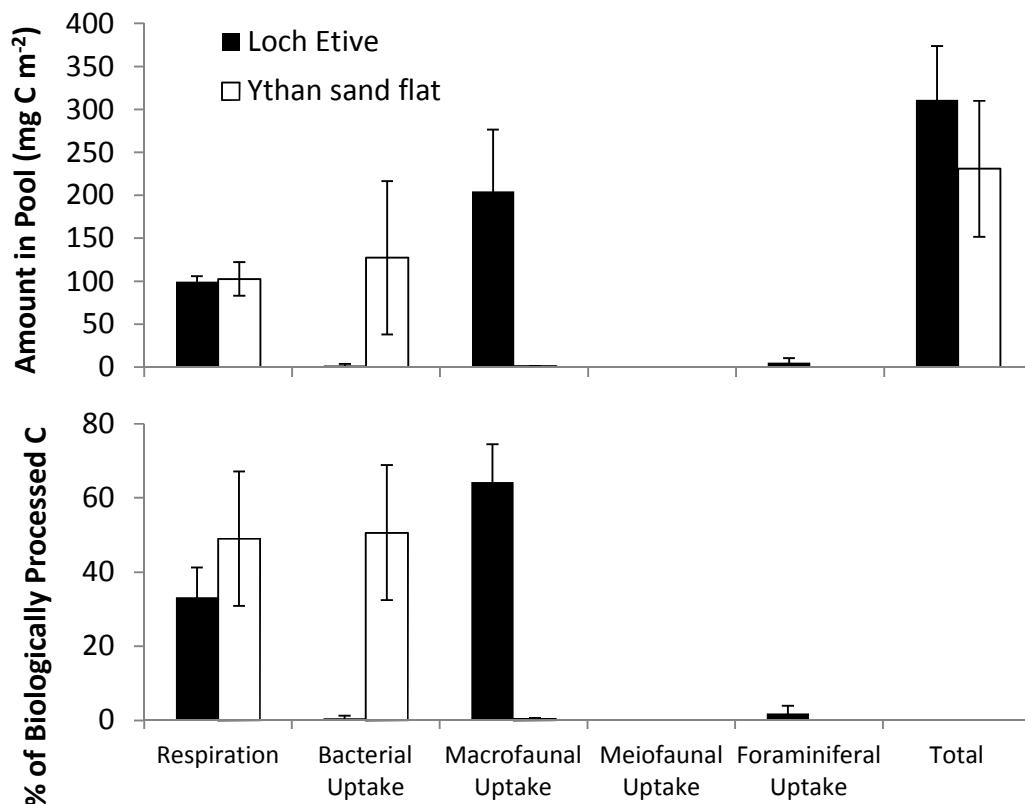
748


749

Source	Site/Experiment	Depth (m)	Temperature (°C)	Incubation Duration (h)	Macrofaunal Biomass (mg C m ⁻²)	Bacterial Biomass (mg C m ⁻²)	Respiration Rate (mg C m ⁻² h ⁻¹)	Total Processing Rate (mg C m ⁻² h ⁻¹)
Moodley et al. 2000	Oosterschelde	Intertidal	10	6	nd	nd	7.758	13.150
Moodley et al. 2002	NW Spain	2170	3.6	35	39	2	0.083	0.290
Witte et al. 2003 b	PAP 60h	4800	nd	60	120	2500	0.167	0.225
Witte et al. 2003 b	PAP 192h	4800	nd	192	120	2500	0.167	0.188
Witte et al. 2003 b	PAP 552h	4800	nd	552	120	2500	0.236	0.263
Witte et al. 2003 a	Sognefjord 36h	1265	7	36	250	8500	0.539	0.781
Witte et al. 2003 a	Sognefjord 72h	1265	7	72	250	8500	0.451	0.715
Moodley et al. 2005	N. Sea (perturbed)	37	6	24	756	2688	0.600	0.735
Moodley et al. 2005	N. Aegean	102	14	24	73	522	2.895	3.075
Moodley et al. 2005	N. Aegean	698	14	24	37	366	3.110	3.290
Moodley et al. 2005	E. Med.	1552	14	24	6	254	2.750	2.830
Moodley et al. 2005	E. Med.	3859	14	24	4	312	2.495	2.610
Moodley et al. 2005	NE Atlantic 24h	2170	4	24	138	313	0.300	0.330
Moodley et al. 2005	N. Sea	37	16	24	732	2304	3.025	3.600
Moodley et al. 2005	Estuary	Intertidal	18	24	1356	1260	2.545	3.705
Bhuring et al. 2006	German Bight 12h	19	9	12	nd	nd	0.258	3.592
Bhuring et al. 2006	German Bight 30h	19	9	30	nd	nd	0.620	2.523
Bhuring et al. 2006	German Bight 132h	19	9	132	nd	nd	0.258	0.667
Bhuring et al. 2006	German Bight in situ	19	13	32	nd	nd	0.338	2.834
Woulds et al. 2009	PM pre 140 2d	140	22	68	110	1100	2.827	3.750
Woulds et al. 2009	PM post 140 2d	140	22	44	110	1100	2.066	2.977
Woulds et al. 2009	PM post 140 5d	140	22	118	110	1100	1.164	1.611
Woulds et al. 2009	PM post 140 in situ	140	22	60	110	1100	0.705	0.955
Woulds et al. 2009	PM pre 300 2d	300	15	61	0	1000	0.365	0.487
Woulds et al. 2009	PM pre 300 5d	300	15	127	0	1000	0.285	0.386
Woulds et al. 2009	PM post 300 2d	300	15	58	0	1000	0.527	0.931
Woulds et al. 2009	PM post 300 5d	300	15	155	0	1000	0.477	0.865
Woulds et al. 2009	PM post 300 in situ	300	15	60	0	1000	0.035	0.250
Woulds et al. 2009	PM pre 850 2d	850	10	46	nd	nd	1.064	1.934
Woulds et al. 2009	PM pre 940 5d	940	9	112	910	700	0.469	0.933
Woulds et al. 2009	PM post 940 5d	940	9	113	910	700	0.486	1.274
Woulds et al. 2009	PM post 940 in situ	940	9	48	910	700	0.155	0.986
Woulds et al. 2009	PM pre 1000 2d	1000	8	57	nd	nd	0.990	2.411
Woulds et al. 2009	PM pre 1200 5d	1200	7	114	60	nd	0.274	0.289
Woulds et al. 2009	PM pre 1850 2d	1850	3	48	110	300	0.065	0.235
Woulds et al. 2009	PM pre 1850 5d	1850	3	117	110	300	0.434	0.506
Woulds et al. 2009	PM post 1850 5d	1850	3	86	110	300	2.459	2.623
Sweetman et al. 2010	Pearl Harbour Control	Intertidal	24	48	337	5500	3.835	4.343
Sweetman et al. 2010	Pearl Harbour Removal	Intertidal	24	48	3391	4500	5.349	7.401
Sweetman et al. 2010	Pearl Harbour Mangrove	Intertidal	24	48	713	18154	5.456	6.048
Sweetman et al. 2010	Kaneohe Bay Control	Intertidal	24	48	882	3500	6.125	6.849
Sweetman et al. 2010	Kaneohe Bay Removal	Intertidal	24	48	1435	9000	5.295	7.475
Evrard et al. 2010	Wadden Sea	Photic Subtidal	15	96	nd	nd	0.031	0.034
Evrard et al. 2012	Gulf of Gdańsk (sandy)	1.5	20	72	558	407	0.047	0.061
This study	Loch Etive	70	11	156	4337	5515	0.638	1.994
This study	Ythan sand flat	Intertidal	11	162	455	7657	0.633	1.421

750

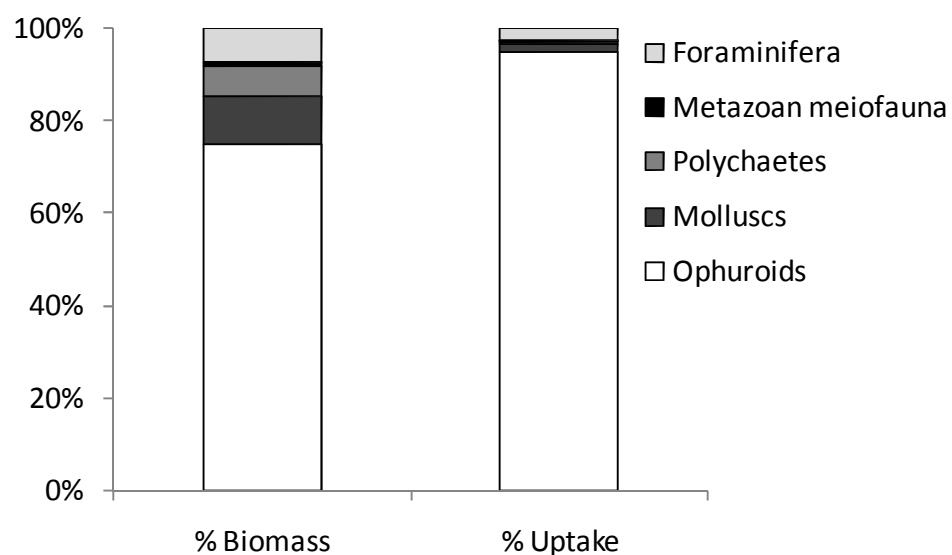
751 Table 1. Sources and site details of previous isotope tracing experiment data. PAP = Porcupine Abyssal Plain.
 752 For Woulds et al. (2009) experiments PM = Pakistan Margin, 'pre' and 'post' indicate pre- or post-monsoon
 753 seasons, and 2d or 5d indicate approximate experiment durations in days. In some other cases experiment
 754 durations are indicated in hours (h).


755

756

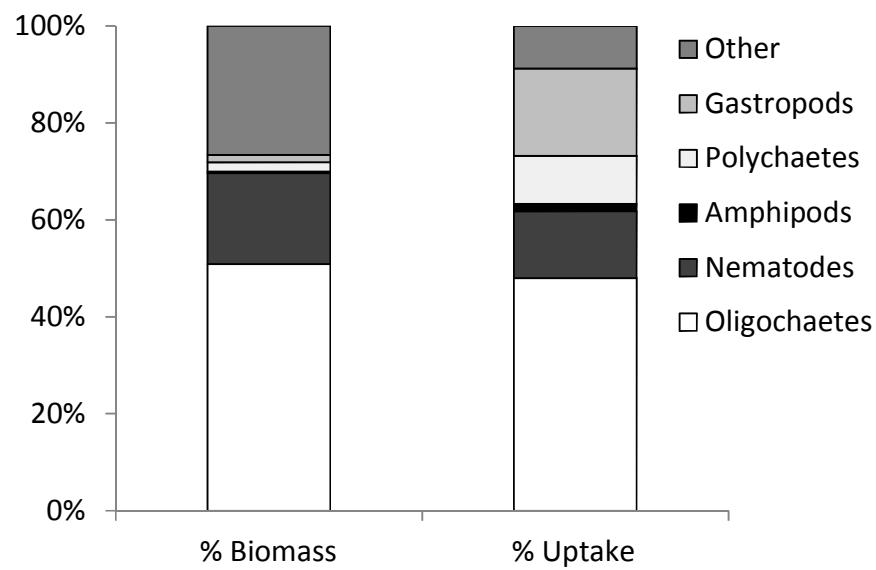
757 Figure 1. Map showing site locations.

758


759

760 Figure 2. The distribution of initially added C between different biological pools at the end of the experiments in
 761 absolute terms (upper panel), and as percentages of total biological C processing (lower panel). Note there are
 762 no data for meiofaunal or foraminiferal uptake on the Ythan sand flat.

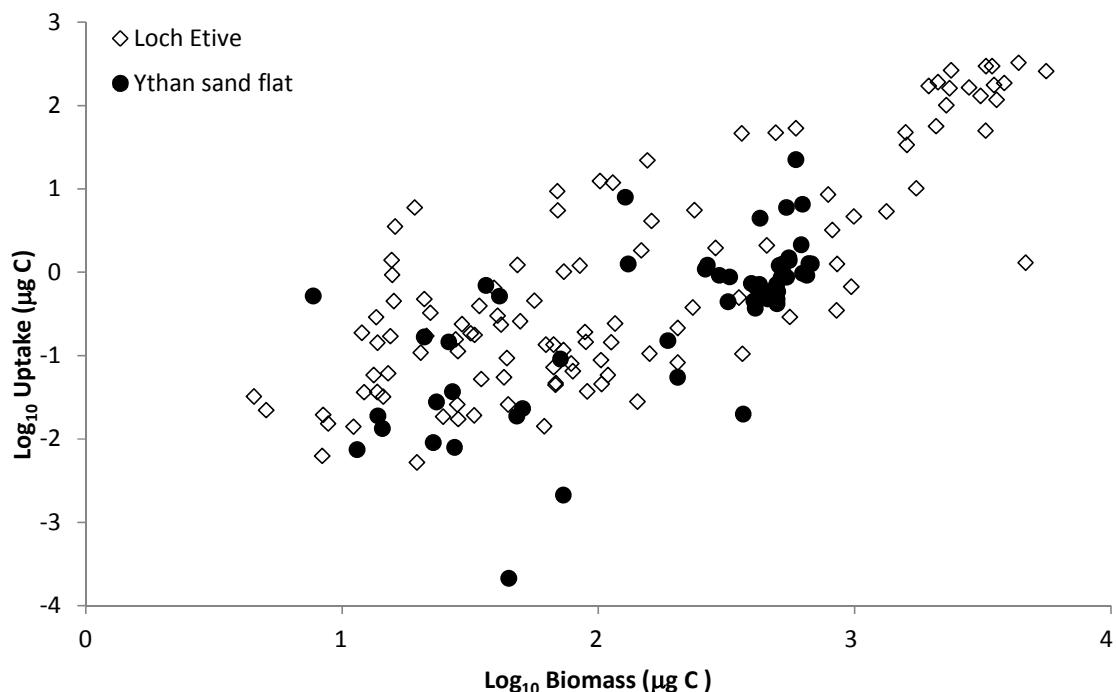
763


764

765

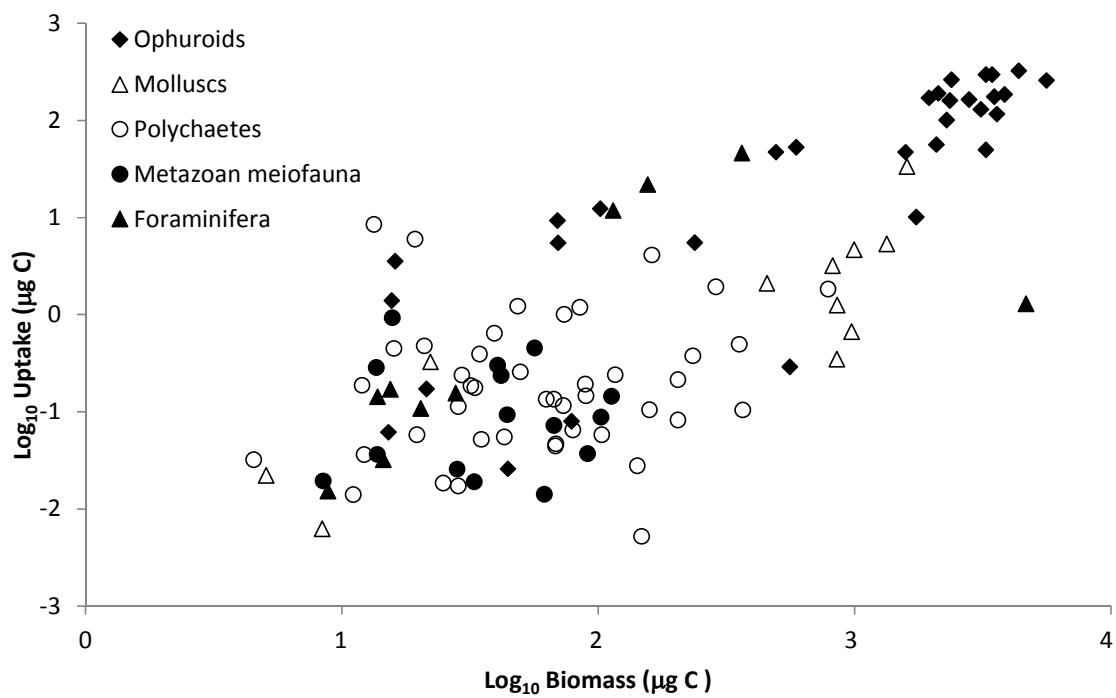
766

767 A

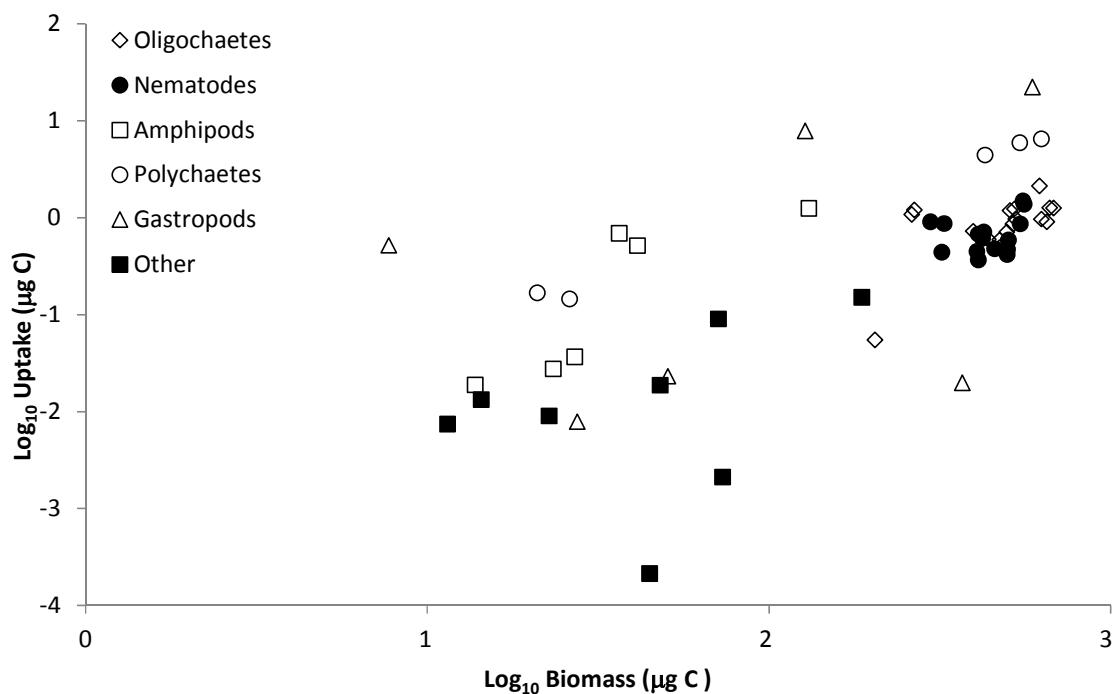


768

769 B


770 Figure 3. Taxa responsible for biomass and C uptake in a) Loch Etive, and b) the Ythan sand flat.

771


772

773 A

774

775 B

776

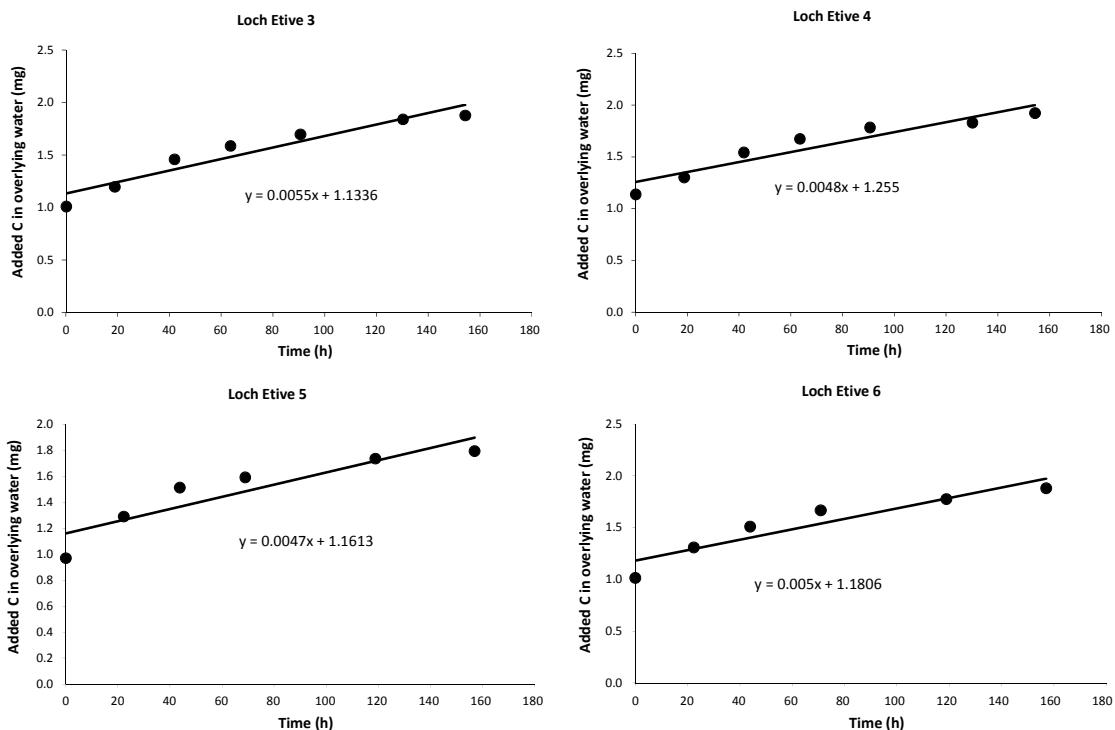

777 C

778 Figure 4. Log₁₀ uptake against Log₁₀ C biomass for: a) all specimens analysed in Loch Etive and on the Ythan
 779 sand flat, b) Loch Etive with taxonomic detail, and c) the Ythan sand flat with taxonomic detail.

780

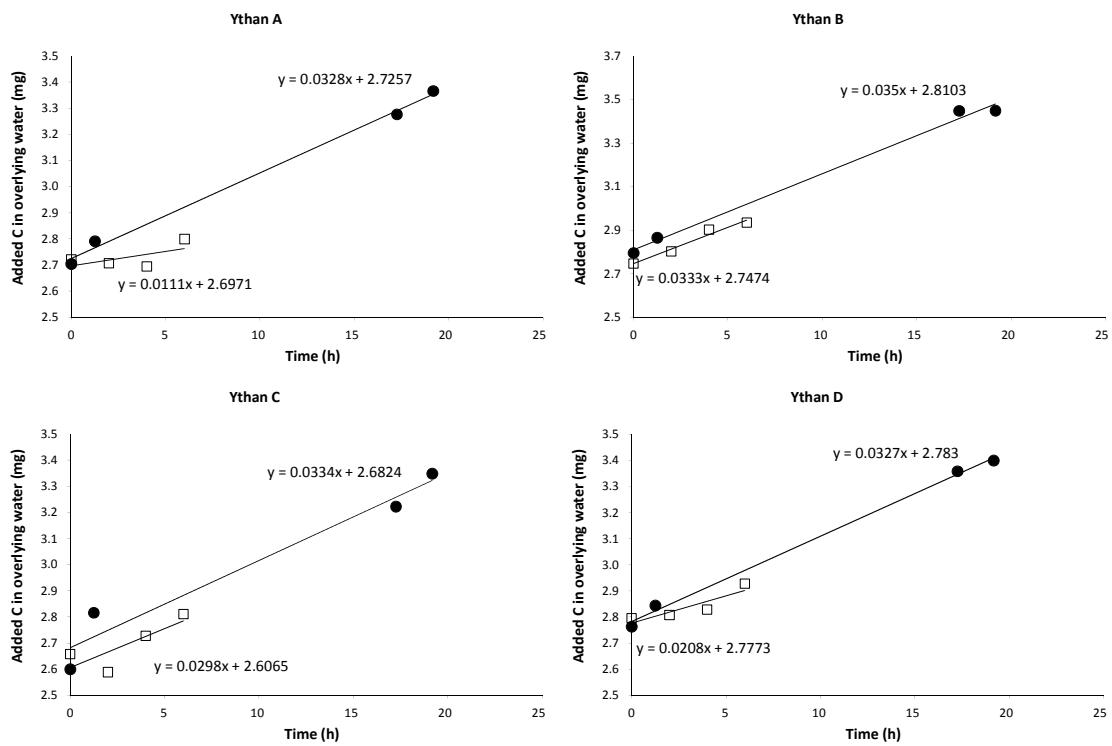
781

782



783

784 Figure 5. Biological C processing pattern categories adapted from Woulls et al. (2009), with the experiments
785 from this study and the new category 'bacterial uptake dominated' added. Data sources are as follows; Eastern
786 Mediterranean (E. Med.), NE Atlantic, North Aegean (N. Aegean) and Scheldt Estuary 2: Moodley et al. (2005);
787 ; Pakistan Margin (Pak. 140 m, 300 m, 940 m, 1850 m): Woulls et al. (2009); Sognefjord: Witte et al. (2003 a);
788 Scheldt Estuary 1: Moodley et al. (2000); Pearl Harbour: Sweetman et al. (2010); Gulf of Gdansk: Evrard et al.
789 (2012); German Bight: Buhring et al., (2006).


790

791 **Supplementary Information**

792

793 **A**

794

795 **B**

796 **Figure S1. Quantity of added C over time in experimental chamber water columns, with regression lines**
797 **and equations used for calculating respiration rates, for a) Loch Etive and b) the Ythan sand flat. Note**
798 **that the chamber surface area was different for the two study sites (see methods).**