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Abstract 23 

Dynamic global vegetation models are useful tools for the simulation of carbon 24 

dynamics on regional and global scales. However, even the most validated models are 25 

usually hampered by the poor availability of global biomass data in the model 26 

validation, especially on regional/global scales. Here, taking the integrated biosphere 27 

simulator model (IBIS) as an example, we evaluated the modeled carbon dynamics, 28 

including gross primary production (GPP) and potential above-ground biomass 29 

(AGB), on the global scale. The IBIS model was constrained by both in situ GPP and 30 

plot-level AGB data collected from the literature. Independent validation showed that 31 

IBIS could reproduce GPP and evapotranspiration with acceptable accuracy at site 32 

and global levels. On the global scale, the IBIS-simulated total AGB was similar to 33 

those obtained in other studies. However, discrepancies were observed between the 34 

model-derived and observed spatial patterns of AGB for Amazonian forests. The 35 

differences among the AGB spatial patterns were mainly caused by the 36 

single-parameter set of the model used. This study showed that different 37 

meteorological inputs can also introduce substantial differences in AGB on the global 38 

scale. Further analysis showed that this difference is small compared with 39 

parameter-induced differences. The conclusions of our research highlight the 40 

necessity of considering the heterogeneity of key model physiological parameters in 41 

modeling global AGB. The research also shows that to simulate large-scale carbon 42 

dynamics, both carbon flux and AGB data are necessary to constrain the model. The 43 
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main conclusions of our research will help to improve model simulations of global 44 

carbon cycles.  45 

 46 

Keywords: dynamic global vegetation model, integrated biosphere model, gross 47 

primary production, above-ground biomass, global carbon cycle 48 
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1 Introduction 49 

The global terrestrial ecosystem is an important carbon sink that can mitigate the 50 

ongoing increases in atmospheric CO2 concentration (Dixon et al., 1994; Luyssaert et 51 

al., 2007; Pan et al., 2011). For example, global forests, which cover around 30% of 52 

the land surface, account for ~75% of terrestrial gross primary production (GPP) and 53 

~80% of global plant biomass (Kindermann et al., 2008; Beer et al., 2010). The large 54 

carbon stock in the terrestrial ecosystem indicates the need for a reliable description 55 

of its current distribution and prediction of future variations (Keith et al., 2009; 56 

Galbraith et al., 2010; Pan et al., 2011; Xue et al., 2011). However, it is still a 57 

challenge to accurately estimate the distribution of carbon stocks on the global scale, 58 

mainly because of the unknown mechanisms and/or relative contributions of various 59 

factors such as climate change, CO2 fertilization, and land use change on carbon 60 

dynamics (McGuire et al., 2001; Mu et al., 2008). 61 

Various methods have been developed for mapping the global distribution of 62 

biomass, and each has its pros and cons. On the regional scale, the field inventory 63 

method provides the most reliable information on biomass, but it is labor intensive 64 

and costly when applied over a large area (e.g., Malhi et al., 2002). On the global 65 

scale, remote-sensing methods have advantages over field inventory methods for 66 

applications to large areas and in areas that are difficult to access (Lefsky et al., 2005; 67 

Thurner et al., 2014; Tao et al., 2014). For example, the light detection and ranging 68 

method has recently been used in the Amazon region, with acceptable accuracy 69 
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(Asner et al., 2010; Saatchi et al., 2011). As an alternative, the dynamic global 70 

vegetation model (DGVM) is a useful tool for mapping global biomass and is the only 71 

method that predicts future variations. In the past, many researchers have explored 72 

how climate change or land use change would alter the global biomass, and this has 73 

improved our confidence in the projection of terrestrial responses to climate change. 74 

In many cases, the DGVM-modeled potential vegetation biomass is used as a baseline 75 

for exploring the corresponding response to the projected climate. Before using the 76 

DGVM to project future biomass changes, an evaluation of how the DGVM can 77 

reproduce potential (natural) present-day biomass is necessary (Mu et al., 2008; Seiler 78 

et al., 2014). However, this is rarely done, mainly because of the lack of available 79 

global-scale biomass data. For instance, in many cases, the default values for various 80 

physiological parameters are used, and may differ greatly for different DGVMs. The 81 

lack of evaluation of modeled biomass on the global scale may result in large 82 

differences among global carbon stocks obtained using different models (Cramer et al., 83 

2001; Sitch et al., 2008), resulting in bias in our conclusions regarding vegetation 84 

responses in projected climate scenarios (Huntingford et al., 2008; 2013). 85 

Uncertainty in the modeled biomass may originate in various ways: model 86 

structure, model parameters, and meteorological inputs. The results for potential 87 

natural vegetation obtained from bioclimatic limits and forest dynamics using the 88 

DGVM may give an unrealistic representation of competition among plant functional 89 

types (PFTs) (Purves and Pacala, 2008; Seiler et al., 2014). A biased PFT in the 90 

DGVM partly contributes to the uncertainty in carbon dynamics, including GPP and 91 
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biomass. Moreover, DGVMs usually use a single set of parameters to represent 92 

different biomes and rarely consider spatial heterogeneity (Xiao et al., 2011, 2014). In 93 

reality, different physiological parameters vary greatly, depending on the soil type, 94 

climate, and vegetation (Castanho et al., 2013). The ways in which this will bias the 95 

spatial pattern of carbon flux, and thus biomass accumulation, have not been 96 

sufficiently discussed on the global scale, partly because of the unavailability of 97 

biomass data for large areas (Delbart et al., 2010; Wolf et al., 2011). Recent research 98 

has shown that it is necessary to use both carbon flux data and biometric data for 99 

DGVM calibration (Kondo et al., 2013; Seiler et al., 2014). Furthermore, uncertainties 100 

in DGVM-derived carbon flux and biomass may also arise from the input data itself, 101 

such as meteorological forcing data (Barman et al., 2014a, b). Different input data can 102 

result in differences among the results obtained using different models when modeling 103 

large-scale carbon flux (Zhao et al., 2005; Jung et al., 2007). It is therefore necessary 104 

to quantify the uncertainty from meteorological inputs in modeled biomass, to 105 

improve the modeling results. 106 

The objective of this study is to evaluate model-derived carbon flux and biomass 107 

on the global scale using collected carbon flux (GPP) and biomass datasets at the plot 108 

level. To do this, we used the integrated biosphere simulator (IBIS; Foley et al., 1995; 109 

Kucharik et al., 2000) as an example, and used both carbon flux and collected 110 

above-ground biomass (AGB) data (2101 plots) to constrain the model. We adopted 111 

the most important parameters from meta-analysis, calibration, or from the literature. 112 

We also investigated how different meteorological input data changed the modeling 113 
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results. Overall, the intention of the current study was to explore the following 114 

questions. 1) How accurately can IBIS simulate GPP and AGB, and where does bias 115 

originate? 2) Can a single set of calibrated parameters accurately map the patterns of 116 

GPP and AGB? 3) What should modelers do to improve the modeling results?  117 

2 Material and methods 118 

2.1 IBIS model 119 

The IBIS model considers the composition and structure of vegetation responses 120 

to environmental changes, within an integrated framework, to simulate land surface 121 

hydrothermal processes, biogeochemical cycles, and terrestrial vegetation dynamics. 122 

The model simulates the land surface processes for energy, water, and momentum 123 

exchange between soil, vegetation, and the atmosphere, using a land surface transfer 124 

scheme (LSX) (Thompson and Pollard, 1995a, b). In detail, two canopy layers, three 125 

snow layers, and six soil layers are considered in each grid unit. Evapotranspiration 126 

(ET) consists of three components, i.e., canopy transpiration, interception, and 127 

evaporation from the ground surface. Vegetation transpiration is calculated using a 128 

semi-mechanistic model of stomatal conductance (Ball et al., 1986), which is coupled 129 

with canopy carbon assimilation and water exchange between a leaf and the boundary 130 

layer to give 131 

2,
n

s h o s

s

mA
g h b

C
     (1) 132 

where An is the net photosynthesis rate at leaf level (μmol CO2 m
-2

 s
-1

), gs,h2o is the 133 
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leaf-level stomatal conductance of water vapor (μmol H2O m
-2

 s
-1

), Cs is the CO2 134 

concentration (μmol μmol
-1

) at the leaf surfaces, hs is the relative humidity at the leaf 135 

surface (%), and m and b are empirical parameters. 136 

IBIS represents natural vegetation using PFTs, based on the biomass and leaf area 137 

index. Overall, 12 PFTs are defined in IBIS, related to bioclimatic limits, and 138 

physiological, morphological, phenological, and life-history criteria governing 139 

competition for light and water (Alton, 2011). Different physiological parameters are 140 

set for each PFT to quantify factors such as the phenological performance or carbon 141 

assimilation and water consumption characteristics (Kucharik et al., 2000). As a result, 142 

the GPP, and thus the net primary production (NPP) and vegetation transpiration, are 143 

calculated separately for upper (trees) and lower (shrublands and grass) canopies as 144 

 (1 ) ( )g leaf stem rootNPP A R R R dt       (2) 145 

where Ag is the gross canopy production, η is the fraction of carbon lost by growth 146 

respiration (fixed value of 0.3), and Rleaf, Rstem, and Rroot are leaf, stem, and root 147 

respiration, respectively. 148 

The model allows for the coexistence of different PFTs in a single grid cell. 149 

However, a dynamic vegetation mechanism is used to simulate annual changes in 150 

vegetation structure through PFT competition for light, water, and other nutrient 151 

resource pools (Kucharik et al., 2006). The competition among PFTs is driven by 152 

differences among carbon balances resulting from phenology, leaf form, and 153 

photosynthetic pathways (Foley et al., 1996; Kucharik et al., 2000). On the annual 154 

scale, the NPP is allocated among three carbon pools, i.e., leaves, stems (for trees), 155 
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and roots. The instantaneous change in the biomass pool j of PFT i is represented as 156 

, ,

,

,

i j i j

i j i

i j

C C
a NPP

t 


 


  (3) 157 

where ai,j is the fraction of annual NPP allocated to the biomass pool and τi,j is the 158 

carbon residence time of that biomass pool. Note that ai,j is a fixed value in IBIS, but 159 

in some other DGVMs (e.g., the  Lund–Potsdam–Jena dynamic global vegetation 160 

model, Sitch et al., 2003) the NPP is allocated using allometric equations. 161 

A relatively simple phenology module based on accumulated growing degree 162 

days (Botta et al., 2000) is used in the original IBIS. A modified version of the 163 

phenology scheme, based on that reported by Jolly et al. (2005), was developed in this 164 

study. In detail, the prognostic phenology model is based on the growing season index 165 

(GSI), which is decided by three main environmental factors, i.e., temperature, 166 

photoperiod, and humidity (Equation 4). The photoperiod is calculated according to 167 

the latitude of the model grid and empirical algorithms. We also adopted a 21-day 168 

running mean GSI calculated from daily mean meteorological variables, following 169 

Jolly et al. (2005). 170 

( ) ( ) ( )m gGSI f T f R f VPD     (4) 171 

1. where Tm, Rg, and VPD are multi-day running mean averages of air temperature (°C), 172 

solar radiation (W m
−2

) and vapor pressure deficit (Pa);  Tmf ,  Rgf , and  VPDf  173 

vary linearly between the constraining limits 0 and 1, and thus regulate vegetation 174 

activity; these functions are defined in Equations (2–4) in Stöckli et al. (2008). 175 
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2.2 Model input data 176 

In the present study, IBIS was executed globally at a 0.5° × 0.5° 177 

latitude–longitude grid resolution. The initial vegetation type was obtained from 178 

moderate-resolution imaging spectoradiometer (MODIS) MOD12Q1 product (Friedl 179 

et al., 2010), and resampled to 0.5°. Soil texture data were obtained from the Center 180 

for Sustainability and the Global Environment 181 

(http://www.sage.wisc.edu/download/IBIS/ibis.html), and was reformatted from the 182 

Global Soil Data Products CD-ROM issued by the International 183 

Geosphere–Biosphere Programme Data and Information Services. The topographical 184 

data were obtained from the Shuttle Radar Topographic Mission 185 

(http://srtm.usgs.gov/), with a resolution of 1000 m. We resampled the resolution to 186 

0.5° (~ 50 km) as a model grid. 187 

The climate data, including monthly mean air temperature, precipitation, relative 188 

humidity, cloudiness, diurnal temperature range, wind speed, and the number of wet 189 

days, were obtained from the Climate Research Unit (CRU) climate dataset for 1901 190 

through 2010 (CRUTS3.10, Harris et al. 2013, hereafter CRU). We examined the 191 

modeled biomass uncertainty induced by different meteorological datasets using 192 

forcing data from Princeton University (http://hydrology.princeton.edu/data.pgf.php, 193 

hereafter Princeton) to drive the model. Princeton does not include wind speed, 194 

therefore we use the wind speed data from the Global Land Data Assimilation System 195 

covering the period 1948–2010 (http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas). 196 

The Princeton was developed at a global spatial scale of 0.5°, with a daily timescale. 197 

Biogeosciences Discuss., doi:10.5194/bg-2016-142, 2016
Manuscript under review for journal Biogeosciences
Published: 25 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



11 
 

In both cases, we spun-up the model for 400 years and then conducted transient 198 

simulations starting from 1948, and 1901 climate data were used for the years before 199 

1901. 200 

2.3 Model validation data 201 

To calibrate and validate the IBIS model, we collected site-level GPP and ET data 202 

from Fluxnet (http://fluxnet.ornl.gov/). The validation sites and data were carefully 203 

selected; we only collected sites with at least 3 years‟ data, because there may be 204 

greater uncertainty for sites that cover only 1 or 2 years. Thirty-nine sites were 205 

selected, covering tropical, temperate, and boreal forests, and grasslands or croplands 206 

(Fig. S1, Table S1). Note that IBIS does not simulate croplands explicitly; therefore 207 

croplands were compared with the simulation results for the understory. The 208 

calibration and validation were conducted on both monthly and annul scales.  209 

 To constrain the model with both flux and biometric data, we also collected 210 

plot-level AGB data from the literature. Overall, 2101 site-year biomass data were 211 

obtained on the global scale (Fig. S1, Table S1). The resolution of plot-level data is 212 

usually 0.01°, therefore we used the average value as a proxy for a model grid. We 213 

also evaluated the modeled AGB on the regional scale. In detail, we first generated a 214 

regional AGB map for tropical Amazonian forests using collected plot data (~ 400 215 

plots) by the random forest method (Breiman, 2001); the data were then resampled at 216 

0.5° for comparison with the modeling results. Note that the model calculates the 217 

carbon density (Mg C ha
−1

) instead of the AGB, therefore we calculated the AGB (Mg 218 
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ha
−1

) by multiplying by a factor of 2.0 (IPCC, 2003). 219 

3 Results 220 

To minimize the number of parameters for calibration, we used most of the 221 

default values, as in Foley et al. (1996) and Kucharik et al. (2000); we calibrated the 222 

parameters most sensitive to the GPP and ET (Table 1). We mainly calibrated the 223 

photosynthesis capacity at 15 °C (vmax_pft) for different PFTs, as in Castanho et al. 224 

(2013). The flux data were mainly for boreal and temperate forests and grassland 225 

(including crops), because of the gaps in data for tropical forest. We therefore used the 226 

literature value for tropical forest (Zhu et al., 2011). Furthermore, we validated the 227 

GPP and ET on the annual scale globally, by comparison with other released datasets. 228 

3.1 Monthly-scale calibrations  229 

 The model performs well for most sites after calibration (Table 2). The Taylor 230 

diagram shows a high correlation between the modeled and observed values for both 231 

GPP and ET (Fig. 1). Most sites have correlation coefficients above 0.6 for GPP and 232 

ET on the monthly scale. The model performance for ET is better than that for GPP, 233 

with large correlation coefficients and larger determination coefficients, averaged as 234 

0.60 and 0.74, respectively, for 39 sites (Fig. 1 and Table 2). This shows that the 235 

model can simulate the energy balance well, according to the LSX land surface 236 

subsection. The model simulates upper canopy (forests) better than lower canopy 237 

(shrubs and grasses), with large correlation coefficients and small deviations from 1 238 
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for the GPP slope (Fig. 1 and Table 2).  239 

3.2 Annual-scale validations  240 

We compared our simulated GPP and ET results with annual-scale in situ 241 

observations (Fig. 2). There are strong relationships between the model simulation 242 

and in situ values for both GPP and ET (R
2
 = 0.57, p < 0.001 and R

2
 = 0.64 p < 0.001 243 

for GPP and ET, respectively). In both cases, the simulations slightly overestimate 244 

small values with large intercepts and slightly underestimate large values compared 245 

with the in situ observations. This overestimation of low values is clearly seen in 246 

independent validation by collected GPP from the literature (Fig. 2c). When the GPPs 247 

were below 500 gC m
−2

 year
−1

, the simulated GPPs were around twice the observed 248 

values. This systematic error may be caused by differences between the flux tower 249 

fetch and the model grid resolution (Kim et al., 2006). Another reason may be that the 250 

flux tower generally focuses on high-production ecosystems (Turner et al., 2006). 251 

3.3 Global annual-scale validations  252 

We further validated the simulated annual GPP and ET results with those from 253 

Jung et al. (2011), on the global scale (Fig. 3). The GPP and ET were scaled up from 254 

flux tower values using the machine-learning technique reported in Jung et al. (2011), 255 

at the same resolution as our model grid (0.5° × 0.5°). The modeled global average 256 

GPP is 1112 gC m
−2

 year
−1

 for 2000–2010; this is larger than the value reported by 257 

Jung et al. (2011) (933 gC m
−2

 year
−1

). The corresponding total global GPP during this 258 
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period is 142 PgC year
−1

 for the model simulation. The modeled GPPs for Amazonian 259 

and African tropical areas are usually above 2800 gC m
−2

 year
−1

, whereas the value 260 

for tropical forests in southeastern Asia are usually above 3200 gC m
−2

 year
−1

. Our 261 

model simulation values are ~200 gC m
−2

 year
−1

 larger than those reported by Jung et 262 

al. (2011) for most areas, especially for areas with small GPPs (Fig. 3b). This 263 

difference is even larger in southern China and the southern US. In contrast, the GPP 264 

is less than that reported by Jung et al. (2011) for southern Amazonian areas.  265 

Similar patterns to those for GPP are found for ET in the model simulations. The 266 

global average ET is 449 mm year
−1

, compared with the value of 546 mm year
−1

 267 

reported by Jung et al. (2011). In most areas, the model simulation results are around 268 

100 mm year
−1

 smaller than those from Jung et al. (2011), especially for low ET areas 269 

(Fig. 4). However, the modeled ET is around 200 mm year
−1

 larger than that obtained 270 

by Jung et al. (2011) for Amazonian and southeastern Asian tropical areas (Fig. 4b). 271 

3.4 Plot-level biomass calibrations  272 

Fig. 5 shows a comparison of the modeled biomass with plot-level observations 273 

after calibration. Fig. 5a shows all the site-year data for each plot, and Fig. 5b shows 274 

the grid-averaged comparisons. The simulations show strong correlations in both 275 

cases. The regression is better for the grid-level case. The improved regression 276 

relationship in the grid-level comparison is caused by the scale difference between the 277 

site location (0.01°) and the model grid (0.5°). In both cases, the model overestimated 278 

low values but underestimated large ones. As stated in section 2.3, the plot accuracy is 279 
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usually 0.01°, therefore the modeled values seem “saturated” in some cases, as 280 

observations vary if they are within the same grid. Fig. 5c shows an independent 281 

validation of the modeled biomass by plot-level observations. The plots are mainly 282 

from measured AGB from natural forests in China. The regression relationship is 283 

significant, but also has large scattering in the calibration. Overall, the model seems to 284 

underestimate large values, but overestimate small values (below 50 Mg ha
−1

). 285 

3.5 Global and regional AGBs  286 

 Fig. 6a shows the spatial pattern of the model-derived above-ground global 287 

biomass (upper and under layers). The global average biomass is 81.73 Mg ha
−1

, with 288 

the largest values in tropical areas and the lowest in boreal areas. The global map of 289 

AGB shows large heterogeneity, which is similar to the case for global GPP patterns. 290 

The zonal AGB within each 0.5° latitude interval shows a large fluctuation (Fig. 6b). 291 

The AGB is relatively small below −30° S and then starts to increase sharply to a 292 

maximum of 278.44 Mg ha
−1

 at around −1.25° S (AGB = 10.814 × latitude + 291.03, 293 

R
2
 = 0.95, p < 0.001). The AGB then decreases sharply until 13.75° N (AGB = −8.04 294 

× latitude + 313.3, R
2
 = 0.95, p < 0.001). The AGB is relatively constant between 15° 295 

N and 50° N and then increases. The AGB reaches another maximum, 112.17 Mg ha
−1

, 296 

at around 56.25° N, and decreases continuously to close to 0 at around 75° N. 297 

 Fig. 7 shows a comparison of the regional AGBs for Amazonian tropical forests. 298 

The observed regional AGBs are derived from 399 plot-level data using a random 299 

forest method. The calculated average AGB is 280.27 Mg ha
−1

, and shows a 300 
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decreasing gradient from east to west. The model calculates the average AGB in this 301 

area as 285.95 Mg ha
−1

, which is comparable to the observed value. However, our 302 

modeled AGB does not show a decreasing gradient from east to west, but shows a 303 

decreasing gradient from north to south gradient as that for GPP (Fig. 6). The model 304 

therefore underestimates the large AGB in the east and overestimates the AGB in the 305 

west (Fig. 7b). Most grids in the Amazonian region are within a ±30% relative error 306 

[(Model − Observation)/Observation × 100%) (Fig. 7b). This results in a small 307 

absolute error of 4.42 Mg ha
−1

 over the whole area. 308 

3.6 Global AGB driven by CRU metrological data  309 

 Fig. 8 shows the spatial pattern of the difference between AGBs driven by 310 

Princeton and CRU. Most areas of the globe show AGB differences within 20 Mg 311 

ha
−1

, according to the two meteorological datasets. The average global difference is 312 

12.83 Mg ha
−1

, with large heterogeneities in different areas. Large differences are 313 

observed in savanna regions (MODIS UMD classification scheme) in South America 314 

and central Africa, and shrublands in northeastern Siberia (Fig. 8a). In these areas, the 315 

AGB driven by daily meteorological data (Princeton) is significantly larger than those 316 

derived from CRU data. In contrast, in most tropical areas, the AGB derived from 317 

Princeton datasets is smaller than those derived from CRU datasets. Most of the grids 318 

show a relative error within ±20% with largest frequency occurs for relative error of 319 

10 % (Fig. 8b).  320 
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4 Discussion 321 

 We used a single set of model parameters to estimate the global carbon stock in 322 

terms of AGB. The IBIS model does not calculate the global AGB directly, but 323 

calculates the carbon density. We therefore compared our model-derived carbon 324 

density with those from other studies. Comparisons of carbon densities have the 325 

advantage over AGB comparisons that they eliminate the uncertainties induced by 326 

global vegetation areas used in different studies. Our model-derived carbon density is 327 

smaller than that reported by Pan et al. (2011) on the global scale (82.96 compared 328 

with 94.2 Mg C ha
−1

), and this results in a smaller global carbon stock (Table 3). Pan 329 

et al. (2011) calculated the carbon density, using the forest inventory method, for the 330 

period 1990–2007; their estimated value of 94.2 Mg C ha
−1

 includes both above- and 331 

below-ground biomass. Previous research showed that ~80% of the total biomass is in 332 

AGB and ~20% is in below-ground biomass for forest ecosystems on the global scale 333 

(Cairns et al., 1997). This indicates that the global above-ground carbon density is 334 

~75 Mg C ha
−1

 for Pan et al. (2011). This value is comparable to our modeling result. 335 

The difference between the global carbon stocks in AGB may arise from the different 336 

forest areas used by Pan et al. (2011) and in our study (MODIS derived). The forest 337 

areas were 3851.3 × 10
6
 and 3332.35 × 10

6
 ha in Pan et al.‟s study and our study, 338 

respectively. Further comparison of the regional-scale carbon density with those from 339 

three other studies show that values in our study and those reported by Pan et al. 340 

(2011) are larger. The carbon densities reported by Goodale et al. (2002) and Liski et 341 

al. (2003) are around 30% smaller than those reported by Thurner et al. (2014) and in 342 
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our study for European forests. In contrast, for North American forests, the carbon 343 

densities reported by Pan et al. (2011) and in our study are similar, and larger than 344 

those in the other three studies. These comparisons with other studies show that the 345 

IBIS-model-derived carbon density gives reasonable results on the global scale and 346 

can therefore be used as an independent tool for validating AGB estimations by other 347 

methods.  348 

 A regional-scale comparison of the observed and modeled AGBs for Amazonian 349 

tropical forests shows that the spatial patterns in the modeling results are biased (Fig. 350 

7). The relative error between the modeled and observed GPPs in this region is 351 

usually below 10% (Figs. 2 and 3). However, the relative error in the AGB for most 352 

grids is within ±30% (Fig. 7). This indicates that the uncertainty in the modeled AGB 353 

may be mainly caused by woody carbon residence (τw, Table 1) instead of carbon 354 

assimilation. Though our point-level calibration shows a significant relationship 355 

between modeled and plot level data, the calibration points are subject to scatter. 356 

Independent validation shows that the model tends to underestimate the AGB when 357 

the AGB is large (Fig. 5c). Similar determination coefficients (R
2
) were reported by 358 

Seiler et al. (2013) for a regional-scale model calibration in Bolivia. The relatively 359 

small R
2
 may explain the region-scale difference for Amazonian forests. The single 360 

value of τw in the model cannot reproduce the spatial variance of AGB on a large scale. 361 

Similar research by Castanho et al. (2013) showed that the woody biomass residence 362 

time is the most important parameter in determining the spatial variance in modeled 363 

AGB in this area. Further investigation using a spatial pattern of τw in IBIS greatly 364 
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improved the modeled AGB, with R
2
 changing from 0.33 to 0.88 (Castanho et al., 365 

2013). These and the presented results indicate that to improve the model simulation 366 

accuracy, modelers should consider the spatial heterogeneity of the most important 367 

parameters in the model used, especially for large-scale simulations (e.g., Zhou et al., 368 

2009).  369 

 Climate-data-driven uncertainties in modeling carbon and energy cycles have 370 

previously been analyzed (Zhao et al., 2005; Barman et al., 2014a, b). A systematic 371 

analysis based on various global vegetation models and meteorological data showed 372 

that substantial changes in the modeled GPP were observed for different 373 

meteorological inputs in regional simulations in Europe (Jung et al., 2007). The 374 

interannual variations in the GPP were mainly caused by different meteorological 375 

drivers. A similar analysis by Barman et al. (2014b) showed that the differences in 376 

site-level GPPs caused by different meteorological drivers were ~20% of the annual 377 

GPP. This was mainly caused by biases in short-wave radiation and humidity for 378 

various meteorological drivers tested in the study. Our study results show that 379 

climate-data-driven uncertainties in carbon assimilation (GPP) can be transferred to 380 

the AGB carbon stock (Fig. 8). The relative differences caused by different climate 381 

drivers are generally within ±20% (Fig. 8b). These differences are smaller than the 382 

relative errors induced by the invariant parameters over the Amazonian forest. This 383 

indicates that to improve the model simulation accuracy, modelers should pay 384 

attention to both model parameter calibration and metrological drivers, with a focus 385 

on the former.  386 
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 Data availability is one of the main reasons that few global model simulations use 387 

plot-level data to constrain the model (Seiler et al., 2014). We collected plot-level 388 

AGB data from the literature, and used them to calibrate and validate IBIS on the 389 

global scale. The plot resolution was generally 0.01–0.1° (~1–10 km). In the 390 

validation, we used measured single-point values as a proxy for a model grid average 391 

(~2500 km
2
), which may have caused a bias relative to the modeled values. Note that 392 

even over a small area, AGB may vary greatly because of local soil type, land use 393 

variability, and local water availability (Baker et al., 2004). Therefore, the difference 394 

between the spatial scales of the plot level and our model simulation grid may partly 395 

explain the small R
2
 in Fig. 5. Further investigations of model simulations at different 396 

spatial resolution (especially at high resolution) are therefore necessary to facilitate 397 

model calibration by higher spatial resolution AGB datasets. Furthermore, the plot 398 

points used for validation and calibration are from natural forests, with little human 399 

disturbance, therefore our modeling results represent the potential value under current 400 

climate conditions (e.g., Mu et al., 2008; Seiler et al., 2014). The AGBs in Table 2 are 401 

present-day AGBs, which may be influenced by human activities. A direct comparison 402 

of model simulation and these data is therefore to some extent inappropriate. However, 403 

this comparison is useful, because based on exploration of the difference between the 404 

two, the model could be used to quantify the impact of human activities (such as land 405 

use change, deforestation, or afforestation) on large-scale AGB change. 406 

5 Conclusions 407 

 DGVMs are useful tools for simulation of regional- and global-scale carbon 408 
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dynamics. In this research, we evaluated the model performance in modeling global 409 

carbon dynamics after calibration of IBIS using in situ GPP and plot-level AGB data 410 

collected from the literature. Independent validation showed that IBIS can reproduce 411 

GPP and ET with acceptable accuracies at the site and global levels. On the 412 

global-scale, IBIS simulation of total AGB gave results similar to those obtained in 413 

other studies. However, discrepancies were observed between model-derived and 414 

observed spatial patterns of AGB for Amazonian forests, mainly because of the 415 

unique parameter set used in the model. Two metrological datasets, i.e., Princeton and 416 

CRU, were used to test the model uncertainties caused by climate drivers. The results 417 

indicated that the two meteorological inputs give substantially different global-scale 418 

AGBs. Further analysis showed that this difference was small compared with the 419 

parameter-induced difference. The conclusions of our research highlight the necessity 420 

of considering the heterogeneity of key model physiological parameters in modeling 421 

global AGB. The research also shows that to simulate large-scale carbon dynamics, 422 

both carbon flux and AGB data are necessary to constrain the model. The main 423 

conclusions of our research could help to improve model simulation of the global 424 

carbon cycle. 425 
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Tables  604 

Table 1 Key PFT-dependent parameters for IBIS calibration. The abbreviations are defined as 605 

follows: vmax_pft: maximum Rubisco capacity at top of canopy (μmol m
−2

 s
−1

); SLA: specific 606 

leaf area (m
2
 kg

−1
); τl: residence time of foliar biomass (years); τr: residence time of root biomass 607 

(years); τw: residence time of wood biomass (years); aleaf: allocation coefficient of total 608 

photosynthate in foliar biomass (fraction); aroot: allocation coefficient of total photosynthate in root 609 

biomass (fraction); awood: allocation coefficient of total photosynthate in wood biomass (fraction); 610 

Pmin: monthly minimum precipitation (mm month
−1

); TminL: absolute minimum temperature (lower 611 

limit, °C); TminU: absolute minimum temperature (upper limit, °C); Twarm: temperature of the 612 

warmest month (°C) (C4 plants only); GDD: minimum growing degree days above 5 °C threshold 613 

for upper-canopy types; minimum growing degree days above 0 °C threshold for lower-canopy 614 

types. The plant functional type (PFT) numbers defined in IBIS are as follows: 1, tropical 615 

broadleaf evergreen trees; 2, tropical broadleaf drought-deciduous trees; 3, warm–temperate 616 

broadleaf evergreen trees; 4, temperate conifer evergreen trees; 5, temperate broadleaf 617 

cold-deciduous trees; 6, boreal conifer evergreen trees; 7, boreal broadleaf cold-deciduous trees; 8, 618 

boreal conifer cold-deciduous trees; 9, evergreen shrubs; 10: cold-deciduous shrubs; 11, warm (C4) 619 

grasses; and 12, cool (C3) grasses. 620 

 621 

 622 

 623 

PFT vmax_pft SLA τ l τ r τ w a leaf a root a wood P min T minL T minU T warm GDD

1 55 25 1.01 1 60 0.3 0.3 0.4 >5.0 >0.0 – – –

2 45 25 1 1 60 0.3 0.3 0.4 – >0.0 – – –

3 40 25 1 1 25 0.3 0.3 0.4 – >−5.0 <0.0 – –

4 30 12.5 2 1 35 0.3 0.4 0.3 – >−45.0 <0.0 – >1100

5 40 25 1 1 35 0.3 0.3 0.4 – >−45.0 <0.0 – >1100

6 25 12.5 2.5 1 52 0.3 0.4 0.3 – >−57.5 <−45.0 – >350

7 30 25 1 1 52 0.3 0.3 0.4 – >−57.5 <−45.0 – >350

8 35 25 1 1 52 0.3 0.3 0.4 – – <−45.0 – >350

9 27.5 12.5 1.5 1 5 0.45 0.4 0.15 – – – – >100

10 27.5 25 1 1 5 0.45 0.35 0.2 – – – – >100

11 15 20 1.25 1 – 0.45 0.55 0 – – – >22.0 >100

12 25 20 1.5 1 – 0.45 0.55 0 – – – – >100

Biogeosciences Discuss., doi:10.5194/bg-2016-142, 2016
Manuscript under review for journal Biogeosciences
Published: 25 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



28 
 

Table 2 Comparison of observed and model-derived gross primary production (GPP; gC m
−2

 month
−1

) 624 

and evapotranspiration (ET; mm month
−1

) for 39 sites. The regression coefficients of slope (a), 625 

intercept (b), R
2
, and root-mean-square error (RMSE) deviations are also shown. The PFT definitions 626 

are the same as in Table 1. 627 

 628 

Longitude Latitude Site PFT

a b R
2 RMSE a b R

2 RMSE

131.15 -12.49 Au-How 2 1.54 -64.90 0.73 50.13 1.06 -37.31 0.54 39.18

-68.75 45.21 US-Ho2 4 1.11 -2.42 0.97 18.95 0.99 8.40 0.93 8.61

-121.56 44.45 US-Me2 4 0.74 6.91 0.93 16.44 0.56 5.56 0.67 10.68

-121.61 44.32 US-Me3 4 1.14 14.96 0.91 18.20 0.72 9.19 0.71 10.22

-121.57 44.44 US-Me5 4 1.18 12.55 0.90 18.43 0.72 7.10 0.73 9.13

-76.67 35.80 US-NC2 4 0.64 62.28 0.85 25.13 0.78 -1.89 0.92 9.81

-105.55 40.03 US-NR1 4 0.53 11.09 0.70 22.29 0.52 4.65 0.59 11.75

-89.87 34.25 US-Goo 5 0.54 128.53 0.48 53.27 0.69 19.37 0.65 18.71

-72.17 42.54 US-Ha1 5 0.65 67.39 0.69 59.59 0.86 12.60 0.86 11.72

-72.19 42.54 US-LPH 5 0.56 82.25 0.57 73.94 0.67 20.40 0.78 15.00

-86.41 39.32 US-MMS 5 0.67 89.27 0.70 53.94 0.73 17.00 0.87 12.16

-92.20 38.74 US-MOz 5 0.60 86.36 0.69 50.23 0.60 19.84 0.69 19.75

-82.24 29.76 US-SP2 5 0.27 160.04 0.25 36.50 0.74 21.01 0.61 20.95

-84.29 35.96 US-WBW 5 0.52 113.58 0.61 51.65 0.81 18.54 0.90 10.70

-98.48 55.88 CA-NS1 6 1.80 13.11 0.87 36.49 1.04 0.21 0.77 13.33

-98.52 55.91 CA-NS2 6 1.41 24.90 0.56 65.64 1.22 -1.71 0.85 11.07

-98.38 55.91 CA-NS3 6 1.65 17.76 0.77 47.40 1.10 -0.11 0.87 10.33

-98.38 55.91 CA-NS4 6 2.59 12.25 0.95 21.31 1.80 0.80 0.89 8.93

-98.49 55.86 CA-NS5 6 1.53 12.36 0.94 23.15 1.11 0.56 0.94 6.88

-99.95 56.64 CA-NS7 6 2.31 45.05 0.72 56.61 1.04 0.56 0.83 11.21

-121.95 45.82 US-Wrc 6 0.93 -7.75 0.81 34.30 0.82 2.63 0.64 14.71

-89.98 46.08 US-Los 7 0.74 98.07 0.52 75.02 0.93 9.90 0.89 11.06

-89.35 46.24 US-Syv 7 0.91 38.40 0.83 46.36 1.04 8.47 0.95 7.63

-90.08 45.81 US-WCr 7 0.78 54.64 0.75 59.25 0.90 12.99 0.90 10.85

-110.51 31.59 US-Aud 10 0.82 49.34 0.49 42.11 1.23 -2.36 0.70 18.77

-155.75 68.49 US-Ivo 10 1.65 9.08 0.57 27.83 0.80 7.20 0.62 10.14

-80.67 28.61 US-KS2 10 0.45 148.76 0.36 25.63 0.91 29.25 0.67 18.65

-116.64 33.38 US-SO4 10 1.32 37.85 0.31 42.54 0.35 18.28 0.07 20.30

-120.95 38.41 US-Var 10 0.62 59.95 0.72 32.77 0.65 16.55 0.75 10.18

-98.04 35.55 US-ARb 12 0.27 103.38 0.34 45.75 0.74 18.17 0.76 18.63

-98.04 35.55 US-ARc 12 0.32 98.57 0.32 46.30 0.68 17.94 0.71 20.22

-97.49 36.61 US-ARM 12 0.80 106.17 0.28 57.43 1.28 14.59 0.51 28.55

-96.84 44.35 US-Bkg 12 1.05 62.24 0.59 69.07 0.69 -2.61 0.77 19.17

-88.29 40.01 US-Bo1 12 0.33 123.55 0.26 88.55 0.81 6.18 0.82 14.56

-105.10 48.31 US-FPe 12 0.68 44.69 0.18 56.25 0.53 13.15 0.48 19.89

-93.09 44.71 US-Ro1 12 0.37 116.91 0.25 102.30 0.90 5.45 0.88 13.48

-93.09 44.72 US-Ro3 12 0.50 96.89 0.40 91.07 0.91 8.14 0.81 16.91

-109.94 31.74 US-Wkg 12 1.22 44.34 0.25 67.95 1.51 -3.65 0.51 26.96

-96.86 37.52 US-Wlr 12 0.78 86.50 0.65 47.84 0.99 6.83 0.72 22.56

ET (mm m
-2

 month
-1

)GPP (gC m
-2

 month
-1

)
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Table 3 Comparison of model-derived forest carbon density (Mg C ha
−1

) with those from other studies. 629 

Pan et al. (2001) calculated carbon densities for both above- and below-ground biomass. Numbers in 630 

brackets for Pan et al. (2011) show the AGB values assuming that the AGB accounts for 80% of total 631 

biomass density. 632 

 633 

Source Method Carbon Stock (Pg)

Europe North America Global Global

Goodale et al.(2002) Forest Inventary 38.8 44.6

Liski et al.(2003) Forest Inventary 43 43

Thurner et al.(2014) Remote Sensing 60.8±22.4 45.3±17.1

Pan et al.(2011) Forest Inventary 60.5 (48.4) 68.7 (54.9) 94.2 (75.4) 362.6 (290.1)

This Study Model 59.24±20.04 53.74±36.39 82.96 276.5

Forest Carbon Density (Mg C ha
-1

)
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Figure captions 634 

Fig. 1 Taylor diagram of (a) GPP (gC m
−2

 year
−1

) and (b) ET (mm year
−1

) for 39 flux 635 

towers. 636 

  637 

Fig. 2 Comparison of annual observed and modeled values for (a) GPP (gC m
−2

 year
−1

) 638 

and (b) ET (mm year
−1

), and (c) independent validation of GPP on annual scale. The 639 

dashed line shows the 1:1 line. 640 

 641 

Fig. 3 (a) Modeled GPP (gC m
−2

 year
−1

) averaged for 2000–2011 and (b) difference 642 

between modeled value and that reported by Jung et al. (2011). 643 

 644 

Fig. 4 (a) Modeled ET (mm year
−1

) averaged for 2000–2011 and (b) difference between 645 

modeled value and that reported by Jung et al. (2011). 646 

 647 

Fig. 5 Comparison of annual observed and modeled values for (a) site-year AGB (Mg 648 

ha
−1

) and (b) different sites, and (c) independent validation. The dashed line shows the 649 

1:1 line. 650 

 651 

Fig. 6 (a) Modeled global patterns of AGB (Mg ha
−1

) averaged for 2000–2010 and (b) 652 

latitudinal AGB patterns. 653 

 654 
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Fig. 7 (a) Comparison of observed AGB (left panel, points show plot locations) and 655 

difference between modeled and observed AGBs for Amazonian forests (right panel), and 656 

(b) relative error [(Modeled − observed)/observed × 100%] frequency. 657 

 658 

Fig. 8 (a) Difference between model-derived AGB driven by Princeton and CRU 659 

meteorological datasets. The Princeton and CRU data are on daily and monthly 660 

timescales, respectively. 661 
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Figure 1 662 

663 
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Figure 2 664 
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Figure 3 666 

667 

(a)

(b)
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Figure 4 668 

669 

(a)

(b)
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Figure 5 670 
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Figure 6 673 
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Figure 7 675 
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Figure 8 678 

 679 

 680 
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