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Abstract: The growing degree day (GDD) model and the growing season 17 

index (GSI) model are two common approaches used in various land surface 18 

models (LSMs) for simulating phenophases. The capacity of these two 19 

models for simulating phenolphases was evaluated by coupling them to a 20 

LSM (DLM: Dynamic Land Model) and validated by observation data from 21 

the 22 selected eddy covariance flux towers representing six typical plant 22 

functional types. The main findings are threefold: (i) the simulated 23 

phenophases using DLM-GSI were much closer to the observations derived 24 

from the green chromatic coordinate data than using DLM-GDD. The start 25 

of the growing season (SGS) was estimated to be earlier by DLM-GSI and 26 

later by DLM-GDD. Meanwhile, the end of growing season (EGS) was 27 

estimated to be later by DLM-GSI and earlier by DLM-GDD; (ii) compared 28 

to the GDD model, the GSI model significantly decreased the absolute bias 29 

of the phenophases simulated by DLM for all sites. The DLM-GSI model 30 

simulated biases for SGS and EGS decreased by 48.2% and by 39% on 31 

average, respectively; and (iii) the accuracy of modeled GPP using the 32 

DLM-GSI model is much higher than using the DLM-GDD model for all 33 

sites. The DLM-GSI model reduced the root mean square error of simulated 34 

GPP by 8.0% and increased the corresponding index of agreement by 7.5%. 35 

36 
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1 Introduction 37 

Vegetation phenology is the timing of biological events in plants that is 38 

influenced by environmental conditions, especially by long-term temperature changes 39 

(Schwartz 2013). Phenology not only reflects the seasonal alternation but also the 40 

adaptability of vegetation to environmental conditions (Che et al. 2014a). With a rapid 41 

global climate change, the phenology of vegetation has adjusted to ensure survival and 42 

reproduction (Eastman et al. 2013), and these changes have become the most sensitive 43 

indicator of climate change (Cong et al. 2012; Hamunyela et al. 2013; Menzel; Fabian 44 

1999; Schwartz 1998). Approaches for depicting phonological changes have been 45 

recently employed in land surface models (LSMs) and have been coupled to global 46 

circulation models for estimating the effects of climate change and accounting for 47 

possible feedback (Subin et al. 2011). In LSMs, phenology is a very important module, 48 

which controls the changes and length of the growing season and influences the 49 

carbon cycle, evapotranspiration and the energy balance in the vegetation canopy 50 

(Knorr et al. 2010; Kucharik; Twine 2007; White et al. 2009). Therefore, accurately 51 

estimating phenophases in a LSM is critical to simulating the interactions between 52 

terrestrial ecosystems and climate change. 53 

Phenological approaches in LSMs can be divided into two categories. One is 54 

satellite phenological observation, i.e., the use of remotely sensed leaf area index 55 

(LAI), which describes changes in the vegetation growing season and provides a 56 
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spatially integrative view of continuous biophysical states (Stöckli et al. 2008). For 57 

instance, in the community land model (CLM) (Oleson et al. 2013; Oleson et al. 2010) 58 

and the ecosystem-atmosphere simulation scheme (EASS) (Chen et al. 2007), the LAI 59 

is read directly to characterize the effects of the three-dimensional canopy structure on 60 

radiation, energy and carbon fluxes. Another is the process-based phenology model, 61 

which is embedded in LSMs either explicitly, implicitly or both. Explicit phenology 62 

models are independent of LSMs and are usually driven by offline climate factors. 63 

The growing degree day (GDD) model and the growing season index (GSI) model are 64 

the two common used representative explicit models.  65 

The GDD model starts from Reaumur’s approach, which first introduced the 66 

concept of the degree-day sum and later became referred to as the thermal time model 67 

(TM) or the spring warming model (WM) (Schwartz 2013). Chuine’s approach 68 

replaced the TM model because it introduced chilling requirements in dormancy and 69 

unified various models that described the relationships between the temperature and 70 

the rate of forcing and chilling development (Chuine 2000). In Chuine’s approach, the 71 

state of forcing was described as an accumulated number of the growing degree day 72 

(Murray et al. 1989), and the state of chilling was also described as an accumulated 73 

numbers of the chilling or freezing day (CD or FD). Applying the GDD and CD 74 

approaches to the initiation of leaf onset has gained considerable recognition (Arora; 75 

Boer 2005). However, this model is unable to simulate the reversible nature of the 76 

spring recovery; cold temperatures during late spring can cause growing plants to 77 
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suffer from substantial cold damage (Arora; Boer 2005). In addition to temperature, 78 

water-stress and photoperiod are also considered important factors in vegetation 79 

phenology (Borchert et al. 2005). Studies of GDD models incorporating the effects of 80 

soil water and photoperiod have been published (Caffarra et al. 2011; Lawrence et al. 81 

2011). Currently, GDD models were employed by many LSMs, such as the version 4 82 

of CLM (CLM4, CLawrence et al. 2011), the biome-BGC model (Thornton; 83 

Rosenbloom 2005; Thornton et al. 2002), the integrated biosphere simulator (IBIS) 84 

(Foley et al. 1996; Kucharik 2003), the lund-potsdam-jena model (LPJ) (Sitch et al. 85 

2000; Sitch et al. 2003) and the IAP dynamic global vegetation model (IAP-DGVM) 86 

(Zeng et al. 2014). 87 

The GSI model combined a number of climate factors closely related to 88 

phenology, e.g., temperature, light and humidity, into an index to quantify the 89 

greenness of vegetation throughout the year (Jolly et al. 2005). This approach is 90 

simple and generalized to describe phenological states on local across global scales. 91 

Furthermore, this approach is flexible enough to introduce other phenological 92 

influence factors (PIFs), as long as the relationship between the PIF and plant growing 93 

state can be reasonably described. The GSI model has not yet been employed by any 94 

published LSMs. In this study, it was coupled to a LSM (DLM : the dynamic land 95 

surface model ).  The DLM model was further developed by combining the 96 

algorithms embedded in EASS and CLM4 to simulate biological, geographical, 97 

physical and chemical processes (Chen et al. 2014; Chen et al. 2013) and was evolved 98 
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into a phenology module for simulating the seasonal changes in vegetation growth. 99 

Most studies of phenological estimates focusing on the phenology (RSP) 100 

retrieval algorithms based on remote sensing data, e.g., LAI or normalized difference 101 

vegetation index (NDVI) (White et al. 2014; White et al. 2009). However, published 102 

studies that comparing process-based phenology models are limited, and researched 103 

on evaluating the phenology models coupled into LSMs are even rarer. This gap 104 

means that the validity of phenology simulation in LSMs is debatable and increases 105 

uncertainty in the estimation of carbon, water and energy exchanges in LSMs.  106 

In this study, we compared the performance of two common used phenology 107 

models, GSI and GDD phenology models, which were coupled into DLM, focusing 108 

on two vegetation types: deciduous forest and grass. The accuracy of the phenological 109 

simulations in the two versions of DLM was evaluated against observations. 110 

Moreover, another very important variable closely related to phenology, gross primary 111 

production (GPP), was also simulated and analyzed.  112 

2 Methods and materials 113 

2.1 Model descriptions 114 

2.1.1 Outline of the DLM model 115 

The DLM model is prognostic and has been coupled to CESM 1.0.3 (Chen et al. 116 

2014; Chen et al. 2013). DLM builds on EASS and CLM4. The main differences in 117 

algorithms among DLM, EASS, and CLM4 are shown in Table 1. DLM absorbed the 118 
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vegetation physiological and physical algorithms based on the two-leaf canopy model, 119 

which can effectively address radiation transfer through the canopy and its impact on 120 

carbon sequestration and energy partitioning in EASS (Chen et al. 2007). DLM also 121 

employs the plant and soil biochemical processes algorithms from CLM4, which 122 

amply describe the relevant mechanisms, especially in the carbon-nitrogen (CN) 123 

biogeochemical module. 124 

2.1.2 Phenological modules in DLM 125 

2.1.2.1 Growing season index module 126 

The growing season index (GSI) model uses the GSI and corresponding criteria 127 

for phenological transition stages to track all leaf phenological states and does not 128 

need to distinguish the deciduous vegetation types.  129 

(1) Growing season index 130 

The growing season index for triggering the leaf green-up and defoliation (Jolly et 131 

al. 2005; Stöckli et al. 2008) is expressed as: 132 

( ) ( ) ( )GSI f T f DL f VPD                        (1) 133 

where GSI has no unit, and its value varies from 0 to 1. The parameters f(T), f(DL) and 134 

f(VPD) are the temperature index, the day length index and the vapor pressure deficit 135 

(VPD) index, respectively. They have no units and with values of 0~1. The statistics 136 

shows that the GSI is positively correlated with the NDVI or LAI very significantly. 137 

The temperature index f(T) is calculated as, 138 
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                  (2) 139 

where T, Tmin and Tmax are the temperature and the minimum and maximum 140 

temperature thresholds in degrees K, respectively.  141 

The day length index f(DL) is calculated as, 142 
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         (3) 143 

where DL, DLmin and DLmax are the day length and the minimum and maximum of the 144 

day length thresholds in hours, respectively.  145 

The vapor pressure deficit index f(VPD) is calculated as, 146 
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       (4) 147 

where VPD, VPDmin and VPDmax are the vapor pressure deficit and the minimum and 148 

maximum VPD thresholds in Pa, respectively. 149 

(2) Phenology strategy 150 

There are four leaf phenology states in the GSI model: green-up (i.e., the start of 151 

the growing season, SGS, or start of season, SOS), normal growth, defoliation and 152 

dormancy (i.e., the end of the growing season, EGS, or end of season, EOS). Fig. 1 153 

shows the corresponding method for extracting phenophases. 154 
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At the end of vegetation dormancy, when environmental conditions become 155 

favorable to growth, the vegetation starts to emerge from dormancy and grow. To 156 

trigger vegetation green-up, the GSI must be smoothed by a 21-day forward moving 157 

average filter first. The moving average serves to buffer single extreme events from 158 

prematurely triggering canopy changes (Jolly et al. 2005). Then, the accumulated GSI 159 

approach for triggering the green-up is applied as follows: 160 

,

,0

pre
thrsum day

sum

thr

GSI GSIGGSIG f
GSIG

GSI GSIG

 
 


                  (5) 161 

where / 86400dayf tV , tV  is time step and is equal to 1800 sec. The superscript pre 162 

represents the last time step. GSIGsum is the GSI summation for green-up in days, and 163 

GSIGthr has no unit for the GSI threshold for green-up. 164 

When GSIGsum > 6, the leaf green-up begins, and the onset counter for 165 

controlling the green-up length (tonset, day) is initialized. Here, the criterion “GSIGsum > 166 

6” is followed by the leaf-out model in spring in Canadian terrestrial ecosystem model 167 

(CTEM) (Arora; Boer 2005). In CTEM, the leaf-out state is triggered when the net 168 

photosynthesis rate remains positive over 5-7 consecutive days. This criterion buffers 169 

single extreme events from prematurely triggering canopy changes. 170 

During the green-up period, the onset counter tonset is decremented at each time 171 

step if thrGSI GSIG until it reaches zero, then normal growth is triggered; 172 

,

,

pre
thronset day

onset pre
thronset

GSI GSIGt f
t

GSI GSIGt

 
 



                     (6) 173 

During normal growth, the vegetation grows stably, and its LAI gradually 174 
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reaches an annual peak. As adverse environmental conditions arrive in autumn, 175 

vegetation enters the end of normal growth (i.e., the start of defoliation) when 176 

vegetation starts to drop leaves. To track leaf drop, an accumulated GSI approach is 177 

used: 178 

,

,0

pre
thrsum day

sum

thr

GSI GSIDGSID f
GSID

GSI GSID

 
 


                  (7) 179 

where GSIDsum is the GSI summation for defoliation in days. The superscript pre 180 

represents the last time step. GSIDthr has no unit and is the GSI threshold for 181 

defoliation. 182 

When GSIDsum > 6, leaf defoliation is triggered, and the offset counter for 183 

controlling the defoliation length (toffset, day) is initialized. Here, the criterion 184 

“GSIDsum > 6” uses the leaf-fall model in autumn in CTEM for reference, which 185 

triggers the leaf-fall state when the air temperature remains below a certain 186 

temperature threshold for 5-7 consecutive days. This criterion serves to buffer single 187 

extreme events from prematurely triggering canopy changes. 188 

During the defoliation period, the offset counter toffset is decremented at each time 189 

step if thrGSI GSID  until it reaches zero, and then dormancy is triggered; 190 

,

,

pre

throffset day

offset pre

throffset

GSI GSIDt f
t

GSI GSIDt

 
 


                     (8) 191 

2.1.2.2 Growing degree day module 192 

The growing degree day (GDD) model was originated from CLM4. From the 193 
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modularization viewpoint, the GDD model is independent of CLM4, so the GDD 194 

model was easy to couple into other LSMs, e.g., the DLM model. Two deciduous 195 

vegetation types are contained in the GDD model. One is seasonally deciduous, and 196 

the other is stress-deciduous. The former refers to the temperate and boreal deciduous 197 

trees; the latter includes temperate and boreal deciduous shrubs, grass and tropical 198 

deciduous trees. The phenophases in this model also contain green-up, normal growth, 199 

defoliation and dormancy, which are assumed to be only driven by climate factors (e.g., 200 

temperature and soil water) and day length. 201 

(1) Seasonal-Deciduous Phenology 202 

Green-up for seasonal-deciduous vegetation is triggered based on an 203 

accumulated GDD approach (White et al. 1997). The GDD summation (GDDsum, 204 

degreeday) is initiated at zero when the phenological state is dormant and the model 205 

time step crosses the winter solstice (Oleson et al. 2013). Once the environmental 206 

conditions are met, GDDsum is updated at each time step as: 207 

273.15,( 273.15)

273.15,

pre
soilsum soil day

sum pre
soilsum

TGDD T f
GDD

TGDD

   
 



          (9) 208 

where / 86400dayf tV , tV is time step and equals 1800 sec. The superscript pre 209 

represents the last time step. Tsoil is the temperature of the third soil layer in K. When 210 

GDDsum is greater than the GDD summation threshold (GDDthr, degreeday), green-up 211 

is triggered, and the onset counter (tonset, day) that controls the green-up length is 212 

initialized. The GDDthr is estimated as follows: 213 
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exp(4.8 0.13 ( 273.15))thr airGDD T                     (10) 214 

where Tair is the annual average air temperature at a 2 m height in degrees K.  215 

During green-up, the onset counter (tonset) is decremented at each time step until it 216 

reaches zero, triggering normal growth, 217 

pre

onset onset dayt t f                          (11) 218 

After simulating time past the summer solstice, vegetation defoliation is 219 

triggered if the day length (DL, hr) is shorter than the corresponding threshold (DLthr, 220 

hr), and the offset counter (toffset, day) that controls the defoliation length is initialized 221 

at the beginning of the defoliation period. 222 

During defoliation, the offset counter toffset decreases at each time step until it 223 

reaches zero, triggering dormancy, 224 

pre

offset offset dayt t f                         (12) 225 

(2) Stress-Deciduous Phenology 226 

The process for triggering green-up of stress-deciduous vegetation is more 227 

complex than for the seasonally deciduous vegetation in CLM4. It is influenced by 228 

temperature, soil water and day length simultaneously. 229 

First, the freezing day accumulator for green-up (FDGsum, day) is necessary and 230 

is calculated as: 231 

273.15,

273.15,

pre
soilsum day

sum pre
soilsum

TFDG f
FDG

TFDG

 
 



                  (13) 232 

where / 86400dayf tV , tV  is time step and set to be 1800 sec. The superscript pre 233 
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represents the last time step. FDGsum is initialized to zero at the beginning of the 234 

dormant period. Tsoil is the temperature of the third soil layer in K. 235 

If FDGsum > FDGthr, where FDGthr is the freezing day summation threshold for 236 

green-up in days, the growing-degree-day summation (GDDsum, degreeday) (see Eq. 237 

9) is followed exactly. 238 

Meanwhile, the accumulated soil water index for green-up (SWIGsum, days) is 239 

calculated as: 240 

,

,

pre
soil onsetsum day

sum pre
soil onsetsum

SWIG f
SWIG

SWIG

  
 

  

                  (14) 241 

SWIGsum is initialized to zero at the beginning of a dormant period, soil  is the soil 242 

water potential in the third soil layer in MPa, and onset is the soil water potential 243 

threshold for green-up in MPa. 244 

Only if GDDsum > GDDthr (or Tsoil is always greater than 273.15K) and SWIGsum > 245 

SWIGthr and DL > DLthr is green-up triggered, where GDDthr is the GDD summation 246 

threshold in degreedays (see Eq. 10), the SWIGthr is the soil water index summation 247 

threshold in days, DL is the day length in hours, and DLthr is the day length threshold 248 

in hours. 249 

At the beginning of the green-up period, an onset counter for controlling the 250 

green-up length (tonset, days) is initialized. Then, tonset is decremented at each time step 251 

until it reaches zero, triggering normal growth (see Eq. 11). 252 

During normal growth, any one of the following unfavorable conditions is 253 
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sufficient to trigger vegetation defoliation - a sustained period of dry soil, a sustained 254 

period of cold temperature, or a shorter day length. 255 

The dry soil condition is evaluated with the soil water index accumulator for 256 

defoliation (SWIDsum, day), which is expressed as: 257 

,

max( ,0) ,

pre
soil offsetsum day

sum pre
soil offsetsum day

SWID f
SWID

SWID f

  
 

  
             (15) 258 

where offset  is the soil water potential threshold for defoliation in MPa. 259 

Meanwhile, the cold temperature condition is calculated with the freezing day 260 

accumulator for defoliation (FDDsum, day) and is described as: 261 

273.15,

273.15max( ,0),

pre

soilsum day

sum pre

soilsum day

TFDD f
FDD

TFDD f

 
 


             (16) 262 

When SWIDsum > SWIDthd or FDDsum > FDDthr or DL<DLthr, defoliation is 263 

triggered. SWIDthr is the soil water index summation threshold for defoliation in days 264 

and FDDthr is the freezing day accumulator threshold for defoliation in days. 265 

The offset counter for controlling the defoliation length (toffset, days) is initialized 266 

and decreases at each time step until it reaches zero, triggering dormancy (see Eq. 12). 267 

2.2 Data sets used 268 

2.2.1 FLUXNET Data 269 

The selected 22 eddy-covariance (EC) sites from the FLUXNET database 270 

(http://fluxnet.ornl.gov/) are mainly distributed in North America and Europe (see Fig. 271 

2). The EC sites were selected according to the following requirements: (i) the 272 
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dominant vegetation type at the site was limited to deciduous forest, deciduous shrubs 273 

and grass; (ii) the site provided at least four years of continuous data as a part of a 274 

publicly accessible standardized Level 3 or 4 database; (iii) a ‘site-year’ was accepted 275 

for analysis if more than 90% of the half hours in a year contained non-missing values 276 

for the meteorological data and the carbon flux data (Chen et al. 2013); and (iv) the 277 

sites represented as many climate zones as possible. 278 

The final selected sites were expected to represent the following four main 279 

climatic environments including temperate, boreal, arid and the moist climate zones 280 

and four biome types containing needleleaf deciduous forests (NDF), broadleaf 281 

deciduous forests (BDF), broadleaf deciduous shrubs (BDS) and grasslands. Different 282 

biome types in a particular climate environment are usually characterized by different 283 

leaf types, leaf longevity and life forms (Roth et al. 2015). Thus, a biome type located 284 

in a particular climate zone can represent the corresponding plant function type (PFT). 285 

A description of the information for the selected sites classified by PFT can be found 286 

in Table 2.  287 

Every site contained half-hourly meteorological and GPP data for 4 consecutive 288 

years. The data for the first two consecutive years were used to optimize the model 289 

parameters and for the next two consecutive years to evaluate the simulation results of 290 

DLM. Meteorological data including down-welling solar radiation, precipitation, wind 291 

speed, air temperature and relative humidity were applied to drive DLM. The 292 

EC-measured GPP data were used for model calibration and assessment. 293 
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2.2.2 GPP and phenology data 294 

GPP data usually have gaps. If the gaps were less than 2 hours, the missing 295 

values were filled by piecewise linear interpolation. To fill longer gaps, the light use 296 

efficiency (LUE) model was employed (Monteith 1972; Sims et al. 2008). Though 297 

other uncertainties still existed in the EC-measured GPP, e.g., underestimation of the 298 

ecosystem respiration at night (Schaefer et al. 2012), they were still regarded as the 299 

‘ground truth’ in this study.  300 

The phenological observations used for evaluating the simulated phenophases of 301 

DLM contained two parts. One part was derived from the EC-measured GPP, and the 302 

other was derived from the observed green chromatic coordinate (GCC) data. 303 

The phenological inversion method based on the GPP data used the ratio of the 304 

daily GPP to the growing season amplitude to identify the phenophases (Melaas et al. 305 

2013), which only retrieved the start of the growing season and the end of the growing 306 

season. 307 

The GCC data were derived from the digital images photographed by an 308 

automated and high-frequency digital camera that is generally applied in modern 309 

phenological observation (Ide; Oguma 2010) and were calculated from the average 310 

red (R), green (G), and blue (B) pixel digital numbers (DNs) over the region of 311 

interest (ROI), i.e., GCC = G/(G+R+B) (Ahrends et al. 2008; Ahrends et al. 2009; 312 

Sonnentag et al. 2012). Quality control of the GCC data was necessary to correct for 313 
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gaps and false data before using a smoothed curve for fitting, following the approach 314 

of Ludvig et al.(Ludvig 2014). The inflection points of the curve were calculated to 315 

identify the phenophases. The general smoothed curves contained the loGSItic 316 

function, the double-loGSItic function, the Asymmetric Gaussian function, etc. (Ide; 317 

Oguma 2010; Klosterman et al. 2014). Some studies indicated the Scurve function 318 

describing the vegetation growing state better than the loGSItic function and the 319 

Asymmetric Gaussian function (Che et al. 2014a; Che et al. 2014b). Thus, the Scurve 320 

function was used here to fit the GCC data, and the corresponding process for 321 

extracting phenophases based on the Scurve function was carried out. The final 322 

inversion phenophases included the start of the growing season, normal growth, 323 

defoliation and the end of the growing season. Simultaneously, visual interpretation of 324 

the digital images was also used to appropriately correct the retrieved results. The 325 

digital images were downloaded from the PhenoCam Network 326 

(http://phenocam.sr.unh.edu/webcam/). Considering the geographic position and the 327 

site-year of the flux sites, after selection, the PhenoCam sites only contained the 328 

US-MOz site (i.e., the Columbiamissouri site). Fig. 3 shows the digital images for key 329 

phenophases at this site. The plants started to green-up in early April (Fig. 3a) and 330 

entered into normal growth in the middle of May (Fig. 3b). Leaves began to fall 331 

widely in later October (Fig. 3c), and dormancy began in the middle of November 332 

(Fig. 3d). 333 

Admittedly, certain uncertainties existed in the two phenological observations. 334 
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For example, the retrieval phenophases of the GPP were deeply affected by the quality 335 

itself. The GPP ratio method was a dynamic threshold method. Before using it, the 336 

GPP data were first smoothed by the cubic spline. Even so, this method was still 337 

sensitive to high GPP values occurring in early spring or later autumn. If the GPP high 338 

values were noisy, the retrieval phenophases would have large uncertainties. The GCC 339 

data might be distorted at a certain time due to the effect of camera firmware, the 340 

white balance setting, changes in illumination and smog, etc. (Ahrends et al. 2008; Ide; 341 

Oguma 2010). Furthermore, delimiting the ROI of the image and using the phenology 342 

inversion method might affect the accuracy of the phenological inversion results 343 

(Ahrends et al. 2009; Klosterman et al. 2014). However, if the ground measured 344 

phenological observations were absent, the retrieval phenophases based on the GPP 345 

and GCC data were still considered as the ‘observed values’ for model evaluation.  346 

2.3 Model suns and parameters optimization 347 

2.3.1 Model control tests and runs 348 

To evaluate the performance of the two alternative phenology models coupled to 349 

DLM, a control test was designed. Based on DLM, two versions of the model were 350 

built by coupling the GSI and GDD models, respectively, which are designated as 351 

DLM-GSI and DLM-GDD. 352 

Through the control test, the accuracy of simulating phenophases using the two 353 

versions of DLM can be objectively assessed. Additionally, the effects of the 354 
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phenology models on GPP simulated using the two versions can be evaluated. 355 

We ran separately the two DLM versions (DLM-GSI and DLM-GDD) at 356 

half-hourly time steps with the same observed meteorological and land surface data as 357 

inputs. Missing meteorological data were supplied by linear interpolation for gaps of 358 

less than 2 hours (Chen et al. 2013). Various methods were used for filling longer gaps 359 

for different variables. For variation trends of the down-welling solar radiation and air 360 

temperature, the sine function was appropriate. For relative humidity, the cosine 361 

function was suitable. Considering their strong randomness, the piecewise linear 362 

interpolation approach was used for precipitation and wind speed. 363 

The soil texture (i.e., percentages of sand and clay) was obtained from the site 364 

information or published articles. Other soil property data were obtained from 365 

CESM1.0.3 as a source of land surface data for the year 2000 (Lawrence et al. 2011). 366 

The soil state variables (e.g., soil temperature and moisture) and vegetation state 367 

variables (e.g., LAI, stem area index (SAI) and canopy top and bottom heights) at 368 

each site for the off-line simulations were obtained from the initialization. The 369 

initialization was acquired from a long (at least 2000 years) spin-up simulation until 370 

the carbon and nitrogen pools and associated LAI, SAI, and vegetation heights 371 

approximated the equilibrium with the repeating atmospheric forcing data for the 372 

years of 1972-2001 (Qian et al. 2006) provided by NCAR. The CO2 concentration, 373 

nitrogen and aerosol deposition at year 2000 levels at each site were also provided by 374 

NCAR. 375 
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2.3.2 Parameters optimization  376 

The PFT-dependent parameters for vegetation physiology, e.g., the leaf 377 

maximum carboxylation rate at 25 °C and the leaf stomatal 378 

resistance-to-photosynthesis relationship in DLM, were slightly adjusted based on 379 

published parameters (Chen et al. 2013). The foliage clumping index in DLM was 380 

taken from published papers (Chen et al. 2007; Chen et al. 2013).  381 

The parameters in the GSI phenological modules were initialized by referring to 382 

literatures (Jolly et al. 2005; Stöckli et al. 2008). These phenological parameters were 383 

further optimized based on EC-measured GPP using the simulated annealing (SA) 384 

algorithm (Dong et al. 2013; Li et al. 2004), which was not only independent of the 385 

cost function but also able to produce global optimal parameters of the model. The 386 

final optimized parameters of the GSI model can be found in Table 3.  387 

The parameters in the GDD phenological model were designed to be independent 388 

of the PFTs and originated from the CLM4 technical manual (Oleson et al. 2013; 389 

Oleson et al. 2010). The final parameters are as follows: Nonset = 30 day, Noffset = 15 day, 390 

FDGthr = 15 day, FDDthr = 15 day, onset = -2 MPa, offset = -2 MPa, SWIGthr = 15 391 

day, SWIDthr = 15 day, DLth r= 11 hr, where Nonset is the initialized onset counter for 392 

controlling the length of green-up, Noffset is the initialized offset counter for controlling 393 

the length of defoliation, FDGthr is the freezing day summation threshold for green-up, 394 

FDDthr is the freezing day summation threshold for defoliation, onset
 

is the soil 395 
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water potential threshold for green-up, offset  is the soil water potential threshold for 396 

defoliation, SWIGthr is the soil water index summation threshold for green-up, SWIDthr 397 

is the soil water index summation threshold for defoliation, and DLthr is the day length 398 

threshold.  399 

2.4 Model evaluation methods 400 

For assessing the model performance, statistical analyses containing bias (Eq. 401 

17), absolute bias (Eq. 18), root mean square error (RMSE, Eq. 18) and index of 402 

agreement (IA, Eq. 19) were used (Willmott 1982). 403 
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where P is the model simulated value, O is the observed value, O  is the observed 408 

mean, and i and n represent the sequence number and the total number of data points, 409 

respectively. 410 
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3 Results 411 

3.1 Simulation of phenological events 412 

First, the simulated phenophases using DLM-GSI and DLM-GDD were 413 

compared with observations derived from the GCC data at the US-MOz site (Fig. 4). 414 

A comparison of corresponding phenological absolute biases (Abias) can be found in 415 

Fig. 5. Both of two versions of DLM simulated the phenophases well at this site. 416 

However, the differences in the simulated phenophases were also evident. 417 

The simulated start of growing season derived from DLM-GSI and DLM-GDD 418 

were earlier and later than the observed values, respectively. The Abias of the 419 

DLM-GSI was 3 days less than that of DLM-GDD on average. The difference 420 

between the simulated normal growth phenophases using the two versions of DLM 421 

was also obvious. The DLM-GSI estimated the phenophase earlier, but the 422 

DLM-GDD estimated it later. The Abias of the former was 4 days less than that of the 423 

latter on average. For defoliation, Both DLM-GSI and DLM-GDD estimated the 424 

phenophase earlier, but the former had a lower prior-estimation error (Abias = 4days) 425 

than the latter (Abias = 8days). For the EGS simulation, the results of DLM-GSI and 426 

DLM-GDD were later and earlier than the observed values, respectively, and the EGS 427 

Abias of DLM-GSI was 5 days less than DLM-GDD.  428 

The above analysis indicates the simulated phenophases of DLM-GSI were much 429 

closer to observed values than those of DLM-GDD, and the DLM-GSI estimated SGS 430 
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and EGS earlier and later, respectively, but DLM-GDD did the opposite. 431 

The simulation performance of two versions of DLM was assessed by using 432 

observations derived from the EC-measured GPP at all sites. A comparison of the 433 

phenophases simulated by the two versions of DLM and the observed values is shown 434 

in Fig. 6. In this study, we focused on the start of the growing season (Fig. 6a) and the 435 

end of the growing season (Fig. 6b) at the EC sites. A corresponding comparison of 436 

the absolute biases for the simulated phenophases is shown in Fig. 7. 437 

As shown in Figs. 6 & 7, the differences between the phenophases simulated by 438 

the two versions of DLM were remarkable, and the differences also existed for each 439 

plant function type. In Fig. 8, the boxplot shows the discrete character of the absolute 440 

biases for the simulated results by using the two versions for each PFT. For boreal 441 

needleleaf deciduous forest (BNDF) (Figs. 8a1 & 8b1), the Abias range and 442 

interquartile range of the simulated SGS using DLM-GSI were both lower than those 443 

simulated using DLM-GDD, as were the mean and median of the SGS Abiases. The 444 

Abias range, mean and median of the simulated EGS using DLM-GSI were all lower 445 

than those of DLM-GDD, but the Abias interquartile range was higher. At the BNDF 446 

sites, the accuracy of the phenophases simulated using DLM-GSI at the CA-NS1 site 447 

and the FI-Hyy site was obviously higher than those simulated using DLM-GDD. The 448 

results showed that the GSI model reduced the SGS and EGS Abiases of DLM at the 449 

CA-NS1 site by 6 and 30 days, respectively. As the same time, the GSI model reduced 450 

the SGS and EGS Abiases of DLM at the FI-Hyy site by 29 days and 8 days, 451 
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respectively. 452 

For temperate broadleaf deciduous forest (TBDF) (Figs. 8a2 & 8b2), the Abias 453 

range and interquartile range of the SGS simulated by DLM-GSI were both shorter 454 

than those of DLM-GDD, as were the mean and median of SGS Abiases. The Abias 455 

range of EGS simulated by DLM-GSI was consistent with that simulated by 456 

DLM-GDD. The Abias mean and median of simulated EGS using DLM-GSI were 457 

slightly lower than the values obtained using DLM-GDD, but the interquartile range 458 

was higher for DLM-GSI compared with DLM-GDD. At the TBDF sites, the 459 

simulated results using DLM-GSI at the CH-Lae site and the US-MOz site were much 460 

closer to observed values than using DLM-GDD. The results showed that the GSI 461 

model reduced the SGS and EGS Abiases of DLM at the CH-Lae site by 32 days and 462 

21 days, respectively. At the same time, the accuracy of simulated SGS using 463 

DLM-GSI at the FR-Fon site and the IT-Col site was also higher than that of using 464 

DLM-GDD. However, the accuracy of simulated EGS using DLM-GSI was lower 465 

than that of using DLM-GDD. At the US-Los site, the accuracy of simulated 466 

phenophases using DLM-GSI was inferior to DLM-GDD. 467 

For the boreal broadleaf deciduous forest (BBDF) (Figs. 8a3 & 8b3), the Abias 468 

range and interquartile range of simulated SGS using DLM-GSI were both less than 469 

using DLM-GDD, as were the mean and median of SGS Abiases. The Abias range, 470 

mean and median of simulated EGS uisng DLM-GSI were all lower than using 471 

DLM-GDD, but the Abias interquartile range was higher for DLM-GSI compared with 472 
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DLM-GDD. At the BBDF sites, the accuracies of simulated phenophases using 473 

DLM-GSI exceeded those of using DLM-GDD largely, especially for the DE-Gri site, 474 

the DK-Sor site and the BE-Vie site. The results showed that the GSI model reduced 475 

the SGS and EGS Abiases uisng DLM at the DE-Gri site by 28 and 7 days, 476 

respectively. 477 

For the temperate and boreal broadleaf deciduous shrubs (BDS) (Figs. 8a4, 8b4, 478 

8a5 & 8b5), the Abias range and interquartile range of simulated SGS and EGS using 479 

DLM-GSI were all lower than those using DLM-GDD, as were the Abias mean and 480 

median. At the BDS sites, the accuracy of simulated phenophases using DLM-GSI 481 

was higher than using DLM-GDD widely, especially for the US-Fwf site and the 482 

CA-NS6 site. The results showed that the GSI model reduced the SGS and EGS 483 

Abiases of DLM at the CA-NS6 site by 17 and 58 days, respectively. At the US-Ivo 484 

site, the simulated phenophases using DLM-GSI were consistent with using 485 

DLM-GDD. 486 

For temperate grass (Figs. 8a6 & 8b6), the Abias range of modeled SGS using the 487 

two versions of DLM were both broad, but the Abias interquartile range, mean and 488 

median of simulated SGS using DLM-GSI were all shorter than using DLM-GDD. 489 

However, the Abias range and interquartile range of simulated EGS using DLM-GSI 490 

were both narrower than using DLM-GDD, as were the EGS Abias mean and median. 491 

Compared to the general accuracy of simulated phenophases using both two versions 492 

of DLM for all sites (Figs. 8a7 & 8b7), the phenological Abias range and interquartile 493 
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range of using DLM-GSI were both shorter than using DLM-GDD, as were the Abias 494 

mean and median. At the grass sites, the phenological accuracy of the DLM-GSI was 495 

generally higher than that of using DLM-GDD. Nevertheless, the GSI model 496 

indistinctively increased the EGS accuracy of using DLM at the PT-Mi2 site and 497 

US-Wkg site. 498 

The above analysis indicates that the Abias range and interquartile range of using 499 

DLM-GSI were both shorter, and the Abias mean and median were both lower, 500 

showing that the simulated results of DLM-GSI were more stable and reasonable than 501 

those using DLM-GDD. The GSI model significantly decreased the Abias of the 502 

phenophases simulated by the DLM compared to using the GDD model. By using the 503 

GSI model, the Abias of SGS simulated using DLM decreased by 48.2% on average 504 

while the Abias of EGS declined by 39.6%. 505 

3.2 GPP simulations  506 

A comparison of simulated GPP using DLM-GSI and DLM-GDD with the 507 

observed values is shown in Fig. 9. The corresponding root mean square errors 508 

(RMSEs) and indices of agreement (IA) for GPP simulation are shown in Fig. 10. By 509 

adopting different phenology models under conditions for which the phenophase 510 

could be estimated, DLM can simulate daily GPP well. The simulated GPP using 511 

DLM-GSI was consistent with DLM-GDD. However, the differences between 512 

simulated GPP were also quite obvious for each PFT and at each site. 513 
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Table 4 shows RMSE and IA of simulated GPP using the two versions of DLM 514 

for different PFTs. Obviously, DLM-GSI had lower RMSEs and higher IAs compared 515 

to DLM-GDD for all PFTs. For the PFTs of the TBDS, the BBDS and the temperate 516 

grass, the GPP RMSE of using DLM-GSI was lower than using DLM-GDD by at 517 

least 15%. The GPP IA of using DLM-GSI was higher than using DLM-GDD by at 518 

least 12%. The GSI model sharply improved the accuracy of simulated GPP by using 519 

DLM for these PFTs. For the PFT of BNDF, the GPP RMSE of using DLM-GSI was 520 

lower thanusing DLM-GDD by 6.4%, and the GPP IA exceeded it by 3.9%. The GSI 521 

model clearly improved the accuracy of simulated GPP by using DLM. For the PFTs 522 

of TBDF and the BBDF, the GSI model slightly improved the accuracy of simulated 523 

GPP with DLM compared to using GDD model, decreasing the GPP RMSE of uisng 524 

DLM by only 2.0% - 3.5% and increasing the corresponding IA by only 0.4% - 1.8%. 525 

At the BNDF sites, the GSI model sharply improved the accuracy of simulated 526 

spring GPP using DLM at the CA-NS1 site and the FI-Hyy site and also obviously 527 

improved the accuracy of simulated autumn GPP using DLM at the CA-NS1 site. The 528 

results showed the GSI model reduced the simulated GPP RMSE of using DLM in 529 

spring at the FI-Hyy site by 36.5% and increased the corresponding IA by 75.9%. At 530 

the TBDF sites, the GSI model significantly improved the accuracy of simulated 531 

spring GPP using DLM at the CH-Lae site. The GSI model decreased the GPP RMSE 532 

of using DLM in spring at this site by 19.1% and increased the corresponding IA by 533 

20.2%. For the other TBDF sites, a lesser improvement of simulated GPP accuracy by 534 
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the GSI model using DLM in the growing season was noted. At some sites, the 535 

accuracy of simulated GPP based on the GSI model was lower than for the GDD 536 

model. At the BBDF sites, the GSI model sharply improved simulated GPP accuracy 537 

of using DLM at the DK-Sor site, the BE-Vie site and DE-Gri site. The GSI model 538 

reduced the GPP RMSE of using DLM in spring at the DK-Sor site by 29.5% and 539 

increased the corresponding IA by 85.0%. The GSI model also decreased the autumn 540 

GPP RMSE of using DLM at this site by 7.5% and increased the corresponding IA by 541 

4.3%. At the DE-Hai site, the estimated SGS and EGS using DLM-GSI was 542 

respectively earlier and later compared to the observed values. The Abiases for the 543 

SGS and EGS of using DLM-GSI were both higher than using DLM-GDD. Thus, the 544 

GPP results simulated using DLM-GSI were inferior to DLM-GDD at this site. At the 545 

TBDS sites, the GSI model significantly improved the accuracy of simulated GPP 546 

using DLM at the CA-Mer site and the US-Fwf site. Meanwhile, the GSI model 547 

obviously improved the accuracy of simulated spring GPP using DLM at the US-Ton 548 

site. The results showed the RMSE of simulated spring GPP using DLM-GSI at the 549 

CA-Mer site was lower than using DLM-GDD by 17.5%, and the corresponding IA 550 

was higher by 20.5%. The RMSE of simulated autumn GPP using DLM-GSI at this 551 

site was lower than using DLM-GDD by 3.8%, and the corresponding IA was higher 552 

by 4.1%. At the BBDS sites, the GSI model significantly improved the accuracy of 553 

GPP simulated using DLM at the CA-NS6 site and the US-Ivo site. At the temperate 554 

grass sites, the GSI model also significantly improved the accuracy of GPP simulated 555 
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using DLM at most sites. 556 

From the above analysis, the GSI model significantly improved the accuracy of 557 

simulated GPP in DLM for different PFTs compared to the GDD model. For most of 558 

the sites, the RMSEs of simulated GPP using DLM-GSI were lower than using the 559 

DLM-GDD model, and the IA was on the contrary, especially for GPP simulation in 560 

spring and autumn. Over all, the GSI model increased the accuracy of GPP simulation 561 

by using DLM compared to using the GDD model. The GSI model reduced the GPP 562 

RMSE of using DLM by 8.0%, and increased the corresponding IA by 7.5%. 563 

4 Discussions 564 

According to the characteristics of climate zones, the sites can be divided into a 565 

moist climate zone and an arid climate zone. Summarizing accuracies of simulated 566 

phenophases for these two kinds of sites showed that the Abias range and interquartile 567 

range of the phenophases simulated using DLM-GSI and DLM-GDD for the moist 568 

climate sites were less broad than those for the arid climate sites, as were the Abias 569 

mean and median. For example, the Abias interquartiles for the SGS simulated using 570 

DLM-GSI for the moist and arid climate sites were 18 and 24 days, respectively, and 571 

the Abias interquartiles for the EGS simulated using DLM-GSI for the moist and arid 572 

climate sites were 10 and 15 days, respectively. Meanwhile, the Abias interquartiles 573 

for the SGS simulated using DLM-GDD for the moist and arid climate sites were 22 574 

and 59 days, respectively, and the Abias interquartiles for the EGS simulated using 575 
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DLM-GDD at the moist and arid climate sites were 10 and 27 days, respectively. Thus, 576 

the accuracies of the phenophases simulated with the phenology models for the moist 577 

climate sites were higher than for the arid climate sites. At the temperate arid sites, the 578 

effect of moisture on the vegetation phenology is second important compared to that 579 

of temperature. In the warm temperate arid sites, the importance of water was even 580 

greater than that of temperature. Fig. 11 shows the effect of the sensitivities of the 581 

phenology parameters on the growing season index at the US-Wkg site. The 582 

sensitivities of temperature and vapor pressure deficit were both important to the 583 

growing season index. However, the effect of the temperature sensitivity (see the error 584 

bars in light red in Fig. 11) on the growing season index was confined to the outside 585 

of the growing season (see the green dashed line derived from the EC-measured GPP 586 

in Fig. 11). The effect of VPD sensitivity (see the error bars in light blue in Fig. 11) on 587 

the growing season index was mainly located in the growing season. That is to say, at 588 

the US-Wkg site, the adjustment of temperature parameters made little contribution to 589 

improving the accuracy of the phenophases simulated by the GSI model, but the 590 

adjustment of VPD parameters was on the contrary. Nevertheless, the accurate 591 

acquisition of VPD parameters at this site was not easy. In addition, the parameters 592 

used in this study for simulating the phenophases were calculated from the average 593 

parameters at different sites for which the PFT was the same. Even if the precise VPD 594 

parameters could be obtained at this site, the uncertainty was still large when the 595 

values were averaged.  596 
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Furthermore, the GPP observations at the US-Wkg site (Fig. 9v) indicated that 597 

the growing seasons were bimodal. The VPD parameters and the threshold parameters 598 

for triggering the phenophases used in the GSI model were all constant. This scheme 599 

could lead to a certain bias when the GSI model was used to simulate phenophases at 600 

the sites at which the number of growing seasons was greater than one. This also 601 

occurred at the temperate arid sites, such as the PT-Mi2 and the US-Ton sites. The 602 

statistics showed that the accuracy of the phenophases simulated with DLM-GSI and 603 

DLM-GDD at the single-season vegetation sites was higher than at the multi-season 604 

vegetation sites. 605 

For example, the bias of phenophases simulated using DLM-GDD at the 606 

US-Wkg site was large. The annual average air temperature was approximately 17.25 607 

ºC at the US-Wkg site, and the annual minimum temperature (-3 ºC) occurred in 608 

winter. Similar to the GSI model, the effect of temperature on triggering the 609 

phenophases for the GDD model was weak at this site. The annual precipitation was 610 

approximately 245.78 mm at this site. The sparse precipitation was the main factor 611 

controlling the vegetation phenology. The GDD model estimated the SGS and the 612 

EGS by calculating the cumulative days when the soil water potential (SWP) was 613 

higher or lower than -2 MPa, but the starting dates when the SWP estimated using 614 

DLM-GDD continuously exceeded -2 MPa in 2006 were April 19 and July 20. In fact, 615 

the simulated SWP using DLM was inconsistent with the observed values for both 616 

days, causing large biases in the phenophases simulated using DLM-GDD compared 617 
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to the observed values. The SWP variable was a derivative in DLM. For that reason, 618 

the adoption of the derivative variables by the GDD model to simulate the 619 

phenophases was not ideal. Similar to the GSI model, the threshold parameters (e.g., 620 

the threshold of SWP) in the GDD model were constant and were also deficient for 621 

phenophase simulation at the multi-season vegetation sites. The defective model 622 

structure and uncertainty in parameters caused the simulated phenophases using the 623 

GDD model to have large biases at other sites (e.g., the PT-Mi2 site and the US-FPe 624 

site). 625 

Compared to the observed values, the Abiases of simulated phenophases using 626 

the two versions of DLM were significant, although the Abiases of using DLM-GSI 627 

were comparatively less, indicating that the two phenology models still must be 628 

further developed and perfected by future studies. In addition, the DLM must also be 629 

improved, particularly by obtaining more accurate simulated variables as inputs for 630 

the phenology models.  631 

5 Conclusion 632 

The two different phenological schemes, the GSI and the GDD models, were 633 

coupled to DLM and were evaluated for deciduous forests and grasses against the 634 

observed phenology. Through control tests, the simulated phenophases and GPP by 635 

the two versions of DLM were analyzed and compared. The main conclusions are as 636 

follows: 637 
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(i) Compared with the phenological observations derived from the GCC data at 638 

the US-MOz site, DLM-GSI had lower absolute biases for estimating the phenophases 639 

including the start of the growing season, normal growth, defoliation and the end of 640 

the growing season compared to DLM-GDD. The simulated phenophases using 641 

DLM-GSI were much closer to the observed values than those using DLM-GDD at 642 

this site. The start of the growing season was estimated earlier using DLM-GSI but 643 

later using DLM-GDD at the US-MOz site. Meanwhile, the end of growing season 644 

was estimated later using DLM-GSI but earlier using DLM-GDD. 645 

(ii) By comparing against the phenological observations derived from the GPP 646 

data at all sites, the absolute bias of the phenophases simulated using DLM-GSI had a 647 

tighter range and interquartile range than using DLM-GDD and a lower mean and 648 

median than using DLM-GDD for various PFTs, indicating that the simulated results 649 

of using DLM-GSI were more stable and reasonable than using DLM-GDD. Overall, 650 

the GSI model significantly decreased the absolute bias of the phenophases simulated 651 

using DLM at all sites compared to the GDD model. Additionally, the use of the GSI 652 

model decreased the absolute bias of the SGS simulated using DLM by 48.2% on 653 

average and the absolute bias of the EGS declined by 39%.  654 

(iii) The GSI model significantly improved the accuracy of the GPP simulated 655 

using DLM compared to the GDD model for various PFTs. For most of the sites, the 656 

RMSE of simulated GPP using DLM-GSI was lower than that of using DLM-GDD, 657 

and the IA was higher using DLM-GSI than using DLM-GDD, especially for GPP 658 
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simulation in spring and autumn. Over all, the GSI model improved the accuracy of 659 

GPP simulation using DLM compared with using the GDD model at all sites. The GSI 660 

model reduced the simulated GPP RMSE of the DLM model by 8.0% and increased 661 

the corresponding IA by 7.5%. 662 
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Tables caption 676 

Table 1. An algorithmic comparison among EASS, CLM4 and DLM. 677 

Table 2. Descriptions of global FLUXNET sites used. 678 

Table 3. Phenological parameters in the DLM-GSI model. 679 

Table 4. Comparison of the root mean square error (RMSE) and the index of 680 

agreements (IAs) for gross primary production simulation for different 681 

vegetation types using the DLM-GSI and DLM-GDD models. 682 
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Table 1. An algorithmic comparison among EASS, CLM4 and DLM. 685 

Algorithms EASS CLM4 DLM 

Canopy layers 
Two layers (overstory and 

understory) 
One layer 

Two layers (overstory and 

understory) 

Snow layers depending on snow depth depending on snow depth depending on snow depth 

Soil layers 7 15 15 

Canopy up-scaling two-leaf strategy one-leaf strategy two-leaf strategy  

Two-leaf (sunlit and 

shaded leaves) 

strategy 

implementation 

based on fractions of sunlit and 

shaded leaves at a canopy depth as 

described by Dai et al.,(2004), also 

depending on the clumping index 

related of PFTs 

based on fractions of sunlit and shaded 

leaves at a canopy depth as described 

by Dai et al.,(2004) 

based on fractions of sunlit and 

shaded leaves at a canopy depth as 

described by Dai et al., (2004), also 

depending on the clumping index 

related of PFTs 

Photosynthesis 

two-leaf strategy, Rubisco-limited 

rate and light-limited rate are both 

based on Chen et al., (1999) and 

Wang and Leuning, (1998) 

two-leaf strategy, Rubisco-limited rate 

and light-limited rate are both based on 

Bonan et al.,(2011) 

two-leaf strategy, Rubisco-limited 

rate and light-limited rate are both 

based on Chen et al., (1999) and 

Wang and Leuning, (1998) 

Evapo- 

transpiration 

two-leaf strategy, 

Penman-Monteith equation 

one-leaf strategy, Mass-transfer 

equation 

two-leaf strategy, Penman-Monteith 

equation 

Land cover type 

6 vegetation types, burned area, 

barren land, urban area and 

permanent snow/ice area 

15 possible PFTs, bare ground, crop, 

lake, urban and glacier 

15 possible PFTs, bare ground, crop, 

lake, urban and glacier 

Phenology derived from leaf area index (LAI) 

growing degree days (GDDs) model 

accompanying with day length and soil 

moisture restriction 

growing season index(GSI) model 

Vegetation carbon 

pools 
as a whole 

leaf, live stem, dead stem, live coarse 

root, dead coarse root, fine root, storage 

organs and respiration organs 

leaf, live stem, dead stem, live coarse 

root, dead coarse root, fine root, 

storage organs and respiration organs 

Litter carbon pools 

Coarse detritus from woody and 

coarse root, surface structural litter, 

surface metabolic litter, surface 

microbe pool 

coarse woody debris (CWD), 3 litter 

pools 

coarse woody debris (CWD), 3 litter 

pools 
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Soil carbon pools 

soil structural litter pool, soil 

metabolic pool, soil microbe pool, 

slow carbon pool, passive carbon 

pool 

4 soil organic matter pools 4 soil organic matter pools 

Reference 

(Chen et al. 2007; Chen et al. 

1999; Dai et al. 2004; Wang; 

Leuning 1998)  

(Bonan et al. 2011; Dai et al. 2004; 

Lawrence et al. 2011; Oleson et al. 

2013; Oleson 2010; Thornton; 

Zimmermann 2007; Thornton et al. 

2002; White et al. 1997) 

(Chen et al. 2007; Chen et al. 2013; 

Chen et al. 1999; Dai et al. 2004; 

Jolly et al. 2005; Oleson et al. 2013; 

Oleson 2010; Stöckli et al. 2008; 

Wang; Leuning 1998) 

 686 

  687 
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Table 2. Descriptions of global FLUXNET sites used. 688 

NO. Site IDa 
Lon. 

(˚E) 

Lat. 

(˚N) 

Elev. 

(m) 

Biome 

Typeb 

Climate 

Zone 

Air Temp. 

(ºC yr-1) 

Percip. 

(mm yr-1) 
SiteYear 

1 CA-NS1 -98.48  55.88  253  NDF Boreal (Moist) 0.59  201.40  2002-2005 

2 CA-Oas -106.20  53.63  580  NDF Boreal (Moist) 1.95  541.75  2003-2006 

3 FI-Hyy 24.30  61.85  185  NDF Boreal (Moist) 4.59  499.08  2004-2007 

4 CH-Lae 8.37  47.48  689  BDF 
Cool Temperate 

(Moist) 
7.73  846.40  

2005-2006, 

2008-2009 

5 FR-Fon 2.78  48.48  100  BDF 
Warm Temperate 

(Dry) 
11.35  668.08  2005-2008 

6 IT-Col 13.59  41.85  1560  BDF 
Warm Temperate 

(Moist) 
7.44  994.04  2003-2006 

7 US-Los -89.98  46.08  485  BDF 
Cool Temperate 

(Moist) 
5.10  694.82  2001-2004 

8 US-MOz -92.20  38.74  212  BDF 
Warm Temperate 

(Moist) 
14.00 699.00 2004-2007 

9 BE-Vie 6.00  50.31  450  BDF Boreal (Moist) 8.36  1070.09  2005-2008 

10 DE-Gri 13.51  50.95  385  BDF Boreal (Moist) 8.72  874.33  2005-2008 

11 DE-Hai 10.45  51.08  430  BDF Boreal (Moist) 8.23  801.50  2004-2007 

12 DK-Sor 11.65  55.49  40  BDF Boreal (Moist) 8.54  658.86  2003-2006 

13 CA-Mer -75.52  45.41  65  BDS 
Cool Temperate 

(Moist) 
6.26  1048.18  2005-2008 

14 US-Fwf -111.77  35.45  2316  BDS 
Cool Temperate 

(Dry) 
8.63  895.78  2005-2008 

15 US-Ton -120.97  38.43  170  BDS 
Warm Temperate 

(Dry) 
16.32  535.86  

2002-2003, 

2006-2007 

16 CA-NS6 -98.96  55.92  271  BDS Boreal (Moist) -0.86  256.05  2002-2005 

17 US-Ivo -155.75  68.49  557  BDS Boreal (Moist) -9.11  292.99  2003-2006 

18 AT-Neu 11.32  47.12  970  GRA 
Cool Temperate 

(Moist) 
6.52  718.35  2003-2006 

19 FI-Kaa 27.30  69.14  155  GRA 
Cool Temperate 

(Moist) 
0.46  459.73  

2000-2001, 

2004-2005 

20 PT-Mi2 -8.03  38.48  190  GRA 
Warm Temperate 

(Dry) 
14.21  575.69  2005-2008 

21 US-FPe -105.10  48.31  638  GRA 
Cool Temperate 

(Dry) 
5.79  428.60  2003-2006 

22 US-Wkg -109.94  31.74  1524  GRA 
Warm Temperate 

(Dry) 
17.25  245.78  2004-2007 

a 
The site ID is taken from FLUXNET. 689 

b 
Biome types: needleleaf deciduous forest (NDF), broadleaf deciduous forest (BDF), 690 

broadleaf deciduous shrub (BDS), and grassland (GRA). 691 

  692 
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Table 3. Phenological parameters in the DLM-GSI model
a
 693 

Biome 

type 

Climate 

zone 

DLmax 

(hr) 

DLmin 

(hr) 

Tmax 

(K) 

Tmin 

(K) 

VPDmax 

(Pa) 

VPDmin 

(Pa) 

GSIGthr 

- 

GSIDthr 

- 

Nonset 

(day) 

Noffset 

(day) 

NDF Boreal 11.50  10.75  273  267  2113  886  0.5 0.5 37  32  

BDF Temperate 11.50  10.50  280  277  3084  899  0.5 0.5 31  32  

BDF Boreal 11.50  10.50  282  270  2095  916  0.5 0.5 36  17  

BDS Temperate 11.25  9.25  276  272  3199  912  0.5 0.5 27  28  

BDS Boreal 11.50  10.50  281  270  2100  903  0.5 0.5 32  31  

GRA(C3) Temperate 10.25  9.25  278  268  2270  700  0.5 0.5 27  30  

Averageb 11.25 10.13 278 271 2477 869 0.5 0.5 31 28 

a
parameters: the maximum day length threshold (DLmax), the minimum day length 694 

threshold (DLmin), the maximum air temperature threshold (Tmax), the minimum air 695 

temperature threshold (Tmin), the maximum vapor pressure deficit threshold (VPDmax), 696 

the minimum vapor pressure deficit threshold (VPDmin), the threshold for triggering 697 

the vegetation green-up (GSIGthr), the threshold for triggering the vegetation 698 

defoliation (GSIDthr), the initialized onset counters for controlling the green-up length 699 

(Nonset), and the initialized offset counters for controlling the defoliation length 700 

(Noffset). 701 

b
Average was calculated for all biome types and climate zones. 702 

  703 

Biogeosciences Discuss., doi:10.5194/bg-2016-165, 2016
Manuscript under review for journal Biogeosciences
Published: 29 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



40 

Table 4. Comparison of the root mean square error (RMSE) and the index of 704 

agreements (IAs) for gross primary production simulation for different 705 

vegetation types using the DLM-GSI and DLM-GDD models. 706 

Biome type 

Climate zone 

RMSE (gC m-2 d-1) 
 

IA 

DLM-GSI DLM-GDD 
 

DLM-GSI DLM-GDD 

NDF Boreal 2.055  2.197  
 

0.830  0.799  

BDF Temp. 2.759  2.817  
 

0.842  0.838  

BDF Boreal 3.399  3.523  
 

0.846  0.830  

BDS Temp. 1.420  1.689  
 

0.786  0.696  

BDS Boreal 0.764  1.035  
 

0.858  0.742  

GRA Temp. 1.349  1.642  
 

0.733  0.619  

Average 2.095  2.278  
 

0.810  0.753  

 707 

 708 

  709 
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Figures caption 710 

Figure 1. Methodology for extracting phenophases in GSI module. 711 

Figure 2. Spatial distribution of global FLUXNET sites. 712 

Figure 3. Example images of the canopy phenological changes at the US-MOz site. 713 

Figure 4. Comparison of simulated phenophases by using the DLM-GSI and 714 

DLM-GDD models with the observations derived from the green chromatic 715 

coordinate (GCC) data at the US-MOz site. 716 

Figure 5. Absolute bias comparison between simulated phenophases using the 717 

DLM-GSI and DLM-GDD models at the US-MOz site. 718 

Figure 6. Comparison of simulated phenophases using the DLM-GSI and the 719 

DLM-GDD models with the observations derived from the eddy-covariance 720 

measured gross primary production data at all sites. 721 

Figure 7. Absolute bias comparison between simulated phenophases using the 722 

DLM-GSI and the DLM-GDD models at all sites. 723 

Figure 8. A boxplot of absolute biases for phenophases simulated using the DLM-GSI 724 

and DLM-GDD models. 725 

Figure 9. Comparison of simulated gross primary production using the DLM-GSI and 726 

DLM-GDD models with the observations at all sites. 727 

Figure 10. Histogram comparison of the root mean square error (RMSE) and the 728 

index of agreement (IA) for gross primary production simulation using the 729 
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DLM-GSI and DLM-GDD models. 730 

Figure 11. Influence of phenological parameters sensitivity on the growing season 731 

index (GSI) varying (US-Wkg, 2007). 732 

 733 

 734 
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 736 

 737 

Figure 1. Methodology for extracting phenophases in GSI module. The italics ‘Onset’ 738 

and ‘Offset’ represent the period of green-up and the period of defoliation, 739 

respectively. The italics ‘GSI’ and ‘Threshold’ represent the growing season 740 

index and the threshold of GSI, respectively. The letter ‘B, C, E, F’ represents the 741 

green-up, the normal growth, the defoliation and the dormancy, respectively. The 742 

letter ‘A’ and ‘D’ represents the trgger point of green-up and the trgger point of 743 

defoliation, respectively. 744 

 745 

 746 

Figure 2. Spatial distribution of global FLUXNET sites. 747 
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 748 

 749 

Figure 3. Example images of the canopy phenological changes at the US-MOz site. 750 

The vegetation type in the ROI is the broad-leaf deciduous forest. The letter ‘a-d’ 751 

represents the green-up, the normal growth, the defoliation and the dormancy, 752 

respectively. 753 
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 755 

Figure 4. Comparison of simulated phenophases by using the DLM-GSI and 756 

DLM-GDD models with the observations derived from the green chromatic 757 

coordinate (GCC) data at the US-MOz site. 758 

 759 

 760 

Figure 5. Absolute bias comparison between simulated phenophases using the 761 

DLM-GSI and DLM-GDD models at the US-MOz site. The abbr. ‘SGS’ 762 

represents the start of growing season, and the ‘EGS’ means the end of growing 763 

season. 764 
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 766 

 767 

Figure 6. Comparison of simulated phenophases using the DLM-GSI and the 768 

DLM-GDD models with the observations derived from the eddy-covariance 769 

measured gross primary production data at all sites. The letters ‘a’ and ‘b’ 770 

represent the start of growing season (SGS) and the end of growing season 771 

(EGS), respectively. All sites in each subfigure contain two consecutive years. 772 
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 774 

 775 

Figure 7. Absolute bias comparison between simulated phenophases using the 776 

DLM-GSI and the DLM-GDD models at all sites. The letters ‘a’ and ‘b’ 777 

represent the start of growing season (SGS) and the end of growing season 778 

(EGS), respectively. All sites in each subfigure contain two consecutive years. 779 
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 781 

Figure 8. A boxplot of absolute biases for phenophases simulated using the DLM-GSI 782 

and DLM-GDD models. The letters ‘a’ and ‘b’ represent the start of growing 783 

season (SGS) and the end of growing season (EGS), respectively. The 784 

abbreviations in the biome types: ‘NDF’ represents needleleaf deciduous forest; 785 

‘BDF’ represents broadleaf deciduous forest; ‘BDS’ represents broadleaf 786 

deciduous shrub; ‘GRA’ represents grassland. 787 

  788 
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 789 

Figure 9. Comparison of simulated gross primary production using the DLM-GSI and 790 

DLM-GDD models with the observations at all sites. 791 
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 793 

 794 

Figure 10. Histogram comparison of the root mean square error (RMSE) and the 795 

index of agreement (IA) for gross primary production simulation using the 796 

DLM-GSI and DLM-GDD models. The letters ‘a’ and ‘b’ represent the RMSE 797 

and IA, respectively. 798 
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 800 

Figure 11. Influence of phenological parameters sensitivity on the growing season 801 

index (GSI) varying (US-Wkg, 2007). The error bars in light red being marked as 802 

positive errors were the sensitivity standard deviation of the temperature. The 803 

error bars in light blue being marked as negative errors were the sensitivity 804 

standard deviation of the vapor pressure deficit (VPD). The letters A and B 805 

represent the start of growing season and the end of growing season, respectively. 806 

The observed phenophases data were derived from the eddy-covariance 807 

measured gross primary production (GPP). 808 

 809 
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