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General Response:

We would like tothankallthree reviewers fortheirencouraging comments and thorough review of
our revised manuscript. We haveaddressed all the comments and concerns belowand added
additionalanalysis and figure details where needed. To address a specificrequest of Dr Ciavatta, we
have added an additional co-author: DrJenny Lovell.

Emmanuel Boss

Dearauthors,

| am happy with the revisions you made, though | do think you could have pushed the state of the
science more by assimilating more wavelengths, in particularin the red to constrain TSM. The
wavelength you assimilated is the one thatvaries least with changein Chl (itis the hinge point).
lalsodonotagree that NPQmay not affect the gliderdata. | will wantto see the backscattering
channelto be convinced ofthat (thatis that both Fchland bbp are homogeneous nearthe surface).

We haveincluded the backscatter coefficientin Figure 1 below, but are reticentto includeitin the
final MS, as it is becoming “very busy” and distracting. Ascan be seen, the raw backscatter
coefficientisa little spikey, butis generally homogeneousin the upper 100m. We cannot find
evidence of NPQ in the profilescontained in Figure 1. Ifthe editor wishes we caninclude Figure 1 in
the MS, butour preferenceis to exclude itand make reference to the fact there is no evidence of NPQ
inthe text as supported by the homogeneousbackscatter profiles. To the effect, we have added this
sentenceto page 14:

“Thereis no quenchingevidentinthis orother profiles, as the observed fluorescence and
backscatter coefficients (notshown)are constantin the upper50 m.”
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Figure 1: This is the samefigure asusedin Figure 8 in the MS, with the addition ofthe backscatter
coefficient.

In any case, all the bestand good luck,
Emmanuel

Please fix the following:
Your Dutkiewiczcitationisincomplete.

Now corrected in the references section.

Your Fujii referenceis notthe appropriate one touse. Itwas published in Biogeosciences afterit
appearedinthe BGD (http://www.biogeosciences.net/4/817/2007/bg-4-817-2007.pdf)

Apologies, we have corrected this.
I don't thinkyou need toinclude reviewers numberinyouracknowledgment.

We have removed the reviewer numbersfrom the Acknowledgement section.
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David Ford:

Minor comments

P10L44-46:"EXP1-5 showsthe progressive reductionin difference

inkind error associated with each experimental configuration". Semantics, but I'm not sure this is
exactlytrue as stated: ifl interpret correctly, the differenceinkind error (ED) is setthe same in
EXP1-2 (artificiallysoin EXP2),andis setto zeroin EXP3-5.

Your interpretation iscorrect. We have removed thissentence from the MS as it is repetitiousgiven
the statement in the previousparagraph ofthe MS.

P11L1-2:Pleaseclarify, eitherinsection 2.5.2 orthe captionto Table 1, whether Etotis being
expressed as a fractionaloranabsoluteerror. lassumeit's fractional, so if20% has been used for EA
for EXP5, and Etotis 0.2, does this mean ERis zero? | assume then this isthe case forall
experiments, has thisbeen assumed due to the super-obbing?

Extra detail has been added to section2.5.2 -

We have altered the following sentence to read:

“The total observation error used on the diagonal of R is then given by the sum of errortypes: Eewt =
Er +Ep +Eaand is expressed as a standard deviation in log-space and can therefore be thought ofas
a fraction of the observed quantity.”

We have added the following text to the description of Eg:
“In the case of the MODIS observations, we set Eg to be the standard deviation ofall the 1 kmlog-
scaled observationsthat fall within a 4 km model grid cell.”

We have also updated the captionand columnheadingsof Table 1.

P12114-15:"we canconclude thatthe modelrepresentsaccurately
the general distribution of Chl-a throughout the region" - this should
perhaps be clarified as "OC3M Chl-a", since a distinction's being drawn
between the OC3Mand surface Chl-a distributions.

Done, thank you for pointing thisout.

S3.2: Thankyou for including more validation againstin situ observations for the different runs.
However, it's not made clearin the manuscript why EXP2-3 haven'tbeenincluded in Fig. 7-11, and
EXP1in Fig.8,10,11.1doappreciate thatincludingallsix runs would potentially make Fig. 8-11
unclear(Fig. 7 lessso, butl'll leave that to the editorto decide), and there's not enough data to
compare EXP1 (and EXP3?)to nutrients, soI'm happy forthese to remain excluded unless the editor
disagrees. However, please atleast commentin the text on the relative performance of EXP2-3
againstinsitudatacom-pared with EXP1 and EXP4. Forinstance, P15 L11you attribute part ofthe
success to "the inclusion ofthe TSS constituentsin the statevector". This implies that EXP4
outperforms EXP3 - is this the case,that would be useful to know? Furthermore, EXP3 appears to
have beenstopped early, werethere issues with this configuration?

We have added addition experimentsto Figures7,9, 10 and 11 and updated the captions
accordingly. And in-text discussion of the results accordingly.
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We have added a column to table 4 detailingthe mean RMSD for EXP2.

We have added textto the bottom of page 13:

“In EXP3, the magnitude ofthe diagonal elementsof R (E:w:) are reduced from 0.8 to 0.4, yielding a
very minorimprovementin forecast statisticsover EXP2, and was discontinued after 10 cycles.
Additional variables were added to the assimilation state vector for EXP4, while keepingthe
observation errorequal to EXP3. The additional assimilation state variablesimproved the forecast
statistics and decreased the mean absolute forecastinnovation when compared with EXP2 and
EXP3.”

Fig. 16 and Fig. 17 could potentially be combined into a single 5-panel
figure for easiercomparison, but that's just personal preference, I'm
happy eitherway.

We have left Figure 16 and 17 as is. Though we are happy to change thisshould we receive further
advice fromthe editorial team.

All other minortyposand grammar mentioned have been corrected. We have altered a sentencein
the last para of the discussion to read:

“In the absence of an optical model, Ford and Barciela (2015)suggest further exploration of the
assimilation ofempiricalstatistical productssuch as Chl-a and Phytoplankton Functional Types
(PFTs)”

Stefano Ciavatta:

The authors addressed all my commentsin a constructive way. Though they did not acceptsome
recommendations(e.g. to include TSS and nutrientsin the control vector of EXP1, or include more
optically active variablesin EXP2-4), they justified soundly their methodological choicesand
pointed out assumptions and limits of their work.

In particular, | am glad and grateful that the authors added EXP5, which demonstrated the
feasibility and advantages of direct assimilation of reflectance data (R551).

Furthermore, the authors reorganized and polished the manuscript, such that the text flows much
betterin the currentversion.

Overall, this work represents a major step in biogeochemical data assimilation and, potentially, in
our capability to simulate and predict crucial dynamicsin marine ecosystems.

For the above reasons, | think that this revised manuscript is suitable for publication aftera minor
revision.

The most relevant commentsare listed below; others were included in the pdf file.

1) I kindlyinsist that the author replace the current Appendix 1 with an appendix that lists the
most important equations and parameterisation of the bio-optical model. This would increase the
readability of the manuscript, as well as well as the reproducibility ofthe work. | do appreciate
that the bio-optical model was published in a previous paper, but so was the biogeochemical
model whichis lengthy described in the currentappendix;
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We haveincluded an additional appendix (Appendix B)that outlinesthe bio-optical model used to
calculate the IOPs.

2) The authors should be more objective in judging the results of the simulation shown in figure 4
(e.g.the overestimated OC3Msouth of Papua). Furthermore, in figure 4, the simulated OC3M
matches betterthe NASA OC3M ratherthanthe ANN OC3M, which hasbeen assimilated. Please
commentinthe manuscript. See more comments in the pdf;

We’ve added the followingtextto page 12 addressing these comments:

“The model predictsalarge Chl-a plume south of Papua New Guinea, that is not present in the
remote sensing observations. In the reference simulation, the model over predictsinshore sediment
resuspension, which causes high simulated OC3Mvaluesin shallow coastal regions”

and

“The reflectancesderived from the ANN method have been shown to have substantially lower errors
dueto the improved atmospheric correction near the coast for case 2 waters (Schroederet al., 2007),
and we have therefore used these observationsin the assimilationexperimentsbelow.”

The in-text PDF commentshave been addressed below.

3) Figure 5: The non-linearrelationship between the two simulated variables is an obvious result,
becauseyou have included in yourmodel a non-linear relationship between the two variables. It
would be more relevanta plotofin situ chlorophyll versus satellite OC3M, or, at least, simulated
chlorophyll versus satellite OC3M. Weak or non-linearrelationshipsin these plots would support
betteryourpoint. Pleaseadd such plot to the manuscript;

The key point we want to make here is that in optically complex waters, thereisa an inherent non-
linear relationship between Chl-a and OC3M. To further highlight this, we have taken your advice and
included an extra panel that showsa comparison between in-situ Chl-a and MODIS OC3M. All plots
are log-scaled, and show that for the inshore water types of the GBR, OC3M overestimates the in-situ
Chl-a by upto an order of magnitude aslow concentrations. We have added the following text to the
MS to highlight thispoint:

“A scatterplot of in situ Chl-a plotted against MODIS OC3M observations (Figure 5, lower panel)
further highlightsthe magnitude ofthe OC3M errors in complex coastal waters. Whileitisobvious
that coastal water types are outside of the design specification ofthe OC3M algorithm, MODIS
OC3M containserrors upwardsof 400% atlow Chl-a.”

4) Figure 6. The top graph does not provide a clear overall ranking of the performance ofthe
experiments. Itis noteasy toassess which exp has the “best” mean forecastinnovation (i.e. ~0 most
of the analyses). The authors should plotthe absolute values of the mean forecastinnovations, or
provide ina table the temporal average of the absolute values ofthe mean forecastinnovations for
each experiment;
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Done, the lower panel of Figure 6 presents a time series of the Mean Absolute Forecast Innovation
(error).

5) Figure 11, top plot: you canreducethe y-scale to 10 mg m-3;
Done

6) In the conclusion, section4.2,1 do agree with the authors that assimilation of reflectance has the
benefittouse data with lowererror, because datado notrely on empiricalmodels. However, they
should recognize that modelling (and assimilating) optical properties mightincrease the complexity
and/oruncertainty ofthe ecosystem model. Toa certain extent, the problem is moved from satellite
retrievalsinto the structure ofthe marine model. One needs to add equations and parameterization
thatare rough approximation and highly uncertain. For example: which experimental phytoplankton
absorption coefficient should | use forthe “small phytoplankton” represented in the model? What
are the implications ofrepresenting CDOM as a linear regression of salinity? Is this more accurate
thanretrieving CDOMabsorption from satellitedata?

Therefore, the authors should mention the above issues in the conclusions and list the most relevant
bio-optical equations and parameterizationsin the appendix.

Comments fromthe PDF:
Page 1:Should this onbe 201643, ratherthan b, since it's the first paperyoucite?

Correct, thishas been fixed.

Page 3:it's quite a repetition of the previous sentence

Removed

Page 4:line 3: pleaseexplain why this isrelevant (e.g., ", ehich provided data for skillassessment")

Page4line 5: pleasemention why cloud free is relevan (e.g. increased s patial coverage of
assimilated data)

This para now reads:

“The assimilation system was tested between the 25" May 2013 to 22" September 2013. Thisperiod
was chosen as it coincideswith a field program by the Great Barrier Reef Marine Park Authority
(GBRMPA) inshore Marine Monitoring Program (MMP) and an autonomousglider deployment
(Integrated Marine Observing System, IMOS), these in situ observationsare used for anindependent
assessment of the assimilation system. Additionally, thisperiod also hasa large number of cloud free
days, which increasesthe amount of observational data available for assimilation. Details of the
observations, model and assimilation system are given below. “

Page 7: To my knowledge, "univariate assimilation"is commonly used to mean you are updating just
the model variableyou are assimilating; in multivariate assimilation, you can still assimilate just one
variable, butyouare correcting>1 model variable.

This is differentthan assimilating data of 1 or >1 variables, to which you refer here.

We have changed the textto:
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“We acknowledge that a 36 memberensemble is small, however as demonstrated in the results
section thissmall ensemble performs adequately forthe assimilation of a univariate observation
type. The ensemble size will need to be increased to assimilate multivariate observations.”

Page 11-line 10: Please reportthe values you appliedin a table in this manuscript, to guarantee
reproducibility ofyourwork.

Done, this text now reads:

Where a0, al, ... a4 are a set of empirically determined coefficients (e.g. NOMAD version 2,
http://seabass.gsfc.nasa.gov/wiki/article.cqgi?article=NOMAD) with the respective valuesof: a0 =
0.2424,a1=-2.7423,a02=1.8017,a3=0.0015and a4=-1.2280
(http://oceancolor.gsfc.nasa.gov/cms/atbd/chlor a).

Page 12: please mention that the reference simulation overestimated badly the OC3Mvalues
observed south of Papua New Guinea

Page 12:Infigure 4, simulated OC3Mis much closerto the NASA productthantothe ANN product
(by-eye; please provide quantitative evidenceiflam wrong). Please state clearly this evidence in the
text, as wellasthe reason whyyoustill preferred to assimilate ANN.

The following sentences have been added in responseto the two points raised above:

“The model predictsa large Chl-a plume south of Papua New Guinea, thatis not present in the
remote sensing observations. In the reference simulation, the model over predictsinshore sediment
resuspension, which causes high simulated OC3Mvaluesin shallow coastal regions.”

“Thereflectancesderived from the ANN method have been shown to have substantially lower errors
dueto the improved atmospheric correction near the coast for case 2 waters (Schroederet al., 2007),
and we have therefore used these observationsin the assimilationexperimentsbelow.”

Page 13: These sentences look to be contrasting, please clarify.

We have altered these sentencesto read:

“Of the experimentsthat assimilated OC3M, the configuration used for EXP4 (Figure 6, blue line)
gavethe lowest mean absolute forecast innovation. While the EXP5 configuration (noting that this
experimentassimilatesR551, not OC3M) beat EXP4 with a lower mean absolute innovation, but
these innovationsare for R551, not OC3M and therefore cannot be directly compared. To undertake
an assessment of the relative performance between EXP4 and EXP5, an assessment against
independent (non-assimilated) observationsis given in Sections3.2.2-3.2.5”

Page 14:Thereadercannotsee thisDCMonthatdate

We pointout that this feature can be seen from the 7/7/13 - 14/7/13 -

“The configuration used in EXP5 capturesa weak DCM that persists for 7 days from the 7/7/13 -
14/7/13 and also maintainsthe lowest mixed layer Chl-a for the feature captured on fromthe 7/7/13
—13/7/13 (Figure 7: bottom panel). Assimilating OC3Mstill over-predictsthe mixed layer Chl-a.”

Page 14: Not really.|seethat EXP5 hasalower RMSD, atleastinthe range 0-60 meters. Please
clarify.


http://seabass.gsfc.nasa.gov/wiki/article.cgi?article=NOMAD)
http://oceancolor.gsfc.nasa.gov/cms/atbd/chlor_a)

10

We see that within the 0-200m range, the RMSD for EXP5 is slightly less than EXP4. Our text
originally read:

The assimilation ofR551 (EXP5)results in a minorimprovementin RMSD when compared withthe
assimilation of OC3M (EXP4)

To clarify, we have changed it to:
“Inthe upper 60 m, the assimilation ofR551 (EXP5)results in a minorimprovementin RMSD when
compared with the assimilation of OC3M (EXP4).”

With my compliments for this nice piece of work,
kind regards,
Stefano Ciavatta
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Use of remote-sensing reflectance to constrain a data
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Abstract: Skillful marine biogeochemical (BGC) models are required to understand a range
of coastal and global phenomena such as changes in nitrogen and carbon cycles. The
refinement of BGC models through the assimilation of variables calculated from observed
in-waterinherent optical properties (I0Ps), such as phytoplankton absorption, is
problematic. Empirically-derived relationships between IOPs and variables such as
Chlorophyll-a concentration (Chl-a), Total Suspended Solids (TSS) and Colored Dissolved
Organic Matter (CDOM) have been shown to have errors that can exceed 100% of the
observed quantity. These errors are greatestin shallow coastal regions, such as the Great
Barrier Reef (GBR), due to the additional signal from bottom reflectance. Ratherthan
assimilate quantities calculated using IOP algorithms, this study demonstrates the
advantages of assimilating quantities calculated directly from the less error-prone satellite
remote-sensing reflectance (RSR). To assimilate the observed RSR, we use anin-water
optical model to produce an equivalent simulated RSR, and calculate the mis-match
between the observed and simulated quantities to constrain the BGC model with a
DeterministicEnsemble Kalman Filter (DEnKF). FellewingtheThe traditional assumption that
simulated surface Chl-a is equivalent to the remotely-sensed OC3M estimate of Chl-a
resulted in a forecast error of approximately 75%. We show this error can be halved by
instead using simulated RSR to constrain the model via the assimilation system. When the
analysis and forecast fields from the RSR-based assimilation system are compared with the
non-assimilating model, a comparison against independent in situ observations of Chl-a,
TSS, and dissolved inorganic nutrients (NO3, NHzand DIP) showed that errors are reduced by
up to 90%. In all cases, the assimilation system improves the simulation compared to the
non-assimilating model. Our approach allows for the incorporation of vast quantities of
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remote-sensing observations that have in the past been discarded due to shallow water
and/orartefacts introduced by terrestrially-derived TSS and CDOM, or the lack of a
calibrated regional IOP algorithm.

1 Introduction:

Aquatic biogeochemical (biegeechemicaH{BGE}BGC) models have been used to understand

a range of coastal and global phenomena such as ocean acidification (Mongin et al., 2016),
nutrient pollution (Skerrattetal., 2013) and carbon cycles, and are central to our
predictions of global climate (Sarmiento and Gruber, 2006). At the coastal / regional scale,
non-linear biegeechemicalBGC processes driven by planktonic interactions, as well asnon-
linear circulation features such as mesoscale eddies, limit the timescale over which
biogeochemicalBGC properties are deterministically predictable (Baird, 2010). For the
purposes of prediction, itis therefore necessary to assimilate observations to correct for
model errors and non-linear processes.

In situ observations of phytoplankton pigments and macro-nutrients are sparse in space and
time due to the prohibitive expense of collecting them. Optical sensors on gliders and floats
provide high resolution in situ observations that are used to estimate pigment and nutrient
concentrations. Nonetheless, these observations in large parts of the ocean remain sparse.
The most s patially comprehensive dataset available for BGC assimilation is from Ocean
Color (OC) remote sensing. The assimilation of remotely-sensed data into marine
biegeochemicalBGC models has been problematicdue to differences between the variables
represented in models and the variables that are routinely observed (Baird-etat;
2016bBaird etal., 2016a), typically referred to as “difference in kind” errors. Satellites
measure the top of atmosphere radiance, not chlorophyll-a concentration (Chl-a; or other
modelled variables) directly. To attain estimates of Chl-a or othervariables, the spectrally-
resolved top of atmosphere radiance is converted into atmospherically-corrected remote-
sensing reflectances (RSRs), which are then related to Chl-a via empirical statistical
relationships derived from in situ observations. Figure 1 graphically demonstrates the key
steps inthe OCprocessing chain, and points at which models and remotely-sensed and in
situ observations can be compared.

Early studies investigating the benefits of assimilating OC products, predominantly SeaWiFS-
derived Chl-a, into BGC models include those of Carmillet et al., (2001) and Natvik and
Evensen-Evensen (2003), with a comprehensive review of algorithms used and observations
assimilated detailed in Gregg (2008). Considerable effort has been invested in Data
Assimilation (DA) algorithm development, with ensemble and variational approaches being
the mostcommon. Athorough review of these approaches in a statistical sense is presented
in Dowd etal., (2014). There are now examples of operational and pre-operational global
systems that routinely assimilate Chl-a products (Ford et al., 2012). Additionally, there has
been further experimentation with assimilating alternative remotely-sensed Apparent
Optical Properties (AOPs) such as the vertical attenuation coefficient at 443 nm, Kd a3
(Ciavatta etal., 2014) and Inherent Optical Properties (IOPs) such as phytoplankton
absorption (ag), as described in Shulman etal.,; (2013).

10
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Itis wellknown that OCalgorithms, such as observed OC3M (Moderate Resolution Imaging
Spectroradiometer, MODIS, three-band Chl-a algorithm) that are optimized for global
applications suffer from errors due to a variety of optically-active constituents in coastal and
shelf waters (Odermatt et al., 2012). Furthermore, it has also been noted that even globally,
there is a non-uniform distribution of error, and substantial bias, in the re motely-sensed
OC3M-derived Chl-a. Satellite-derived eceancetorOC produets-algorithms such as OC3M are
a function of observed RSRs. A substantial effortis invested in empirical studies that convert
RSRs to biegeechemiealBGC quantities such as Chl-a, Total Suspended Solid concentration
(TSS), phytoplankton functional types (PFTs), and Colored Dissolved Organic Matter (CDOM)
(Odermattetal., 2012). Each of these empirical relationships have differing error
magnitudes stemming not only from a difference in kind, but also representation errors. In
optically deep regions (e.g. offshore waters) notinfluenced by sediment resuspension and
terrestrial runoff, typical errors for OC--derived Chl-a (e.g. OC3M) are less than 40%, and as
low as 5-20% for IOPs and AOPs. However, in optically-complex coastal areas where there is
river discharge, sediment resuspension and epticaty-shallew-watera surface expression of
benthic reflectance, errors can exceed 300% (e.g. Schroederetal., 2016; Qin et al., 2007).

Numerical weather prediction (NWP) avoids difference in kind errors through using the
model to simulate directly-observed quantities, such as temperature brightness, in
preference to deriving other quantities such as temperature and humidity profiles from the
brightness measurements-—FhusNWP-systems-ecommonbyassimilate-brighthesstemperature
a-preferenceto-satellite-derivedtemperature-and-humidity (Derberand Wu, 1998; Dee et

al.,2011). The goal of this study is to apply this approach to marine biegeechemicalBGC
modelling, assimilating RSRs rather than quantities calculated using empirical-statistical
relationships. We assess this-the approach of assimilating RSRs through a comparison
against withheld in situ observations of a range of BGC quantities such as Chl-a, Total
Suspended Solids (TSS) and dissolved nutrients.-

The Great Barrier Reef (GBR) region, located along the northeast coastline of Australia, is
usedto demonstrate the assimilations of RSRs in optically-complex and shallow waters
(Blondeau-Patissier et al., 2009). The GBR is characterized by fringing reefs along the
continental slope that create a semi-connected inshore lagoon that spans over 3000 km of
coastline (Figure 2). The GBR ecosystem, described as one of the seven natural wonders of
the world, isunderincreasing pressure from local and global anthropogenic stressors
(De'ath etal., 2012). Decreasing water clarity due to nutrient and sediment pollution is
considered a serious threat to the GBR ecosystem (Thompson et al., 2014), with major
concerns beirgincluding the impact of tewerreduced benthic light levels on coral and
seagrass communities (Collier et al., 2012; Baird-etat;2016aBaird et al., 2016b) and the
impacts of invasive species (e.g. Morello et al., 2014).

The paperis structuredin the following manner, in Section 2 (Methods) the data for
assimilation and skill assessment is presented, along with a description of the model and
assimilation methods used. Section 3 contains the results from the control (non-
assimilating) run ofthe model, and subsequent data assimilation experiments. In Section 4
we discuss the approach used and implications of the findings more generally. And we
conclude with major findings in Section 5.

11
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2 Methods:

The assimilation system was tested between the 25t May 2013 to 22" September 2013.
This period was chosen as it coincides with a field program by the Great Barrier Reef Marine
Park Authority (GBRMPA) inshore Marine Monitoring Program (MMP)- and an autonomous
glider deployment (Integrated Marine Observing System, IMOS), that are used for
assessment of the assimilation system. Additionally, this period also has a large number of
cloud free days, which increases the amount of remotely-sensed observational data
available for assimilation. Details of the observations, model and assimilation system are
given below.

2.1 In-situ observations

All in situ observations have been withheld from the assimilation system for validation
purposes, and are primarily obtained from two different programs.

The trtegrated-Marine-Observing System-HMOS}IMOS has deployed fluorometers on
moorings at Yongala and North Stradbroke National Reference Stations (NRS) (Figure 2).

This study uses the monthly observations of dissolved inorganic nutrients (NO3, NHsand
DIP)atthe NRSsites (Lynch etal., 2014). Additionally, glider data obtained from the IMOS-
operated Australian National Facility for Ocean Gliders (ANFOG) provide cross-shelf prefiles
sections of water column properties, including temperature, salinity, and chlorophyll
fluorescence. These locations are shown in Figure 2.

The GBMRMPA MMP (Figure 2, yellow circles) eentains-samples 13 sites ininshore regions
and inthe GBR lagoon, and samples nutrients and Chl-a extractions 3 times a year
(Thompson etal., 2011; Rolfe and Gregg, 2015); no MMP bottle sampling occurred during
the simulation period. The Australian Institute of Marine Sciences (AIMS) deployed Fhe
moeerirgsmoorings were-deployed-at the GBRMPA MMP sites from 2009 to 2014 and
included -a-Sea-Bird water quality monitors (WQM) that measure chlorophyll fluorescence
and turbidity (NTU), which are used for assessment purposes in this study. A comparison of
the 2011-2014 control run simulation against the GBRMPA MMP -observations, and other
observations, is available in a -180page-skill assessment report at:
https://research.csiro.au/ereefs/models.

2.2 MODIS observations

The daily observations of RSR are obtained from MODIS-Aqua and an atmospheric
correction developed forthe regionis applied (Schroeder et al., 2007). The atmospheric
correction applied an Artificial Neural Network (ANN) approach trained by a radiative
transfer model to invert the top of atmosphere (TOA) signal measured by MODIS-Aqua. The
ANN algorithm was adapted to an approach previously-developed for the MEdium
Resolution Imaging Spectrometer (MERIS) sensor but on the basis of a different learning
algorithm (Schroeder et al., 2007). Algorithm performance is described in detail in Goyens et
al.(2013) andKing et al. (2014).

SeaDAS-provided Level-2 flags were used to quality control the observed RSR and to exclude
erroneous and out-of-range pixels. We filtered the data forland and severe sun glint

12
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affected pixels, cloud contamination including cloud shadows, and rejected pixels with
observing and solar zenith angles above 52°and 70°, respectively. Super-observations
(Cummings etal, 2005; Oke et al., 2008b), of RSR and OC3M (see Section 2.5.2, eq. 21) are
generated forthe assimilation system by taking the mean and variance of allthe 1 km
resolution observations that fall withina 4 km model grid cell. The mean value of the super-
observationis then assimilated, while the variance is used as an estimate of the
representation errorin the observation error covariance matrix. More detail on this process
in given in Section 2.5.2.

2.3 The eReefs modelling system

We used the eReefs coupled hydrodynamic, sediment and biegeechemicalBGC modelling
system (Schilleretal., 2014). The hydrodynamic model is a fully three-dimensional (3D)
finite-difference baroclinic model based on the three dimensional equations of momentum,
continuity and conservation of heat and salt, employing the hydrostaticand Boussinesq
assumptions (Herzfeld 2006; Herzfeld and Gillibrand 2015). The sediment transport model
adds a multilayer sediment bed to the hydrodynamic model grid and simulates sinking,
deposition and resuspension of multiple size-classes of suspended sediment (Margvelashvili
2009; Margvelashvilietal., 2016). The complex biegeechemicalBGC model simulates optical,
nutrient, plankton, benthic organisms (seagrass macroalgae and coral), detritus, chemical
and sediment dynamics across the whole GBR region, spanning estuarine systems to
oligotrophicoffshore reefs (Figure 3, Baird-etal-2046bBaird et al., 2016a). A-an expanded
description of the BGC model is givenin Appendix A, with a brief description of the optical
modelin Appendix B. Briefly, the biegeechemicalBGC model considers four groups of
microalgae (smalland large phytoplankton, Trichodesmium and microphytobenthos), two
zooplankton groups, three macrophytes types (seagrass types corresponding to Zostera and
Halophila, macroalgae) and coral communities. Photosynthetic growth is determined by
concentrations of dissolved nutrients (nitrogen and phosphorous)and photosynthetically
active radiation. Microalgae containtwo pigments (chlorophyll-a and an accessory
pigment), and have variable carbon:pigment ratios determined using a photo-adaptation
model (described in Baird et al., 2013). Overall, the model contains 23 optically-active
constituents (Baird-etak2016bBaird et al., 2016a; and Appendix A).

The model is forced with freshwaterinputs at 21 rivers alongthe GBR and the Fly Riverin
southwest Papua New Guinea. River flows input into the model are obtained from the
DERM (Department of Environment and Resource Management) gauging network.
Statistical flow/load relationships are used to account for nutrient and sediment inputs from
rivers into the model (statistical relationships between river flow and nutrient
concentrations; {Furnas 2003). Nutrient concentrations flowingin from the ocean
boundaries were obtained from the CSIRO Atlas of Regional Seas (CARS) 2009 climatology
(Ridgway etal., 2002).

2.4 Calculation of remote-sensing reflectance from biegeochemicalBGC state

The model contains 23 optically-active constituents (Baird-etal;2016bBaird et al., 2016a;
and Appendix A and B). To calculate the RSR at the surface, we need to consider the light
returning from multiple depths, and from the bottom. Ratherthan using a computationally-
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expensive radiative transfer model, we approximate RSR based on an optical-depth
weighted scheme (Baird-etak;-2016bBaird et al., 2016a), alternative methods are given in
Fujiji etal., (2007) and Dutkiewicz et al., (2015). The ratio of the backscattering coefficient to
the sum of backscattering (by) and absorption (a) coefficients for the whole water column at
wavelength, A, is:

W21 Db 2,zr Eq 1

u, =
2 A 7 +bp 3z

where w;, 7 is a weighting for each layer representing the component of the RSR due to the
absorption and scattering at depth z’.

The weighting fraction is given by:

w,, = ——["exp(—2K, ,)dz  Eq2

'z 21—7Zg "%

where Kj is the vertical attenuation coefficient at wavelength A, zgand z; are the top and
bottom depths of the layer and the factor of 2 accounts for the path length of both
downwellingand upwelling light. The vertical attenuation coefficient is calculated from the
sum of the absorption and scattering properties of each of the optically-active constituents,
and the zenith angle (foreach of these relationships, and more information, see Baird-etal;
2016bBaird etal., 2016a).

The integral of wy,» to infinite depth is 1. In areas where light reaches the bottom, the
integral of wy, 2 to the bottom is less than one, and benthic reflectance isincluded in the
sum as an extra term with a weightingof 1- X w; ,.

The sub-surface RSR, ry, is given by:
I's = 8oy + glui Eq 3

where go=0.0895 and g, =0.1247 are coefficients forthe nadir-view in oceanic waters that
vary with wavelength and other optical properties (Morel et al., 2002), but can be
approximated as constants (Lee et al., 2002). The constants resultin a change of units from
the unitless uto a perunit of solid angle, sr?, quantity, rys.

The above-surface RSRis given by (Lee et al., 2002):

R = %52nsa

Eq4
AT 1175, q

Thus, the above-surface RSRis calculated from the inherent optical properties of the
optically-active constituents in the biegeechemicalBGC model.
2.5 Data Assimilation System

The Data Assimilation (DA) algorithm used in this study is the Deterministic Ensemble
Kalman Filter (DEnKF; Sakov and Oke, 2008). The full biegeechemicalBGC state variable list
contains over 130 2D and 3D variables. Including all of these variables in the assimilation
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system isimpractical due to memory constraints, but we also acknowledge that for many
variables the observations will be uninformative, and therefore not good candidates to
include inthe assimilation state vector. We therefore limit the variables that are updated
withinthe system to a select subset that are-is detailed in Section 2.5.2.

2.5.1 Data Assimilation Algorithm

The DEnKF is based on the Kalman filter analysis equation, of which various flavors have had
general success in state estimation in other marine BGCdata assimilation problems (e.g. Hu
etal., 2012, Ciavatta et al., 2016). The derivation of the DEnKF is given in Sakov and Oke
(2008) and is a modification to the traditional Kalman filter equation:

x? = xf + K(Y — Hx) Eq5

Where x is the model state, Y is the vector of observations, H is the observation operator,
and the superscripts of 2andf denote the analysis and forecast fields respectively. In this
study, we only use a subset of the state variables in the DEnKF update;; those variables not
included in the state vectors denoted in Table 1 are not altered by the state update. The
Forecast Innovations (Fl) are defined by:

FI = (Y- Hx") Eq6
The Kalman gain matrix, K, is given by:
K =IPHT(HPTHT+ R) " Eq7

Where lis the localization operator, applied in the form of covariance localization (Sakov
and Bertino, 2011), with anisotropic localization radius of 60 km, and R is the observation
error covariance matrix. Off diagonal elements of Rare set to 0, while the diagonal
elements of Rare the sum of the representation error, difference in kind errorand
analytical measurement error, termed Eyt. These errorterms are discussed in detailsin
Section 2.5.2 (additionally see Schaefferetal., 2016 fora further discussion ofthese error
sources relating to BGC variables and methods to estimate them from glider data).

The background error covariance matrix, P, is givenby: { Formatted: Font: Not Italic

L AAT  Eg8

Pf= T 5m,&Xf —xNX -xNT ="

m-1
where mis the ensemble size, and i denotes the ith member of the ensemble. Giventhatwe
are-usingaflaverofthe-ensembleKatmanfiltertThe background error covariance is
approximated by a 36 member dynamicensemble whereby Xf is the ith ensemble member,
and x is the ensemble mean. We acknowledge thata 36 member ensemble is small,
however as demonstrated in the results section this small ensemble performs adequately
for univariate-the assimilation of a univariate observation type. The ensemble size will need
to be increased to assimilate multivariate observations. To avoid negative values and
normalize the state, we log-transform the state before forming the state vector. The
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application of the log-transform to biological variables is discussed in Parslow etal., (2013),
and is commonly used in other BGC assimilation schemes (e.g. Ciavatta etal., 2014). The
background error covariance matrix is never computed; rather a series of anomaly fields are
constructed and denoted by A. We then construct the Kalman gain matrixin the
observation subspace as per Sakov and Oke (2008):

A=TA;..A,] Eq9
where the ith anomaly field is given by:
Af = xf —xf Eq 10

where x is the the ensemble mean and is updated via Eq 5, each anomaly field is updated
by:

A? = Af - “KHAT Eq11

The full analyzed ensembleis then given by:

A

A

_______________ Formatted: Font: (Default) +Body (Times New Roman),
(Asian) +Body Asian (Times New Roman)

I L Eq 12

The assimilation system iterates through time using a five-day forecast duration. The
assimilation system is cycled by calculating the analysis fields at time t, using the forecast
from the previous cycle, Xf(t), and observations Y(t) attime t, using all observations that fall
withina window of t +/- 3 hrs. The numerical modelis initialized using the analysis fields
X?(t) and the next five day forecast is made. This forecast at t+5 days, Xf(t+5), is then used in
the next assimilation cycle.

The DEnKF requires the ensemble to be perturbed insuch a way thatit captures the main
source of error. These perturbations are introduced in a way that captures our prior
understanding of the dominant errors. In this system we expect that errors will stem from
uncertainty in the Initial Conditions (1Cs) as per most assimilation system. Additional sources
of error can stem from uncertainty associated with BGC process parameters, which has
been discussed atlengthin Parslow et al. (2013), and river boundary conditions (BCs). In this
study we have ignored the effects of uncertainty that propagate from the model physics
(hydrodynamics), short wave radiation forcingand open ocean boundary fluxes of BGC
tracers, but do acknowledge that they contribute to the overall uncertainty inthe predicted
system state.

In the context of this study, we have introduced perturbations to the ensemble by sampling
initial conditions randomly from a fouryearrun (where T=4years) of the BGC model:

X(t=0);~Uniform(X(t=0) ,X(t=T) ) fori=2..m Eq1l3
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Where X(t=0);is the initial condition for the model state for the ith membersampled fora
uniform distribution with no re placement-, Where-and X(t=0);; is the ensemble mean.
Sensitivity experiments have shown the model is sensitive to perturbations in the quadratic
zooplankton mortality rate forfarge-small (mqzs) and smal-large zeeplankten-(mqz)
zooplankton with units of d* (mg N m3)-L. These are considered system parameters, and are
as such uncertain. To this end we have perturbed the ensemble, by sampling space and time
invariant parameters from:

mq‘ZL_i~LN(0.012, 1) fori=2..m Eq 14
mg ;5;~LN(0.007,1) fori=2..m Eq 15

Where LN is a log-normal distribution, and respective means of 0.012 and 0.007 are typical
values as usedinthe control run (Baird-etat;2016bBaird et al., 2016a), and are given
relatively broad standard deviations of 1 for both parameters. The river nutrientand
sediment loads were altered by a time invariant scaling factor (0) to all rivers:

Oy03;~N(1,0.3) fori=2..m Eq 16
Oyha i ~N(1,0.3) fori=2..m Eq 17
Oppi~N(1,0.3) fori=2..m Eq 18
Ofineed i~N(1,0.3) fori=2..m Eq 19

Where N is a normal distribution truncated at 0. Each ensemble member has theirload (Q;)
scaled according to:

Qi = echontrol Eq 20
where Q oniro1 IS the load entering the control run.
2.5.2 Assimilation system experiments and configuration

The assimilation system was assessed using five assimilation system configurations (Table 1)
usinga subset of the fullmodel state in the assimilation state vector, and corresponding
diagonal elements (Eio; See below) of the observation error covariance matrix (R). The
assimilation experiments were conducted on Raijin, a super-computer hosted at the
National Computational Infrastructure (NCI; http://nci.org.au/). The assimilation cycle
progressed via a two-step process. The first step generated the forecast fields by integrating
the ensemble forwards on 36 nodes of the system. Each node has a dual 8 core processor,
with 16 Gb of RAM. This step takes approximately 90 minutes to simulate 5 model days. The
second step generates the analysis fields and updates model scripts to allow for the next
forecast cycle. The analysis step is undertaken on a single high-memory node and requires
800 Gb of RAM and takes 50 minutes using 16 cores.

We only allow the observations to update the variables contained in the assimilation state

vector. The analyzed assimilation state vector s then inserted into the full model state
vector.
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There are three sources of observational error (Eyot) that must be accounted for when
relating remotely-sensed observations to the-a modelled state variable:
1. Representation error (Egs) —errors thatarise due to the approximation that the
modelled tracer quantities are an average overa whole model cell. This can be
5 thought of as unresolved spatial variability. In the case of the MODIS observations,

we set Eg to be the standard deviation of allthe 1 km log-scaled observations that Formatted: Font: Bold

fall withina 4 km model grid cell. Formatted: Font: Bold, Subscript

2. Differencein kind error (Ep) —these errors arise when the variables that are being
modelled andincluded in the assimilation state vector differ from the observations.
10 Forexample, many studies have included surface Chl-a (or some optical depth
weighted average) in the assimilation state vector, and assume there is a direct
relationship with Chl-a estimated using OCand the OC3M algorithm(or other
quantities). The OC3M algorithm is known to have typical errors of between 30-70%
in blue water domains, and errors that exceed 300% in optically complex (or optically
15 shallow)waters (Qin etal., 2007).
3. Analytical/sensor/processing error (Ep) — Dependingdepending on the observational
platformin use, these errors can be small (e.g. ARGO-Argo floats), orin the case of
remote -sensing products, even with the ANN atmospheric correction, as large as 15-
20% (see Schroeder et al., 2007).

20
The total observation error used on the diagonal of Ris then given by the sum of error

types:Ei =Er+ Ep+Epand is expressed as a standard deviation in log-spaceand can . [ Formatted: Font: Not Italic

therefore be thought of as a fraction of the observed quantity.

25 The sum of these error types can be large and forms the diagonal element of the

observation error covariance matrix (R). The larger Ey, the lower the impactofthe . { Formatted: Font: Bold

observations in the assimilation system. If we can remove the difference in kind error (Ep),
then we only have representation error and analytical/sensor/processing error. Given that
| Level 3 eceancoalerOCremote sensing products rely on empirical/statistical relationships, Ep
30 dominates, therefore if we can minimize Ep (or remove it entirely), then the information
content of the observations increases. Conversely, if we don’t have a large enough
observation error, we run the risk of overfitting the observations and generating
unrealistically large increments for the unobserved model state variables.

35 Experimentl1 (EXP1) was designed to test the assimilation system under the assumption
that modelled surface total Chl-a (the sum of small and large Phytoplankton Chl-a and
Trichodesmium Chl-a) was equivalent to the Chl-a from MODIS-observed OC3M. This
experimentis analogous to those of Natvik and EvensenEvensen (2003), Gregg (2008) and
Ford etal., (2012). Thisis a reasonable assumption in offshore waters, however, OC3M s

40 known to be unreliable in coastal waters where sediments (e.g. TSS), bottom reflectance
and CDOM cause artificially high OC3M values. We expect that EXP1 will contain difference
in kind errors that stem from the assumption that surface Chl-a is equivalent to observed
OC3M. The observation error prescribed for this experiment is considered to be the lower
bound of OC3M errors as reportedin Qin etal., (2007).

45
In Experiments 2-4 (EXP2-4) we assume that the simulated OC3M (i.e. calculated from
simulated RSR)is equivalent to the observed OC3M (i.e. calculated from observed RSR) and
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itis used as aninputinto the observation operator. The simulated OC3M (Eq 21) contains

the signature from simulated TSS, CDOM and bottom reflectance as per Seetien-Sections2.3,

2.4 and Appendix A. Thus for EXP2—-4, the observed and simulated OC3M contains no the

same-errorcharacteristiesdifference in-kind errors (although we leave Ep high during EXP2

Formatted: Font: Bold

for experimental purposes). In other words, the configuration used for EXP2 is the same a
EXP1, exceptthe effect of difference in kind error has been removed by using simulated

S

0OC3M, in place of total surface Chl-a. In EXP3, we reduce the observation error to account

for the reduction in Ep, and in EXP4 we add additional variables to the assimilation state
vector.

In EXP5, we assimilate observed RSRat 551 nm (R551) using the simulated RSR at the
equwalent wavelength %eﬁ;egresswel-y—mwe#mg—ef—the—lé —mseﬁed—eﬂ%he—dﬁgena«l

as&eemtedwﬁh—eaeh@*pe%ent&%enﬁgwa%mn{lable—léﬁyplcally errors in RSR as

reported inSchroederetal., 2007 are inthe order of 10-20%, and we have used a-figure-of

20%0.2 forthis experiment.

In all experiments we have generated a set of super-observations (Cummings et al, 2005;
Oke etal., 2008) by s patially averaging the 1 km observations, onto the 4 km model grid.
Priorto super-obing in Experiments 1-4 (EXP1-4), the observed atmospherically-corrected
RSRs (Schroederetal., 2007) at 443, 488 and 551 nm were transformed into a single
observation usingthe OC3M algorithm:

0OC3M = 10(aO+al.B+a2.Bz+aB.B3+a4.B4) Eq21

Where a0, al, ... a4 are a set of empirically determined coefficients (e.g. NOMAD version 2,
http://seabass.gsfc.nasa.gov/wiki/article.cgi?article=NOMAD) with the respective values of:
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a0 =0.2424, a1l = -2.7423, a_g 1.8017, a3 =0.0015 and.a4=-1.2280 Formatted: Font: Bold
(http://oceancolor.gsfc.nasa.gov/cms/atbd/chlor_a).andBis: Formatted: Font: Bold
Formatted: Font: Bold

=log, (R““) Eq 22 [ Formatted: Font: Bold
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R 51 @and Ry, are determined by the absolute magnitude (whichever is greater) of the
remote-sensing reflectance, and R,
R, 12 is the band centered on 551 nm. We apply the OC3M algorithm (Eq 21) to both the
observed and simulated RSRs.

The assimilation system preserves the stoichiometry of the small and large phytoplankton
(referred to as PhyS_Chl-a and PhyL_Chl-a respectively) as follows. Inthe
biegeoechemicalBGC model, each phytoplankton cell (small, large, benthic or
Trichodesmium) is represented by a quantity of structural material, B, and reserves of
nitrogen, Ry, reserves of phosphorus, Rp, reserves of energy, R,, and an intracellular

4is eitherthe band centered on 443 nm or 488 nm and

chlorophyll-a concentration, c¢;. Ourintention in the assimilation is to change the number of
cells, as quantified by B, not the physiological status of the cell, as represented by Ry, Rp, Ry,

and ¢;. Since the reserves are quantified as the total of these reserves across the entire
population, each of the reserves is changed by the same proportion as the biomass. Fhus;
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forexample thenitregenresenve of anindividualcel Ry Bisunchanged-Once the
analyzed quantity efe-is determined (e.g. PhyL_Chl-a and PhyS_Chl-a), the quantities of Ry,
Rp, Riand B are updated such that the respective ratios prior to assimilation are preserved.

3 Results:
3.1 Control Run

The modelling system has been designed to represent the spatially-resolved water quality
dynamics (phytoplankton, nutrients, turbidity and oxygen) of the GBR World Heritage Area
for informed management. Anumber of indicators have been used to assess the skill of the
model, including RMS errors, Pearson’s correlation coefficients and; Wilmott’s skill
indicators (Wilmott etal., 1985; https://research.csiro.au/ereefs/models).

The simulated state variable concentrations resemble both the regional climatology for
offshore-reef, lagoon-reef and near-shore zones and water quality observations under
contrasting seasons/loads and flood events [not shown here, but detailed at
https://research.csiro.au/ereefs/models, with optical (Baird-etal2046bBaird et al., 2016a)
and carbon chemistry (Mongin et al., 2016) skill assessment published elsewhere]. As
mentioned above, the model simulates RSR. Itis therefore possible to incorporate these
RSRs into standard, well-recognized remote-sensing products. Figure 4 presents a snapshot
of simulated surface Chl-a and the simulated OC3M, as well as remotely-sensed products
(regional ANN-observed OC3M and NASA-observed OC3M). The images are duringthe dry
season conditions with little cloud contamination along the inshore region.

The two panels on the right side of Figure 4 represent the simulated (top) and NASA
remotely-sensed (bottom) OC3M estimate of Chl-a. Both combine individual RSRs into
proxies for Chl-a using the OC3M algorithm (Eq 21). OC3M poorly represents surface Chl-a
close to the coast where sediment resuspension and CDOM absorption dominate. By
comparingthe two panels, we can conclude thatthe model represents aceurately-the
general distribution of OC3M Chl-a throughout the region, with high values along the coast
and above each reef systems, and low concentrations offshore. The model predicts a large
Chl-a plume south of Papua New Guinea, thatis not presentin the remote sensing
observations. In the reference simulation, the model over predicts inshore sediment
resuspension, which causes high simulated OC3M values in shallow coastal regions. The
simulated surface Chl-a inside the coastal band is lower thaninthe remotely-sensed OC3M
observation. The two panels on the left of Figure 4 represent simulated surface Chl-a (top)
and OC3Mbased on the regionally-optimized RSR (bottom; ANN-observed OC3M).
Regardless of the remote-sensing products used, there are clear differences between the
simulated Chl-a and the simulated OC3M, and these exceed the differences between those
of the ANN-observed and NASA-observed Chl-a. The reflectances derived from the ANN
method have been shown to have substantially lower errors due to the improved
atmosphericcorrection nearthe coastforcase2 waters (Schroederetal., 2007), and we
have therefore used these observations in the assimilation experiments below.

Surface Chl-a and OC3M are typically assumed to be equivalent. However, many studies
have shown that there are regional biases and substantial overestimation in optically-
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complex coastal waters (Qin etal., 2007). Thisis demonstrated in Figure 5, where we plot
simulated surface Chl-a against simulated OC3M for deep water (Figure 5, top-left) and the
whole domain (Figure 5, top-right) for the 26t May 2013. It is immediately obvious that
these variables are not equivalent and the error structure is non-linear, especially when

coastal regions are included. Figure 5-shews-thatforthe GBRregion thereisasubstantial

the-domain-Ascatter plot of in situ Chl-a plotted against MODIS OC3M observations (Figure .- [ Formatted: Font: Italic

5, lower panel) further highlights the magnitude of the OC3M errors in complex coastal
waters. While itis obvious that coastal water types are outside of the design specification of
the OC3M algorithm, MODIS OC3M contains errors upwards of 400% atlow Chl-a. Figure 5
shows that forthe GBRregion, there is a substantial risk of OC3M over-estimating the in situ
Chl-a eveninoptically simple deep water regions of the domain.

3.2 Assimilation system configuration experiments

To choose the best configuration for the assimilation of RSRinto a coastal
biogeochemicalBGC model, five experiments were undertaken using a variety of state
variablesin the state vector (X, Table 1), and by altering the diagonal elements of the
observation error covariance matrix (R, Eq 7).

3.2.1 Forecast Innovations

The forecastinnovations (Eq 6) for the five assimilation system configuration experiments
are shown in Figure 6:

e EXP 1 (green-blacklines, Figure 6): Assumes that total surface Chl-a is equivalent to
observed OC3M and is used to calculate the forecast innovations, which are then
usedto update small and large phytoplankton Chl-a. An 80% errorin the ANN-
observed OC3M observation is prescribed on the diagonal elements of R.

e EXP 2 (red line, Figure 6): Simulated OC3M (calculated from simulated RSR at 443,
488 and 551 nm, as described by Baird-etat+;2046bBaird et al., 2016a) is used to
calculate the forecastinnovations. The state variable and observation errors are the
same as EXP1.

o EXP 3 (blackgreenline, Figure 6): The same configuration as EXP 2, with a reduced
observation errorimposed on the diagonal of the observation error covariance
matrix.

e EXP 4 (blueline, Figure 6): Additional variables are included in the assimilation state
vector, which now comprises of small and large phytoplankton, ammonia, nitrate
and total suspended solids concentrations. The observation erroris the same as
EXP3.

e EXP5 (dashed magenta line, Figure 6): The assimilation vector as EXP4, but using
R551 observations, with a lower observation error of 0.2. Note that these
innovations relate to the difference in simulated and observed R551, not OC3M as in
EXP1-4.
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The forecastinnovation (Eq 6) statistics for Experiments 1-5 (Figure 6) provide aninsight
into the assimilation system performance. An optimal assimilation system should resultin
mean forecastinnovations (mismatches between observations and the model) of close to 0,
and low mean absolute innovations. The assimilation system where the observation
operatorassumed that there was a direct relationship between simulated surface Chl-a and
ANN-observed OC3M (EXP1, Figure 6 green-black line), performed very poorly and was
discontinued after 9 cycles; the model at times became numerically stiff, requiring the
adaptive 4th— 5t order Ordinary Differential Equation (ODE) integrator to take progressively
smaller steps. The innovation statistics for EXP1 suggested the model was constantly over-
predicting Chl-a with the mean absolute innovation exceeding 0.7 more than 50% of the
time. Calculating the forecastinnovations with simulated OC3M and ANN-observed OC3M,
ratherthan simulated surface Chl-a and observed ANN-observed OC3M, improved
innovation statistics dramatically (EXP2-4, Figure 6). In EXP3, the magnitude of the diagonal
elements of R (Eot) are reduced from 0.8 to 0.4, yielding a very minorimprovementin

Formatted: Font: Bold

forecast statistics over EXP2, and was discontinued after 10 cycles. Additional variables were
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added to the assimilation state vector for EXP4, while keeping the observation error equal
to EXP3. The additional assimilation state variables improved the forecast statistics and
decreased the mean absolute forecastinnovation when compared with EXP2 and EXP3.

Of the experiments that assimilated OC3M, tFhe configuration used for EXP4 (Figure 6, blue
line) gave the bestperformanece-whenassimilating0C€3Mlowest mean absolute forecast

innovation. While the EXP5 configuration (noting that this experiment assimilates R551, not

OC3M) gave-bestperformanceinterms-ofaforecaststatisticbeat EXP4 with a lower mean

absolute innovation, but these innovations are for R551, not OC3M and therefore cannot be
directly compared. An assessment against independent (non-assimilated) in situ
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observations is given in Sections 3.2.2 —3.2.5. to assess the relative performance between

the non- a55|m||at|ng control run and EXPl (glider only), EXPZ EXP3 (gllderonlv) EXP4and

3.2.2 Independent assimilation system assessment: Glider

The control and assimilating runs were compared with-to with-held ocean glider data that
was deployed on 26th May 2013, and recovered on the 4th of August 2013. The glider track
largely followed the shelf break and headed in a south-easterly direction. To make a
comparison between glider observations and the model, we take a sub sample of glider
observations centered at the time of model output, with a time window of two hours. For
each glider observation that falls within this time period, we find a corresponding 3-B3D cell
from the model and extract the equwalent model solutlon N-e%—D—m—terel-a&en—ns

A persistent feature of the observed Chl-a when interpolated onto the model time-space
grid (Figure 7, top panel) is the relatively low values in the upper 100 m of water column.
Formuch of the record, there is a persistent weak deep chlorophyll maximum (DCM) that is
centered atbetween 80 and 120 m depth. Rarely do concentrations in the upper 80 m
exceed 0.5 mg/m3. When the control run is examined, Chl-a inthe top 80 m regularly
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exceeds 1 mg/m3, and DCMs when they exist, are located between 30 and 60 m deep. A
detailed analysis of the control run demonstrates the model is able to reliably produce
DCMs (contained in the 180-page-skill assessmentreportat:
https://research.csiro.au/ereefs/models), however, in this particular location in time and
space, the model does not generate one consistent with the observations. Using the EXP1
configuration, the assimilation system does not improve the solution when compared with
the control run. The EXP2 configuration marginally improves the solution by reducing the
mixed layer Chl-a. However, using the EXP4 and EXP5 configurations, the assimilation
system substantially improves on the control when compared to the glider observations.
The difference between the EXP2 and EXP4 configuration is the reduction in observation
error and the inclusion of additional variables in the assimilation state vector. Regardless of
the assimilation configuration used, the Fre-assimilation system cannot place the DCMin
the correct location because the remote sensing observations provide no information about
such a deep feature. The remote sensing observations do remove the bias inthe upper 80
m with concentrations in the assimilating run ranging between 0.1 - 0.3 mg/m3 (Figure 7).
The configuration used in EXP5 captures the-a weak DCM that -ispredicted-enthepersists
for 7days from the 7/7/13 - 14/7/13 and also maintains the lowest mixed layer Chl-a for the
feature captured on from the 7/7/13 — 13/7/13 (Figure 7: bottom panel). Assimilating OC3M
still over-predicts the mixed layer Chl-a.

A comparison between non-interpolated -individual profiles from the glider and equivalent
sampling of the model shows substantial unresolved sub-grid scale variability (orinstrument
noise). Figure 8 (top left) shows thatin the upper 70 m the observed Chl-a as measured by
the fluorometer ranges between 0.14 and 0.3 mg/m?3, with a mean value of 0.18 mg/m?.
There is no quenching evidentin this or other profiles, as the observed fluorescence and
backscatter coefficients (not shown) areis constantin the upper 50 m. Within each ofthe
subplots, the glider profiles collected over the 2 h window may sample multiple model grid
cells. However, due to the relatively slow horizontal glider speed, these glider profiles fall
withintwo adjacent model cells. In most cases, the control and assimilating runs gave
indistinguishable solutions between adjacent cells with the exception of Figure 8, top left. In
all cases the assimilation of observations of both OC3M and R551 have reduced the errorin
the simulated Chl-a when assessed againstindependent glider data. The noisein the
fluorometer observations appears to range between 0.04 and 0.08 mg m?3,

The Chl-a RMSD for each layer of the model, and aggregated in time forall glider
observations, is shown in Figure 9. Above 80 m, there is a substantial reductionin RMSD
between the control (cyan) and assimilating runs (EXP2-red, EXP4-blue and EXP5-magenta).
EXP3 behaved similarly to EXP2. The RMSD from EXP1 (dashed black) is marginally higher
than the RMSD inthe control run. The assimilating runs (EXP4 and EXP5) have an RMSD of
between 0.10and 0.17 mg m3 compared with 0.30 to 0.41 mg m3 in the control run. Inthe
upper 60 m, tFhe assimilation of R551 (EXP5) results in a minor improvement in RMSD when
compared with the assimilation of OC3M (EXP4). Below 80 m, the RMSD profile is similar
between the control and assimilating runs. However, the assimilation of R551 results in the
lowest RMSD below 80 m. The largestimpact of assimilating remote sensing observations is
in the top 80 m of the water column.

3.2.3 Independent assimilation system assessment: GBRMPA MMP Chl-a and TSS
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The AIMS GBRMPAMMP-moorings were deployed at the 13 GBRMPA MMP sites inthe
shallow inshore regions of the Great Barrier Reef Lagoon (Figure 1). The control run
typically had RMSDs of between 0.4 and 0.6 mg/m?3forin situ Chl-a (Figure 10; upper panel).
In all cases the EXP2 configuration performed worse than the control run. In most cases the
assimiationofOCIMHEXPAIEXP4 configuration reduced the RMSD of in situ Chl-a by 0—10
%, when compared with the control run. The assimilation of R551 (EXP5) was more variable.
Some sites improved, whereas others were degraded by the assimilation of this observation
type when compared with the control run. In only one case did the assimilation of R551
beat OC3Mfor Chl-a atthe GBRMPA MMP sites.

The TSS RMSD varies widely across all the GBRMPA MMP sites (Figure 3110; lower panel),
driven by the strongvariation in magnitude of the spring — neap tidal forcing. The
combination of the initialization of the ensemble and perturbed forcing caused the
ensemble mean for EXP2 to have a substantially reduced RMSD when compared with the
control run. ;are-Tthe inclusion of the TSS constituents in the state vectorin the
assimilating model furtherreduced the RMSD, and has generated realistic time varying
correlations between the observed OC3M/R551 and inshore TSS. These cross-correlations
allow forthe correction of simulated TSS from OC3M/R551 observations. Fhe FSSRMSDat
aHciestertheassiailatn s lessthan Lt 20 e et e—se e bra-The
performance of EXP4 and EXP5 were indistinguishable, but the inclusion of TSSin the
assimilation state vector was beneficial.

3.2.4 Independent assimilation system assessment: Nutrients

Within the GBRregion, there are two IMOS NRS sites (Yongala and North Stradbroke, NS,
Figure 1). The dissolved inorganic nutrients of NOs, NH; and DIP are taken monthly. At
Yongala, water samples are taken at the surface (0 m), 10 m, 20 m and bottom (26 m). At
NS, samples are taken atthe surface (0 m)and 10 m. Itshould be noted that there are only
3 to 4 samples perdepth at each site during the 4 month simulation period. At Yongala,
typical control run RMSDs for NOs range from 5 to 12 mg/m?3. Assimilating OC3M/R551
halved these errors using the EXP4/5 configurations. The improvementatNSis evident with
improvements found in the upper 10 m of the water column, with EXP4 and EXP5 giving
indistinguishable results. The EXP2 configuration yielded higher RMSDs than EXP4 and EXP5.

With the exception of the surface samples at Yongala, the assimilation system improved the
prediction of NHsatall depths for each site. Most notably was the 70 to 90% reductionin
RMSD atthe deeperlocations at Yongala. EXP4 and EXP5 out performed EXP2 in all cases for
NHg4. There were marginal improvements to DIP, which displayed a 0 to 30% reduction in

RMSD across all sites. EXP4 resulted in lower DIP errors at NS, but EXP5 resulted in lower
DIP errors at Yongala. EXP2 had the lowest DIP RMSDs.

3.2.5 Summary of assimilation system experiments

The direct assimilation of RSR (EXP5: R551), or a function of RSR, f(RSR), (EXP4: OC3M)
improved the model solution when compared with the control run against three
independent non-assimilated in-situ observational datasets. In most cases the EXP4 and
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EXP5 configurations outperformed the EXP2 configuration, which was to be expected due to
the additional variables included in the assimilation state vector. The subtle differences
between the two approaches will be discussed in Section 4. Based on these findings, the
preferred assimilation system for state estimation on the GBR-is thatused in EXP4. A
further examination of the EXP4 forecast error statistics and examples forecast, analysis and
increment field is given Section 3.3.

3.3 EXP4: Assimilation system forecast errors.

The assimilation system was run with a 5-day forecast cycle. Using the forecast at t+5 days
and comparing the temporal mean (across all cycles) of the Root Mean Square Difference
(RMSD) and Percentage Error against observations provides insight into the value of the
assimilation system, when compared with a non-assimilating system. By comparing the
forecastfields against yet to be assimilated observations, we are providing a semi-
independent estimate of forecast skill. Additionally, by comparing the forecast against the
persisted analysis field from the previous analysis cycle (e.g. the analysis field from t-5 days),
itcan be determined if the dynamic model is adding skill to the forecast.

A comparison of simulated OC3M and observed OC3M for the non-assimilating control run
gives a domain wide median error (range) of 0.32 (0.27 —0.48) mg m-3 (Figure 12). This is
approximately equivalent to a domain-wide median percentage error (range) of 100% (80%
- 130%) (Figure 12). The data assimilation system reduces the forecast errors and
percentage errors to a median value (range) of 0.23 (0.20-0.30) mg m3 and 55% (43% -
63%) respectively. The analysis errors are again reduced when observations are assimilated,
with median and percentage errors (range) of 0.19 (0.14—0.23) mg m3 and 39% (37% -
42%) respectively. When the analysis field from the previous assimilation cycle is persisted
forward, the errors (and percentage errors) slightly exceed that of the forecast field with
values of 0.26 (0.21—0.29) mg m=3 and 52% (44% - 65%) res pectively. However, it is not
expected thatthese error statistics are spatially uniform given the large percentage of area
thatis dominated by deep oceanic waters. To understand the spatial variability of the
forecast error statistics, the whole domain is divided into three regions representing shallow
coastal waters (depth <30 m), lagoon and shelf waters (30 m <depth <500 m), and deep
oceanic waters (depth > 500 m).

In shallow coastal areas (Figure 12, 2" column), the non-assimilating control run has a
median error (range) of 1.35 (1.1 - 2.45) mg m3, which corresponds to a percentage error
(range) of 130 (105 —-180) %. The distribution of control run errors in the coastal zone is
positively skewed, with the mean value of the distribution sitting some way from the
median. The assimilation system marginally reduces the median forecast error when
compared with the control run, though most notably, it reduces the median percentage
error and associated variability. The forecast also beats persistence in thisregion. There is a
marked improvement for lagoon and shelf waters with the assimilation system reducing the
median error from 0.34 to 0.25 mg m-3, which corresponds to a reductionin percentage
error from 96% to 48%. In the oceanic regions of the domain, the assimilation system
reduces the errorfrom 0.16 to 0.10 mg m=3, corresponding to a percentage error reduction
from 91% to 45%. In all cases the forecast fields beat persistence. A summary of the results
can be foundin Table 2 and Table 3.
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3.3.1 EXP4: Forecast, Increment and Analysis Fields

The sum of the surface Trichodesmium Chl-a, Small Phytoplankton (PhyS) Chl-a and Large
Phytoplankton (PhyL) Chl-a biomass differs substantially from the simulated OC3M as shown
in Figure 5. The assimilation system updates all of the state variables included in the
assimilation state vector. Simulated OC3M is a diagnostic variable thatis a function of all the
optically-active dynamic state variables as described in Section 2. To demonstrate the
impact on the dynamic variables of PhyS and PhyL, results from the forecast step, and the
assimilation update, are presentedin Figure 13, Figure 14 and Figure 15. Cycle 22 was
chosen to demonstrate the spatialimpact of the system as it is representative of the last 10
cycles and was relatively cloud free.

The simulated OC3M forecast field for cycle 22 (12t September 2013) displays elevated
OC3M in the shallow near shore environment throughout the whole of the GBR regionand
southern shelf of Papua New Guinea (PNG) (Figure 13). Additional features are elevated
OC3M in the vicinity of the central and southern fringing reefs, and a plume originating
from the eastern region of PNG. Offshore oceanic waters generally have low OC3M of 0.2
mg m-3 or less. There is some evidence of mesoscale blooms in the northern and southern
sections of the domain. Observed OC3Mis overlaid on Figure 13 (left). Where thereis a
difference in colour, the simulated OC3M differs from the observed OC3M.

The forecast surface layer fields for PhyS and PhyL appear substantially different to the
simulated OC3M field (Figure 13). The differences near the coast are where TSS and CDOM
are known to cause artefacts in OC3M. While there are patchy blooms of small
phytoplankton at various locations within the domain, rarely does the PhyS Chl-a exceed 0.5
mg m-3. The exception to this is in the inner central coastal region ofthe GBR and in the
vicinity of the Fly River plume on the south coast of PNG. Similarly, the PhyL Chl-a remains
very low forlarge areas ofthe domain, however in regions with additional nutrient supply
(e.g.in upwelling regions, mesoscale eddies and some river mouths) blooms do occur.

When the observed OC3M is assimilated, increment fields are calculated using Eq 5 and are
presentedin Figure 14 for simulated OC3M, PhyS Chl-a and PhyL Chl-a. The innovations are
overlaid onthe increment field for OC3Mto give anindication of how well we are fitting the
observations. In areas where the model is over-predicting OC3M, the increments will be
negative. In areas where the model is under-predicting OC3M, the increments will be
positive. The increments and innovations here are presented as a fractional change with
respect to the background (forecast) field.

Forthis particularanalysis cycle, it appears that the model is under-estimating inshore
OC3M by up to 10-30% and over-estimating OC3M by upwards of 50% offshore (Figure 14,
left). By using the background ensemble correlation structure, the increments applied to
PhyS biomass increase its concentrationin the innerlagoon by up to 20%, and substantially
increase the PhyS biomass offshore of the central outer reefs by more than 50% (Figure 14,
centre). Itshould be noted that the increments being applied to the background fields
contain meso and sub-meso scale information. Significantly, features such as upwelling
filaments, eddies and plumes are maintained through the assimilation procedure,
demonstrating that they are allowed to dynamically evolve in the assimilation system. The
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increments applied to PhyL biomass (Figure 14, right) differ substantially to those of PhyS
biomass (Figure 14, centre). For large areas of the domain, the assimilation system
decreases the PhylL biomass by up to 50%, whereas there are some areas thatitincreases.
These areas correspond to regions where a bloom may be occurring (there is a small
westward shiftin the major bloom off the Papua New Guinea coast). The increment applied
to the central region of the domain, offshore of the outer reefs, is linear and coherent and
likely a result of shiftinga dynamicfeature such as an upwelling-induced bloom to better
match observations.

When the increments contained in Figure 14 are applied to the forecast fields, the resulting
analysis field for simulated OC3M betterfits the observed OC3M, with a substantially
reduced errorinshore and in the vicinity of the outerreefs (Figure 15). The difference
between simulated and observed OC3Mis small in the deeper offshore regions and shallow
sections of the lagoon. The greatest errorin OC3M occurs in the central lagoon and the
outerreefs where spatial variability is highest. The corresponding analysis fields for small
phytoplankton and large phytoplankton are contained in Figure 15. There are elevated
concentrations of small phytoplankton biomassinthe near shore region near river mouths
and the outer fringing reefs. The large phytoplankton biomass is concentrated in the region
of Broad Sound, the Fly River plume, and the Papua New Guinea upwelling. Each of these
features was predicted by the forecast, as little biomass is added or subtracted by the
assimilation update. However, there is substantial removal of large phytoplankton biomass
from the northern and central offshore regions. This leaves very little large phytoplankton
biomass presentin substantial areas of the domain during this particular analysis cycle.

4 Discussion

In the optically-complex waters of the GBR, the use of an optics model to calculate=
simulated RSR and subsequent simulated OC3M to constrain the BGC model substantially
reduces the errors in biegeechemicalBGC state. This has been achieved by explicitly
assimilating like-for-like variables of simulated R551 or simulated OC3M. The data
assimilation is constrained by the mis-match between simulated and observed R551 and
OC3M. Asummary of the root mean square differences (RMSDs) is contained in Table 4.
Ourapproach of simulating the observation is the opposite to the conversion of observed
RSRs into modelled variables, e.g. the assimilation of phytoplankton functional types, TSS,
CDOM and Chl-a. We therefore advocate for the use of a “forward” model to predict optical
properties, ratherthanrely on the “inversion” to back calculate the model state from
reflectances. The conversion of RSRs into derived variables (e.g. Chl-a, PFTs) have
associated errors that are as large as 300% in some locations, and can be biased by up to
70% (Qin etal., 2007), whereas the forwards approach has errors of approximately 20%
(Baird et al 2646b2016a). The errors stemming from the “inversion” technique are attimes
difficult to characterise in data assimilation systems. Using a forwards model avoids these
errors and therefore the dominant source of error stems from model error, ratherthan
observation error. {via-difference-inkind-errors)-The approach of Ciavatta et al., (2014)
contained similar results where they found the assimilation of Kdas3, to be superior to
remote-sensed Chl-a.
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A significant source of errorin algorithms such as OC3M s that they produce a single value
for each horizontal pixel, generally considered to be representative of the first optical depth
of the water column. If thisis to be compared to a single value in a biegeochemicalBGC
model, thenit must be assumed that the water column is well-mixed to the optical depth,
and thatthere isanequal optical depth of each of the wavebands used in the algorithm.
Both of these conditions are rarely metin coastal waters. Matching RSR requires no
assumptions about the structure of the water column, or of the vertical distribution of the
optically-active constituents, because both observed and modelled quantities are two
dimensional fields.

EXP1 performed poorly fora number of reasons. Itis likely that even an 80% observation
error was insufficient to adequately account for positive biasesinthe OC3M observations.
These biases, present even in offshore waters, lead to positive innovations that resultin
adding phytoplankton biomassin the increments. These large increments lead to
persistently high biomass, that draw available nutrients down to very low levels. The only
way to account forthis form of observation erroris to inflate the “difference in kind error”
to a large value. Given that the non-assimilating control run of the model had forecast
errors thatrange between 70%-100% (region dependent), running an assimilation system
with an observation error largerthan the error presentin the non-assimilating model, does
not make sense.

The similarityin RMSDs between EXP4 and EXP5 (Table 4) suggests there is little difference
between using simulated R551 and simulated OC3M. Univariate observations were
assimilated in each case, and the information content of the observations is likely going to
be similarin deep water, hence the similar results for the Ocean Glider. However, due to the
simulated OC3M containing information from 443 and 488 nm, which are importantin
shallow regions due the absorption of these wavelengths from sediments and CDOM, there
is additional information in the OC3M observation -thatis not presentinthe 551 nm RSR.
Ultimately the greatest information content will come from the simultaneous assimilation of
multivariate observations obtained from the multi-spectral OCsensors and including the
longer wavelengths.

4.1 True colorvisualization of EXP4

In order to visualize the impact of the assimilation system on the prediction of water clarity,
we compare the observed true color (Figure 16) with the simulated true color of the control
run (Figure 17, top left) and the EXP4 assimilating run (Figure 17, top right). Simulated true
colourimages are generated from RSR at the red, green and blue wavelengths calculated
usingthe optical model and the three dimensional fields of the model-predicted 23
optically-active constituents.

The observedtrue colourimage on the 12 Sep 2013 shows brown / yellow features
associated with high suspended sediment concentrations. As these concentrations become
more diluted, and mixed with phytoplankton, the water appears more greenish blue.
Offshore reefs, with clear water above white substrates, appear as light blue features, with
the intensity depending on the reef depth. Qualitatively, the control run (Figure 17, top left)
does a reasonably good job of reproducing the observed true colour. The quantification of
this mismatch can be done on individual color bands (not shown, Baird-etal-2016bBaird et
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al.,2016a). Qualitatively, the control run does not have enough suspended solids in the
surface waterin the mouth of Broad Sound (22.2°S, 149.5°E), and has too high
phytoplankton concentrations offshore, especially in a feature centred at 23°S, 151.5°E. The
assimilated run (EXP4), while not that different to the control run, corrects some of these
errors.

To approximately quantify impacts of the assimilation of water clarity, itis possible to
considerthe colour of the added (and subtracted) constituents in the assimilation
procedure. To avoid confusion with the phrases ‘falsely-coloured’ or ‘negative’, which have
distinct meanings in visualisation science, but to still provide a phrase for true colour error,
we use the term “off-colour”, and distinguish between off-colour that requires correction
through addition (Figure 3417, bottom left) and subtraction (Figure 3417, bottom right). The
assimilation procedure added yellow colours (suspended sediment) within Broad Sound and
green colours (phytoplankton) in the mouth. Offshore the assimilation removed green,
particularly, as noted above at 23°S, 151.5°E. By removing green it made the water more
blue (Figure 3417, top right).

4.2 Like-for-like assimilation

The general methodology presented in this study is similar to that used in numerical
weather prediction (NWP). More than two decades ago, tFfhe NWP community moved away
from assimilating satellite-derived temperature and humidity profiles-mere-thantwe
deeadesage, infavour of assimilating radiances (or temperature brightness), this approach
is detailed in Derberand Wu (1998). By assimilating satellite-derived radiance data, the
NWP community avoided any reliance on empirical statistieatrelationships used to predict
the temperature and humidity profiles. Similarly, the approach taken here is to avoid the
use of an empirical/statistical inverse model, and use a physics-based forward model to
predict RSR centred at the MODIS bandwidths. We then post-process these simulated RSRs
into a simulated OC3M. The simulated OC3Mis directly comparable to the observed OC3M
with both containing quantitatively similar sources of error derived from bottom
reflectance, and turbid coastal waters. By avoiding the use of an inverse empirical statistical
model, we are presentinga BGCDA approach that had been adopted by the NWP
community decades ago (Derberand Wu, 1998; Dee et al., 2015).

An additional benefit of avoiding the use of IOP / AOP based empirical/statistieal products,
is that assimilation of RSRs can take advantage of non-ocean-color s pecific missions such as
Himawari 8. The spectral resolution of simulated RSR can be altered to simulate reflectances
atthe Himawari 8 true colour bands, H-the Himawari-8-datacanbeassimilateditwill
providinge a step change in the data available forareas such as the GBR, due to the high
spatial resolution (nominally 500 m) and temporal resolution (every 30 minutes). This data
density far exceeds that available from orbiting satellites, and will provide coverage similar
to the products being assimilated in NWP systems.

4.3 Multi-band assimilation

If multiple reflectance bands are to be simultaneously assimilated, it will be necessary to
account for cross-correlation between observation errors. Forexample, the RSR at 443 nm
is strongly correlated with the RSRat 488 nm. Therefore, the observations of adjacent bands
are no longerindependentanditis likely we need to reconsiderthat the assumption that
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the off diagonal elements of the observation error covariance matrix (R) are Oneedsto-be
reconsidered. Using simulated and observed OC3M eliminates the possibility of cross-
correlation and contains information derived from multiple bands. The OC3M algorithm can
be considered a band-ratio function, f(RSR), that transforms multi-variate observations into
univariate observations. Itis likely that there are other functional forms that could combine
information from multiple bands into a single non-correlated observation.

The wrderhngconfiguration of the data assimilation presented in this study requires the
dominanterror sub-space to be spanned by the ensemble. Pragmatic choices have been
made to allow the system to run on the available compute resources. To this end we have
perturbed 2 sensitive model parameters, and river loads of nutrients and sediments. The
distributions that have been sampled to perturb the zooplankton mortality rates and 6;
along with their respective shape parameters could be considered a subjective choice.
There is substantial scope to recast the problem with a Bayesian Hierarchical Modelling
(BHM) framework (as in Parslow et al., 2013; and Dowd et al., 2014), whereby the prior
distribution are assigned to uncertain parameters, and a thorough meta-analysis of the
literature could be used to construct informative distributions. The observations could then
be usedto construct notonly a posterior over the state, but a full joint posterior over the
state and parameters. Furthermore, we have not allowed uncertainty in the physics to
propagate into the BGCsolution. We recognise this is a shortcoming of the study, however,
given the computational constraints, we are notin a position to expand the ensemble to
include physics perturbations (which would require an ensemble thatis up to an order of
magnitude larger). As more computing power becomes available, ensemble sizes could be
increased, stochastic parameterisations introduced (Garnier et al., 2016), and DA methods
with less parametric assumptions (e.g. Parslow et al., 2013), could be adopted.

There have beentwo recent discussion papers that detail the pathway towards
operationalising BGC forecasting systems (Gehlen et al., 2015; and Ford and Barciela, 2015),
analogous to the current NWP and hydrodynamic prediction system that routinely run at
numerous operational centres. It has been acknowledged that satellite remote sensing will
playakeyroleinsuch systems, there appears to be two possible pathways to achieve this
vision, dependent upon on whether bio-optics are taken into account. Inthe absence of an
optical model, Ford and Barciela (2015) suggest further exploration of the assimilation of
empirical statistical products such as Chl-a and Phytoplankton Functional Types (PFTs). If
simple bio-optical properties are taken into account, an alternative approach is the
assimilation of diffuse attenuation coefficient(s) (e.g. Ciavatta et al., 2014) or phytoplankton
absorption (e.g. Shulman etal., 2013). For complex coastal regions that are dominated by
case 2 waters, an explicit spectrally-resolved in-water optics model opens the possibility of
directly assimilating RSRs and avoids the costly requirement of calibrating an empirical 1OP
algorithm thatis regionally-specific. Whilst the results from this study have shown to be
valuableinthe GBR region, further work needs to be undertaken to demonstrate the broad
applicability of this approach. Nonetheless, we would advocate a third approach should be
considered —the assimilation of RSR.
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5 Conclusion

In this study we have used a spectrally-resolved optical model coupled to a BGC model to
simulate the remote-sensing reflectances (RSR) centred at the MODIS OCbands. Aseries of
assimilation system configuration experiments were undertaken to test the assimilation
system performance. When the simulated OC3M (EXP4) and remote-sensing reflectances
(EXP5) were assimilated into the model, the forecast errors in Chl-a fell from 100% to 55%
when compared to the non-assimilating model. By using a function of the remote-sensing
reflectances (OC3M), information from multiple bands are included in a univariate
observationand the forecast erroris halved compared to simply assuming the OC3Miis
directly related to the model prediction of surface total Chl-a. Acomparison againstin-situ
observations of NOs, NHy4, DIP and TSS shows the assimilating model (EXP4) reduces the
MAPE from 90% to lessthan 20% at most stations. By using a forward model thatincludes a
majority of error sources presentin the observed OC3M, we have shown that the
assimilation of remotely-sensed products in optically complex case 2 waters can be
achieved, and adds substantial predictive skill when compared to the non-assimilating
model. Furthermore, this approach can be generalized to non OC s pecific missions by
assimilating the remote-sensing reflectances directly (e.g. EXP5), liberating a vast quantity of
data thatcannotbe used in traditional BGC assimilation systems.
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Appendix A: Detailed description of the eReefs modelling system

The eReefs modelling system is a suite of coupled hydrodynamic, sediment, optical and
biogeochemicalBGC models specifically tailored to the Great Barrier Reef. The
hydrodynamic model is a three-dimensionat3D, finite-difference, baroclinic model based on
the three-dimensienal3D equations of momentum, continuity and conservation of heatand
salt, employing the hydrostatic and Boussinesq assumptions (Herzfeld et al., 2006, Schiller
etal., 2015). The equations of motion are discretized on a finite-difference stencil
corresponding to the Arakawa Cgrid. In the vertical z-coordinate scheme, there are 47 fixed
z-levels. The atmospheric forcing products (wind, pressure, rain and heat fluxes) are
supplied by Bureau of Meteorology (BOM) reanalysis products. A tidal signal was
superimposed on the low-frequency sea level oscillation provided by BRAN2.3 (Oke et al.,
2008a) on the regional grid open boundary. This tidal signal was introduced via a local flux
adjustment. The OTIS tidal model (Egbert and Erofeeva, 2002) was used to generate the
tidal signal from amplitude and phase information for 8 constituents. The local grid open
boundary was forced with temperature, salinity and velocity (with local flux adjustment)
derived from the regional grid. A mass conserving flux-based advection scheme is used to
transport sediment and biegeechemicalBGCtracers.

The sediment transport model adds a multilayer sediment bed to the hydrodynamic model
grid and simulates sinking, deposition and resuspension of muttiphr-multiple size-classes of
suspended sediment (Margvelashvili et al., 2008). The model solves advection-diffusion
equations of the mass conservation of suspended and bottom sediments and is particularly
suitable for representing fine sediment dynamics, including resuspension and transport of
biogeochemicalBGC particles. The modelis initialised with the observed distribution of
gravel,sand and mudin the seabed of the shelf region. Sediment particles settle onthe
seabed due to gravity and resuspend into the water column whenever the bottom shear
stress, exerted by waves and currents, exceeds the critical shear stress of erosion. The
resuspension and deposition fluxes are parameterised with the Ariathurai and Krone (1976)
formula. The bottom friction under combined waves and currents is estimated through the
nonlinear bottom boundary layer model (Madsen, 1994).

Sediments in benthic layers undergo vertical mixing due to bioturbation, represented by
local diffusion. The corresponding diffusion coefficient scales with the sediment depth so
thatthe bioturbation ceases to operate beneath the biologically active layer. The resistance
of sediments to resuspension also varies with the sediment depth to reflect the
consolidated nature of deep sediments. The numerical grid for sediment variablesin the
water column coincides with the numerical grid for the hydrodynamic model. Within the
bottom sediments, the model utilises a time-varying sediment-thickness-adapted grid,
where the thickness of sediment layers varies with time to accommodate the deposited
sediment. Horizontal resolution within sediments follows the resolution of the water
columngrid.

The biegeoechemicalBGC modelis organised into 3 zones: pelagic, epibenthic and sediment.

The epibenthic zone overlaps with the lowest pelagiclayer and the top sediment layer,
sharing the same dissolved and suspended particulate material fields. Dissolved and
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particulate biogeochemicalBGCtracers are advected and diffused throughout the model
domain. Additionally, biegeechemicalBGC particulate substances sink and are resuspended
in the same way as sediment particles. BiogeechemicalBGC processes are organized into
pelagic processes of phytoplankton and zooplankton growth and mortality, remineralisation
of particulate and organic material, and fluxes of dissolved oxygen, nitrogen, phosphorus
and carbon (including nitrogen fixation, phosphorus adsorption and desorption, surface gas
exchanges, respiration and pheresythensisphotosynthesis, and fluxes to and from biotic
pools); epibenthic processes of growth and mortality of macroalgae, seagrass and corals,
and sediment based processes of phytoplankton mortality, microphytobenthos growth,
detrital remineralisation and fluxes of dissolved substances (Fig2Figure 3).

The biegeechemicatBGC modelincludes four groups of microalgae (smalland large
phytoplankton, Trichodesmium and microphytobenthos)and three macrophytes types
(seagrass types corresponding to Zostera and Halophila, macroalgae and coral
communities). Photosynthetic growth is determined by concentrations of dissolved
nutrients (nitrogen and phosphate) and photosynthetically active radiation. Autotrophs
take up dissolved ammonium, nitrate, phosphate and inorganic carbon, and in the case of
Trichodesmium, fix atmospheric nitrogen (Robson et al., 2014). Microalgae incorporate
carbon (C), nitrogen (N) and phosphorus (P) at the Redfield ratio (106C:16N:1P, Redfield
1963) while macrophytes doso atthe Atkinson ratio (550C:30N:1P, Atkinson1983).
Microalgae contain two pigments (chlorophyll-a and an accessory pigment), and have
variable carbon:pigment ratios determined using a photoadaptation model (described in
Baird etal., 2013).

Micro-zooplankton graze on small phytoplankton and meso-zooplankton graze on large
phytoplankton and microzooplankton, at rates determined by particle encounter rates and
maximum ingestion rates. Of the grazed material thatis notincorporated into zooplankton
biomass, half is released as dissolved and particulate carbon, nitrogen and phosphate, with
the remainder forming detritus. Additional detritus accumulates by mortality. Detritus and
dissolved organic substances are remineralised into inorganic carbon, nitrogen and
phosphate with labile detritus transformed most rapidly (days), refractory detritus slower
(months)and dissolved organic material transformed over the longest timescales (years).
The production (by photosynthesis) and consumption (by respiration and remineralisation)
of dissolved oxygeniis also included in the model and depending on prevailing
concentrations, facilitates orinhibits the oxidation of ammoniato nitrate and its subsequent
denitrification (in the sediment) to di-nitrogen gas which is then lost from the system. Full
details of equations used in the biegeechemicalBGC model are given by Baird et al.,
(2616b2016a) and details of parameter values and implementation forthe Great Barrier
Reef are given by Herzfeld et al. 2016

The model is forced using flow and concentrations of dissolved and particulate constituents
from 21 rivers along the Queensland coast (north to south: Normanby, Daintree, Barron,
combined Mulgrave+Russell, Johnstone, Tully, Herbert, Haughton, Burdekin, Don, O'Connell,
Pioneer, Fitzroy, Burnett, Mary, Calliope, Boyne, Caboolture, Pine, combined
Brisbane+Bremer, and combined Logan+Albert) and the Fly Riverin Papua New Guinea
(Herzfeld-etal, 2015). To determine river concentrations, sediment and nutrient
observations were statistically evaluated over 10 years (Furnas 2003). Separate analysis was
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undertaken for wet- (the Fly, and the northern most 6 rivers in Queensland) and dry-
(remainder) catchmentrivers. Volume-averaged wet season export coefficients based on
this observed dataset were derived for wet- and dry-catchment river types, and mean flow-
weighted concentrations determined. These constant concentrations are multiplied by
higher frequency (daily) observed discharge data to calculate the flux of constituents at the
river mouths.

The eReefs BGCand sediment model has 3 open ocean boundaries. Nutrient
concentrations flowingin from the boundaries were obtained from the CSIRO Atlas of
Regional Seas (CARS) 2009 climatology (Ridgway et al., 2003) and empirical nutrient-
temperature relationships. The initial conditions are specified by a generalised empirical
relationship and scaled nutrient profiles on the model density profile specifying top and
bottom water column values from the CARS ocean atlas. Surface NOsis usually low (<3 mg
m-3). In deeper waters nutrient concentrations increase from 0 to 1500 m depth and then
remain constant down to the ocean floor (4000 m depth, 500 mg m-3). The initial conditions
for mostothertracers were not spatially resolved, since observations for the outerreef and
Coral Sea are limited temporally and spatially.
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Appendix B: Calculation of Inherent Optical Properties (IOPs). . { Formatted: Font: Bold, English (United States)

The optical model considers the processes of absorption and scattering by pure seawater,
coloured dissolved organic matter (CDOM), non-algal particulates (NAP) and phytoplankton
cells, as wellas benthicreflectance. Here we describe the calculation of the inherent optical
properties (I0OPs), such as total phytoplankton absorption at a specific wavelength (those
required forthe assimilation), that are calculated from the model state variables (e.g.
phytoplankton chlorophyll biomass) and model parameters (e.g. cell radius). A full
descriptionis givenin Baird etal. (2016a), including benthic reflection calculations that are
notgiven here and a description for how the optical modelis used to calculate
photosynthetic processes.

B.1 Phytoplankton absorption.

The absorption-cross section («) of a spherical cell of radius (r) pigment-specific absorption
coefficient (), and homogeneous intracellular pigment concentration (c;), calculated using
geometric optics:

,(1—2(1— (1+2ycr)e ?rar
a=mnrr
(2yc;r)?

where m?is the projected area of a sphere.

The use of an absorption cross-section of an individual cell has two significant advantages.
Firstly, the same model parameters used here to calculated absorptioninthe water column
are used to determine photosynthesis in the biogeochemical model, including the effect of
packaging of pigments within cells. Secondly, the dynamic chlorophyll concentration
modelledinthe biogeochemical model can be explicitly included in the calculation of
phytoplankton absorption (Baird etal., 2013). The absorption of a population of ncell m3is

given bynam™. { Formatted: Font: Italic
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B.2 Coloured Dissolved Organic Matter (CDOM) absorption.
The absorption of CDOM at 443 nm, dcpom 443, is determined from a relationship with
salinityin the region (Schroederetal., 2012):

Acpomass = —0.0332 5 +1.2336

where Sis the salinity. In order to avoid unrealistic extrapolation, the salinity used in this
relationship is the minimum of the model salinity and 36. In some cases coastal salinities
exceed 36 due to evaporation. The absorption due to CDOM at other wavelengths is
calculated usinga CDOM s pectral slope for the region (Blondeau-Patissier et al., 2009):

Acpom = Acpom,aa3 exP(_SCDOM(/1 - 4’43))

where Seppom=0.012 nm™is an approximate spectral slope for CDOM, with observations in
the GBR ranging from 0.01 to 0.02 nm for significant concentrations of CDOM.

B.3 Absorption due to non-algal particulate material.
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In the model, optically-significant non-algal particulates (NAPs) include mineral particulates
and detritus, with NAP absorption given by:

Ayap = €1 NAP

Where c;is spectrally-resolved coefficients determined from in-situ observations in
Gladstone Harbour at times when absorption was dominated by particles.

B.4 Total absorption
The total absorption, g, is given by:

N
a=a,+ ayup *+ acpoy + Z Ty Oy

x=1

Where a,, is pure seawater absorptionand N is the number of phytoplankton classes.

B.5 Scattering.

The total scattering coefficientis given by:

N
b = b, + c3NAP + b, Z N, Ci Vs

x=1

where NAPis the concentration of non-algal particulates, by is the scattering coefficient due
to pure seawater, c3is the NAP-specific scattering coefficient and b, is the chlorophyll-
specific scattering coefficient with the water column chlorophyll concentration of each
classesis given by n,c; \Vx (where cjis the intracellular chlorophyll concentrationand Vis the
cell volume). Similarly to absorption of NAPs, spectrally-resolved values for c; were based on
field observations in Gladstone Harbour at times when absorption was dominated by

particles.
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Tables:

Table 1:The subset of state variables included in the state vectorand correspondingsumof the analytical (Ea) and
differencein kind errors (Ep) expressed as standard deviations in log-space used for the five assimilation system
configurations, note that Etot = Ea+Ep+Er, as persection 2.5.2,and Et is used on the diagonal elements of the
observation error covariance matrix (R).The bold variables in the state vector are used in the input to the observation
operator. It should be noted than the state variables are transformed by taking the natural logarithm of the variables.
The observation erroris then applied to the log-transformed state vector.

Assimilation State Vector (X) Ea+Ep
EXP1 | Ln(Surface Total Chl-a, PhyS Chl-a, PhyL Chl-a) 0.8
EXP2 | Ln(Simulated OC3M, PhyS Chl-a, PhyL Chl-a) 0.8
EXP3 | Ln(Simulated OC3M, PhyS Chl-a, PhyL Chl-a) 0.4
EXP4 | Ln(Simulated OC3M, PhysS Chl-a, PhyL Chl-a, NO3, NH4, TSS) 0.4
EXP5 | Ln(Simulated R551, PhyS Chl-a, PhyL Chl-a, NO3, NH4, TSS) 0.2

Table 2:Forecast error statistics for OC3M (mg Chl-am3) in-EXP4-by region (inshore, lagoon, offshore) for the Control (C)
and EXP4 -Forecast (F), Analysis (A) and Persistence (P) fields.

Region Whole®flDomain Coastal Lagoon@ndZhelf Oceanic
Field C F A P C F A P C F A P C F A P
Median 0.32 0.23 0.19 0.26 |1.35 1.29 1.12 1.46 |0.34 0.25 0.19 0.25)0.16 0.1 0.06 0.11
Mean 0.37 0.24 0.2 0.27 (192 137 1.25 1.46 |0.38 0.24 0.2 0.25|0.16 0.1 0.06 0.11
25%Muartile 0.27 0.2 0.14 0.21]11 095 092 0.94 ]0.29 0.16 0.14 0.21 |0.14 0.08 0.04 0.7
75%Muartile 048 0.3 0.23 0.29 (245 187 1.64 1.08 |0.43 0.29 0.22 0.29 |0.19 0.13 0.08 0.12
Table 3:Forecast Percentage (%) errors for OC3 M in-EXP4-byregion (inshore, lagoon, offshore) for the Control (C) and
EXP4 ; Forecast (F), Analysis (A) and Persistence (P) fields.
Region Whole@fdDomain Coastal Lagoon@ndBhelf Oceanic
Field C F A P C F A P C F A P C F A P
Median 100 53 39 53 |130 95 90 105 | 95 47 38 52 | 93 48 | 31 48
Mean 107 54 38 55 [ 180 97 90 107 |102 51 37 56 96 50 31 51
25%Muartile 81 41 35 42 |105 105 95 74 |75 43 36 41 |71 44 35 39
75%M@uartile 131 | 61 41 62 |181 85 81 145|118 62 42 62 |126 55 | 30 62

Table 4:Root Means Square Differences(RMSDs) for the withheld observations and the control run (control), and
lation Experiment2 (EXP2), Experiment4 (EXP4) and Experiment5 (EXP5). The lowest RMSD is given in bold.

Observed Variable Control EXP2 EXP4 EXP5

Chl-a (mg Chl-a m3) -GBRMPA MMP 0.5327 0.7270 | 0.4524 0.4957
Chl-a (mg Chl-a m3)—1MOS Glider 0.2064 0.1828 | 0.1344 0.1232
TSS (mg solids m3) -GBRMPA MMP 0.0081 0.0027 | 0.0017 0.0018
NO3 (mg N m3) - IMOS NRS 6.5126 3.8284 | 1.1361 1.6508
NH4 (mg N m=3) - IMOS NRS 4.2795 2.3052 | 1.6384 1.6180
DIP (mg P m=3) - IMOS NRS 2.1579 1.2574 | 1.3785 1.5387
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Figure 1:A diagram denotingthe stepsused to relate and transformvarious optical properties with the systemstate and
observations. The green circle represents the in-water systemstate as predicted byamarine BGC model. The blue circle
represents the Inherent Optical Properties (IOPs) of the systemstate. The magenta circle represents the depth resolved
Apparent Optical Properties (AOPs). The cyan circle represents the 2D remote-sensingreflectance (RSR). The two red

boxes representeither,in -situ or satellite re mote-sensing observations. Each circle is partitioned into three segments .. [ Formatted: Font: Italic

where each segments represents the possibilityto compare like forlike variables.
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Figure 2: A map of the Great Barrier Reef region, with the color bar denotingthe water depth, markers denotinge the
population centres (red triangles), IMOS NRS sites (yellow triangles), GBRMPA MMP Water Quality Meters (WQMs;
yellow circles) and points of interest referred to in the text (red circles), with the glider track (white line adjacent to
Lizard Island). The in situ sampling locations and glider observations are used to assess the dataassimilation system
performance.
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Figure 3:The eReefsmodelling system with optically-active components identified with beige colouringand an asterisk,
with the number of asterisks denotingthe number of different optically-active elements with this component. Thus,
each of the four microalgae have two pigmenttypes, one absorbinglike divinyl chlorophyll-a, and the otherlike
photosynthetic carotenoids; there are two seagrass types, corals have both skeletons and zooxanthellae; three types of
detritus absorb and scatter, and the sediment model contains asuspended fraction and four (mixed) sediment
compositions. Additionally, pure seawater both absorbs and scatters light.
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Figure 4:Simulated surface Chl-a(mg m3) of- the non-assimilating control run (top left) and the simulated OC3M (top

right) derived fromthe simulated remote-sensingreflectance forthe 14/7/2013. The observed OC3M with ANN-
derived observed remote-sensingreflectance (bottomleft) and NASA-derived observed remote-sensingreflectance

(bottomright).
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Figure 5: A loguw-scaled scatter plot of simulated surface total Chl-aand simulated OC3M fordeep waterregions (top- .. [ Formatted: Subscript

left) and whole of domain (top-right). The lower panel contains ascatter plot of MODIS OC3 M against jn situ Chl-adata [ F tted: Fot: Ital
orma H : Italic

obtained fromthe IMOS Bio-Optical Database which is publiclyavailable through The Australian Ocean Data Network

AODN) portal (https://portal.aodn.org.au/ ). Matchups were included for MODIS overpasses within +/- 24 hours of the

in-situ sampling. Points are coloured accordingto Optical Water Type [Moore etal 2009], rangingfrom low-chlorophyil
open water (types1-2) to coastal, CDOM and sediment-dominated waters (types 6-8).
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Figure 6: Comparison of mean innovation statistics for EXP 1-5. EXP 5 should be analysed with caution as these
innovations relate to R551, not OC3M. An innovation of 0 indicates perfect agreement between model and
observations. The top panel plots the mean innovation for each assimilation cycle. The lower panel plots the mean
absolute innovation against assimilation cycle. The colours correspondto:black (EXP1), red (EXP2), green (EXP3), blue
(EXP4) and magenta (EXP5). The variables in the legend correspondto the observation error (R) and the assimilation
state vector (X).
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Figure 7: Comparison against independentIMOSglider observations, with the observed section of Chl-aderived from
the onboard fluorescence sensor. The comparison is undertaken in model space, wherebyall glider data that falls within
a 1 hourwindow eitherside ofwhenthere is a3D model output available is extracted, and equivalent simulated Chl-a
are extracted from the model. The gliderand model data is then spatially aggregated and interpolated onto the vertical
model grid. The resultingsection for the glider (top), and the simulated glider sections fromthe non-assimilatingmodel

(control) and assimilating-mede HEXR1, EXP4-and-EXRS5):the five assimilation experiments.
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Figure 8: Comparison of depth-resolved Chl-aagainst sixindividual glider profiles usingthe method described in the
caption of Figure 7.Gliderobservations are green, the non-assimilating control run profiles are cyan, and the
assimilating run profiles for EXP4 are blue and EXP5 are magenta.
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Figure 9:A profile of the temporal mean Chl-aRMSD between the glider observations presented in Figure 7 and the non-
assimilating control (cyan),- EXP1 (black dashed, note thatthe mean RMSD is calculated usinga shorttime period), EXP2

(red), EXP3 (green dashed, note that the mean RMSD is calculated usinga shorter time period), EXP4 (blue) and EXP5
(magenta).
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Figure 10: Acomparison of Chl-aand TSS RMSDs between the in-situ GBRMPA MMP moorings for the non-assimilating
(cyan) and assimilating runs of EXP2 (red), EXP4 (blue) and EXP5 (magenta), the GBRMPA MMP sitesare denoted bythe

yellow circles in Figure 1.

16+

;_ |1|:| [hﬂ mull [=nll I:IL D!T

L ] N5 O

M3 AMED mgm
a
T

TP . ' ' '

HHA BMSD (mg m )
n

Ll ¥ 10 Y 2 ¥ M WS O WS 10
w3 - 1 1 1 1 -
E
gzt
(=]

T
=
o
O
¥ 0o ¥ 10 Y I ¥ % HS O HS 10

| R central [ 2ssimiaieg (ExP ) [ sssmiming (ExPd ) [ Assimilaeg (€ =c|-.1||

Figure 11: A comparison of RMSD of simulated- nutrients with in-situ bottle samples for the non-assimilating(cyan) and
assimilating run of EXP2 (red), EXP4 (blue) and EXP5 (magenta). Observations are obtained atthe Queensland IMOSsite
(yellow trianglesin Figure 1) at Yongala (Y) and North Stradbroke (NS) Island.Y_0 are the Yongala surface samples, while

Y_26 are the samples taken from 26 mdepth.
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Figure 12:Boxand whisker plots of RMSD (top row) and MAPE (bottomrow) of the mis-match between simulated

0OC3M and ANN-corrected observed OC3M. Each panel contains the control run (C) and EXP4 showingforecast (F),

persistence (P) and analysis (A). Presented are statistics for the whole domain (left column), and regions as defined by
5 bottomdepth-depth (three rightmost columns), for which the mean and range of values are presented in Tables 2 and 3.
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Figure 13: Simulated -(forecast) OC3M (left) for cycle 22 (12th September 2013) of EXP4 with ebservatasobservations overlaid, surface Small Phytoplankton (PhyS)Chl-a (centre)and
surface Large Phytoplankton (PhyL) Chl-a (right).
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Figure 14: Increments that are added to the forecast fields generated by the assimilation system (EXP4 configuration) for simulated OC3M with
innovations overlaid (left), and the prognostic variables of surface small phytoplankton Chl-a (centre) and surface large phytoplankton Chl-a (right) for

cycle 22.
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Figure 15: The resulting analysis fields for simulated OC3M and withheld ANN OC3M observations for EXP4 (cycle 22) overlaid (left), and the
analysis fields for the prognostic variables of small phytoplankton (centre) and large phytoplankton (right) for the 12t September, 2013.
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Figure 16: Observed true-colourimage on the 12 Sep 2013 obtained from1 km resolution, atmospherically-corrected
ANN remote-sensingreflectance. The RGB wavelengths used were 667,551 and 488 nmand processed usingthe MODIS
true colouralgorithm (Gumleyetetal., 2010; Baird-etal-2016Baird etal., 2016a). The white pixels are clouds, greyis

land.
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Figure 17:The simulated true-colourimage on the 12 Sep 2013 of the control run (top left) and EXP4 assimilation run
(top right). The difference between the remote-sensingreflectance in the control and assimilated runs was used to

quantify the colour (referred to as off-colour) added (i.e. greater surface expression, bottomleft) and subtracted (i.e.
less surface expression, bottomright) due to the updating of optically-active constituents in the assimilation run (see

Fig. 13-16 for more details). Note that the off-colourimages have a smaller brighteningfactor as the MODIStrue colour
stretch saturates the features thatare of most interest. Simulated true colourimages are notfalsely-coloured, thus do
notrequire acolourmap, norare they2D as theyhave a depth of field, beingbased on reflectance frommultiple depths

and the bottom (Baird-etal;—2016aBaird et al., 2016a). Thus simulated true colour can be considered aphotograph of
the optical state of the different model runs, and, like observedtrue colour, apowerful and intuitive visualisation too

forwater clarity in biegeochemicalBGC models.
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