
Authors’ response to reviewer comments for manuscript bg-2016-187 “Moore 

et al., Tree-grass phenology information improves light use efficiency modelling 

of gross primary productivity for an Australian tropical savanna”  

 

We wish to thank all three reviewers, and Dr. Migliavacca, for their helpful and constructive 

comments regarding our manuscript. Their comments are relevant and we feel have improved 

our manuscript. Below we outline our response and the way in which we have addressed each 

of their comments. Some additional pieces of analysis have been provided in a supplementary 

materials file in order to balance manuscript length with our response to their suggestions.  

 

Dear authors, 

 

The reviewers of the manuscript “Tree-grass phenology information improves light use efficiency 

modelling of gross primary productivity for an Australian tropical savanna” recognized the work as 

relevant for the audience of Biogeosciences, so do I. The Reviewers’ suggested a series of 

additional analysis and editorial modifications to improve both the readability and the robustness 

of the analysis. In the Interactive Comment the authors nicely discuss how the reviewers’ 

comments can be incorporated in the revised manuscript. Therefore, the manuscript should 

reconsidered after the major revisions suggested by the Reviewers’ will be included. 

One contrasting comments from the reviewers was about the trade off between length of the 

paper and methodology details provided. I agree with the authors consideration that, although the 

paper is lengthy, it needs to include a range of measurement that need to be properly described 

for sake of repeatability. The use of supplementary materials can be an option. 

During the review I suggest the authors to address the issue raised by Reviewer 1 about the 

calculation of APAR, which can also help to address the comments of Reviewer 2 and 3 about the 

time lag between GCC, APAR, and GPP, as well as the differences between GCC and APAR. 

Also, the authors to discuss more deeply the issue raised by Reviewer 1 about the estimation of 

the peak LUE. I consider valuable the idea of the Reviewer to use running means instead of the 

average by months. Another option for the authors is to optimize the peak LUE value. 

The reviewers suggested also a valuable analysis to assess the robustness of the indices extracted 

from the digital camera data. 

Last but not least the Reviewers pointed out a series of modification to Tables and Figures that 

need to be included. 

Looking forward for reading the revised version. 

Best Regards, 

Mirco Migliavacca 

 

Reviewer #1 

 

Firstly, I would like to congratulate the authors to a very interesting and well written 

manuscript. I truly enjoyed reading it and I learned a lot. However I have some questions 

that I would like to get answered before I can recommend this manuscript for publication: 

 



This manuscript is not focusing on the EC based understory estimates of CO2 fluxes, but I am 

still confused. The eddy covariance method is based on the assumption that measurements 

are done in the inertial surface layer, i.e. in the layer within the atmosphere where there are 

no vertical changes in fluxes depending on height of the sensors (Foken, 2008). This is not 

the case inside a canopy. Inside a canopy turbulence is very chaotic, and turbulent transport 

is much more efficient than above a canopy (Denmead and Bradley, 1987; Foken, 2008; 

Kaimal and Finnigan, 1994; Raupach, 1989). Additionally, there are sinks and sources in all 

directions in space. Fluxes can thereby basically come from any direction; the NEE estimated 

by the EC system is thereby not only a result of fluxes from the understory, it can equally as 

well be a result of respiration or CO2 uptake by the canopy cover above the EC system. 

 

 

The understory EC data used in this study is that which is already published in the same 

special issue of Biogeosciences (Moore et al., 2016). This paper discusses and validates the 

use of an understory flux tower for savanna research in more detail. In particular, it presents 

results from a cospectral analysis, based on the work of Kaimal and Finnigan (1994) (as 

referenced by the reviewer), to show that the flux tower does primarily record vertical 

transport during daytime turbulent conditions. We referred to Moore et al. (2016) within 

section 2.2 to direct readers to this more detailed discussion. Given all three reviewers 

commented on the length of the manuscript, we feel it would be ineffective to elaborate on 

this further. However, we have expanded the sentence on page 5 that discusses the validation 

of the understory to now read: “The understory tower primarily recorded vertical transfer during 

turbulent conditions, which was validated via power spectra analysis (Moore et al., 2016a) that 

followed idealised curves for vegetated canopies (Kaimal and Finnigan, 1994).”   
 

 
 

(P8 L20) In case you do not include the reflected PAR in the estimates of fraction of absorbed 

PAR (FAPAR), it is not FAPAR, it is the fraction of intercepted PAR (FIPAR). This is not the 

same thing. Generally, FIPAR is much more stable over the seasons than FAPAR, and this 

can make a difference in the estimate of the seasonal variation in GPP. Why did the reflected 

PAR data result in negative values during the dry season? It indicates some issues with the 

calibration of the sensors. Is there no way to inter-calibrate the sensors and recalculate the 

data? FAPAR is generally estimated as: 

 

FAPAR = PARin – PARref – (1 – α) x PARtr 

   PARin 

 

Where PARin is incoming photosynthetic active radiation (PAR), PARref is reflected PAR, α is 

PAR albedo of the soil, and PARtr is PAR transmitted through the vegetation. 

 

 

The reviewer is correct here and given reviewer 2 and 3 also highlighted this point, it 

prompted us to re-check our analysis of fPAR and APAR.  

 

Initially the reason for omitting reflected PAR was due to fPAR values often being negative 

in the understory in the late dry season. This was most likely due to the lack of vegetation in 

the understory in the late dry season around some of the towers, which caused incoming PAR 

below the understory to be almost equal to that of PAR above the understory. For one tower, 

PAR below the understory was higher than PAR above the understory, which is a result of 



the heterogeneous nature of the savanna ecosystem at these point scales. By omitting this 

tower from the analysis during the late dry season, negative fPAR values no longer occurred 

in the understory. This data was then used to calculate APAR, not IPAR.  

 

Basically, there was a bug in the code that was missed on previous checks before submission. 

This bug was due to an incorrect labelling of the APAR variable to an alternative version, 

which omitted the reflected/upwelling PAR to test the above theory about the negative fPAR 

values. Therefore, we incorrectly concluded that by omitting the reflected PAR, the model 

performed better, when in fact it was actually using the correct, reflected PAR-included 

APAR values.  

 

To sum up, we are grateful for the keen eyes of all three reviewers here for picking up on this 

mistake before the manuscript made it further in the review process. Thankfully, the data 

presented are correct, they were just interpreted incorrectly on our behalf. We have made the 

necessary changes to equations 3-5 in the manuscript, which now include the relevant 

reflected PAR information, and have removed the sentence stating the reason for leaving it 

out in the first place.  

 

 
 

I do not understand how the model can overestimate the GPP? You estimate a maximum LUE 

based on an average LUE for Dec-Mar. Then you use scalars with a value of between 0 and 

1 to downscale the maximum LUE to a lower value. But since maximum LUE is based on the 

same time series of GPP as you use for the evaluation, it should not be possible for modelled 

GPP to be overestimated. Or did I misunderstand something? Please clarify. 

 

We are a little unsure as to what the reviewer is referring to with this statement, if it is one 

aspect of the text/figure or if it is our general approach to our research question. However, to 

answer this query at a general level, the model can most definitely overestimate GPP (or 

underestimate it) as LUE is not the only input to the GPP model. APAR is also an input, 

which in the case of the savannas is often overestimated during the transition periods between 

wet and dry seasons (i.e., Kanniah et al., 2009, Whitley et al., 2011). Meteorology also drives 

the down-regulation of maximum LUE to daily LUE variability, so although we obtained 

maximum (peak) LUE from our GPP estimates, the application of this down-regulation 

process means the two parameters are no longer directly related. Therefore, by using APAR 

and LUE in the model, GPP can be over- or underestimated. This is why we chose to test 

whether including phenology information would improve the model’s ability to capture flux 

tower GPP, given this savanna ecosystem displays such a distinct boom-bust seasonal 

phenology.  

 
 

Specific comments: 

L11, it sounds like all grass in savannas is C4 species, which is absolutely not the case. 

Please just rephrase a bit. 

 

The sentence has been changed to read “…, whereas the grasses more commonly use the C4 

pathway, …” 

 
 



P6 L1 Please describe very shortly the partitioning method used. Was it based on a light 

response curve or night time NEE-temperature curves? 

 

We used a u* filter and artificial neural network approach, with soil water, soil temperature, 

air temperature and EVI as the main model drivers, to determine respiration (R), assuming all 

night time NEE was R. This was extrapolated to the daytime and GPP was calculated as the 

difference between R and NEE. Further information about this process can be found in 

Beringer et al. (2016), also an article in the special issue our manuscript is a part of. Hence, 

we have added this short description to P6, L1 and direct the reader to Beringer et al. (2016) 

for further information.  

 
 

Generally in the method section there are very many technical details. These are nice to 

have, but I think they could be moved to supplementary material to ease the reading of the 

manuscript. But, it is ok the way it is now as well, it is just a suggestion. 

 

We have revised the manuscript and reduced the wordiness of the methods section from 3300 

words to 2885 words. In particular, we divided section 2.4 into three new sections, to more 

explicitly identify the phenocam image processing, the radiation data processing and the LAI 

and biomass measurements. While the use of supplementary material was suggested for this 

section to reduce its wordiness, we felt the processes discussed in each section were 

important enough to remain in the main body of the paper, so we chose to reduce wordiness 

where possible instead. For some of the additional analyses suggested by the reviewers, we 

have included tem as supplementary material to ensure we did not add to our shortened 

methods section.  

 
 

P9L18 APAR is in MJ d-1. 

 

We have fixed this in the text.  

 
 

P5 please indicate the study period of the EC measurements, and other measurements by the 

way. 

 

The study period was from 12
th

 December 2012 to 14
th

 October 2014, for all measurements. 

We will add this to the text.  

 
 

P9 L24 Why is n=8? In the figures it looks like the measurements started in January 2013, 

which would men n=7? 

 

N=8 because it includes the months of Dec through to Mar (inclusive), which each occur 

twice during the study period. We stated this in the text on P9, L22, but have made it clearer 

by also stating the timeframe of the study (n=8, across two years) 

 
 

P9 L22 Why did you bin the LUE to months, this does not necessarily give the best indicator 

of maximum LUE. I would say that better would be to use a running mean for the estimates of 



seasonal dynamics in LUE, and then use the maximum value. Why should the average of 3 

months give the best estimate for a maximum? 

 

We binned LUE by month and termed it peak LUE, rather than maximum LUE, because true 

maximum LUE is not easy to obtain from EC measurements. What we wanted to get at was a 

representative maximum LUE that was obtained during conditions that were not limiting to 

growth. A similar approach was used by Kanniah et al. (2009), so we intended to mirror their 

approach in terms of calculating a maximal LUE estimate from EC measurements. To reduce 

this confusion cause by our use of the term ‘peak’, we have changed back to ‘maximum’, but 

have clarified that for our study, LUEmax is the general maximum light use efficiency during 

the wet season.   

 

To address the reviewer’s suggestion about calculation of LUEmax using a running mean 

approach, we revisited our calculation process of LUE and found that FIPAR was used 

instead of FAPAR in the calculation of LUE. As such, Figure 3 should look like Figure 3.2 

instead (below), which changes the LUEmax values slightly, based on the Dec-Mar averaging 

approach. This is likely the result of the confusion identified by the reviewers about our use 

of FIPAR instead of FAPAR throughout the manuscript. Using the now correct LUE 

timeseries, we applied a 30-day running mean approach, as suggested by reviewer 1, to 

calculate an alternative LUEmax. This approach produced Figure 3.3. While it was a good idea 

to calculate LUEmax using a running mean approach, we feel it produced unrealistically high 

values, particularly for the understory (4.59 g C MJ
-1

 APAR
-1

), when compared against other 

LUEmax values reported for savanna ecosystems (i.e. 0.33 to 3.5 g C MJ
-1

 APAR
-1

). In 

addition, the running mean approach also gave a higher LUEmax value for the overstory than 

that for the savanna ecosystem. The ecosystem LUEmax should reflect a combination of 

overstory and understory LUE, and as such, should be at least slightly higher than the 

overstory. Given this, we feel our Dec-Mar averaging approach gave the most realistic 

LUEmax values.  

 

 

 

 

 

 



 
Figure 3: Original LUE figure displayed in manuscript, where a) Ecosystem, b) Overstory, 

and c) Understory.  

 



 
Figure 3.2: Updated figure to be included in resubmission. LUE is calculated using APAR, 

not FIPAR.  

 



 
Figure 3.3: LUEmax calculated from a 30-day running mean approach. Shading indicates 

daily LUE values.  

 
 

P16 L 17 Why did you use GCC as a proxy for FAPAR, and not as a scalar for LUE? There 

is strong seasonal variability in LUE depending on phenology of the vegetation, so I would 

think that it is more realistic to use the phenology as a direct scalar on LUE. 

 

We used GCC as a proxy for fPAR because the high values of fPAR in the transition periods 

were what we believed to be the source of the error in the model. LUE reduces rapidly from 

Feb to May, which is more characteristic of the phenology response seen in the field (i.e. 

Figure 3). Given this, the LUE was more indicative of phenology driven GPP than APAR, so 

was less likely to be the source of the error in the model than APAR. In addition, we 

calculated maximum LUE from the GPP data, which was then downregulated with VPD (or 

EF) and Ta to give a LUE time series. Therefore, we did not feel it appropriate to use GCC in 

place of LUE.  

 
 

P10 L29 I assume that the regression was not used to replace APAR, but to replace FAPAR? 

 

The phrasing of this sentence is misleading. It now reads “Daily EVI were regressed against 

site-based daily ecosystem fPAR, and the regression was used along with incoming PAR 

information to replace APAR in Eq. (6).”  

 
 



P12 L34 What limitations? 

 

The limitations refer to those mentioned in line 29 of the same paragraph. We have removed 

this part of the sentence, given it is largely a repeat of the information in line 29.  

 
 

P13 L4 I would not consider a R2 value of 0.09 and 0.23 a well correlated relationship. 

These relationshis are not well correlated just because the p-value is significant. The 

assumptions for testing of significance is not fulfilled; there is high auto-correlation present 

in eddy covariance time series, so the true N is nowhere near the observed N. For example, 

Desai (2014) addresses this issue using a reduced degree of freedom calculation to show that 

the vast majority of flux tower regression is actually over-confident. 

 

We agree with the reviewer here, better would be to say more broadly that the relationship 

was stronger for the understory than for the overstory. We will change this in the text 

accordingly.  

 
 

Fig 8-10. I suggest to incorporate subplots just like you did in Fig 7. Where you include a 

subplot with modelled GPP on the y-axis and the measured GPP on the x-axis. This really 

helps to see how well the models perform. 

 

This is a good idea. The reason we did not do it from the beginning was because we felt it 

made the figures too busy, so we included this information in Table 2 instead. However, we 

do agree that it would add to the figures, so we have included them in our resubmission.  

 
 

P15 L25-L27 Are you certain that RMSE is higher for the GCC included model (RMSE 

=1.43) than for the GCC and EF combined model(RMSE=1.36)? When looking at Fig 8 it 

does not look like RMSE can be higher. In Figure 8, it looks like the errors are much smaller; 

this should also be seen in the RMSE values. 

 

Using slightly adjusted maximum LUE values in this analysis (as per reviewer # 1’s previous 

comment) has resulted in slight adjustments to most values in Table 2. Now, the RMSE for 

the LUE_GCC included model for the overstory is slightly lower (= 1.56) than for the 

LUE_EF_GCC model (=1.59), which is more in line with what is shown in Figure 8. In 

saying this, these metrics are by themselves only one indication of error in the model, which 

is why a combination of all three have been used as a test for model function. The RMSE 

approach is particularly susceptible to the cancellation effects of over- and under-estimation 

throughout the year, which is evident in the overstory dataset. In contrast, there is substantial 

variability between the RPE or the two models, with the LUE_GCC model showing far less 

over-prediction than the LUE_EF_GCC model (6.47 vs 16.45, respectively). This highlights 

the importance of considering all three metrics when assessing the effectiveness of these 

model runs.  

 

Table 2 has been updated, as have the values referred to within the text from it.  

 

 

 
 



 

Reviewer #2 

 

The use of GCC in the LUE model is thought to improve the GPP estimation because 

of the strong phenological cycle of the target. In my opinion the phenological cycle 

is very well represented when fAPAR is used. So the reason for using GCC must be 

different: replacing fAPAR measurements or testing if a “green” index (likely a proxy of a 

“green” fAPAR) provides a better description of photosynthesis that that of total 

fAPAR. 

 

The reviewer raises a valid point here, in that fAPAR does capture the phenological cycle 

reasonably well. However, it does not capture it perfectly and is particularly poor during the 

transition from the wet to dry season (or dry to wet). We believe this is due to the senescence 

of the understory grasses that changes the greenness and GPP of the savanna despite fPAR 

remaining high. Currently, savanna productivity models poorly capture this change (i.e., 

Kanniah et al., 2009, Whitley et al., 2011, Whitley et al., 2016), and we would argue it is 

because they do not capture the understory phenology dynamics as well as they could. Moore 

et al. (2016) found that the understory accounts for 1/3 of savanna GPP, which is heavily 

dominated by the annual grasses that show this strong phenology. When models only use the 

fPAR(or APAR) information, they fail to capture the transition from wet to dry (and dry to 

wet) and over-estimate GPP. By using the GCC information, which provides a more accurate 

representation of phenology when compared with APAR for this savanna, the LUE model 

performs better. Ma et al. (2014) also reached a similar conclusion when they used EVI to 

incorporate better phenology information into their GPP model.  

 
 

Cameras pointing to trees: as large part of the ROI is occupied by the background 

(the sky), I wonder if the observed (and reduced) variability in GCC is not related to 

variations in sky optical properties during the year. The relation with LAI (Fig 6b) is not 

helping to figure it out, as the observed relation between GCC and LAI may be spurious 

(i.e., LAI increase and decrease in parallel to changes in sky optical properties). To 

disentangle the two effects it would be useful to define some additional ROIs with 

sky only and analyse the difference with the tree-ROIs selected.  

 

 

This was a great idea suggested by the reviewer, so we thank them for it. We proceeded to 

analyse a sky-only ROI for the three overstory cameras used to generate the chromatic 

coordinate and excess indices. The outcome of this analysis is shown in the following figure 

(a), where the original Gcc timeseries for one of the towers is depicted alongside its 

corresponding sky-ROI timseries. At any given time, the sky GCC timseries is always less 

than that of the large ROI. Given this, we incorporated into our GCC image processing 

procedure a step where the GCC value for each pixel is excluded from the analysis if it is 

equal or less than the sky-ROI GCC value for that same image. This resulted in a new GCC 

timeseries which omitted the pixels that were sky. Thus, the new GCC timeseries (Figure a) 

is more representative of how the green foliage in the overstory changes over time. Given the 

sky threshold applied was calculated specifically for each day, the effects of changing sky 

conditions on each of the images has also been reduced. We applied the same technique to 

calculate the red (RCC) and blue (BCC) chromatic coordinates, as well as the excess 

coordinates. Therefore, the overstory analysis within the text has been updated, as have the 

relevant figures and tables. We have also included a supplementary material file outlining the 



steps used in this process, in an effort to keep the length of the methods section at a 

minimum. We make reference to this material in section 2.4 and 3.1.  

 

 
 

Performances of the different GPP models (4, all LUE based) are assessed in terms of r, 

RMSE and RPE. However, model 1 and 2 (eq 6 and use of EF) are used in prediction while 

(if I got it well) model 3 (using phenocam index) is in fitting (as two parameters, m and c 

coefficients) are adjusted. Model 4 (using MODIS) is in between, because a relationship is 

tuned between EVI and fAPAR. Therefore, results are not comparable in my opinion (see the 

discussion at page 15). 

 

Each model combination is compared against flux tower-derived GPP estimates and the r, 

RMSE and RPE provide an indication of which model is best at capturing tower GPP. Our 

discussion on pg 15 discusses which of the model combinations was best at capturing tower 

GPP, finding that the inclusion of phenology information did the best job.  

 

 
 

An interesting point is that the use of the phenocam index appears to eliminate the 

lag between measured and modelled GPP. The reason for this could be that the total 

fAPAR used by the other model is the source of this lag. On the contrary GCC may 

represent a kind of “green” fAPAR that is more in line with photosynthesis. A dedicated 

section comparing phenocam indexes and fAPAR would be very useful. 

 

We have created plots of APAR and fPAR vs. GCC and included them in a supplementary 

materials file. We discuss these plots in section 3.3 and suggest that the GCC likely 

represents a ‘green APAR’ that is able to more closely track vegetation productivity over 

time.   

 
 

Specific comments: 

 

1 L 32 r2 ranging from 0.1 to 0.2 (overstory) is much lower than that of understory but they 

are both indicated as “well correlated”. 

 

Agreed, we have amended our statement in the text, as per our response to reviewer 1 above.  

 
 

3 L 23 I don’t understand what is meant by “Core issues surrounding the remoteness 

of satellite sensors” 

 

Here we meant to identify that one of the limitations of satellite remote sensors is their 

remoteness from the ecosystems they measure. We have re-phrased the sentence to state this 

more clearly.  

 
  

3 L23-25 this sentence is rather obscure (“the diffuse nature of light”?). I would sug-gest to 

omit it and only mention that the highest temporal frequency available is one composite every 

8-16 days. 



 

We have omitted the “diffuse nature of light” segment identified by the reviewer so the 

sentence reads more concisely.  

 
 

3 L 34 I don’t understand “via leaf emergence and senescence”. Please rephrase. 

 

This sentence is talking about the value of phenocams for identifying leaf-level changes, such 

as leaf emergence and senescence, so we have rephrased the sentence to more clearly show 

this. In particular, we have removed the word “via” as this seemed to be the most misleading 

part of the sentence.  

 
 

4 L1-3 Here you are saying that LUE models describes GPP through the relation between 

APAR and LUE. There is no relation, they are both used to estimate GPP. 

 

Here we used the word ‘relation’ to indicate that the two parameters were multiplied to obtain 

GPP. We have simplified this sentence to now reads “Phenocam data have also been used for 

parameterising light use efficiency (LUE) models… that describe ecosystem GPP using 

absorbed… APAR and plant LUE”   

 
 

Section 2.3 The final field of view of the camera could be provided. 

 

This has been calculated for the understory as 4 m x 2 m (horizontal x vertical) based on an 

object distance of 5 m, and for the overstory as 8 m x 5 m based on an object distance of 10 

m. This information has been provided in section 2.3.   

 
 

Section 2.3 Can you comment on possible effects of the automatic (and variable) white 

balance? This can variable from measure to measure. What is the effect on calculated 

indexes? Few numerical simulations may help in this assessment. 

 

We do discuss, albeit briefly, the effects of white balance on image collection in the 

limitations section of our manuscript. The reviewer is correct in their assessment that white 

balance can vary from image to image, which is particularly more prevalent during lower sun 

angles i.e. dawn/dusk. By using middle of day values, the effects of white balance can be 

reduced. However, white balance was set to zero in our analysis, which is a limitation in that 

it increases the scene illumination noise in our images. However, given that we only analysed 

middle of day images in an environment that is highly dynamic, the phenology signal was 

still identifiable. This may not be the case for a less dynamic ecosystem. Migliavacca et al. 

(2011) discuss the uncertainty and limitations of using digital camera imagery, which we 

make reference to in section 3.4. We have included some additional thought on this issue in 

section 3.4, indicating that we believe the strong phenology of the savanna studied allowed 

the signals to be identified despite the potential for variable white balance.  

 
 

8 eq 16-18 Why is the reflected PAR is not used? This is fIPAR. And the resulting flux is IPAR 

not APAR  

 



Our answer to reviewer 1 about this should help to clarify this point.  

 
 

10 L 34 In which sense “predictive” is used here? Is there any validation / prediction on 

independent data (i.e. not used in fitting)? 

 

The relative ‘predictive’ error indicator we used in our analysis is simply a calculation of the 

% mean difference between two datasets. It provides an indication of the direction of change 

in the predicted values relative to the measured values in a relative sense. See Kanniah et al. 

(2009) Appendix 1 for further explanation and formulas for calculation. We have altered the 

sentence slightly so that it reads “…relative predictive error (RPE) to represent the 

percentage difference and degree of over- (+) or under- (-) estimation of the model.”  

 
 

Section 3.1 It would be interesting to see the FAPAR curves along with that of the various 

camera-indexes 

 

This was a nice idea, but in the interest of balancing the additional information requests and 

the length of the manuscript in its current form, we think that creating and discussing an 

additional plot within the manuscript would make the manuscript unwieldly (there are already 

10 figures and 2 tables in it). However, we have created plots of APAR and fPAR along with 

Gcc and included them in supplementary material, making reference to them in section 3.3.  

 
 

Figure 7. Sorry, I am not getting what the 1:1 line refers to. The two variables on the 

scatterplot have different units and ranges 

 

We can see why this would be confusing, it was meant to simply provide a guide of the 

deviation of the data, so we have removed the line from the resubmitted version.  

 
 

Technical corrections: 

 

3 L 4 Why “cover”? 

 

We have removed the word ‘cover’ in the sentence to simply read “phenological change” 

 
 

7 L 5-7 This sentence says that it is homogeneous and it is not. It’s a matter of scale. It can be 

rephrased. 

 

This is absolutely true, but the sentence in question does state this: “While the understory is 

largely homogenous in species distribution at the flux tower scale (i.e. >50 m), variation from 

one point to another does exist in the understory due to its vegetation composition.” The 

sentence has been amended to read “…variation does exist at the smaller scale (i.e. < 5 m) in 

the understory due to…” to be a bit clearer on the subject.  

 
 

8 L 13 “Absorbed” instead of “used”. 

 



We have fixed this in the revised version.  

 
 

11 L9 RCC/ExR looks like a ratio. I would suggest to use “and”. 

 

We have fixed this in the revised version.  

 
 

13 L1 I miss the integration in this section. The title of this section could be “Relation 

between GPP and time series of phenocam and MODIS indexes”  

 

This section is about using the phenology information to improve estimates of GPP. Given 

this, we agree with the reviewer that the heading is misleading, therefore we have changed it 

to “Phenocam and MODIS phenology in relation to GPP”. 

 
 

P14 L5-7 Probably not needed, already described. 

 

We have removed this sentence from the text.  

 

 
 

 

Reviewer #3 

 

The utility of phenology information for improving GPP modeling results is an important 

research objective and I find the present work interesting and relevant. The paper is well 

written, methods are sound and results are carefully discussed. However, descriptions are 

generally very (too) detailed and several sections would benefit from a slightly more concise 

format. The structure of parts of the methods section should also be improved for improved 

overview, flow and clarity. 

 

We are pleased the reviewer enjoyed our manuscript and do agree that it is quite lengthy in 

parts. Given we used a rather home-made camera for our phenocams, we felt we should 

provide more detail about our methods. However, we have revised the manuscript and made 

the methods, in particular, more concise. For example, the method section was originally 

3300 words in length, now it is only 2885 words.  

 
 

Some detailed and relatively minor comments: 

 

1. Page 1 L32: An R2 of 0.09 – 0.23 does not constitute a well correlated relationship as I see 

it. 

 

This was also identified by reviewers 1 & 2, so we have fixed this in the text as per our 

response to reviewer 1.  

 
 

2. Page 2 L16: I believe fire should be capitalized as in “..2015). Fire: : :” 

 



Yes it should, we have fixed this in the revised manuscript.  

 
 

3. Page 3 L19: What does the A2/A3 refer to? Is this information needed here? 

 

The A2/A3 information refers to the sub-product of MOD17 used, as it is a combination of 

both GPP (A2) and NPP (A3) obtained from the Terra satellite. Given we only used the 

MOD17 A2 (i.e. GPP) product, we have omitted the A3 reference, but feel the A2 reference 

should be kept for clarity.  

 
 

4. Page 3 L20: MOD17 is mentioned to provide the most reliable means of estimating large-

scale productivity. In comparison to what other products/estimates? MOD17 is known to be 

associated with significant uncertainty (related predominantly to the specification of the 

effective LUE), and I’m not convinced it will outperform other products given a full suite 

intercomparison. 

 

We agree with the reviewer here in that there are a suite of GPP model products available. 

However, it is out of the scope of our study to compare all products. This sentence has 

therefore been amended to remove the “most reliable” portion to now read “…the MODIS 

GPP product is widely-used means of estimating…” instead.  

 
 

5. Page 3 L23: “Core issues surrounding: : :”; Odd sentence. Suggest rewording. The full 

sentence structure (L23 to L28) should be rewritten for better language and clarity. 

 

This statement was also identified by reviewer 2, so we have fixed the sentence based on our 

response provided previously.  

 
 

6. Section 2 introduction (Page 4): This intro piece doesn’t outline the overall methodology 

well and/or the sub-division of the methods sections. I would probably leave it out completely 

or provide a more elaborate and cohesive piece. 

 

The intention of this short section was to provide a brief overview/blurb of the methods 

before describing what was done. Given the reviewers all commented on the length of our 

manuscript, we have omitted it in the resubmission.   

 
 

7. Page 6 L2: I don’t think that it is necessary to know the type of coding language (Python) 

used.. 

 

We have removed this from the section identified.  

 
 

8. Page 6 L31: “f/stop”? 

 

This is a photography term that refers to the ratio of a lens’ focal length to the diameter of the 

point where light enters the camera. It can be referred to as a focal point. We have added 

“(focal point)” after it in the text.  



 
 

9. Sections 2.3 and 2.4: The methods are described in great detail. I would suggest reducing 

the wordiness as much as possible only including the most essential elements. 

 

We have taken these comments on board and have reduced the length of the methods section 

from 3300 words to 2885 words.  

 
 

10. Section 2.4: I would include separate sub-sections for the phenocam and radiation data 

processing for improved flow and readability. Line 13 on page 8 could be the start of the 

LUE sub-section. 

 

This is a great suggestion and we have split the section where indicated by the reviewer.  

 
 

11. Page 7 L24-26: I feel that this information is redundant. 

 

We have removed this information in the re-submitted manuscript.  

 
 

12. Page 8 L22: Shouldn’t leaf absorptance be considered in the APAR calculation? You are 

using fPAR and not fAPAR, right?  

 

Our response to reviewer 1 regarding this should help clarify this point.  

 
 

13. Page 8 L24-: The information on LAI collection, clumping etc is out of place. You will 

need a separate section on this. 

 

We have also separated this section into a new subsection in the methods.  

 
 

14. Page 10 L1-4: Is it valid to adopt the default MOD17 savanna values for your study site? 

Did you verify these against the tower observations? 

 

The Tmin and VPD values were previously validated for the Howard Springs site by Kanniah 

et al. (2009). However, we found slightly higher maximum VPD for our study period than 

that of Kanniah et al. (2009). Therefore, we cited the original values of Running & Zhao 

(2015) for our study. Given Kanniah et al. (2009) did perform a validation of earlier values of 

Running et al. (2006) for savannas, we have included Kanniah et al. (2009) in our citation of 

the section identified.  

 
 

15. Section 3.1 is very detailed and would benefit from a more concise format, if possible. 

 

We have shortened this section from 980 words to 772 words.  
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 14 

Abstract 15 

The coexistence of trees and grasses in savanna ecosystems results in marked phenological dynamics 16 

that vary spatially and temporally with climate. Australian savannas comprise a complex variety of 17 

life forms and phenologies, from evergreen trees to annual/perennial grasses, producing a boom-bust 18 

seasonal pattern of productivity that follows the wet-dry seasonal rainfall cycle. As the climate 19 

changes into the 21
st
 Century, modification to rainfall and temperature regimes in savannas is highly 20 

likely. There is a need to link phenology cycles of different species with productivity to understand 21 

how the tree-grass relationship may shift in response to climate change. This study investigated the 22 

relationship between productivity and phenology for trees and grasses in an Australian tropical 23 

savanna. Productivity, estimated from overstory (tree) and understory (grass) eddy covariance flux 24 

tower estimates of gross primary productivity (GPP), was compared against two years of repeat time-25 

lapse digital photography (phenocams). We explored the phenology-productivity relationship at the 26 

ecosystem scale using moderate resolution imaging spectroradiometer (MODIS) vegetation indices 27 

and flux tower GPP. These data were obtained from the Howard Springs OzFlux/Fluxnet site (AU-28 

How) in northern Australia. Two greenness indices were calculated from the phenocam images; the 29 

green chromatic coordinate (GCC) and excess green index (ExG). These indices captured the 30 

temporal dynamics of the understory (grass) and overstory (trees) phenology, and were mostly well 31 

correlated with tower GPP for understory (r2 = 0.65 to 0.72) and but less so for the overstory (r2 = 32 

0.09 to 0.23). The MODIS enhanced vegetation index (EVI) correlated well with GPP at the 33 
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ecosystem scale (r
2
 = 0.70). Lastly, we used GCC and EVI to parameterise a light use efficiency (LUE) 1 

model and found it to improve the estimates of GPP for the overstory, understory and ecosystem. We 2 

conclude that phenology is an important parameter to consider in estimating GPP from LUE models 3 

in savannas and that phenocams can provide important insights into the phenological variability of 4 

trees and grasses.  5 

Key Words 6 

Eddy covariance, phenocam, leaf area index, photosynthetically active radiation, light use efficiency, 7 

MODIS, OzFlux 8 

1 Introduction 9 

Savanna ecosystems are defined by the coexistence of trees and grasses, and have evolved to 10 

dominate one fifth of the terrestrial land surface (Scholes and Archer, 1997;Grace et al., 2006). In 11 

tropical savanna, trees utilise the C3 photosynthetic pathway, whereas the grasses more commonly use 12 

the more recently evolved C4 pathway, being more efficient at taking up carbon in hot environments 13 

with limited water and nutrient availability (Sage, 2004;Osborne and Beerling, 2006). Savannas are 14 

typically found in wet/dry climates that over time have shaped the tree-grass structure and phenology 15 

seen today. Fire also plays a role in shaping savanna phenology and structure, with recurrences often 16 

every 1-5 years (Hoffmann et al., 2012;Beringer et al., 2015)., Ffire consumes cured grass biomass in 17 

the dry season and supresses growth of juvenile overstory species, resulting in a range of plant 18 

phenology responses to deal with it (Bond, 2008;Murphy et al., 2010;Werner and Franklin, 2010). 19 

Herbivory, drought and land-use change are additional disturbances that commonly occur in savannas 20 

(Hutley and Beringer, 2011). These complex interactions are believed to be the primary reason for the 21 

co-dominance of trees and grasses in savanna ecosystems, as well as for the phenological variability 22 

displayed (Bond et al., 2003;Van Langevelde et al., 2003;Bond, 2008;Hanan and Lehmann, 23 

2010;Lehmann et al., 2014). 24 

The climate and disturbance regime in savannas plays an important role in shaping plant phenology. 25 

C4 savanna grasses typically follow a boom-bust phenological cycle, where they rapidly produce 26 

biomass in the wet season and display an annual or perennial die-back phenology in the dry season 27 

(Bond, 2008;Ratnam et al., 2011). C3 savanna trees, in contrast, can range from having a fully 28 

deciduous phenology to remaining evergreen throughout the dry season. In Australian savannas, the 29 

understory is dominated by C4 annual grasses with a small portion represented by juvenile overstory 30 

species (Werner and Franklin, 2010;Werner and Prior, 2013) and perennial grasses. Evergreen 31 

eucalypt species make up the bulk (~ 80 %) of the overstory in Australian savannas (Hutley et al., 32 

2011), however, semi-, brevi- and fully deciduous species are found to a lesser degree throughout 33 

(Williams et al., 1997) and contribute to the seasonal fluctuation of canopy leaf area (O'Grady et al., 34 
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2000;Whitley et al., 2011). Tree-grass ratios are driven by annual rainfall, and in Australia there is a 1 

strong rainfall gradient from the coast inland (Rogers and Beringer, 2016), resulting in northern high 2 

rainfall (mesic) regions supporting higher tree-grass ratios and drier southern (xeric) regions 3 

supporting higher grass-tree ratios (Hutley et al., 2011;Ma et al., 2013).  4 

The monitoring of savanna phenology can inform how savannas might respond to climate change. At 5 

the regional scale, the timing of phenological events varies widely for savannas due to variability in 6 

the occurrence and duration of rainfall events (Ma et al., 2013). Phenology, in turn, influences the 7 

productivity and growth (carbon cycle) of an ecosystem, as well as its water and nutrient cycles 8 

(Noormets, 2009;Richardson et al., 2013). The savanna region of Australia is projected to experience 9 

warming and increased rainfall (variability and amount) under climate change (Reisinger et al., 2014), 10 

which is likely to impact savanna phenology and its interactions with the carbon, nutrient and water 11 

cycles (Kanniah et al., 2010;Scheiter et al., 2015). There is a need for better understanding of what 12 

governs savanna phenology in order to predict how it may be affected by climate change (Beringer et 13 

al., 2016a).  14 

Due to the large extent and spatial variation of savannas, satellite remote sensing provides a useful 15 

tool (Broich et al., 2015) for examining the interactions of savanna phenology with productivity. 16 

Vegetation indices such as the normalised difference vegetation index (NDVI) (Tucker, 1979) and 17 

enhanced vegetation index (EVI) (Huete et al., 2002) provide valuable measures of savanna 18 

phenological variability from the landscape to global scale (Ma et al., 2013;Ma et al., 2014). Likewise, 19 

the MODIS gross primary productivity (GPP) product (MOD17 A2/A3, Running and Zhao, 2015) is a 20 

widely-used offers the most reliable means of estimating large scale savanna productivity (Grace et al., 21 

2006;Ryu et al., 2011), but has been shown to underestimate savanna GPP, particularly during the 22 

transition between the wet and dry seasons (Kanniah et al., 2009;Whitley et al., 2011;Ma et al., 2014). 23 

The remoteness of satellite sensors from the ecosystems they measure, along with Core issues 24 

surrounding the remoteness of satellite sensors, the effects of cloud contamination on daily data 25 

collection, the diffuse nature of light and the need to aggregate imagery spatially and temporally for 26 

contiguous scenes, results in coarse temporal resolution (i.e. 8 or 16 day) satellite data products that 27 

can be problematic for identifying change in seasonally cloudy tropical environments (Eberhardt et al., 28 

2016) where rapid (i.e. 1-2 weeks) phenological change is common (Williams et al., 1997;Moore et 29 

al., 2016c).   30 

A novel approach to alleviate some of the limitations of satellite remote sensing is to use in situ 31 

automated time-lapse cameras (phenocams) that can collect high temporal resolution (hourly to daily) 32 

images of vegetation within and above an ecosystem (Richardson et al., 2007;Hufkens et al., 33 

2012;Sonnentag et al., 2012;Moore et al., 2016c). The proximity of these cameras to ecosystem 34 

vegetation allows them to capture important information about vegetation cover change, particularly 35 
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that of  via leaf emergence and senescence (Richardson et al., 2007;Richardson et al., 2009a;Wingate 1 

et al., 2015) that can be linked with measures of ecosystem GPP (Toomey et al., 2015;Richardson et 2 

al., 2010;Filippa et al., 2016). Phenocam data have also been used for parameterising light use 3 

efficiency (LUE) models (in a similar way to MODIS GPP) that describe ecosystem GPP through the 4 

relationship ofusing absorbed photosynthetically active radiation (APAR) with that ofand plant LUE 5 

(Migliavacca et al., 2011).  6 

In this study, we aim to contribute a detailed assessment of phenological cover change, and its 7 

relationship with productivity, for a mesic tropical savanna in northern Australia over 2 years. Our 8 

objectives are to (i) determine the utility of phenocams for identifying change in overstory and 9 

understory vegetation greenness; (ii) quantify the relationship between savanna overstory and 10 

understory phenology and productivity on seasonal and annual timescales; (iii) test if phenocam 11 

indices can be used as a proxy for improvement of a LUE model that is widely used to estimate GPP; 12 

and (iv) test the applicability of MODIS EVI for improving estimates of ecosystem scale GPP. To do 13 

this we utilise one of the first phenocam datasets obtained in Australian ecosystems, along with 14 

MODIS EVI, and couple them with previously collected ecosystem, overstory and understory eddy 15 

covariance data (Moore et al., 2016a) to tease apart the tree and grass phenology-productivity 16 

relationship in Australian savanna.  17 

2 Methods 18 

To address each of our objectives, we used a combination of eddy covariance and phenocam imagery 19 

along with information about overstory leaf area index (LAI), understory biomass and the radiation 20 

use of the overstory, understory and ecosystem over time. These data were used to tease apart the 21 

relationship between productivity and phenology for the trees (overstory) and grass (understory) so 22 

we could identify how they varied throughout the 2 year study period. Phenocam greenness 23 

phenology information and MODIS EVI were also used to parameterise a LUE model that we then 24 

used to estimate overstory, understory and ecosystem GPP. 25 

2.1 Site Description 26 

This study was conducted at the Howard Springs OzFlux (www.ozflux.org.au/) and Fluxnet (AU-27 

How) site (Beringer et al., 2016a) near Darwin in the Northern Territory, Australia. A record of 28 

carbon, water and energy flux, as well as meteorological and soil measurements, was first established 29 

at Howard Springs in 1997 (Eamus et al., 2001). As such, many detailed site descriptions exist 30 

(Beringer et al., 2007;Hutley et al., 2013;Beringer et al., 2015;Moore et al., 2016a). so only a brief 31 

description is provided here. In brief, aAnnual rainfall for the Howard Springs area is 1732 mm (± 44 32 

SE) mm, (Australian Bureau of Meteorology (BoM), station ID: 014015, www.bom.gov.au) of which 33 

90-95 % falls within the rainy (wet) season months of October to April. For this studyAs such, we 34 

http://www.ozflux.org.au/
http://www.bom.gov.au/
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defined the wet season as a 6 month period from October 15
th

 through to April 15
th
 and the dry season 1 

as April 16
th

 to October 14
th

 based on the work of Cook and Heerdegen (2001). Mean daily maximum 2 

air temperature varies annually between 30.6 to 33.3 ᵒC and mean daily minimum air temperature 3 

ranges from 19.3 to 25.3 ᵒC (Australian Bureau of Meteorology, www.bom.gov.au/). Howard Springs 4 

is defined as a mesic savanna because it receives >1200 mm rainfall annually (Hutley et al., 2011) and 5 

is classified as ‘open forest savanna’ based on its canopy cover fraction (50-60 %) after Specht (1972). 6 

Soils are mostly red Kandosols (Isbell, 1996) that are sandy-loamy, well weathered and nutrient poor.  7 

Vegetation consists of a C3 woody overstory that is dominated by evergreen Eucalyptus miniata 8 

(Darwin woollybutt) and E. tetrodonta (Darwin stringybark). A smaller portion of the tree canopy and 9 

mid-canopy layerwoody overstory is made up of semi-, brevi- and fully deciduous species such as 10 

Erythrophleum chlorostachys (Ironwood) and Terminalia ferdinandiana (Kakadu plum) (Williams et 11 

al., 1997;Hutley et al., 2011). Mean canopy height is 18 m (Hutley et al., 2011). The understory is 12 

dominated by the annual C4 grass Sorghum intrans (spear grass) and perennial C4 grasses 13 

Heteropogon triticeous and S. plumosum. Also Ssharing the understory with the grasses are saplings 14 

(juveniles) of overstory species, the shrub Buchanania obovata and the cycad Cycas armstrongii. Due 15 

to the frequent occurrence of fire in Australian savanna (Beringer et al., 2015), control burning was 16 

performed at the beginning of each dry season to protect the monitoring equipment at the Howard 17 

Springs flux site.   18 

2.2 Productivity measurements 19 

To estimate productivity from the savanna ecosystem and partition it into tree (overstory) and grass 20 

(understory) GPP, we used the eddy covariance technique (Baldocchi et al., 2001) as detailed for 21 

Howard Springs by Moore et al. (2016a). Two eddy covariance towers were in operation at Howard 22 

Springs to measure the fluxes of carbon, water and energy from both the understory (within tree 23 

canopy tower at 5 m) and the ecosystem (above tree canopy tower at 23 m) from the 12th December 24 

2012 through to 14th October 2014. The Ooverstory fluxes component isare simply the difference 25 

between ecosystem and understory fluxes, which and represents the above ground tree fluxes. 26 

Instrumentation, validation of the understory tower, data quality assurance and quality control 27 

(QA/QC) and flux partitioning information is also provided in Moore et al. (2016a), so a summary is 28 

provided here. Therefore, we provide only a brief description of the site instrumentation and flux data 29 

processing.  30 

Core eddy covariance instruments on each tower consisted of a 3D sonic anemometer (CSAT3, 31 

Campbell Scientific, Logan UT) and an infra-red gas analyser (LI-7500, Li-COR Biosciences, Lincoln, 32 

NE). These instruments sampled at a rate of 10 Hz and provided 30-min flux averages. Soil heat flux 33 

(HFT3, Campbell Scientific, Logan, UT) and net/short/long wave radiation components were also 34 

recorded on the ecosystem tower (CNR4, Kipp and Zonen, Delft, NL). The raw 30-minute data were 35 
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QA/QC’d to level 3 standard using the OzFluxQC (v2.9.4) python scripts. Energy balance closure 1 

analysis of the ecosystem tower, based on daily data (Silva et al., 2011), gave a slope of 0.89 and an r
2
 2 

of 0.92. The understory tower primarily recorded vertical transfer during turbulent conditions, which 3 

was was validated via co-spectral power spectra analysis (Moore et al., 2016a) that followed idealised 4 

curves for vegetated canopies (Kaimal and Finnigan, 1994). Level 3 data were then gap filled and 5 

used to partition net ecosystem exchange (NEE) into respiration and GPP using the Dynamic 6 

INtegrated Gap filling and partitioning for OzFlux (DINGO, (Beringer et al., 2016b)) package. This 7 

package applied a u* filter and artificial neural network approach, with soil temperature, air 8 

temperature and EVI as the main model drivers, to determine respiration, assuming all night-time 9 

NEE was respiration. This was extrapolated to the daytime and GPP was calculated as the difference 10 

between NEE and respiration (Beringer et al. 2016).Both OzFlux and DINGO packages were written 11 

using python scripts.  12 

2.3 Phenology and light use efficiency (LUE) measurements 13 

Alongside the flux tower estimates of tree and grass productivity (12
th

 December 2012 to 14
th
 October 14 

2014), we recorded time series of incident, reflected and absorbed PAR, as well asand vegetation 15 

cover change. While the understory is largely homogenous in species distribution at the flux tower 16 

footprint scale (i.e. >50 m), variation from one point to the next does exist at the smaller scale (i.e. < 5 17 

m) in the understory due to its vegetation composition. To obtain a rigorous time series, spatial 18 

replicate measurements of vegetation cover change and PAR variability were recorded at five 19 

locations (on 5 tall mini towers) within a 50 m pentagon shape of the main ecosystem flux tower (Fig. 20 

1). are required. We used five towers (mini towers), each of which were 5 m tall and made from steel 21 

square hollow section with a cross arm to attach the instruments and a logger-solar panel array. The 22 

towers were stabilised using guy wires and a base plate. A winch system was used to manoeuvre the 23 

instruments up and down the tower for data download and maintenance. The towers were set up at a 24 

distance of 50 m in a pentagon shape around the main ecosystem flux tower and faced an east-west 25 

direction (Fig. 1).  26 

To measure PARthe components of PAR in the savanna, we installed were measured from PAR 27 

sensors on each of the mini towers (SQ-Series, Apogee, Logan, UT). Incoming PAR reaching the 28 

understory, through the overstory vegetation, was measured with a PAR sensor installed facing 29 

upward at 5 m on each mini tower. Another sensor was installed facing downward at 5 m to record the 30 

amount of PAR reflected by the understory vegetation. The amount of PAR reaching the ground 31 

surface through the understory vegetation was recorded with a third PAR sensor facing upward at 10 32 

cm. A data logger (CR800, Campbell Scientific, Logan UT) and multiplexor (AM25T, Campbell 33 

Scientific, Logan, UT) were used to collect and store PAR data and to operate the phenocams. The 34 

mini tower systems was were powered using a 20 W solar panel, 12 V regulator and 12 V gel cell 35 

battery. To provide a complete accounting of PAR in the savannasavanna PAR, two additional PAR 36 
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sensors (LI-190 Quantum Series, Li-COR Biosciences, Lincoln, NE) were installed on the 23 m flux 1 

tower for collection of incoming PAR and outgoing PAR reflected from the savanna ecosystem.   2 

Changes in savanna overstory and understory vegetation greenness were assessed using consumer-3 

grade point-and-shoot cameras (Canon Powershot A810). Each mini tower supported two cameras, 4 

one to collectcollecting upward facing images of the tree canopy and one to collectcollecting 5 

downward facing images of the understory, making a total of (10 cameras installedtotal). The cameras’ 6 

were set to run using settings included automatic exposure in aperture priority mode, with a low f/stop 7 

(focal point) value of 2.8 to ensure the entire image was used to respond to ambient light levels 8 

(Richardson et al., 2007;Ryu et al., 2012;Sonnentag et al., 2012). Automatic white balance was also 9 

used as we did not have a grey reference panel to correct for white balance manually. Images were 10 

stored on SD memory cards in a compressed JPEG file format , to ensure the cards did not fill 11 

between site visitsand each camera was housed in a make-shift waterproof case (Fig. 2, a & d).. 12 

Each camera was housed in a waterproof case with an aperture hole cut in the top that was sealed with 13 

a microscope slide (Fig. 2, a & d). Following the concept of Ryu et al. (2012), power was delivered to 14 

the cameras through wires soldered to the battery terminals and a brief pulse delivered to wires 15 

soldered to the camera ‘on-button’ allowed them to turn on when prompted., which received input 16 

from a 12 V relay connected with a 3.3 V regulator. A second 5 V relay was used to send a short pulse 17 

to wires soldered onto the ‘on-button’ of the cameras to mimic the action of turning the cameras on. 18 

The Canon Hack Development Kit (http://chdk.wikia.com/wiki/CHDK) was used to automate image 19 

capture when the camera was turned on, modify the cameras to automatically take an image when 20 

turned on, which was administered via a u-Basic script saved on the memory card. Each mini tower 21 

logger was programmed to operate the cameras twice daily, once at 11:30 ACST (to match the~ 22 

MODIS Terra overpass) and once at 13:00 ACST (approximately ~ solar noon). Each camera was 23 

installed on the mini towers using a metal plate angled atat an angle of 57.5 ᵒ from zenith, as this 24 

angle has been found to minimise the effects of leaf inclination angle when calculating LAI (Weiss et 25 

al., 2004;Baret et al., 2010). 26 

2.4 Phenocam image and radiation data processing 27 

Phenocam images were firstly visually checked for field of view (FOV) shifts and major obstructions 28 

(i.e. water on the case windowsin image) as a first step in the image QA/QC process. Images with 29 

obstructions were removed, which accounted for between 3 - 13 % of images for each camera. 30 

However, three out of ten cameras were completely omitted from analysis due to severe FOV shifts or 31 

where an individual camera had greater than 50% of images lost, leaving. This left a total of four 32 

cameras for understory analysis (5031 images total) and three for the overstory (4255 images total). 33 

All remaining cameras (n = 7) experienced slight FOV shifts as a result of manual data download. 34 

However, a Student t-test of 686 analysed images, for a camera with a large visible FOV shift, 35 
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revealed no significant effect on the extracted results (t686 = 0.13, p = 0.90). The time series from each 1 

camera were then gap filled using the best regression relationship against another camera, most of 2 

which had an r
2
 >0.8. 3 

For each camera, the images were analysed using code written in python that initially took the 4 

extracted Exif (Exchangeable image file format) data to rename files using a standardised (yyyy-mm-5 

dd hh:mm:ss) format. Images were analysed in date/time succession using a region of interest (ROI) 6 

that encompassed as much of the vegetation as feasible. As a result, the ROI varied depending on the 7 

vegetation available in the overstory FOV and was the same for all understory cameras, except for a 8 

separate analysis of grass and woody green vegetation , which required individual ROI’s for each 9 

understory camera (Fig. 2).In addition, we analysed a separate sky-only ROI for each overstory 10 

camera and used the sky data to filter out sky-pixel information from the calculation of each index 11 

(Fig. 2, and supplementary material) Each camera collected 8-bit depth red-green-blue (RGB) colour 12 

channel information, stored as digital numbers (DN), at a resolution of 4608 x 3456 pixels. These 13 

DN’s provide a measure of colour intensity based on irradiance, so they can be highly varyiable when 14 

scene illumination changes (Ide and Oguma, 2010;Sonnentag et al., 2012). To reduce the effects of 15 

scene illumination, the DN’s are typically used to calculate the green (GCC) chromatic coordinate, a 16 

normalised ratio of the green channel to all channels, as Eq. (1) (Gillespie et al., 1987;Woebbecke et 17 

al., 1995): 18 

𝐺𝑐𝑐 = 𝐺𝐷𝑁/(𝑅𝐷𝑁 + 𝐺𝐷𝑁 + 𝐵𝐷𝑁)                                                                                                          (1) 19 

where DN is the digital number that corresponds with the green (G), red (R) and blue (B) channels. 20 

The red (RCC) and blue (BCC) chromatic coordinates were calculated in the same way as GCC. 21 

Chromatic coordinate values were calculated for each pixel within the ROI and then averaged to give 22 

an overall GCC, RCC and BCC value for each image. In addition to the chromatic coordinates, Wwe 23 

also calculated the excess green (ExG), red (ExR) and blue (ExB) indices in order to compare which 24 

colour index performed best inat capturing savanna phenological change. The excess index is an 25 

enhancement of the respective colour channel information against the other channels and is calculated 26 

as Eq. (2) (Woebbecke et al., 1995): 27 

𝐸𝑥𝐺 = 2𝐺𝐷𝑁 − (𝑅𝐷𝑁 + 𝐵𝐷𝑁)                                                                                                               (2) 28 

 29 

Each camera collected 8-bit depth red-green-blue (RGB) colour channel information, stored as digital 30 

numbers (DN), at a resolution of 4608 x 3456 pixels. These DN’s provide a measure of colour 31 

intensity based on irradiance, so they can be highly variable when scene illumination changes (Ide and 32 

Oguma, 2010;Sonnentag et al., 2012). To reduce the effects of scene illumination, the DN’s are 33 
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typically used to calculate the green (GCC) chromatic coordinate, a normalised ratio of the green 1 

channel to all channels, as Eq. (1) (Gillespie et al., 1987;Woebbecke et al., 1995): 2 

𝐺𝑐𝑐 = 𝐺𝐷𝑁/(𝑅𝐷𝑁 + 𝐺𝐷𝑁 + 𝐵𝐷𝑁)                                                                                                          (1) 3 

where DN is the digital number that corresponds with the green (G), red (R) and blue (B) channels. 4 

The red (RCC) and blue (BCC) chromatic coordinates were calculated in the same way as GCC. 5 

Chromatic coordinate values were calculated for each pixel within the ROI and then averaged to give 6 

an overall GCC, RCC and BCC value for each image. In addition to the chromatic coordinates, we 7 

also calculated the excess green (ExG), red (ExR) and blue (ExB) indices in order to compare which 8 

colour index performed best in capturing savanna phenological change. The excess index is an 9 

enhancement of the respective colour channel information against the other channels and is calculated 10 

as Eq. (2) (Woebbecke et al., 1995): 11 

𝐸𝑥𝐺 = 2𝐺𝐷𝑁 − (𝑅𝐷𝑁 + 𝐵𝐷𝑁)                                                                                                               (2) 12 

2.5 Radiation data processing  13 

The amount of light absorbedused by vegetation over time is directly correlated with productivity 14 

(Monteith, 1972). Using the mini tower PAR data collected from the mini towers, we calculated fPAR 15 

for the overstory (OS) Eq. (3), understory (US) Eq. (4) and ecosystem (ECO) Eq. (5) as: 16 

 𝑓𝑃𝐴𝑅𝑂𝑆 = (𝑃𝐴𝑅𝐴𝐸𝐷 − 𝑃𝐴𝑅𝐴𝐸𝑈 − 𝑃𝐴𝑅𝐴𝐺𝐷)/𝑃𝐴𝑅𝐴𝐸𝐷                                                                                          17 

(3) 18 

𝑓𝑃𝐴𝑅𝑈𝑆 = (𝑃𝐴𝑅𝐴𝐺𝐷 − 𝑃𝐴𝑅𝐴𝐺𝑈 − 𝑃𝐴𝑅𝐵𝐺𝐷)/𝑃𝐴𝑅𝐴𝐺𝐷                                                                                            19 

(4) 20 

𝑓𝑃𝐴𝑅𝐸𝐶𝑂 = (𝑃𝐴𝑅𝐴𝐸𝐷 − 𝑃𝐴𝑅𝐴𝐸𝑈 − 𝑃𝐴𝑅𝐵𝐺𝐷)/𝑃𝐴𝑅𝐴𝐸𝐷                                                                                         21 

(5) 22 

where AED and AEU areis the above ecosystem down-welling and up-welling PAR, AGD and AGU 23 

areis the above grass down-welling and up-welling PAR, and BGD is the below grass down-welling 24 

PAR. We did not include the reflected component of PAR in our calculations as this consistently 25 

produced negative fPAR results in the dry season. Once Using fPAR was calculated, APAR was 26 

calculated for overstory, understory and ecosystem by multiplying the respective fPAR with available 27 

incoming PAR (note: this was PARAGD for the understory).  28 

2.6 Leaf area index and biomass measurements 29 

Variability of vegetation LAI and biomass over time is a direct result of phenology and productivity. 30 

We collected overstory LAI on each site visit (6 total) using digital hemispheric photography from a 31 

Canon digital single lens reflex (DSLR) camera (Rebel T1i) with a 185 ᵒ super fisheye FOV (f/5.6) 32 
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lens. The images were taken around a one-hectare plot (n = 36, Fig. 1) and analysed using 1 

WinScanopy (v2014a). A clumping coefficient was calculated to account for foliage clumping in the 2 

LAI estimate, which was verified using a Tracing Radiation and Architecture of Canopies (TRAC) 3 

instrument. These techniques agreed within 10-15 % of each other (0.82 to 0.94 in the wet season, 4 

0.61 to 0.67 in the dry season). Understory biomass below 2 m in height was collected from 20 5 

replicate 1 x 1 m quadrats along a N-S and E-W 100 m transect (10 samples each, every 5 m) over a 6 

full growing season (Dec-Apr, 4 total). Samples were separated into grass and other green biomass, 7 

weighed, then oven dried at 80 ᵒC for 3 days to obtain dry weight. Following Chen et al. (2003), we 8 

converted the dry weight biomass into carbon content assuming it to be 43 % of grass biomass and 49 % 9 

of other green biomass.  10 

The variability over time of vegetation LAI and biomass is a direct result of phenology and 11 

productivity. We collected overstory LAI on each site visit (6 total) and understory biomass samples 12 

spanning a full growing season (Dec-Apr, 4 total) to investigate how these variables changed 13 

alongside the flux and phenocam data. We used digital hemispheric photography to record overstory 14 

LAI using a Canon digital single lens reflex (DSLR) camera (Rebel T1i) with a 185 ᵒ super fisheye 15 

FOV (f/5.6) lens attached. A one hectare plot was established around the central ecosystem flux tower 16 

and LAI measurements were recorded every 20 m within it (n = 36, Fig. 1). These images were 17 

analysed using WinScanopy (v2014a), where a clumping coefficient was calculated to account for 18 

foliage clumping in the LAI estimate. A Tracing Radiation and Architecture of Canopies (TRAC) 19 

instrument was used to verify the WinScanopy clumping index parameter, which agreed within 10-15 % 20 

of each other (0.82 to 0.94 in the wet season, 0.61 to 0.67 in the dry season) and gave us confidence in 21 

the hemispheric LAI estimates.  22 

  23 

A Tracing Radiation and Architecture of Canopies (TRAC) instrument was used to verify the 24 

WinScanopy clumping index parameter, which agreed within 10-15 % of each other (0.82 to 0.94 in 25 

the wet season, 0.61 to 0.67 in the dry season) and gave us confidence in the hemispheric LAI 26 

estimates. Understory biomass below 2 m in height was collected from 20 replicate 1 x 1 m quadrats 27 

along a N-S and E-W 100 m transect (10 samples each, every 5 m) and separated in the lab into grass 28 

and other green biomass, weighed, then oven dried at 80 ᵒC for 3 days to obtain a dry weight. The 29 

exact distance of sampling along each transect was altered by 1 m for each site visit to avoid biasing 30 

from the previous sampling period. Following the technique used by Chen et al. (2003), we converted 31 

the dry weight biomass into carbon content assuming it to be 43 % of grass biomass and 49 % of other 32 

green biomass.  33 
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2.75 Light use efficiency (LUE) models and incorporation of phenology   1 

An alternative to estimating GPP from flux towers is to use a LUE model, where GPP is 2 

approximated by relating plant productivity to the amount of light they absorb over a growing season 3 

(Monteith, 1972). The MODIS GPP product (MOD17 A2.055/A3) is calculated using a LUE model 4 

(Eq. (6), Running and Zhao, 2015), which we use in this study, as it has been previously validated for 5 

Australian savannas (Kanniah et al., 2009):  6 

𝐺𝑃𝑃 = 𝐴𝑃𝐴𝑅 × 𝐿𝑈𝐸𝑝  ×  𝑇𝑀𝐼𝑁𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑉𝑃𝐷𝑠𝑐𝑎𝑙𝑎𝑟                                                                       (6) 7 

where GPP is in g C m
-2

 d
-1

, APAR is in MJ d
-1

 and LUEmaxp is the general maximumpeak light use 8 

efficiency during the wet season in g C MJ
-1

 PAR
-1

. Because C3 (trees) and C4 (grasses) plants have 9 

different maximum LUE rates (Zhu et al., 2008), we calculated overstory and understory LUEmaxp 10 

separately following a similar approach to Kanniah et al. (2009) and Coops et al. (2007), where LUE 11 

is firstly calculated as GPP/APAR and is then binned by month to obtain monthly LUE. We chose to 12 

use the months of Dec-Mar (inclusive) to provide an estimate of LUEmaxp for the overstory and 13 

understory, as these months (n = 8, across two years) have the least environmental constraints to 14 

productivity and should be close to the maximum. This gave us a LUEmaxp value of 1.49 ± 0.06 g C 15 

MJ
-1

 PAR
-1 

for the ecosystem, 1.22 ± 0.03 g C MJ
-1

 PAR
-1

 for the overstory and 2.41 ± 0.23 g C MJ
-1

 16 

PAR
-1

 for the understory (Fig. 3). In the LUE model the LUEmaxp values are then down regulated on a 17 

daily basis using the VPDscalar Eq. (7) and TMINscalar (values between 0 and 1 ) Eq. (8) (Running 18 

and Zhao, 2015): 19 

𝑉𝑃𝐷𝑠𝑐𝑎𝑙𝑎𝑟 =  (𝑉𝑃𝐷𝑚𝑎𝑥 − 𝑉𝑃𝐷𝑑)/(𝑉𝑃𝐷𝑚𝑎𝑥 − 𝑉𝑃𝐷𝑚𝑖𝑛)                                                                  (7) 20 

𝑇𝑀𝐼𝑁𝑠𝑐𝑎𝑙𝑎𝑟 = (𝑇𝑀𝐼𝑁 − 𝑇𝑀𝐼𝑁 𝑚𝑖𝑛)/(𝑇𝑀𝐼𝑁 𝑚𝑎𝑥 − 𝑇𝑀𝐼𝑁 𝑚𝑖𝑛)                                                                  (8) 21 

where TMIN is the minimum daily temperature for a given day, TMINmax is the minimum daily 22 

temperature when LUE is at maximum and TMINmin is the minimum daily temperature when LUE is 0, 23 

all of which are output in ᵒC. Likewise, VPDd is the mean daytime VPD, VPDmax is the maximum 24 

VPD when LUE is 0, and VPDmin is the minimum VPD when LUE is at maximum, all output in Pa. 25 

These scalar values fall between the range of 0 – 1. The MOD17 GPP algorithm uses values of -8 ᵒC 26 

for TMINmin, 11.39 ᵒC for TMINmax, 650 Pa for VPDmin and 3500 Pa for VPDmax for savannas (Running 27 

and Zhao, 2015). These values were validated for Howard Springs by Kanniah et al. (2009), so we 28 

also used them in our study., so we also used these values for Howard Springs.  29 

The use of a soil moisture term, evaporative fraction (EF), has been argued to represent plant 30 

available moisture more reliably than VPD (Gentine et al., 2007;Yuan et al., 2007;Kanniah et al., 31 

2009). This term is simply a fractional estimate of latent heat (LE) divided by the sum of sensible heat 32 

(H) and LE (i.e. LE/ (LE + H)). We also used the EF term in this study to test if and how it improved 33 
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the estimation of overstory, understory and ecosystem GPP. For the overstory and ecosystem, we 1 

calculated EF using the ecosystem flux tower, whereas for the understory we calculated EF using the 2 

understory flux tower.  3 

Another technique we tested for improving GPP estimates from the LUE model was to input  4 

phenocam greenness indices, as they have been found to correlate with ecosystem productivity in 5 

northern hemisphere forests and grasslands (Richardson et al., 2009b;Migliavacca et al., 2011;Filippa 6 

et al., 2016). We hypothesised that inclusion of GCC in the LUE model would improve the model’s 7 

ability to predict savanna overstory and understory GPP, particularly given the strong phenology 8 

cycles displayed in savannas. As GCC is a fractional measure, like that of fPAR, we substituted GCC 9 

as a proxy for fPAR using the coefficients of a regression to normalise it, a similar approach to that 10 

used by Migliavacca et al. (2011). As a result, Eq. 6 was transformed to include PAR·(mGCC+c) in 11 

place of APAR, where m and c are the linear regression coefficients.  12 

We repeated the above technique using MODIS EVI (Huete et al., 2002), to test if satellite indices 13 

could be used to improve estimates of ecosystem scale GPP. We chose the EVI product 14 

(MOD13Q1.005) as it has been shown to function well for identifying broad-scale phenology in 15 

Australian savannas (Ma et al., 2013;Ma et al., 2014). A 3 x 3 pixel cut out of EVI data surrounding 16 

the Howard Springs site, at 16-day and 250 m resolution, was processed in DINGO accepting the 17 

quality flags 00 (highest overall quality) and 01 (good quality) only. The 16-day data were then 18 

interpolated and smoothed, using a Savitzky-Golay technique (Savitzky and Golay, 1964) in DINGO, 19 

to create a daily time series of EVI (Beringer et al., 2016b). Daily EVI were regressed against site-20 

based daily ecosystem fPAR and the regression was used along with incoming PAR to replace APAR 21 

in Eq. (6) to estimate ecosystem GPP.  22 

Finally, to test the performance of each model against tower GPP estimates, we used a Pearson 23 

correlation to provide a closeness of fit estimate (Corr) and test if the relationship was statistically 24 

significant (p<0.05). We also calculated the root mean squared error (RMSE) to provide a measure of 25 

the difference between the two datasets (tower and model) and the relative predictive error (RPE) to 26 

represent the percentage difference andbetween them, plus the degree of over- (+) or under- (-) 27 

estimation (-) of the model.   28 

3 Results & Discussion 29 

3.1 Phenological insights from phenocams 30 

Extraction of the chromatic coordinates and excess The phenocam indexes revealed expected patterns 31 

from overstory and understory vegetation over time, showing that the cameras functioned well as 32 

phenology monitors of vegetation greenness at the ecosystem and individual species level (Fig. 4, 5 & 33 
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6). Not surprisingly, both GCC and ExG were at their highest in the understory during the wet season 1 

and gradually declined to their lowest values by the late dry season (i.e. September, Fig. 4). The RCC 2 

and /ExR indices showed an inverse relationship to GCC and /ExG, which is usually symptomatic of 3 

increased red pigmentation due tofrom senescing leaves and chlorophyll loss (Hoch et al., 2001;Lee et 4 

al., 2003;Wingate et al., 2015). This relationship is shown by the red-green index crossover in the 5 

understory that coincides with grass senescence and signals the end of the wet season (i.e. Mar/Apr, 6 

see Fig. 4) along with an increase in the red kandosol soil background showing through with the loss 7 

of understory biomass. At the beginning of the wet season (Oct to Nov), the red-green crossover does 8 

not occur as quickly compared with the end of the wet season (Fig. 4). Several rainfall events in 9 

November (Fig. 4, Fig. 5 for rainfall) are required to reach the crossover, which is indicative of the 10 

vegetation response to the onset of the rainy season (i.e. grasses need time to germinate). Peak GCC 11 

and ExG are not reached until February (Fig. 4), the period of highest productivity for total understory 12 

biomass (Table 1).  13 

 However, in this case, the crossover is likely the combined result of grass senescence (loss of green) 14 

and an increase in the red kandosol soil background showing through with the loss of understory 15 

biomass.  16 

A different story is depicted at the beginning of the wet season (Oct/Nov), whereby the red-green 17 

crossover does not occur as quickly as it does at the end of the wet season (Fig. 4).  18 

Here it occurs after several rainfall episodes in November (Fig. 4, Fig. 5 for rainfall). This is due to 19 

the time needed for the vegetation, particularly the grasses, to respond to the onset of the rainy season, 20 

as October and November are typically build up months where convective storms deliver rain in 21 

single events before the onset of the more consistent monsoonal rain in December (Cook and 22 

Heerdegen, 2001). Peak GCC and ExG are not reached until February (Fig. 4), which is also reflected 23 

in results from the biomass harvest (Table 1) that shows the mid wet season (February) to be the 24 

period of highest productivity for total understory biomass.  25 

The understory consists ofis a mix of annual (S. intrans) and perennial (S. plumosum & H. triticeous) 26 

grasses, saplings of overstory (E. tetrodonta & E. miniata) and mid-story (E. chlorosyachys, T. 27 

ferdinandiana & B. obovata) species saplings, and cycads (C. armstrongii), that all have differing 28 

phenologies (Bowman and Prior, 2005). The behaviour dynamic nature of these phenological guilds is 29 

reflected in the temporal patterns of GCC and ExG between grasses and the non-grass woody 30 

elements (herein referred to as ‘woody green’, ) and provides additional insight into the dynamic 31 

nature of understory savanna phenology (Fig. 5). While grasses are considered the most abundant of 32 

the understory species in terms of biomass (Table 1) and LAI at Howard Springs (Hutley et al., 2000), 33 

they are only active during the wet season months (Andrew and Mott, 1983;Scott et al., 2010). During 34 

both the early wet (October/November) and dry season (April/May) seasons, and after the first rains 35 
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of the wet season (October/November), the woody green species take advantage of the lack of grass to 1 

gain biomass (Werner and Franklin, 2010;Werner and Prior, 2013).  2 

Annual grasses typically germinate after the first 15 mm or more of rainfall, with further rainfall 3 

events required to drive leaf growth (Andrew and Mott, 1983;Cook et al., 2002). Pre-monsoonal 4 

rainfall is highly variable in terms of its timing and amount, therefore this phenological strategy may 5 

minimise the possibility of grass mortality if dry periods proceed an initial early wet season rainfall 6 

event (Moore et al., 2016b). In Fig. 5, this delay in grass greening is evident, with rapid increases in 7 

GCC only occurring approximately a one month after the first rainfall event (Fig. 5, Oct-Dec 2013). 8 

Such detailed analysis of the Pphenocam data can therefore tease apart composite greening signals to 9 

better understand phenological dynamics and fluxes in these ecosystems (Fig. 5 & 7). Results from  10 

Uunderstory biomass harvests data also support the GCC results, revealing that as the wet season 11 

progressed, the grasses biomass increased in dominance to account for 77 % of understory biomass by 12 

the end of the wet season (Table 1). This shows that wWhile the grasses are the primary driver of 13 

understory biomass and productivity, the woody green species also make important contributions 14 

throughout the year and are likely the reason why understory GPP does not completely cease in the 15 

dry season (Moore et al., 2016a).  16 

In contrast to the understory, the overstory GCC and ExG did not fluctuate much in comparison to 17 

their red and blue channel indices (Fig. 6, a). This is mostly due to the high portion of blue sky and 18 

cloud within the ROI’s for the overstory images (Fig. 2, e & f), which vary depending on daily 19 

weather conditions.  20 

However, application of a sky threshold, calculated from a sky-only ROI, improved the seasonal 21 

pattern seen in overstory GCC (see supplementary material) and contributed to removing the 22 

influence of sky pixels on the GCC calculation. These values also agreed with changes in overstory 23 

LAI (Fig. 6, b). A larger ROI was necessary for the overstory analysis due to the daily movement of 24 

trees. While there is inherent uncertainty in both the phenocam imagery (i.e. FOV, scene illumination) 25 

and LAI (i.e. leaf projection and orientation, clumping, gaps, see Ryu et al. (2010)) estimates in this 26 

study, the savanna overstory is known to experience seasonal fluctuations in LAI with the highest 27 

values in the wet season and lowest values in the late dry season (Williams et al., 1997;O'Grady et al., 28 

2000). The same pattern is displayed in Fig. 6, giving us confidence that the phenocams were able to 29 

detect overstory cover change. 30 

The effect on BCC/ExB is particularly strong during the wet season, where the summer monsoon 31 

varies sky conditions considerably between bright blue sky and dull grey cloud. Due to the narrow 32 

FOV and upward orientation of the overstory cameras, the trees were prone to moving in and out of 33 

smaller ROI tested (data not shown), so a larger ROI was chosen to ensure tree foliage was always 34 

present in the image, but at the cost of including a greater sky portion (Fig. 2, e & f). Nevertheless, 35 
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when viewed in isolation from the red and blue indices, temporal variation was apparent in overstory 1 

GCC and ExG, which captured variability in greenness and were consistent with changes in overstory 2 

LAI (Fig. 6, b). While there is inherent uncertainty in both the phenocam imagery (i.e. FOV, scene 3 

illumination) and LAI (i.e. leaf projection and orientation, clumping, gaps, see Ryu et al. (2010)) 4 

estimates in this study, the savanna overstory is known to experience seasonal fluctuations in LAI 5 

with the highest values in the wet season and lowest values in the late dry season (Williams et al., 6 

1997;O'Grady et al., 2000). The same pattern is displayed in Fig. 6, giving us confidence that the 7 

phenocams were able to detect overstory cover change, despite their limitations in setup and image 8 

collection.  9 

  10 

Nevertheless, when viewed in isolation from the red and blue indices, temporal variation was apparent 11 

in overstory GCC and ExG. These indices captured the variability in greenness and were consistent 12 

with changes in overstory LAI when compared with adhoc hemispherical LAI measurements (Fig. 6, 13 

b). While there is inherent uncertainty in both the phenocam imagery (i.e. FOV, scene illumination) 14 

and LAI (i.e. leaf projection and orientation, clumping, gaps, see Ryu et al. (2010)) estimates in this 15 

study, the savanna tree canopy is known to experience seasonal fluctuations in LAI with the highest 16 

values in the wet season and lowest values in the late dry season (Williams et al., 1997;O'Grady et al., 17 

2000). The same general pattern is displayed in Fig. 6, giving us confidence that the phenocams are 18 

able to detect overstory cover change, despite their limitations in setup and image collection.  19 

3.2 Phenocam and MODIS phenology in relation to GPP Integrating phenocam and MODIS 20 

phenology with GPP 21 

The seasonality of GPP in these savannas has been found to differ between that of the overstory and 22 

understory, with understory GPP tied more closely to the duration of the wet season than that of the 23 

overstory (Moore et al., 2016a). The GCC and ExG time series approximated appeared to capture the 24 

overstory and understory GPP estimates well (Fig. 7), and so we hypothesised that they could be 25 

useful for independently predicting overstory and understory GPP. Simple linear regressions of GCC 26 

against flux tower GPP quantified the relationship between the two variables, with understory GPP (r
2
 27 

= 0.65) revealing a closer fit with GCC than overstory GPP (r
2
 = 0.2322, Fig. 7). The ExG index did 28 

not perform so well compared with GCC for the overstory (r
2
 = 0.09) but improved the relationship 29 

slightly against GCC for the understory (r
2
 = 0.720, Fig. 7). ExG was originally developed for 30 

identifying green vegetation from images with a soil background (Woebbecke et al., 1995). This is a 31 

likely reason for why the relationship between ExG and GPP was slightly closer to 1:1 than that of 32 

GCC for the understory.  33 

While the relationship between overstory greenness (ExG/GCC) and GPP is not as strong as that of 34 

the understory, the phenocams are still able to detect seasonality in greenness that follows GPP over 35 
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time (Fig. 7). The trees have a deeper rooting structure than the grasses, allowing them to access a 1 

larger volume of soil moisture (Eamus et al., 2002;Kelley et al., 2007) and thus maintain constant 2 

overstory transpiration throughout the year (O'Grady et al., 1999;Hutley et al., 2000). While the tree 3 

canopy is largely evergreen, the LAI will drop up to 30-40 % in order to account for the dry season 4 

water deficit (O'Grady et al., 2000;Whitley et al., 2011), which is also apparent from both our 5 

overstory LAI and GCC results (Fig. 6). Tree productivity, in contrast to transpiration, is known to 6 

decrease into the dry season (Eamus et al., 1999), and most carbon uptake is directed toward 7 

maintenance respiration rather than growth (Chen et al., 2002;Prior et al., 2004;Cernusak et al., 2006). 8 

However, the occurrence of late wet season rainfall events may benefit the productive capacity of the 9 

trees by boosting soil moisture stores, thereby supporting higher rates of productivity for longer in the 10 

dry season (Moore et al., 2016a). This effect is apparent in our overstory GCC time series, where after 11 

late April to early May rainfall events (see Fig. 5 for daily rainfall), GCC spikes in June indicate a 12 

flushing of the foliage in the dry season (Fig. 6, b).   13 

At the ecosystem scale, the interaction of the overstory and understory with the wet and dry seasons 14 

drives variability in productivity. The MODIS greenness index, EVI, mostly captures this variability, 15 

albeit at coarser temporal resolution (Fig. 7, e) when compared with the phenocams. While the broad 16 

scale variability in savanna phenology change is captured by EVI, such as seasonality (Ma et al., 17 

2013), it is not able to capture the finer scale details that the site based phenocams can. MODIS 18 

indices, such as EVI, do not currently have the ability to identify individual plant scale phenology 19 

patterns (Brown et al., 2016;Moore et al., 2016c), which is another advantage of the phenocam (Fig. 20 

5). The phenocam data also provides a useful means of validating the MODIS data in that both are 21 

able to track the seasonality of savanna GPP, which is driven by a complex interaction of both 22 

meteorology and phenology  (Kanniah et al., 2011;Whitley et al., 2011;Ma et al., 2013;Ma et al., 23 

2014).    24 

3.3 Integrating phenocam and MODIS phenology with a LUE model 25 

In order to test the applicability of the phenocam indices and MODIS EVI to independently predict 26 

savanna GPP using a LUE model, peak LUE (i.e. LUEp) needed to be calculated for the ecosystem, 27 

overstory and understory. The calculated LUEp value To use greenness phenology information for 28 

predicting GPP from the LUE model, an estimate of maximal LUE was calculated, which was higher 29 

for the understory (3.452.41 ± 0.4123 g C MJ
-1

 PAR
-1

) compared to the overstory (1.4322 ± 0.063 g C 30 

MJ
-1 

PAR
-1

, Fig. 3). The higher LUEmaxp for the understory is largely due to the dominance of C4 31 

grasses in the understory (Table 1), as their C4 photosynthetic pathway is more energy efficient (Sage, 32 

2004;Osborne and Beerling, 2006;Zhu et al., 2008). Our values fell within the range of LUEmaxp 33 

reported for African savannas, which have varied from as low as 0.33 g C MJ
-1

 PAR
-1 

up to 3.5 g C 34 

MJ
-1

 PAR
-1

 depending on the vegetation and season (Sjöström et al., 2013;Tagesson et al., 2015). 35 

Recent work has shown the importance of correctly applying LUEmaxp values to C3 and C4 plants 36 
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when using LUE models to calculate GPP (Yan et al., 2015). Therefore, to account for the C3:C4 1 

differences, we applied these site and trait specific values to the LUE model used to estimate GPP.   2 

The next step in our parameterisation of the LUE model was to test it in its traditional form; using the 3 

meteorological inputs of TMIN and VPD that constrain LUEmaxp, along with APAR (Eq. 6). We found 4 

the model captured most of the seasonality of overstory GPP but underestimated the magnitude of 5 

GPP in the dry season and overestimated GPP in the wet season (Table 2, Fig. 8, a). For the 6 

understory, the LUE model appeared to overestimate and lag flux tower GPP consistently by 1-2 7 

months (Table 2, Fig. 9, a). This resulted in a strong dry season over estimate of understory GPP 8 

(16559 %, Table 2). For the ecosystem, the LUE model consistently overestimated GPP (Table 2, Fig. 9 

10, a). Kanniah et al. (2009) also found the LUE model performed poorly for the Howard Springs 10 

ecosystem, so they replaced the standard VPD parameterisation with an EF term and found this to 11 

improve the relationship, which we implemented next.  12 

Application of EF to the overstory model in this study improved its ability to predict GPP in the dry 13 

season but overestimated GPP in the wet season, causing an over prediction of annual GPP by 18 % 14 

overall (Table 2, Fig. 8, a vs. b). In contrast, the inclusion of EF in the understory LUE model slightly 15 

improved the prediction of annual GPP, with better correlation (0.6973 vs 0.567), lower RMSE 16 

(2.001.43 vs. 2.6602 g C m
-2

) and lower RPE (38.5822.27 vs. 79.6262.09 %). However, the 17 

understory model still lagged tower GPP and was still particularly poor at capturing the seasonal 18 

transitions (Fig. 9 a & b). For the ecosystem, the inclusion of EF enhanced the overestimation of GPP 19 

from 154 to 265 %, particularly in the wet season (Table 2, Fig. 10, a vs. b). EF provides a proxy 20 

measure of soil moisture as it includes a water flux component (LE) that is tightly linked with soil 21 

moisture availability (Gentine et al., 2007;Kanniah et al., 2009). In Australian savannas, soil moisture 22 

is highly seasonal and a major driver of productivity (Kanniah et al., 2010). This makes EF a useful 23 

index in the dry season, when latent heat largely comes from transpiration and is therefore tightly 24 

coupled with GPP. However, in the wet season, soil evaporation contributes a large amount to latent 25 

heat, which is not tightly coupled to GPP (Kanniah et al., 2009). This explains why EF is able to 26 

constrain the LUE model in the dry season and why it performs poorly in the wet season and 27 

transition periods.  28 

The incorporation of phenocam GCC into the LUE model improved the estimate of understory GPP 29 

substantially (Table 2, Fig. 9, c & d). This was most apparent with the combined use of GCC and EF 30 

in the LUE model, which produced the best correlation (r = 0.865), lowest RMSE (1.420.96 g C m
-2

) 31 

and lowest RPE (39.5917.73 %, Table 2, Fig. 9). These results show that while EF is an important 32 

factor for GPP, greenness phenology is also key for estimating understory productivity. In further 33 

support of this, the inclusion of GCC also eliminated the lag in model estimated GPP, bringing the 34 

estimate closer in line with seasonal variability from the flux tower, as evidenced by the large 35 
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decrease in RMSE and RPE (Table 2, Fig. 9). As previously discussed, the understory grasses (annual 1 

species in particular) die off at the cessation of the wet season and do not contribute to the small 2 

fraction of understory GPP in the dry season (Moore et al., 2016a). This is a plant phenology response, 3 

rather than a response to meteorological conditions, as factors such as soil moisture remain high 4 

enough in the early dry season to support plant growth (Eamus et al., 2002;Kelley et al., 2007;Moore 5 

et al., 2016a). Given that these grasses dominate understory biomass at Howard Springs, it is not 6 

surprising that including greenness phenology information in the LUE model improves its output 7 

relative to the flux tower.  8 

The inclusion of greenness indices in the LUE model for the overstory (GCC) and ecosystem (EVI) 9 

also improved the estimate of GPP. For the overstory, the combination of EF and GCC performed 10 

slightly better in the dry season than GCC alone, but was not able to capture the wet season well 11 

(Table 2, Fig. 8 d). This resulted in the incorporation of GCC into the LUE model producing the best 12 

overall result, despite the slightly lower correlation value (0.60 vs 0.72) and RMSE (1.43 vs. 1.36 g C 13 

m
-2

) when compared with GCC and EF combined (Table 2). For the ecosystem, the inclusion of EVI 14 

into the LUE model performed the best at predicting GPP, which was supported by the lowest values 15 

for RMSE (2.1203 g C m
-2

) and RPE (15.493.76 %, Table 2).  16 

The greenness information clearly fills an important gap in relation to changes in overstory, 17 

understory and ecosystem greenness. The general improvement in LUE model output for overstory, 18 

understory and ecosystem with the inclusion of greenness phenology information highlights the 19 

importance of accounting for phenological variability when estimating GPP in savannas. A similar 20 

result was found for a subalpine grassland in Italy, where phenocam greenness indices improved the 21 

ability of the same LUE model to predict grassland GPP (Migliavacca et al., 2011). Likewise, in an 22 

evergreen Amazonian rainforest, Wu et al. (2016) linked phenological changes in leaf development 23 

and demography to seasonality in GPP, showing the importance of phenology as a driver of 24 

ecosystem productivity. For Australian savannas, the effect of phenology is most evident at the end of 25 

the wet season (Apr-May), where in the understory, growth ceases due to annual grass senescence 26 

even though meteorological conditions (temperature, VPD and/or EF) are still sufficient to support 27 

growth (Fig. 9 a&b vs. c&d). The original LUE model over-predicts GPP as a result of this, which is 28 

due to APAR remaining high despite the lack of green vegetation (see supplementary material). This 29 

effect is substantially reduced by the inclusion of greenness phenology indices that likely represents a 30 

type of ‘green APAR’ that more closely tracks the vegetation productivity over time.  31 

 The original LUE model over-predicts GPP as a result of this, which is substantially reduced by the 32 

inclusion of greenness phenology indices.  33 
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3.4 Limitations, impacts and further work 1 

While phenocams have consistently proven to be a useful tool for phenological and productivity 2 

research (Richardson et al., 2009b;Migliavacca et al., 2011;Filippa et al., 2016;Wu et al., 2016), there 3 

still remain several limitations that require further investigation to improve their utility. Issues related 4 

to camera choice and image collection have been shown to be less problematic for simple 5 

identification of phenological transition dates and seasonal variation than first thought (Sonnentag et 6 

al., 2012), however, maintaining similar protocols for cross site comparisons remains preferable 7 

(Moore et al., 2016c). Scene illumination variability is probably the most problematic limitation of 8 

phenocams, which can be reduced by using chromatic coordinates or excess values, as well as by 9 

setting the white balance to a fixed level (Richardson et al., 2009a;Ide and Oguma, 2010;Migliavacca 10 

et al., 2011). Although white balance was not fixed for this study, we found that the GCC and ExG 11 

time series matched well with GPP estimates regardless and provided added value to that gained from 12 

using just APAR alone in the LUE model.  We suspect this is due to the highly dynamic nature of the 13 

savanna vegetation, which allows the phenology signals to be identified despite the potential for 14 

variable white balance.  15 

The wet season influence on scene illumination adds daily noise to the time series, but the indices are 16 

still useful for informing seasonal productivity estimates. This same relationship will likely not stand 17 

for other, less dynamic ecosystems in Australia (Restrepo-Coupe et al., 2015;Moore et al., 2016c), so 18 

we recommend the fixing of white balance where appropriate. The use of a grey reference panel for 19 

normalising phenocam images has also been proposed (Richardson et al., 2009a), however, this 20 

technique has issues related to panel orientation and illumination conditions that can be different to 21 

those experienced by the phenocams (Migliavacca et al., 2011). Despite these limitations, phenocams 22 

are still an important tool for both species and plot scale phenology monitoring and with further 23 

developments, will continue to provide valuable insight into Australian vegetation phenology (Moore 24 

et al., 2016c).  25 

In addition to the phenocam issues, the light use efficiency model used in this study is also subject to 26 

limitations. This model relies on the input of meteorological information to generate an estimate of 27 

ecosystem GPP. It is often found that these models overestimate GPP in the transition periods from 28 

wet-dry or dry-wet in savanna ecosystems (Kanniah et al., 2009). The primary reason for this is that 29 

savanna GPP is not driven solely by meteorology, that plant phenology also plays an important role, 30 

as shown in our analysis. The technique for estimating LUEmaxp, used in the LUE model (Eq. 5), also 31 

involves a degree of uncertainty that is centred around the input parameters of LUE and APAR, as 32 

well as the scalars used to constrain it (De Bie et al., 1998;Sjöström et al., 2013).  33 

The MODIS MOD17 A2/A3 GPP product uses a LUEmaxp value of 1.21 g C MJ
-1

 for savannas and 34 

1.24 g C MJ
-1

 for woody savannas (Zhao and Running, 2010). While these values are close to the 35 
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number we calculated for the overstory (1.4326 ± 0.063 g C MJ
-1 

PAR
-1

), we found the understory 1 

LUEmaxp to be much larger (3.452.44 ± 0.4123 g C MJ
-1 

PAR
-1

). Similarly, for African savannas, 2 

LUEmaxp has been found to reach up to 3.50 g C MJ
-1 

PAR
-1

 in the wet (growing) season (Sjöström et 3 

al., 2013;Tagesson et al., 2015). These LUEmaxp values are much larger than that used in the MOD17 4 

A2/A3 algorithm, which suggests that tree-grass (C3 vs. C4) ratios need to be better accounted for in 5 

the LUE model. Recent work from Yan et al. (2015) has shown this to be the case, where the 6 

application of different LUEmaxp values to C3 (1.8 g C MJ
-1 

PAR
-1

) and C4 (2.76 g C MJ
-1 

PAR
-1

) plants 7 

improved global model estimates of GPP.  8 

Finally, the flux tower estimates of GPP are not without their own limitations, as the towers measure 9 

NEE that is then partitioned into GPP and respiration most commonly by using a friction velocity (u*) 10 

threshold at night and upscaling method for the daytime (Reichstein et al., 2005;Bowman, 2000;Keith 11 

et al., 2012). Use of the u* technique has been shown to be problematic at sites with complex terrain 12 

(van Gorsel et al., 2009), where drainage flows result in horizontal loss of carbon from an ecosystem 13 

that is not accounted for by the flux instruments. While Howard Springs is a relatively flat site (slope 14 

< 1 ᵒ) that should prevent issues with using the u* technique, the flux tower estimates from this site 15 

should still be considered with an amount of uncertainty as well (Moore et al., 2016a;R Core Team, 16 

2013). However, these issues have been addressed by previous work at this site (Moore et al., 2016a) 17 

so we have confidence in the fluxes used for this study. Despite these limitations, we were able to 18 

show that the input of phenological information into LUE models can provide a useful constraint for 19 

estimating GPP within the uncertainty limits of tower derived estimates, a similar conclusion to that 20 

found over a subalpine grassland in the Italian Alps (Migliavacca et al., 2011).  21 

4 Conclusion 22 

We have shown the utility of phenocams for the monitoring of tree and grass phenology in savannas 23 

and how this data can improve the quantification of productivity. Phenocams offer the ability to 24 

decipher species level phenological signals, as shown by our time series analysis of understory grasses 25 

and woody green species, as well as in the tracking of seasonal overstory leaf area change. Phenocams 26 

have also shown to be useful for improving LUE models that have traditionally failed to capture the 27 

wet-dry season transition periods well in savannas, which are characterised by phenology changes in 28 

the understory that are out of sync with meteorological variability. This approach needs to be tested in 29 

more ecosystems to determine its applicability for a wider range of ecosystem types, but promises 30 

improved results for better understanding of ecosystem GPP and phenology. Phenological information 31 

offers an important link for our understanding of ecosystem function as it provides a more accurate 32 

means of independently verifying tower derived GPP estimates in savannas. We have demonstrated 33 

that phenocams can be used in conjunction with eddy covariance flux towers to improve current 34 



21 
 

knowledge of savanna productivity and phenology, which will assist in our understanding of how the 1 

tree-grass relationship in savannas may alter in the future.  2 
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Table 1: Understory biomass harvest information for Howard Springs savanna collected across the wet seasons 

from 2012 to 2014.  

Period Grass 

biomass (t 

ha
-1

) 

Other 

biomass 

(t ha
-1

) 

Grass 

biomass 

(%) 

Other 

biomass 

(%) 

Start Wet – Dec 0.46 0.96 33 67 

Mid Wet – Feb 1.34 1.77 43 57 

Peak Wet – Mar 1.55 1.09 59 41 

End Wet - Apr 1.31 0.38 77 23 
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Table 2: Summary of model performances against flux tower estimated GPP for overstory and understory at Howard Springs. Statistics include the Pearson Correlation 

coefficient (Corr), the root mean square error (RMSE, g C m
-2

 d
-1

) and the relative predictive error (RPE, %) for the light use efficiency model (LUE), LUE with 

evaporative fraction (LUE_EF), LUE with green chromatic coordinates (LUE_GCC) and LUE with EF and GCC (LUE_EF_GCC). The * highlights that the MODIS 

enhanced vegetation index (EVI) is used instead of GCC for the Ecosystem analysis. Pearson p values are not included as all were significant with P<0.001.  

  Overstory Understory Ecosystem*  

 Model Corr RMSE RPE Corr RMSE RPE Corr RMSE RPE 

All years LUE 0.64 1.6445 7.50-1.79 0.567 2.6602 79.6262.09 0.80 2.181 14.823.77 

LUE_EF 0.73 1.8047 18.338.40 0.6973 2.001.43 38.5822.27 0.79 2.769 26.395.18 

LUE_GCC/EVI* 0.60 1.5643 6.39-0.85 0.8178 1.8640 80.2155.32 0.81 2.1209 15.494.85 

LUE_EF_GCC/EVI* 0.72 1.6036 16.388.44 0.865 1.420.96 39.5917.73 0.83 2.5248 26.225.51 

Wet Season 

(15 Oct - 15 Apr) 

LUE 0.61 2.001.59 24.5113.30 0.313 3.202.28 52.0030.89 0.72 2.5442 16.975.53 

LUE_EF 0.68 2.371.85 34.9322.76 0.3943 2.731.92 41.0921.60 0.66 3.3218 26.835.26 

LUE_GCC/EVI* 0.61 1.7850 22.5214.02 0.6359 2.161.43 53.8326.95 0.74 2.462 19.638.92 

LUE_EF_GCC/EVI* 0.6970 2.061.67 32.4023.13 0.676 1.9725 45.1819.33 0.71 3.1307 29.128.36 

Dry Season 

(16 Apr – 14 Oct) 

LUE 0.4037 1.2632 -10.757.97 0.564 2.091.76 165.7659.34 0.576 1.830 11.7121 

LUE_EF 0.643 1.1205 0.51-7.76 0.5248 1.050.84 30.7724.36 0.721 2.2619 25.7506 

LUE_GCC/EVI* 0.234 1.3437 -10.916.80 0.451 1.5538 162.4343.73 0.39 1.776 9.518.94 

LUE_EF_GCC/EVI* 0.567 1.063 -0.817.31 0.352 0.692 22.1712.73 0.63 1.864 22.011.38 
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Figure 1: Diagram showing the core instrumentation supported by each flux tower and mini tower at the 

Howard Springs OzFlux site, as well as the layout of the monitoring plot.  
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Figure 2: Camera setup (a & d) and examples of understory (b & c) and overstory (e & f) regions of interest 

(ROI, black box) used from phenocam images collected at the Howard Springs OzFlux site.  
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Figure 3: Monthly mean light use efficiency (LUE) ± SE (boxes) with 95 % confidence (whiskers) for the 

Howard Springs OzFlux site ecosystem (a), overstory (b) and understory (c) from December 2012 to 

October 2014. Individual dots represent outlier values for each respective month.  

 

 

 

 

 

 

 

 

Figure 4: Daily green, red and blue chromatic coordinates (GCC/RCC/BCC) and excess indices (ExG/ExR/ExB) 

for the Howard Springs OzFlux site understory from December 2012 to October 2014. Daily data are 

shown with an 8-day centred running mean (marked every 8 days for visualisation) applied. The 

standard error of the mean is given by the shading. 
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Figure 5: Daily rainfall (mm) and green chromatic coordinate (GCC) time series for grass and other woody 

green species (woody sp.) found in the savanna understory at the Howard Springs OzFlux site from 

December 2012 to October 2014. The GCC daily data are shown with an 8-day centred running mean 

(marked every 8 days for visualisation) applied. The standard error of the mean is given by the shading. 

The GCC time series represent the change in relative greenness of grass and woody species, not the 

absolute sum of grass versus woody species biomass in the understory.  
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Figure 6: Daily green, red and blue chromatic coordinates (GCC/RCC/BCC) and excess indices (ExG/ExR/ExB) 

for the Howard Springs OzFlux site overstory (a), plus GCC and leaf area index (LAI) for the overstory 

(b) from December 2012 to October 2014. Daily data are shown with an 8-day centred running mean 

(marked every 8 days for visualisation) applied. The standard error of the mean is given by the shading. 
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Figure 7: Overstory (a & b) and understory (c & d) flux tower GPP with green chromatic coordinate (GCC) and 

excess green (ExG) indices, as well as ecosystem flux tower GPP with MODIS enhanced vegetation 

index (EVI, e), from December 2012 to October 2014 at the Howard Springs OzFlux site. Daily data 

are shown with an 8-day running mean (marked every 8 days for visualisation) applied. The standard 

error of the mean is given by the shading. Included for each time series are the respective regression 

plots showing r
2
 and p values for GCC/ExG/EVI (x) against flux tower GPP (y). For MODIS EVI (e) 

the time series plot includes raw 16 day values (EVI) and a Savitzky-Golay smoothed daily EVI 

product (EVI_sm), with the regression plot showing the raw 16 day EVI and the corresponding GPP 

for that day.  
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Figure 8: Overstory flux tower estimated GPP with model predicted GPP for the Howard Springs OzFlux site. 

Models shown are a) light use efficiency (LUE-1), b) LUE with evaporative fraction (LUE-2), c) LUE 

with green chromatic coordinates (LUE-3), d) and LUE with EF and GCC (LUE-4).  
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Figure 9: Understory flux tower estimated GPP with model predicted GPP for the Howard Springs OzFlux site. 

Models shown are a) light use efficiency (LUE-1), b) LUE with evaporative fraction (LUE-2), c) LUE 

with green chromatic coordinates (LUE-3), d) and LUE with EF and GCC (LUE-4). 
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Figure 10: Ecosystem flux tower estimated GPP with model predicted GPP for the Howard Springs OzFlux site. 

Models shown are a) light use efficiency (LUE-1), b) LUE with evaporative fraction (EF, LUE-2), c) 

LUE with MODIS enhanced vegetation index (EVI, LUE-3), d) and LUE with EF and EVI (LUE-4).  
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