## Supplementary Material

## **Response of water use efficiency to summer drought in boreal Scots pine forests in Finland**

Yao Gao<sup>1</sup>, Tiina Markkanen<sup>1</sup>, Mika Aurela<sup>1</sup>, Ivan Mammarella<sup>2</sup>, Tea Thum<sup>1</sup>, Aki Tsuruta<sup>1</sup>, Huiyi Yang<sup>3</sup>, Tuula Aalto<sup>1</sup>

<sup>1</sup>Finnish Meteorological Institute, Helsinki, P.O. Box 503, 00101, Finland

<sup>2</sup>Department of Physics, University of Helsinki, Helsinki, P.O. Box 48, 00014, Finland

<sup>3</sup>Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK

10 Correspondence to: Yao Gao (yao.gao@fmi.fi)

## **Regression analysis**

The relationships between gross primary production (GPP) and evapotranspiration/transpiration (ET/T), and their relationships to environmental variables (incoming solar radiation (Rs), air temperature (Ta), vapour pressure deficit (VPD) and soil moisture index (SMI)) under different soil moisture conditions were studied by regression analysis at

15 both sites. We used curve or linear fitting procedures in R software (R Core Team, 2013) to derive the best fitting parameters and coefficients of determination for the prescribed functions. These fittings were adopted to provide general information as to the relationships of those variables, but should not be used to predict plant functioning.

For the relationships between GPP and ET/T, the outliers of the data (deviated groups a and b) were defined based on the residuals from the fitted line. We consider that the data with residuals within the 2.5<sup>th</sup> and 97.5<sup>th</sup> percentiles mostly happen under normal weather conditions, whereas data with residuals outside the percentiles are influenced by extreme weather or uncertainties in the measurements.

The fitting function for the relationship between GPP (as Y) and ET/T (as X) is

25  $Y = D + A \times (1 - \exp(-X/B))^{c}$ .

30

For Hyytiälä, the derived parameters for the relationship between GPP and ET from the observed dataset are: A = 11.42, B = 3.08, C = 0.61, D = 0;

(1)

and the derived parameters for the relationship between GPP and ET from the simulation are: A = 10.64, B = 3.74, C = 1, D = 3.52;

and the derived parameters for the relationship between GPP and T from the simulation are: A = 8.18, B = 1.98, C = 1, D = 4.17.

For Sodankylä, the derived parameters for the relationship between GPP and ET from the observed dataset are: A = 15, B = -4.80, C = 1, D = 0;

and the derived parameters for the relationship between GPP and ET from the simulation are: A = 17.43, B = 20.40, C = 1, D = 3.31;

and the derived parameters for the relationship between GPP and T from the simulation are: A = 6.52, B = 4.07, C = 1, D = 3.25.

40

The fitting functions and parameters for the relationships between GPP or ET/T to the environmental variables under different soil moisture conditions are summarized in Table S1 and Table S2.

## References

R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/, 2013.



Figure S1: Upper panel: relationship between daily gross primary production (GPP) and evapotranspiration
(ET) from the simulated dataset at Hyytiälä. Data are categorized according to environmental variables (soil moisture index (SMI), incoming solar radiation (Rs), air temperature (Ta) and vapour pressure deficit (VPD)). The solid lines are fitted regression lines, and the dashed lines show the 97.5<sup>th</sup> (upper dashed line) and 2.5<sup>th</sup> (lower dashed line) percentiles of the data. Lower panel: Response of daily evapotranspiration (ET) to environmental variables from the simulated dataset at Hyytiälä, categorized with soil moisture conditions. The lines are fitted regression lines for the categorized SMI groups.



Figure S2: Relationship between daily gross primary production (GPP) and evapotranspiration/transpiration (ET/T) at Sodankylä. Data are categorized according to soil moisture index (SMI), incoming solar radiation (Rs), air temperature (Ta) and vapour pressure deficit (VPD). The solid lines are fitted regression lines, and the dashed lines show the 97.5<sup>th</sup> (upper dashed line) and 2.5<sup>th</sup> (lower dashed line) percentiles of the data.



Figure S3: Response of daily gross primary production (GPP) to incoming solar radiation (Rs), air temperature (Ta), vapour pressure deficit (VPD) and soil moisture index (SMI) at Sodankylä, categorized with soil moisture conditions. The lines are fitted regression lines for categorized SMI groups.



Figure S4: Response of daily evapotranspiration/transpiration (ET/T) to incoming solar radiation (Rs), air temperature (Ta), vapour pressure deficit (VPD) and soil moisture index (SMI) at Sodankylä, categorized with soil moisture conditions. The lines are fitted regression lines for the categorized SMI groups.



75 Figure S5: Relationship between daily ecosystem water use efficiency (EWUE) and evapotranspiration (ET), and between daily gross primary production (GPP) multiplied by vapour pressure deficit (GPP × VPD) and ET based on the observed dataset at Sodankylä; relationship between transpiration-based ecosystem water use efficiency (EWUEt) and transpiration (T), and between GPP × VPD and ET/T using the simulated dataset at Sodankylä.

80

|    | Table S1: Regression parameters and the coefficients of determination between daily gross primary production |
|----|--------------------------------------------------------------------------------------------------------------|
| 95 | (GPP) and environmental variables (incoming solar radiation (Rs), air temperature (Ta), vapour pressure      |
|    | deficit (VPD) and soil moisture index (SMI)) categorized with SMI at Hyytiälä.                               |

| Envi | ronmental Varia  | able |                            | Rs               | Та              |                 |                             |                 | SMI             |                             | VPD                        |                            |                |        |                |
|------|------------------|------|----------------------------|------------------|-----------------|-----------------|-----------------------------|-----------------|-----------------|-----------------------------|----------------------------|----------------------------|----------------|--------|----------------|
|      | Fitting function |      | Mich                       | aelis-Menten fun | Linear function |                 |                             | Linear function |                 |                             | Exponential decay function |                            |                |        |                |
|      | Parameter        |      | Vm                         | K                | r <sup>2</sup>  | slop            | interception r <sup>2</sup> |                 | slop            | interception r <sup>2</sup> |                            | C/slope                    | k/interception | А      | $r^2$          |
|      |                  | N1   | 6.950                      | 72.840           | 0.110           | -0.565          | 15.027                      | 0.490           | 57.990          | -4.088                      | 0.620                      | *-3.001                    | *6.567         | NA     | *0.170         |
|      |                  | N2   | 11.010                     | 87.660           | 0.480           | 0.158           | 4.556                       | 0.080           | 5.434           | 4.700                       | 0.020                      | 7.728                      | -6.756         | 0.000  | 0.370          |
|      | observation      | N3   | 11.390                     | 81.290           | 0.650           | 0.155           | 5.338                       | 0.100           | 2.637           | 6.503                       | 0.010                      | 8.563                      | -6.837         | 0.000  | 0.560          |
|      |                  | N4   | 10.190                     | 75.780           | 0.600           | 0.141           | 4.942                       | 0.100           | 8.559           | -2.382                      | 0.010                      | 7.886                      | -4.946         | 0.000  | 0.460          |
| CDD  |                  | N5   | 10.400                     | 74.330           | 0.590           | 0.392           | 1.039                       | 0.290           | 21.747          | -17.777                     | 0.220                      | 7.968                      | -6.006         | 0.000  | 0.610          |
| GPP  | simulation       | N1   | 17.470                     | 403.390          | 0.750           | -0.175          | 9.261                       | 0.060           | 31.118          | 2.597                       | 0.670                      | 6.513                      | -4.761         | 0.000  | 0.050          |
|      |                  | N2   | 16.400                     | 214.030          | 0.940           | 0.343           | 2.325                       | 0.200           | 10.045          | -7.000                      | 0.020                      | 10.064                     | -3.048         | 0.000  | 0.530          |
|      |                  | N3   | 17.450                     | 208.730          | 0.940           | 0.374           | 2.532                       | 0.310           | 9.424           | -2.389                      | 0.004                      | 10.370                     | -3.218         | 0.000  | 0.650          |
|      |                  | N4   | 16.190                     | 188.670          | 0.930           | 0.362           | 2.231                       | 0.310           | 9.970           | -3.179                      | 0.006                      | 10.445                     | -3.373         | 0.000  | 0.630          |
|      |                  | N5   | 18.530                     | 233.070          | 0.980           | 0.382           | 1.620                       | 0.270           | 15.220          | -8.891                      | 0.060                      | 10.256                     | -2.957         | 0.000  | 0.680          |
|      | Fitting function |      | Exponential Decay function |                  |                 | Linear function |                             |                 | Linear function |                             |                            | Exponential decay function |                |        |                |
|      | Parameter        |      | C/slope                    | k/interception   | r <sup>2</sup>  | slop            | interception                | r <sup>2</sup>  | slop            | interception                | r <sup>2</sup>             | C/slope                    | k/interception | А      | r <sup>2</sup> |
|      | observation      | N1   | 2.584                      | -0.004           | 0.320           | -0.053          | 2.377                       | 0.045           | 9.990           | 0.217                       | 0.560                      | *0.0382                    | *1.399         | NA     | *0.001         |
|      |                  | N2   | 2.942                      | -0.007           | 0.510           | 0.092           | 0.584                       | 0.160           | -2.215          | 2.729                       | 0.040                      | 2.389                      | -4.705         | 0.000  | 0.340          |
|      |                  | N3   | 3.513                      | -0.006           | 0.580           | 0.097           | 0.786                       | 0.160           | -0.622          | 2.633                       | 0.010                      | 2.818                      | -4.225         | 0.000  | 0.440          |
|      |                  | N4   | 3.178                      | -0.006           | 0.550           | 0.083           | 0.857                       | 0.150           | -1.108          | 2.742                       | 0.013                      | 2.877                      | -2.417         | 0.000  | 0.470          |
| БТ   |                  | N5   | 2.845                      | -0.008           | 0.600           | 0.128           | -0.027                      | 0.220           | -2.319          | 3.974                       | 0.080                      | 2.888                      | -2.856         | 0.000  | 0.660          |
| EI   | simulation       | N1   | *0.009                     | *-0.653          | *0.600          | 0.033           | 0.801                       | 0.010           | 17.073          | -1.243                      | 0.330                      | 2.167                      | -1.273         | 0.000  | 0.150          |
|      |                  | N2   | *0.012                     | *-0.475          | *0.820          | 0.164           | -0.603                      | 0.220           | 3.246           | 0.923                       | 0.010                      | 4.770                      | -0.832         | 0.000  | 0.490          |
|      |                  | N3   | *0.014                     | *-0.645          | *0.880          | 0.162           | -0.134                      | 0.170           | 1.423           | 1.634                       | 0.001                      | 5.038                      | -1.140         | -0.121 | 0.610          |
|      |                  | N4   | *0.014                     | *-0.527          | *0.830          | 0.111           | 0.277                       | 0.140           | 1.533           | 0.952                       | 0.003                      | 6.019                      | -0.829         | -0.062 | 0.590          |
|      |                  | N5   | *0.015                     | *-0.578          | *0.840          | 0.143           | -0.179                      | 0.120           | -4.117          | 5.275                       | 0.014                      | 5.296                      | -1.486         | -0.623 | 0.690          |
| Т    | simulation       | N1   | *0.009                     | *-0.790          | *0.780          | 0.035           | 0.439                       | 0.017           | 6.778           | 0.274                       | 0.230                      | *1.086                     | *0.130         | NA     | *0.397         |
|      |                  | N2   | *0.011                     | *-0.702          | *0.760          | 0.207           | -1.755                      | 0.390           | -1.491          | 2.050                       | 0.005                      | *2.388                     | *-0.162        | NA     | *0.733         |
|      |                  | N3   | *0.013                     | *-1.015          | *0.810          | 0.204           | -1.328                      | 0.280           | -1.590          | 2.580                       | 0.006                      | *3.097                     | *-0.244        | NA     | *0.846         |
|      |                  | N4   | *0.012                     | *-0.821          | *0.760          | 0.134           | -0.628                      | 0.230           | -1.320          | 2.331                       | 0.006                      | *3.223                     | *-0.290        | NA     | *0.753         |
|      |                  | N5   | *0.012                     | *-0.695          | *0.790          | 0.156           | -1.041                      | 0.230           | -5.556          | 6.283                       | 0.130                      | *3.257                     | *-0.369        | NA     | *0.853         |

The groups N1 to N5 are classified according to soil moisture conditions: N1 ( $0 \leq SMI < 0.2$ ), N2 ( $0.2 \leq SMI < 0.4$ ), N3 ( $0.4 \leq SMI < 0.6$ ), N4 ( $0.6 \leq SMI < 0.8$ ), N5 ( $0.8 \leq SMI < 1$ ). The form of exponential function is  $Y = C \times (1 - exp(k \times X))$ ) or  $Y = A + C \times (1 - exp(k \times X))$ . The form of Michaelis-Menten function is  $Y = Vm \times X/(K+X)$ . Values marked with \* mean that linear function is adopted as the fitting function for this group of data, which is different to other groups from the observed dataset; NA means there is no data for this group or that the parameter is not needed in the fitting function.

105 Table S2: Regression parameters and the coefficients of determination between daily evapotranspiration/transpiration (ET/T) and environmental variables (incoming solar radiation (Rs), air temperature (Ta), vapour pressure deficit (VPD) and soil moisture content ( $\theta$ )/soil moisture index (SMI)) categorized with  $\theta$ /SMI at Sodankylä.

| Enviror          | nmental Variable |    | Rs                         | Ta             |                |                 |              | SMI            |                 |              | VPD            |                            |                |                |
|------------------|------------------|----|----------------------------|----------------|----------------|-----------------|--------------|----------------|-----------------|--------------|----------------|----------------------------|----------------|----------------|
| Fitting function |                  |    | Michaelis-Menten function  |                |                | Linear function |              |                | Linear function |              |                | Exponential decay function |                |                |
| Parameter        |                  |    | Vm                         | К              | r <sup>2</sup> | slop            | interception | r <sup>2</sup> | slop            | interception | r <sup>2</sup> | С                          | k              | r <sup>2</sup> |
|                  |                  | N1 | NA                         | NA             | NA             | NA              | NA           | NA             | NA              | NA           | NA             | NA                         | NA             | NA             |
|                  | observation      | N2 | 6.414                      | 49.874         | 0.140          | 0.117           | 3.194        | 0.058          | 37.713          | 2.974        | 0.024          | 5.359                      | -6.781         | 0.170          |
|                  |                  | N3 | 8.118                      | 100.297        | 0.510          | 0.290           | 0.802        | 0.440          | 23.336          | 3.148        | 0.020          | 6.039                      | -4.964         | 0.550          |
|                  |                  | N4 | 7.331                      | 77.857         | 0.230          | 0.190           | 2.359        | 0.171          | -19.716         | 7.161        | 0.010          | 5.492                      | -7.474         | 0.220          |
| CDD              |                  | N5 | 6.393                      | 68.408         | 0.270          | 0.188           | 2.032        | 0.146          | -95.103         | 17.151       | 0.141          | 4.827                      | -9.322         | 0.220          |
| GPP              |                  | N1 | 11.547                     | 264.615        | 0.610          | 0.303           | 0.203        | 0.449          | 12.703          | 2.398        | 0.033          | 7.044                      | -1.848         | 0.540          |
|                  |                  | N2 | 10.124                     | 186.965        | 0.510          | 0.237           | 1.909        | 0.655          | -5.682          | 7.248        | 0.068          | 7.040                      | -2.379         | 0.680          |
|                  | simulation       | N3 | 7.620                      | 100.031        | 0.590          | 0.243           | 1.538        | 0.627          | -3.135          | 6.176        | 0.025          | 5.539                      | -5.632         | 0.510          |
|                  |                  | N4 | 6.187                      | 57.301         | 0.470          | 0.208           | 1.854        | 0.579          | 2.756           | 2.511        | 0.026          | 4.772                      | -11.735        | 0.250          |
|                  |                  | N5 | 6.666                      | 78.950         | 0.490          | 0.218           | 1.364        | 0.469          | -7.349          | 10.970       | 0.145          | 4.903                      | -7.955         | 0.380          |
| Fit              | ting function    |    | Exponential Decay function |                |                | Linear function |              |                | Linear function |              |                | Exponential decay function |                |                |
| ]                | Parameter        |    | C/slope                    | k/interception | r <sup>2</sup> | slop            | interception | r <sup>2</sup> | slop            | interception | r <sup>2</sup> | C/slope                    | k/interception | r <sup>2</sup> |
|                  |                  | N1 | NA                         | NA             | NA             | NA              | NA           | NA             | NA              | NA           | NA             | NA                         | NA             | NA             |
|                  |                  | N2 | *0.002                     | *1.293         | *0.036         | 0.017           | 1.336        | 0.009          | 21.392          | 0.484        | 0.066          | *0.184                     | *1.469         | *0.010         |
|                  | observation      | N3 | 2.406                      | -0.011         | 0.360          | 0.114           | 0.290        | 0.372          | 13.585          | 0.854        | 0.034          | 2.273                      | -5.829         | 0.330          |
|                  |                  | N4 | 2.341                      | -0.011         | 0.310          | 0.080           | 0.841        | 0.256          | -13.490         | 3.459        | 0.041          | 2.163                      | -7.209         | 0.250          |
| ET               |                  | N5 | 2.029                      | -0.016         | 0.200          | 0.095           | 0.628        | 0.288          | -15.059         | 3.765        | 0.032          | 1.973                      | -9.307         | 0.100          |
| LI               |                  | N1 | *0.012                     | *-0.950        | *0.836         | 0.049           | 0.826        | 0.017          | 0.550           | 4.159        | 0.007          | *0.909                     | *29.715        | *0.826         |
|                  |                  | N2 | *0.013                     | *-0.819        | *0.771         | 0.089           | 0.451        | 0.089          | 2.882           | -2.471       | 0.018          | *2.558                     | *0.235         | *0.745         |
|                  | simulation       | N3 | *0.013                     | *-0.675        | *0.755         | 0.104           | 0.294        | 0.122          | 2.759           | -2.320       | 0.015          | *3.124                     | *0.212         | *0.602         |
|                  |                  | N4 | *0.014                     | *-0.742        | *0.739         | 0.124           | 0.253        | 0.245          | 4.914           | -1.851       | 0.072          | *3.712                     | *0.057         | *0.689         |
|                  |                  | N5 | *0.018                     | *-1.127        | *0.740         | 0.200           | -1.634       | 0.373          | -7.869          | 8.803        | 0.118          | *5.170                     | *-0.329        | *0.693         |
|                  |                  | N1 | *0.011                     | *-0.868        | *0.791         | 0.209           | -1.845       | 0.449          | 4.422           | 0.424        | 0.008          | *2.318                     | *-0.302        | *0.842         |
|                  |                  | N2 | *0.012                     | *-1.019        | *0.751         | 0.143           | -0.352       | 0.347          | -2.331          | 2.520        | 0.017          | *2.704                     | *-0.188        | *0.881         |
| Т                | simulation       | N3 | *0.009                     | *-0.631        | *0.767         | 0.102           | -0.294       | 0.234          | -4.962          | 3.430        | 0.133          | *2.709                     | *-0.213        | *0.900         |
|                  |                  | N4 | *0.008                     | *-0.483        | *0.670         | 0.084           | -0.131       | 0.199          | 3.710           | -1.656       | 0.101          | *2.741                     | *-0.190        | *0.919         |
|                  |                  | N5 | *0.008                     | *-0.439        | *0.747         | 0.057           | -0.040       | 0.122          | -5.717          | 6.017        | 0.336          | *2.553                     | *-0.203        | *0.912         |

The groups N1 to N5 are classified according to soil moisture conditions. For the observed dataset at Sodankylä, soil moisture content ( $\theta$ ) [m<sup>3</sup> H<sub>2</sub>O m<sup>-3</sup>] was used for classification of the groups: N1 ( $0 \le \theta < 0.032$ ), N2 ( $0.032 \le \theta < 0.064$ ), N3 ( $0.064 \le \theta < 0.096$ ), N4 ( $0.096 \le \theta < 0128$ ), N5 ( $0.128 \le \theta < 0.16$ ). For the simulated results, SMI was used to define the groups: N1 ( $0 \le SMI < 0.2$ ), N2 ( $0.2 \le SMI < 0.4$ ), N3 ( $0.4 \le SMI < 0.6$ ), N4 ( $0.6 \le SMI < 0.8$ ), N5 ( $0.8 \le SMI < 1$ ). The form of exponential function is Y = C×(1-exp(k×X)) or Y = A+C×(1-exp(k×X)). The form of Michaelis-Menten function is Y = Vm×X/(K+X). Values marked with \* mean that linear function is adopted as the fitting function for this group of data, which is different to other groups from the observed dataset; NA means there is

115 fitting function for this group of data, which is different to other groups from the observed dataset; NA means there is no data for this group or that the parameter is not needed in the fitting function.