

1

MONODEUTERATED METHANE: AN ISOTOPIC PROBE TO MEASURE BIOLOGICAL METHANE METABOLISM RATES AND TRACK CATABOLIC EXCHANGE REACTIONS

Jeffrey J. Marlow^{1*#}, Joshua A. Steele^{1^}, Wiebke Ziebis², Silvan Scheller¹, David Case¹, Victoria J. Orphan¹

¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125 USA

² Department of Biological Science, University of Southern California, Los Angeles, CA, 90089 USA

* Current address: Dept. of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA

^ Current address: Southern California Coastal Water Research Project, Costa Mesa, CA 92626 USA

Correspondence email: marlow@fas.harvard.edu

6 Abstract

7	Biological methane oxidation is a globally relevant process that mediates the flux of an
8	important greenhouse gas through both aerobic and anaerobic metabolic pathways. However,
9	measuring the rates of these metabolisms presents many obstacles, from logistical barriers to
10	regulatory hurdles and poor precision. Here we present a new approach for measuring rates of
11	microbial methane metabolism that is non-toxic, rapid, and relatively high throughput, alleviating
12	some of the current methodological challenges. Specifically, we tested the potential for using
13	monodeuterated methane (CH ₃ D) as a metabolic substrate for measuring the rate of methane
14	activation by quantifying the change in the aqueous D/H ratio over time using a water isotope
15	analyzer. This method represents a non-toxic, comparatively rapid and straightforward approach
16	that is complementary to existing radio (¹⁴ C)- and stable (¹³ C) carbon isotopic methods; by probing
17	hydrogen atom dynamics, it offers an additional dimension through which to examine the rates and
18	pathways of methane metabolism. We provide direct comparisons between the CH ₃ D procedure
19	and the well-established $^{14}CH_4$ radiotracer approach for several methanotrophic systems, including
20	type I and type II aerobic methanotroph cultures, and methane seep sediment and carbonate rocks
21	under anoxic and oxic incubation conditions. We also employ this method to investigate the role of
22	pressure on methane oxidation rates in anoxic seep sediment, revealing an 80% increase at the
23	equivalent of ~900 m water depth (40 MPa).
24	The monodeuterated methane approach offers a procedurally straightforward, reliable
25	method that advances three specific aims: 1) the direct comparison of methane oxidation rates
26	between different experimental treatments of the same inoculum; 2) the determination of an
27	absolute scaling factor using paired CH3D and ¹⁴ C-radiocarbon procedures for new systems of

28 interest; and 3) a continued evaluation of C- and H-atom tracking through methanotrophic

- 29 metabolisms, with specific foci on enzyme reversibility and anabolic/catabolic branch points. The
- 30 procedural advantages, consistency, and novel research questions enabled by the monodeuterated
- 31 methane method should prove useful in a wide range of culture-based and environmental microbial
- 32 systems to further elucidate methane metabolism dynamics.
- 33

34 1. Introduction

35 Methane-consuming microbial processes represent an important component of

36 biogeochemical cycles in natural freshwater and marine environments, as well as in human-

37 impacted systems. In terrestrial soils, methane production in rice fields, anoxic wetlands, and

thawing permafrost supports methanotrophic communities (Holzapfel-Pschorn et al., 1985;

39 Mackelprang et al., 2011). In marine settings, an estimated 85 Tg of methane per year, derived

40 from biogenic and thermogenic sources, enters the subseafloor, the vast majority of which is

41 anaerobically consumed in anoxic sediments (Reeburgh, 2007). Much of what remains is taken up

42 in microoxic or oxic zones of the sediment or water column by aerobic methanotrophic

43 microorganisms (Valentine et al., 2001). Methanotrophy is also of interest in a range of human-

44 impacted contexts, including wastewater treatment plants (Ho et al., 2013), landfills (Scheutz et al.,

45 2009), and oil spills (Crespo-Medina et al., 2014).

In addition to the climatic and economic implications of the methanotrophic process, its biochemical intricacies have stimulated many investigations. The anaerobic oxidation of methane (AOM) has proven particularly enigmatic, often involving a mutualistic relationship between anaerobic methanotrophic (ANME) archaea and sulfate reducing bacteria (SRB; Boetius et al.,

50 2000). A consensus on the precise nature of the mutualism remains outstanding, but the net result

51 of the process is typically the stoichiometric oxidation of methane coupled with sulfate reduction

52 (Knittel and Boetius, 2009). Alternative electron acceptors including nitrate (Haroon et al., 2013),

and nitrite (Ettwig et al., 2010) have been demonstrated, while several studies have presented

54 equivocal evidence for methane oxidation coupled directly to iron or manganese reduction (Beal et

55 al., 2009; Nauhaus et al., 2005; Sivan et al., 2014).

Methanotrophy is both a biogeochemically relevant reaction that modulates climate forcing 56 57 and a biochemical curiosity; given this dual role, there is substantial interest in measuring the rate of the process and understanding elemental flows through metabolic pathways. AOM rate 58 59 measurements have traditionally been conducted using a handful of techniques. Numerical models 60 incorporating environmental sediment profiles of sulfate and methane concentrations can be used to back-calculate methane consumption rates (Jørgensen et al., 2001). Stable isotope ¹³CH₄ tracers 61 can be used to probe longer-term rates in controlled conditions (Moran et al., 2008), but high levels 62 of natural ¹³C in marine dissolved inorganic carbon pools complicate the measurement (Pack et al., 63 2011). Gas chromatography quantification of dissolved (Girguis et al., 2003) or headspace (Carini 64 65 et al., 2003) methane concentrations has also been demonstrated as a rate measurement tool, though low molarities make samples susceptible to exsolution if not processed quickly after 66 67 collection, a requirement that may not be achievable in field settings. Perhaps the most sensitive approach uses radiolabeled ¹⁴CH₄ to track carbon movement into oxidized species (Alperin and 68 69 Reeburgh, 1985; Treude et al., 2003). Tritiated methane was introduced for water column aerobic 70 methane oxidation measurements due to its improved specific activity and the procedural advantages of working with a water-phase product rather than gaseous products (Valentine et al., 71 2001). Logistical and health and safety regulations led Pack et al. (2011) to develop an accelerator 72 mass spectrometry detection method that requires 10³-10⁵ less radiolabel than previous ¹⁴C and ³H 73 74 approaches, though the analytical procedure remains labor intensive.

75	Despite the range of procedural options, methanotrophy rate measurements remain
76	cumbersome, and the demonstration of a precise, safe, and easily enacted approach would be a
77	welcome contribution for a diverse field of researchers. Nearly all of the aforementioned
78	approaches are carbon-based; a hydrogen-based tracer offers an additional dimension to
79	investigations of methane biochemical dynamics. Here we introduce a novel method for
80	biologically mediated methanotrophy rate measurement that utilizes monodeuterated methane
81	(CH ₃ D) as a substrate and measures the D/H ratio of the aqueous solution.
82	We demonstrate, through methanotrophic cell cultures and microcosm incubations of
83	seafloor sediment and carbonate rock fragments, that aqueous D/H values are consistently
84	proportional to ¹⁴ C-based rate measurements for given laboratory treatments tested in this study.
85	The resulting ratios, when viewed in the context of partial versus complete methane oxidation,
86	represent a new tool with which to examine the reversibility and catabolic / anabolic partitioning of
87	methanotrophic metabolisms. As a rate measurement protocol, this approach offers several
88	advantages over current techniques: it does not require the logistical, safety, and administrative
89	hurdles associated with radiotracers such as ${}^{14}CH_4$ and ${}^{3}H-CH_4$, it is less susceptible to analyte loss
90	than methane headspace measurements, and compares favorably in terms of equipment cost and
91	portability. The monodeuterated methane protocol offers new flexibility for practitioners and
92	represents a useful and distinct new tool for the rate measurement of methanotrophic processes.
93	
94	2. Methods
95	2.1. Experimental Set-Up

To demonstrate the precision and reproducibility of the monodeuterated methane approach, it was tested alongside the better-established $^{14}CH_4$ radiotracer protocol. Both techniques were

- 98 applied to a) aerobic methanotrophic cultures of *Methylosinus trichosporium* and
- 99 Methyloprofundus sedimenti, b) oxic incubations of methane seep sediment and carbonate rocks,
- and c) anoxic incubations of methane seep sediment and carbonate rocks. In addition, the
- 101 monodeuterated methane protocol was employed on its own to demonstrate the relative effect of
- 102 heightened, environmentally relevant pressure on methane consumption rates in anoxic seep
- 103 sediment samples. Monodeuterated methane for all samples was 98% pure CH₃D obtained from
- 104 Sigma-Aldrich (\$247 / L). For a representation of all experiments conducted in this study, see
- 105 Table 1.
- 106 2.1.1. Aerobic Methanotroph Cultures

107 Cultures of *Methylosinus trichosporium* strain OB3b (Whittenbury et al., 1970) were

108 grown using Nitrate Mineral Salts (NMS) medium at 30 °C. The newly characterized

109 Methyloprofundus sedimenti strain WF1 was grown in a modified NMS medium at 25 °C

110 (Tavormina et al., 2015). In both cases, shaking cultures were grown up from stock in sealed 25

111 mL test tubes that contained 5 mL media and 50:50 air:methane by volume. After several

successful transfers, experiments were initiated by passaging 0.94 mL of exponential phase

113 inoculum into 8.5 mL media, for each of ten different experimental conditions, each prepared in

triplicate (see Table S1). These conditions tested the CH₃D approach against killed, cell-free,

115 oxygen-free, and CH₃D-free controls; parallel incubations incorporated ¹⁴CH₄ to allow for three

- time points of destructive sampling, and killed and radiolabel-free controls.
- Samples for D/H analysis were taken at seven time points most concentrated around
 anticipated exponential growth phases throughout 140-hour (*M. trichosporium*) and 476-hour
 (*M. sedimenti*) experiments. Samples for radiolabel processing were taken at 46, 102, and 166.5

- hours for *M. trichosporium* cultures and 102, 166.5, and 432 hours for the slower-growing *M.*
- 121 sedimenti cultures.
- 122 2.1.2. Environmental Samples: Methane Seep Sediments and Carbonates
- 123 Samples recovered from the Hydrate Ridge methane seep system were used to
- 124 comparatively examine the novel monodeuterated methane (CH₃D) approach alongside the ¹⁴CH₄
- 125 protocol with environmental samples. Hydrate Ridge, Oregon, is located along a convergent
- 126 tectonic margin and is well established as a site of methane seepage and sediment-based AOM
- 127 (e.g., Suess et al., 1999; Treude et al., 2003; Tryon et al., 2002). Methane concentrations within the
- most active seep sediments reach several mM, and have been measured and modeled at values up
- to 70 mM (Boetius and Suess, 2004) and 50 mM (Tryon et al., 2002) respectively.
- 130 Samples used for methanotrophic rate experiments are specified in Table 1. All samples
- 131 received a unique four-digit serial number. The "active" designation refers to sites where methane
- 132 seepage was manifested by seafloor ecosystems known to be fueled by subsurface methane (e.g.
- 133 clam beds and microbial mats) or methane bubble ebullition. The term "low activity" references
- 134 sampling sites that did not exhibit any clear signs of contemporary methane seepage or
- 135 chemosynthetic communities, though a small amount of methane supply and methanotrophic
- 136 potential cannot be ruled out as subsurface advective flow can shift with time (Gieskes et al., 2005;
- 137 Marlow et al., 2014; Tryon et al., 2002). The presence of carbonate pavements, coupled to depleted
- 138 $\delta^{13}C_{carbonate}$ values suggest that they formed during "active" periods of seepage, consistent with
- 139 previous descriptions (Naehr et al., 2007; Peckmann and Thiel, 2004). Sample types are
- 140 abbreviated by the A.Sed (active sediment), A.Carb (active carbonate), L.Sed (low-activity
- 141 sediment), and L.Carb (low-activity carbonate) designations. Seven samples were analyzed to
- 142 examine a range of physical substrate type (sediment vs. carbonate rock) and seepage

143	environments (active and low-activity): A.Sed-5128, A.Carb-5305, A.Carb-5152, L.Sed-5043,
144	L.Carb-5028, and sterilized control aliquots of A.Sed-5128 and A.Carb-5305. Carbonate samples
145	include both porous materials with macroscale vugs and pore spaces, as well as massive lithologies
146	with more homogenous structure.
147	Samples were collected with the Deep Submergence Vehicle (DSV) Alvin during Atlantis
148	leg AT-16-68 in September 2010 and the Remotely Operated Vehicle (ROV) Jason II during
149	Atlantis leg AT-18-10 in September 2011. Shipboard, push cores and bottom water-submerged
150	carbonates were immediately transferred to a 4 °C walk-in cold room and processed within several
151	hours. To prepare material for future experimentation, compacted sediment and carbonate rocks
152	were stored in anoxic, Ar-flushed mylar bags at 4 °C until use. In advance of experimental set-up,
153	sediment and carbonate samples were prepared under anoxic conditions using 0.22 μ m-filtered,
154	anoxic N2-sparged Hydrate Ridge bottom water (at a 1:2 sediment/carbonate:bottom water ratio by
155	volume) and maintained under a 2×10^5 Pa CH ₄ headspace for one month.
156	To set up the experimental incubations, 10 mL physical substrate (compressed sediment or
157	carbonate rock) and 20 mL filtered Hydrate Ridge bottom water were placed in 60-mL glass
158	bottles (SVG-50 gaschro vials, Nichiden Riku Glass Co, Kobe, Japan). In all experiments
159	involving carbonates, interior portions (> 5 cm from the rock surface) were used in order to ensure
160	that properties exhibited were representative of bulk rock material and not a reflection of surface-
161	based adherent cells or entrained material. Carbonate rock samples were fragmented in order to fit
162	through the 28-mm diameter bottle opening; pieces were kept as large as possible to minimize the
163	increase in surface area-to-volume ratio and maintain conditions as representative of the in situ
164	environment as possible. All bottles were sealed with butyl stoppers; following several minutes of
165	flushing with N_2 (g), the headspace was replaced with methane, and an additional 30 mL of gas

166	was injected into the 30 mL headspace to generate the desired headspace composition at an
167	absolute pressure of approximately $2x10^5$ Pa. Anoxic incubation headspace was 100% methane;
168	oxic incubation headspace was 30 mL methane, 20 mL $N_2,$ and 10 mL $O_2.$ All incubation set-up
169	prior to gas flushing and headspace injection took place in an anaerobic chamber. Triplicate
170	samples, including killed controls, were prepared for all sample types. Measurements were taken
171	for both D/H and ¹⁴ C analysis at 1.9 and 4 days for oxic incubations, and 3 and 8 days for anoxic
172	incubations. Anoxic active methane seep sediment (A.Sed-5128) incubations were used for
173	isotopic analysis of the remaining methane (set up in triplicate, with 60 mL CH ₃ D initial
174	headspace) as well as empirical resolution studies sampled between days 20 and 22.
175	2.1.3. Pressurized samples
176	In order to probe the effect of pressure on anaerobic methanotrophic rates, a set of
177	experiments was established, using the monodeuterated methane technique to determine relative
178	rate differences. Active sediment from Hydrate Ridge (A.Sed-3450) was collected, processed
179	shipboard, and prepared for experimentation as described above. To set up the incubations, eight
180	100 mL mylar bags were prepared with the components shown in Table S2: identical sets of four
181	compositionally distinct samples were established such that each could be subjected to low and
182	high pressure. Prior to gas addition, each bag was flushed for 5 minutes with Ar.
183	Once the incubations were prepared, they were transported to the laboratory of Dr. William
184	Berelson at the University of Southern California and inserted into a stainless steel, custom-built
185	pressure chamber with 3-cm thick walls and pressure valves rated to 40 MPa. The chamber was
186	placed in a walk-in cold room (4 °C) on site, and hydraulic fluid was pumped into the sealed
187	chamber using a Star Hydraulics P1A-250 hand pump. The pressure was maintained at 9.0 MPa
188	(equivalent to ~900 m water depth) during the course of the 38-day experiment, with daily

- adjustments to account for thermal compression effects. At the conclusion of the experiment, mylar
- 190 bags were removed from the chamber and checked for leaks (none were observed) and sampled for
- 191 D/H ratio measurement.
- 192 <u>2.2. Analytical Procedures</u>
- 193 2.2.1. CH₃D Rate Measurements
- 194 At designated sampling times, ~1 mL of medium / water was collected from cultures or
- incubations in an anaerobic chamber with a sterile syringe. The liquid was then pushed through a
- 196 0.22 μm Durapore filter (EMD Millipore, Temecula, CA) and into a 1-mL GC vial. A LGR DLT-
- 197 100 liquid water isotope analyzer (Los Gatos Research, Mountain View, CA) was used to
- determine the D/H ratio of each sample, with an injection volume of 700 nL at 1000 nL/s, four
- 199 intra-injection flush strokes, and a flush time of 60 s between injections. Four rounds of ten
- 200 injections per sample were performed in order to avoid memory effects; only the latter five
- 201 injections were used in subsequent calculations. Sample runs were limited to ~250 injections in
- 202 order to minimize salt precipitation, and each analysis included an appropriate blank (i.e.,
- 203 autoclaved media for the cultures, or filter sterilized bottom water used during incubation set-up in
- 204 the case of sediment and carbonate incubations) and two standards of known isotopic ratios (Deep
- 205 Blue: $\delta D = 0.5\%$, and CIT: $\delta D = -73.4\%$). Data was removed if instrumental temperature or
- 206 pressure parameters were flagged as sub-optimal (0.76% of all analyses).
- 207 To calculate methane consumption rates, the number of deuterium atoms in the culture /
- 208 incubation was calculated using the experiment's overall water volume and the adjusted D/H
- 209 values (averaging across the latter five injections of the four distinct injection rounds). This value
- 210 was multiplied by four given the 1:3 D:H stoichiometry of the CH₃D substrate to derive the
- 211 number of methane molecules consumed through initial C-X bond activation. Known D/H ratios of

212	the water standards were first used to generate a linear scaling factor that was applied to the		
213	corresponding data. To minimize instrumental drift, standards were re-measured between rounds of		
214	sample analysis (maximum of 40 injections) and new scaling factors were implemented. The		
215	scaling factor of four was used in the context of methane activation – the initial mobilization of the		
216	molecule through conversion to a methyl group – and is an end-member case that may not be		
217	appropriate for all subsequent processing as hydrogen/deuterium atoms are removed or exchanged		
218	(Caveats and interpretation are discussed below, but consistent scaling factor implementation is th		
219	primary requirement for reliable comparison.) The resulting proxy value was divided by the		
220	incubation time and volume to arrive at a rate of methane consumption.		
221	2.2.2. ¹⁴ CH ₄ Rate Measurements		
222	Methane oxidation rates using radiolabeled methane substrate were measured as described		
223	in detail by Treude et al. (2005) and Treude and Ziebis (2010). Radiolabeled methane ($^{14}CH_4$		
224	dissolved in seawater, corresponding to an activity of 13 kBq for culture experiments and 52 kBq		
225	in sediment and carbonate samples) was injected into each sample container, and samples were		
226	incubated at the appropriate temperatures for the designated amount of time (see above). To stop		
227	microbial activity and begin analysis, 2.5 ml of 2.5% NaOH was injected. Sample headspace was		
228	flowed through a Cu^{2+} oxide-filled 850 °C quartz tube furnace, combusting unreacted $^{14}CH_4$ to		
229	14 CO ₂ . This 14 CO ₂ was collected in two scintillation vials (23 ml volume) pre-filled with 7 ml		
230	phenylethylamine and 1 ml 2-methoxyethanol, to which 10 ml of scintillation cocktail (Ultima		
231	Gold XR, PerkinElmer) was added. After a 24-hour incubation period, radioactivity from ${}^{14}\text{CO}_2$		
232	was measured by scintillation counting (Beckman Coulter LS 6500 Multi-Purpose Scintillation		
233	Counter, 10 minute analysis per sample).		

¹⁴CO₂ and H¹⁴CO₃⁻ produced during the experimental period was quantified as follows. 234 235 The entire volume of each incubation sample was transferred into a 250-ml Erlenmeyer flask along with 1 drop of antifoam and 5 ml of 6M HCl. The flask was immediately stoppered and sealed 236 with two clamps and parafilm wrapping to prevent gas escape, and placed on a shaking table (60 237 rpm, room temperature, 24 hours). To collect ¹⁴CO₂ generated by the acidification process, a 7-ml 238 scintillation vial was pre-filled with 1 ml of 2.5% NaOH and 1 ml of phenylethylamine and 239 suspended from the rubber stopper inside the flask. After the shaking / acidification step, 5 ml of 240 scintillation cocktail was added, and the vial was measured by scintillation counting after 24 hours. 241 This method has been demonstrated to recover 98% of ${}^{14}CO_2$ on average (Treude et al., 2003). 242 Finally, sterilized control samples (#10, see Table S2) were set aside after ¹⁴CH₄ addition 243 for gas chromatography to determine the initial concentration of methane gas. 400 µl of headspace 244 was injected into a gas chromatograph (Shimadzu GC-2014), equipped with a packed stainless 245 steel Supelco Custom Column (50/50 mixture, 80/100 Porapak N support, 80/100 Porapak Q 246 247 column, 6 ft x 1/8 in) and a flame ionization detector. The carrier gas was helium at a flow rate of 30 ml min⁻¹, and the column temperature was 60 °C. Results were scaled based on comparison 248 249 with standards of known methane concentrations (10 and 100 ppm; Matheson Tri-Gas, Twinsburg, 250 OH). The rate of methane oxidation was determined by the equation

251
$$Methane Oxidation = \frac{{}^{14}CO_2 \bullet CH_4}{({}^{14}CH_4 + {}^{14}CO_2) \bullet v \bullet t}$$

in which ${}^{14}CH_4$ is the combusted unreacted radiolabeled methane, ${}^{14}CO_2$ represents the quantity of acidified oxidation product, CH_4 signifies the initial quantity of methane in the experiment, v is the volume of sediment or carbonate rock, and t is the time over which the incubation was active.

255 Isotopic Analysis of Methane in the Headspace

256	The methane headspace was analyzed via ¹ H-NMR spectroscopy using a Varian 400 MHz
257	Spectrometer with a broadband auto-tune OneProbe. 300 μ l of headspace was passed through
258	CDCl ₃ with a fine needle to absorb the methane. ¹ H-NMR spectra were acquired at 298 K without
259	spinning, using a repetition rate of 10 s to ensure reliable quantification. The spectra were
260	simulated with the iNMR 4.1.7 software for the determination of the fractional abundances of the
261	¹² CH ₄ , ¹² CH ₃ D, ¹³ CH ₄ and ¹³ CH ₃ D isotopologs.
262	
263	3. Results and Discussion
264	3.1. Aerobic Methanotroph Cultures
265	D/H ratios were acquired at eight points during the M. trichosporium growth curve and
266	seven points of the <i>M. sedimenti</i> growth curve; three measurements of ¹⁴ C distributions were
267	acquired for each strain, targeting exponential and stationary phases (Fig. 1). The Type II
268	alphaproteobacterial methanotroph M. trichosporium exhibited methane consumption rates more
269	than an order of magnitude greater than those of M. sedimenti (gammaproteobacterial Type I
270	methanotroph), yet the scaling factor relating the CH_3D - and ${}^{14}CH_4$ -derived rates was remarkably
271	consistent in both cases. Using data points from both CH_3D and $^{14}CH_4$ experiments taken closest to
272	the end of exponential growth phase (47.5 hours for <i>M. trichosporium</i> , 140 and 102 hours for <i>M.</i>
273	sedimenti CH ₃ D and ¹⁴ CH ₄ measurements, respectively) and in stationary phase (140 and 166.5
274	hours for <i>M. trichosporium</i> CH ₃ D and ¹⁴ CH ₄ measurements; 476 and 432 hours for <i>M. sedimenti</i>
275	CH ₃ D and ¹⁴ CH ₄ measurements), the ratio of methane oxidation rates derived from each approach
276	can be compared. This value is hereafter referred to as the "H:C tracer ratio" because the CH_3D
277	method tracks hydrogen atoms, while the ${}^{14}\text{CH}_4$ approach traces carbon atoms (see "Understanding
278	the H:C Tracer Ratio", below). This ratio can be used to evaluate the consistency of the

279	monodeuterated methane method compared with the better-established ${}^{14}CH_4$ approach, and as an
280	investigatory tool in catabolic / anabolic processing of methane.
281	Using averaged values of tubes #1a, #1b, and #1c for CH_3D rates and the triplicate ${}^{14}CH_4$
282	tubes of the appropriate time point (#6, #7, or #8), H:C tracer ratio values were calculated and are
283	shown in Table 2; their consistency is a promising indicator of the utility of the monodeuterated
284	methane approach for ground-truthed rate measurements. By dividing rates derived from D/H
285	values by 1.5, a reliable estimate of full-oxidation methanotrophy can be attained.
286	3.2. Environmental Samples: Methanotrophy Under Oxic and Anoxic Conditions
287	Oxidation rates under oxic microcosm incubation conditions, derived from both CH ₃ D and
288	¹⁴ CH ₄ measurements, are provided for all five sample types (active sediment, low-activity
289	sediment, active porous carbonate, active massive carbonate, and low-activity massive carbonate)
290	in Fig. 2a. The corresponding values for anoxic conditions are shown in Fig. 2b; all values were
291	calculated from the second time point (4d for oxic conditions, 8d for anoxic conditions).
292	The H:C tracer ratio for the oxic incubations was 1.66 +/- 0.02 SE and 1.99 +/- 0.04 SE for
293	anoxic conditions (Table 2). These relatively consistent values across physical substrate type
294	(sediment and carbonates of varying lithology) and collection site activity level (active and low-
295	activity) suggest an underlying metabolic basis of these H:C tracer ratios that is unperturbed by
296	physicochemical factors or relative activity levels.
297	To determine the minimum number of activated CH ₃ D molecules needed for analytical
298	detection, we assessed the length of time required to measure a differentiable D/H ratio.
299	Measurements were acquired at multiple time points between days 20 and 22 of a triplicate set of
300	A.Sed-5128 incubations. A resolvable signal of an enhanced D/H ratio was defined as data points
301	with non-overlapping confidence intervals, representing a 95% statistical probability that D/H

302	ratios were increased. Such differentiation seen at the 20-hour sampling time for two replicates and
303	the 26-hour sampling time for the other one (Fig. S1). Using the rate determined by the first 20
304	days as a baseline, this translates to a resolution of 4.5-6.2 μ mol of fully oxidized methane based
305	on the H:C tracer ratio of 2.05 (Table 2).
306	3.3. Understanding the H:C Tracer Ratio
307	The CH_3D and $^{14}CH_4$ approaches quantify distinct aspects of methanotrophy, and each
308	offers an important dimension in understanding methane metabolism. The ¹⁴ CH ₄ technique
309	quantifies the amount of ${}^{14}C$ – initially supplied as methane – that is fully oxidized and persists as
310	soluble species (HCO ₃ ⁻) or acid-labile precipitation products (CaCO ₃). The CH ₃ D protocol, on the
311	other hand, reports the extent to which methane-derived hydrogen atoms are found in the aqueous
312	phase. Because methane is an inert molecule, D-H exchange of monodeuterated methane with
313	water is negligible – an expectation borne out by the lack of significantly heightened D/H ratios in
314	killed control experiments (e.g., Fig. 1). Its activation thereby indicates enzymatic
315	functionalization, but the ultimate fate of each hydrogen during methane oxidation is unclear.
316	The flow of methane-derived hydrogen atoms through anaerobic and aerobic
317	methanotrophic metabolisms was examined in an attempt to predictively evaluate the consequence
318	of monodeuterated methane reactions. Previously published reports were used to compile Figure 3
319	(Hallam et al., 2004; Thauer, 2011; Vorholt and Thauer, 1997) and Figure 4 (Lieberman and
320	Rosenzweig, 2004), which trace anaerobic and aerobic methane metabolisms, respectively, with a
321	specific focus on hydrogen atoms. In this context, our observations of relatively consistent but
322	distinct H:C tracer ratios for anaerobic and aerobic methanotrophy (Table 2) likely reflect different
323	aspects of the two metabolic pathways. In AOM, metabolite backflux (Holler et al., 2011) may

- 324 increase the D/H ratio; in aerobic methanotrophy, biomass growth represents a substantial carbon
- 325 and hydrogen shunt.
- 326 3.3.1. The H:C Tracer Ratio in Anaerobic Methanotrophy
- 327 AOM is depicted via the reverse methanogenesis pathway in Fig. 3, whereby methyl-
- 328 coenzyme M reductase (Mcr) activates methane and generates methyl-CoM. A
- 329 tetrahydromethanopterin molecule supplants CoM, and subsequent carbon oxidation steps release
- 330 hydrogen atoms into the medium. Ultimately, the number of methane-derived hydrogen atoms that
- 331 enter water-exchangeable products dictates the physiological interpretation of waterborne D/H
- 332 ratios. For example, if just one methane-derived hydrogen enters an intermediate and is freely
- 333 exchangeable with water, then observed water-based deuterium must be multiplied by four (to
- account for methane's hydrogen-carbon stoichiometry) and a primary isotope effect as high as 2.44
- 335 (M. marburgensis' Mcr's C-H vs. C-D bond-breaking preference, Scheller et al., 2013) to arrive at
- the actual quantity of activated methane molecules. In this context, the experimental H:C tracer
- 337 ratio values may provide useful insight. A H:C tracer ratio of 2 for the reverse methanogenesis
- $_{338}$ pathway suggests that, for every methane molecule that is fully oxidized to CO_2 , two hydrogen
- 339 atoms enter water-exchangeable intermediates.
- However, heightened D/H ratios may occur in the absence of full carbon oxidation and
 could be partially attributable to the back reaction of enzymatic processes (Scheller et al., 2010)
- 342 involving hydrogen exchange with the aqueous medium. For example, upon the activation of
- 343 methane by Mcr, HS-CoB and CH₃-S-CoM form, with the thiol hydrogen exchanging with water-
- bound hydrogen. If the S-bound hydrogen were deuterium, then the re-formation of methane (CH₄)
- 345 would result in a heightened aqueous D/H ratio but no net methane consumption (Fig. 3). We
- 346 analyzed the remaining headspace for the formation of CH₄ from CH₃D via ¹H-NMR

347	spectroscopy. Over the course of 58 days in triplicate seep sediment incubations prepared with
348	exclusively CH ₃ D headspace, CH ₄ in the headspace increased from 0.33% +/- 0.02% SE to 4.48%
349	+/- 0.27% SE. If this demonstrated reversibility only reflects the back reaction of Mcr, then the
350	CH ₄ increase must be multiplied by four to reflect the actual percentage of headspace methane that
351	was re-formed by Mcr; if the reversibility reflects back reaction of the entire pathway, then no
352	scaling factor is needed. Thus, the range of potential methane headspace percentage accounted for
353	by methane reformed from initial CH_3D is between $4.15 - 16.6\%$. For clarity, these calculations
354	neglect isotope effects and activity by methanogens, factors that can be clarified through further
355	experimentation. For example, reversibility can be evaluated by a) including a ¹³ C-dissolved
356	inorganic carbon (DIC) signal in the water and measuring ¹³ CH ₄ , and/or b) utilizing multiply
357	deuterated methane as initial headspace and quantifying all possible isotopologs. Nonetheless, even
358	the upper bound of partially and reversibly oxidized CH ₃ D suggests that the majority of the D/H
359	signal is attributable to reactions indicative of net methane consumption, if not complete oxidation.
360	3.3.2. The H:C Tracer Ratio in Aerobic Methanotrophy
361	In aerobic methanotrophic cultures, a H:C tracer ratio of ~1.5 was observed, suggesting that
362	on average, 2.67 of the four methane-derived hydrogen atoms likely enter water-exchangeable
363	products during the course of a full oxidation pathway. Intriguingly, this ratio was similar for both
364	cultured organisms despite their distinct metabolic pathways. M. tricosporium is a type II
365	methanotroph, a member of the Alphaproteobacteria that uses the serine pathway for carbon
366	assimilation M. sedimenti is a gammaproteobacterial type I methanotroph, using the ribulose

- 367 monophosphate (RuMP) carbon assimilation pathway (Tavormina et al., 2015). The pathway data
- 368 presented in Fig. 4 suggests that all methane-bound hydrogens are water exchangeable during the
- 369 catabolic oxidation of methane to carbon dioxide. Thus, to achieve a H:C tracer ratio less than 4, a

370	substantial proportion of methane-derived formaldehyde would need to proceed down the
371	assimilatory pathway, a requirement that was likely met given the cultures' increase in cell density.
372	The oxic incubations of methane seep sediment produced a H:C tracer ratio of 1.66 +/- 0.02
373	SE. Given that the known modes of biological methane oxidation – type I and type II aerobic
374	methanotrophy and reverse methanogenesis anaerobic methanotrophy – bound this observed value,
375	it appears likely that the oxic sediment incubations supported a mixture of both aerobic and
376	anaerobic methane oxidation processes. Aerobic methane oxidation likely dominated, based on the
377	${\sim}7x10^4$ Pa partial pressure of O_2 and the proximity of the H:C tracer ratio to that of the aerobic
378	methanotrophic cultures, but anoxic niches likely remained or developed in the incubation bottles.
379	3.4. Validating the Monodeuterated Methane Approach: Anaerobic Methanotrophy at Pressure
380	To demonstrate the utility of the CH ₃ D rate measurement approach in addressing
381	experimentally relevant questions, we sought to evaluate the influence of <i>in situ</i> pressure on
382	methanotrophic rates of Hydrate Ridge seep sediment microbial communities. Material collected
383	for microbiological studies of AOM is frequently obtained from marine settings of various depths
384	that are subjected to distinct and substantial pressure regimes (Ruff et al., 2015). Pressure is not
385	always rigorously incorporated into microcosm experiments, though evidence suggests it can be an
386	important determinant of methanotrophic rates (Bowles et al., 2011; Nauhaus et al., 2005; Zhang et
387	al., 2010).
388	Parallel seep sediment incubations were subjected to 0.1 MPa (atmospheric pressure) and
389	9.0 MPa (equivalent to ~900 m depth). Measured rates, expressed in δD values derived from D/H
390	ratios, are shown in Fig. 5. A significant increase in methane consumption was observed in both
391	live conditions at heightened pressure, corresponding to sediment incubated with isotopically
392	labeled glycine (samples 1a and 1b) and ammonium chloride (samples 2a and 2b). Controls

393	lacking CH ₃ D (samples 3a and 3b) and biological activity (samples 4a and 4b) showed no increase
394	in D/H ratios (see Table S2 for sample set-up details). The simulation of <i>in situ</i> Hydrate Ridge
395	pressures led to a 79.5% (+/- 6.5 SE) increase in relative methane oxidizing rates. Incubation with
396	$500 \ \mu\text{M}$ glycine rather than ammonia at high and low pressures resulted in small but consistent rate
397	increases of 12% +/- 4.1% SE, potentially reflecting the energetic and biosynthetic distinction
398	between exogenous amino acids and unprocessed fixed nitrogen.
399	Previous reports have found a wide range of different pressure-related effects. In a sulfate-
400	coupled AOM bioreactor, pressures were varied from 1 to 8 MPa and sulfide production
401	approximately tripled, demonstrating Michaelis-Menten style kinetics with an apparent K_m of 37
402	mM (Zhang et al., 2010). Methane partial pressures of 1.1 MPa led to a 5x increase in sulfate
403	reduction rates relative to ambient atmospheric pressure with Hydrate Ridge sediments
404	demonstrating methane-dependent sulfate reduction (Nauhaus et al., 2002). With methane seep
405	sediment from the Japan Trench, however, methane-driven sulfate reduction rates did not correlate
406	with changing pressure (Vossmeyer et al., 2012). Nauhaus et al. (2005) suggested that the pressure-
407	induced rate increases are due more to heightened methane solubility and bioavailability rather
408	than physiological effects or biomolecular re-ordering. Bowles et al. (2011) presented a very
409	different perspective by showing a six- to ten-fold AOM rate increase at 10 MPa when methane
410	concentrations were held constant. Deconvolving these two influences and how they depend on
411	community composition or physicochemical parameters is feasible with pressure chamber
412	experiments utilizing monodeuterated methane. Understanding the relative contributions of
413	environmental and physiological effects to methane oxidation will help constrain methane fluxes
414	across a larger envelope of the planet's methanotrophically active zones.
415	3.5. Monodeuterated Methane in Experimental Investigations

416	В	ased on ¹⁴ CH ₄ ground-truthing experiments with aerobic methanotrophic cultures, oxic		
417	seep sedi	ment, and anoxic seep sediment, as well as the proof-of-concept pressurized experiments,		
418	we believ	the that the monodeuterated methane approach to methane oxidation rate measurement is a		
419	useful ad	dition to the biogeochemist's tool set. Compared with radiolabel approaches (14CH4, 3H-		
420	CH ₄ , ³⁵ SO ₄ ²⁻), the method requires less safety-oriented planning, and is logistically simpler, more			
421	affordable, and less susceptible to isotope fractionation effects. Our results suggest that it appears			
422	to be a m	ore precise method based on standard error calculations, though direct comparisons are		
423	complicated by the fact that different aliquots of the same initial material were used. Because the			
424	monodeu	terated methane method focuses on methane-bound hydrogen atoms, it offers different,		
425	complem	entary information about methanotrophic systems than carbon-based techniques like		
426	methane or bicarbonate quantification. While this distinction complicates the interpretation of			
427	isolated D/H ratios, it can offer an additional dimension of information for analysis of methane-			
428	derived intermediates in relevant metabolisms. Given these caveats, we recommend three use cases			
429	for mono	deuterated methane in methane oxidation rate measurement applications.		
430	1)	First, the approach can be employed in a strictly comparative context using analogous		
431		inoculum exposed to a range of different conditions, as demonstrated with the pressure-		
432		based sediment incubations presented above. Evaluating the effect of different		
433		conditions such as temperature ranges, chemical concentrations, or energetic landscapes		
434		on seep sediment methane oxidizing rates would all be promising applications.		
435		Comparative analysis of AOM rates at different seep sites would also be useful,		
436		provided anaerobic or aerobic methanotrophic processes could be isolated.		
437	2)	Second, by performing side-by-side monodeuterated methane and radiocarbon tests, a		
438		sample-specific H:C tracer ratio can be determined, and absolute rates of full methane		

439		oxidation can then be inferred in subsequent experiments based exclusively on D/H
440		ratios. Conducting such paired studies under additional environmental or lab-based
441		conditions would help clarify the universality of the ratios presented here and would
442		likely reveal additional questions of metabolic dynamics in a range of experimental
443		systems.
444	3)	Finally, the use of monodeuterated methane as an analytical tool, alongside additional
445		methods such as carbon- or sulfur-tracking procedures, would enable a multi-
446		dimensional examination of anabolic and catabolic processes in methane-based
447		metabolisms. In particular, the H:C tracer ratios presented here reveal intriguing and
448		seemingly systematic relationships between carbon and hydrogen anabolic and catabolic
449		partitioning across distinct physiologies, yet an underlying theoretical framework
450		regarding the fate of methane-bound hydrogen atoms remains outstanding. In anaerobic
451		methanotrophic systems, back-reaction rates and equilibrium constants could be
452		evaluated by a) including a ${}^{13}\text{CO}_2$ signal in the water and measuring ${}^{13}\text{CH}_4$, and/or b)
453		utilizing multiply deuterated methane as initial headspace and measuring all possible
454		isotopologues via nuclear magnetic resonance (NMR) or high resolution mass
455		spectrometry. For aerobic methanotrophs, evaluating H:C tracer ratios under more
456		clearly defined growth and maintenance phases would elucidate distinct H:C tracer
457		ratios associated with catabolic, RuMP, and serine pathways, enabling future use of that
458		parameter as an arbiter of relative anabolic and catabolic activity. Furthermore,
459		additional environmental variables can be tested to gain insight into distinct redox
4 60		pathways and dynamics of reversibility. For example, AOM under lower sulfate
461		concentrations might be expected to generate higher H:C tracer ratios (Yoshinaga et al.,

462	2014), and this parameter could be further developed as a measure of microbially
463	mediated isotopic equilibration.

464

465 4. Conclusion

The ability to accurately measure methane oxidation rates - both comparatively and in 466 467 absolute values - is an important component of methanotrophic studies. Such measurements frequently depend on radiotracers or measurements of chemical species that are related to, but not 468 directly indicative of, methane metabolism. The monodeuterated methane technique presented here 469 470 represents a novel approach to methane oxidation rate measurements, notable for its logistical and 471 analytical ease (particularly in ship-board applications), as well as the added dimension provided by H-based, rather than C-based, information. We have demonstrated that the D/H ratio is directly 472 proportional to methane oxidation rates as measured in absolute terms by the well-established 473 474 ¹⁴CH₄ method. The value of the proportionality constant differs based on the experimental system. 475 likely dictated by relative proportions of aerobic and anaerobic methanotrophic metabolisms, though additional experiments to determine the nature of the putative mixing line are needed. 476 477 Methane biogeochemistry is a dynamic field of study with implications for carbon cycling, 478 microbial ecology, and climate dynamics, though experimental challenges have slowed our 479 understanding of methane-based biological reactions. With the CH₃D approach as an added tool in 480 the arsenal of rate-based examinations, a broader understanding of the intricacies of methane metabolism, as well as its role in environmental and anthropogenic systems, is within reach. 481 482

483 **5. Acknowledgements**

- 484 We thank the Captains, Crew, *Alvin* group, *Jason* group, and Science party members from
- 485 *RV Atlantis* legs AT-15-68, and AT-18-10. Water analyzer measurements were conducted in the
- 486 laboratory of Alex Sessions at the California Institute of Technology with technical support from
- 487 Lichun Zhang. We are indebted to William Berelson at the University of Southern California and
- 488 Nick Rollins for use of their pressure chambers and assistance with the incubation experiments.
- 489 We thank Alex Sessions, Woodward Fischer, Dianne Newman, Tori Hoehler, Amy Rosenzweig,
- 490 and Daniel Stolper for helpful conversations during the preparation of the manuscript. This study
- 491 was funded by grants from the U.S. Department of Energy, Office of Science, Office of Biological
- 492 and Environmental Research (DE-SC001057), the NASA Astrobiology Institute (Award #
- 493 NNA13AA92A) and support from the Gordon and Betty Moore Foundation through grant
- 494 GBMF3780 (to VJO). JJM was supported by a National Energy Technology Laboratory Methane
- 495 Hydrate Research Fellowship funded by the National Research Council of the National
- 496 Academies. This research used resources of the Oak Ridge Leadership Computing Facility. Oak
- 497 Ridge National Laboratory is supported by the Office of Science of the U.S. Department of Energy.
- 498

499 6. References

- Alperin, M. J., and Reeburgh, W. S. (1985). Inhibition Experiments on Anaerobic Methane
 Oxidation. *Applied and Environmental Microbiology* 50, 940–945.
- Beal, E. J., House, C. H., and Orphan, V. J. (2009). Manganese- and Iron-Dependent Marine
 Methane Oxidation. *Science* 325, 184–187. doi:10.1126/science.1169984.
- Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gleseke, A., et al. (2000). A
 marine microbial consortium apparently mediating anaerobic oxidation of methane. *Nature* 407.
- Boetius, A., and Suess, E. (2004). Hydrate Ridge: a natural laboratory for the study of microbial
 life fueled by methane from near-surface gas hydrates. *Chemical Geology* 205, 291–310.
 doi:10.1016/j.chemgeo.2003.12.034.

- Bowles, M. W., Samarkin, V. A., and Joye, S. B. (2011). Improved measurement of microbial
 activity in deep-sea sediments at in situ pressure and methane concentration. *Limnology and Oceanography: Methods* 9, 499–506.
- Carini, S. A., Orcutt, B. N., and Joye, S. B. (2003). Interactions between methane oxidation and
 nitrification in coastal sediments. *Geomicrobiology Journal* 20, 355–374.
- Crespo-Medina, M., Meile, C., Hunter, K., Diercks, A., Asper, V., Orphan, V., et al. (2014). The
 rise and fall of methanotrophy following a deepwater oil-well blowout. *Nature Geoscience*.
- Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M., et al.
 (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. *Nature* 464, 543– 548.
- Gieskes, J., Mahn, C., Day, S., Martin, J. B., Greinert, J., Rathburn, T., et al. (2005). A study of the
 chemistry of pore fluids and authigenic carbonates in methane seep environments: Kodiak
 Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin. *Chemical Geology* 220, 329–
 345. doi:10.1016/j.chemgeo.2005.04.002.
- Girguis, P. R., Orphan, V. J., Hallam, S. J., and DeLong, E. F. (2003). Growth and Methane
 Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow Bioreactor.
 Applied and Environmental Microbiology 69, 5472–5482. doi:10.1128/AEM.69.9.5472 5482.2003.
- Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M., et al.
 (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. *Science* 305, 1457–1462.
- Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., et al. (2013). Anaerobic
 oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. *Nature* 500,
 567–570.
- Ho, A., Vlaeminck, S. E., Ettwig, K. F., Schneider, B., Frenzel, P., and Boon, N. (2013). Revisiting
 methanotrophic communities in sewage treatment plants. *Applied and environmental microbiology* 79, 2841–2846.
- Holler, T., Wegener, G., Niemann, H., Deusner, C., Ferdelman, T. G., Boetius, A., et al. (2011).
 Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled
 sulfate reduction. *Proceedings of the National Academy of Sciences* 108, E1484–E1490.
 doi:10.1073/pnas.1106032108.
- Holzapfel-Pschorn, A., Conrad, R., and Seiler, W. (1985). Production, oxidation and emission of
 methane in rice paddies. *FEMS Microbiology Ecology* 1, 343–351.
- Jørgensen, B. B., Weber, A., and Zopfi, J. (2001). Sulfate reduction and anaerobic methane
 oxidation in Black Sea sediments. *Deep Sea Research Part I: Oceanographic Research Papers* 48, 2097–2120.

- 546Knittel, K., and Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with an Unknown547Process.Annu.Rev.Microbiol.63,311–334.548doi:10.1146/annurev.micro.61.080706.093130.
- Lieberman, R. L., and Rosenzweig, A. C. (2004). Biological methane oxidation: regulation,
 biochemistry, and active site structure of particulate methane monooxygenase. *Critical reviews in biochemistry and molecular biology* 39, 147–164.
- Mackelprang, R., Waldrop, M. P., DeAngelis, K. M., David, M. M., Chavarria, K. L., Blazewicz,
 S. J., et al. (2011). Metagenomic analysis of a permafrost microbial community reveals a
 rapid response to thaw. *Nature* 480, 368–371.
- Marlow, J. J., Steele, J. A., Ziebis, W., Thurber, A. R., Levin, L. A., and Orphan, V. J. (2014).
 Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea.
 Nature Communications.
- Mason, O., Case, D., Naehr, T., Lee, R., Thomas, R., Bailey, J., et al. (2015). Comparison of
 Archaeal and Bacterial Diversity in Methane Seep Carbonate Nodules and Host Sediments,
 Eel River Basin and Hydrate Ridge, USA. *Microb Ecol* 70, 766–784. doi:10.1007/s00248015-0615-6.
- Moran, J. J., Beal, E. J., Vrentas, J. M., Orphan, V. J., Freeman, K. H., and House, C. H. (2008).
 Methyl sulfides as intermediates in the anaerobic oxidation of methane. *Environmental Microbiology* 10, 162–173. doi:10.1111/j.1462-2920.2007.01441.x.
- Naehr, T. H., Eichhubl, P., Orphan, V. J., Hovland, M., Paull, C. K., Ussler III, W., et al. (2007).
 Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A
 comparative study. *Deep Sea Research Part II: Topical Studies in Oceanography* 54, 1268–1291. doi:10.1016/j.dsr2.2007.04.010.
- Nauhaus, K., Boetius, A., Krüger, M., and Widdel, F. (2002). In vitro demonstration of anaerobic
 oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate
 area. *Environmental Microbiology* 4, 296–305. doi:10.1046/j.1462-2920.2002.00299.x.
- Nauhaus, K., Treude, T., Boetius, A., and Krüger, M. (2005). Environmental regulation of the
 anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities.
 Environmental Microbiology 7, 98–106. doi:10.1111/j.1462-2920.2004.00669.x.
- Orphan, V. J., Ussler III, W., Naehr, T. ., House, C. ., Hinrichs, K.-U., and Paull, C. . (2004).
 Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California. *Chemical Geology* 205, 265– 289. doi:10.1016/j.chemgeo.2003.12.035.
- Pack, M. A., Heintz, M. B., Reeburgh, W. S., Trumbore, S. E., Valentine, D. L., Xu, X., et al.
 (2011). A method for measuring methane oxidation rates using lowlevels of 14C-labeled
 methane and accelerator mass spectrometry. *Limnology and Oceanography: Methods* 9, 245–260.

- Peckmann, J., and Thiel, V. (2004). Carbon cycling at ancient methane–seeps. *Chemical Geology* 205, 443–467. doi:10.1016/j.chemgeo.2003.12.025.
- 585 Reeburgh, W. S. (2007). Oceanic Methane Biogeochemistry. *Chem. Rev.* 107, 486–513.
 586 doi:10.1021/cr050362v.
- Ruff, S. E., Biddle, J. F., Teske, A. P., Knittel, K., Boetius, A., and Ramette, A. (2015). Global
 dispersion and local diversification of the methane seep microbiome. *Proceedings of the National Academy of Sciences*, 201421865.
- Scheller, S., Goenrich, M., Boecher, R., Thauer, R. K., and Jaun, B. (2010). The key nickel
 enzyme of methanogenesis catalyses the anaerobic oxidation of methane. *Nature* 465, 606–
 608.
- Scheller, S., Goenrich, M., Thauer, R. K., and Jaun, B. (2013). Methyl-Coenzyme M Reductase
 from Methanogenic Archaea: Isotope Effects on the Formation and Anaerobic Oxidation of
 Methane. J. Am. Chem. Soc. 135, 14975–14984. doi:10.1021/ja406485z.
- Scheutz, C., Bogner, J., De Visscher, A., Gebert, J., Hilger, H., Huber-Humer, M., et al. (2009).
 Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. *Waste Management & Research*.
- Sivan, O., Antler, G., Turchyn, A. V., Marlow, J. J., and Orphan, V. J. (2014). Iron oxides
 stimulate sulfate-driven anaerobic methane oxidation in seeps. *Proceedings of the National Academy of Sciences* 111, E4139–E4147. doi:10.1073/pnas.1412269111.
- Suess, E., Torres, M., Bohrmann, G., Collier, R., Greinert, J., Linke, P., et al. (1999). Gas hydrate
 destabilization: enhanced dewatering, benthic material turnover and large methane plumes
 at the Cascadia convergent margin. *Earth and Planetary Science Letters* 170, 1–15.
- Tavormina, P. L., Hatzenpichler, R., McGlynn, S., Chadwick, G., Dawson, K. S., Connon, S. A., et
 al. (2015). Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from
 ocean sediment belonging to the "deep sea-1"clade of marine methanotrophs. *International journal of systematic and evolutionary microbiology* 65, 251–259.
- Thauer, R. K. (2011). Anaerobic oxidation of methane with sulfate: on the reversibility of the
 reactions that are catalyzed by enzymes also involved in methanogenesis from CO 2.
 Current opinion in microbiology 14, 292–299.
- Treude, Boetius, Knittel, Wallmann, and Jorgensen (2003). Anaerobic oxidation of methane above
 gas hydrates at Hydrate Ridge, NE Pacific Ocean. *Mar Ecol Prog Ser* 264, 1–14.
- Treude, T., Krüger, M., Boetius, A., and Jørgensen, B. B. (2005). Environmental control on
 anaerobic oxidation of methane in the gassy sediments of Eckernfoerde Bay(German
 Baltic). *Limnology and oceanography* 50, 1771–1786.
- Treude, T., and Ziebis, W. (2010). Methane oxidation in permeable sediments at hydrocarbon
 seeps in the Santa Barbara Channel, California. *Biogeosciences (BG)* 7, 3095–3108.

- Tryon, M. ., Brown, K. ., and Torres, M. . (2002). Fluid and chemical flux in and out of sediments
 hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes. *Earth and Planetary Science Letters* 201, 541–557. doi:10.1016/S0012-821X(02)00732-X.
- Valentine, D. L., Blanton, D. C., Reeburgh, W. S., and Kastner, M. (2001). Water column methane
 oxidation adjacent to an area of active hydrate dissociation, Eel river Basin. *Geochimica et Cosmochimica Acta* 65, 2633–2640. doi:10.1016/S0016-7037(01)00625-1.
- Vorholt, J. A., and Thauer, R. K. (1997). The Active Species of "CO2" Utilized by
 Formylmethanofuran Dehydrogenase from Methanogenic Archaea. *European Journal of Biochemistry* 248, 919–924. doi:10.1111/j.1432-1033.1997.00919.x.
- Vossmeyer, A., Deusner, C., Kato, C., Inagaki, F., and Ferdelman, T. G. (2012). Substrate-specific
 pressure-dependence of microbial sulfate reduction in deep-sea cold seep sediments of the
 Japan Trench. *Frontiers in Microbiology* 3, 253. doi:10.3389/fmicb.2012.00253.
- Whittenbury, R., Phillips, K., and Wilkinson, J. (1970). Enrichment, isolation and some properties
 of methane-utilizing bacteria. *Journal of General Microbiology* 61, 205–218.
- Yoshinaga, M. Y., Holler, T., Goldhammer, T., Wegener, G., Pohlman, J. W., Brunner, B., et al.
 (2014). Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane. *Nature Geosci* 7, 190–194.
- Zhang, Y., Henriet, J.-P., Bursens, J., and Boon, N. (2010). Stimulation of in vitro anaerobic
 oxidation of methane rate in a continuous high-pressure bioreactor. *Bioresource Technology* 101, 3132–3138. doi:10.1016/j.biortech.2009.11.103.

639

640

641 7. Tables and Figure Captions

642 <u>Table 1</u>: A summary of the samples used for all experiments conducted in this study. Green boxes

643 indicate that the experiment took place (with all relevant permutations and controls, as described in

644 the text); blank boxes indicate experiments that were not conducted. CH₃D refers to

- 645 methanotrophic rate experiments using the novel monodeuterated methane technique, while ¹⁴CH₄
- 646 refers to the radiolabel-based experiments. The three-part codes for samples derived from
- 647 environmental material refer to active (A) or low-activity (L) sediments (Sed) or carbonates (Carb),

648 as explained in the text.

650

		Oxic		Anoxic	
		CH ₃ D	$^{14}CH_4$	CH ₃ D	$^{14}CH_4$
Aerobic Methanotroph Cultures Experiment					
M. tr	richosporium				
M. s	edimenti				
Seep Sediment Experiment					
A.Se	ed-5128				
L.Se	d-5043				
Seep Carbonate Experiment					
A.Ca	arb-5305				
A.Ca	arb-5152				
L.Ca	arb-5028				
Pressure Experiment					
A.Se	ed-3450				

651 652

653 <u>Table 2</u>: H:C tracer ratios for the experimental treatments addressed in this study.

654

Aerobic Methanotroph Cultures							
	Exponential Phase	Stationary Phase					
M. trichosporium	1.5	1.48					
M. sedimenti	1.54	1.59					
Methane Seep Sediments and Carbonates							
	Oxic Incubations	Anoxic Incubations					
A.Sed-5128	1.62	2.05					
L.Sed-5043	1.71	2.01					
A.Carb-5305	1.65	1.96					
A.Carb-5152	1.63	2.08					
L.Carb-5028	1.69	1.86					

655

656

657 Fig. 1: Amount of methane oxidized over time for cultures of a) the type II methanotroph M.

658 trichosporium and b) the type I methanotroph M. sedimenti using the CH₃D method (circles) and

- the 14 CH₄ method (diamonds), calculated as discussed in the text. Symbols correspond to sample
- 660 types as follows: blue = CH₃D-derived experimental data; brown = CH₃D killed control data;
- orange = CH₃D abiotic control data; gray = CH₃D oxygen-free, argon-infused control data; green =
- 662 CH_4 control data; red = ${}^{14}CH_4$ –derived experimental data; black = ${}^{14}CH_4$ –derived killed control

- data. Error bars show standard errors for three biological replicates, with the exception of the ${}^{14}CH_4$
- -derived killed control (n=1). Data obscured by other data series exhibited values between -60 and
- 665 110 nmol for a) and 0 and 60 nmol for b).
- 666
- 667 Fig. 2: Methane oxidation rates of a) oxic and b) anoxic incubations of active and inactive seep
- sediment and carbonate rocks (n=3 in all cases). Values compare rates derived from the ¹⁴CH₄
- 669 (blue) and CH₃D (green) experiments for a given sample material; standard error bars provided.
- 670
- 671 Fig. 3: A schematic diagram demonstrating the potential fate of methane-associated hydrogen
- atoms in the "reverse methanogenesis" pathway. Hydrogen atoms are distinguished by color and
- superscript number, and potential exchanges with inter- and intra-cellular water are shown.
- 674 Potentially detectable methane-derived hydrogen atoms (4, occurring throughout the oxidation
- pathway) and carbon atoms (1, requiring full oxidation) are highlighted in orange and purple
- boxes, respectively. Arrows are unidirectional to demonstrate the net methane-consuming direction
- of the pathway, but all enzymes have been shown to be reversible (Thauer, 2008), a situation that is
- shown explicitly only for Mcr. The extended dashed line represents the cell membrane.
- 679
- 680 Fig. 4: A schematic diagram demonstrating the potential fate of methane-associated hydrogen
- atoms in the aerobic methanotrophy pathways. Hydrogen atoms are distinguished by color and
- 682 superscript number; asterisks represent location-specific ambiguity. Potentially detectable
- methane-derived hydrogen atoms and carbon atoms are highlighted in orange and purple boxes,
- respectively. Mmo enzymes are not believed to perform reversible reactions.
- 685

- 686 <u>Fig. 5</u>: Water δD values with standard error bars of seep sediment samples following 38-day
- 687 incubations with CH₃D at 9.0 MPa (brown bars, "b" samples) or 0.1 MPa (pink bars, "a" samples).

