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Responses to the Associate Editor 

Dear Dr. Keenan, 

Thank you very much for handling the review of our manuscript. We appreciate your extra 

effort in reaching out to three referees and securing quality review comments. We are very 

pleased by the overall positive, encouraging and constructive comments. We thank the three 

referees for their time and help. As shown in the point-to-point responses to the three referees, 

we have made extensive revisions to address every of the comments, with the major ones 

summarized as below: 

Referee #1 expressed discomfort with the introduction, justification, and implication, and 

suggested better connection between the introductory paragraphs, and alternative framing of 

the results and discussion. We rewrote the introduction section and added  discussion in the 

final section to clarify the scope of this work, and put it in the comprehensive context of earth 

system model concisely. 

Referee #2 was concerned about the impact of head space trace gas accumulation on carbon 

mineralization, and potential limitation of the data from microcosms without flushing in 

reflecting field conditions. We conducted additional numerical experiments using 

biogeochemical model to evaluate the impact. We demonstrated that the impact is complicate 

(highly nonlinear as the controlling coupled processes are highly nonlinear), and increasingly 

mechanistic model are useful in help us understand the processes, with the hope to improve 

our predictability. 

Referee #3 recommended that we provide stronger justification for determining that the most 

limiting factor for SOM turnover is hydrolysis of macromolecules.  We agree that hydrolysis is a 

limiting factor. We also agree with referee #1 that it is controversial to state that hydrolysis is 

the most limiting factor. As a result, we try to be balanced and discuss about possible new data 

needs to better understand and quantify hydrolysis. 

With those revisions, the manuscript has been substantially improved. We hope the revised 

manuscript is acceptable for publication Biogeosciences and will be helpful for both modeling 

and experimental research. We appreciate you and the three referees for help. Should you 

have any question, please feel free to contact us. 
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Response to Referee #1 
Comment 1: Soil carbon models are a critical source of uncertainty in Earth system models both 
due to limitation in model-data and process representation. This manuscript addresses 
modeling hurdles in a key process (anaerobic decomposition) missing in most soil car- bon 
models. This work is a timely, novel, and carefully conducted. However I am uncomfortable 
with the current introduction, justification, and implication presented in the manuscript. The 
actual results section is very strong but would suggest extensive revisions to the introduction 
and conclusion. 

Response 1: We appreciate that the referee spent valuable time in reviewing this manuscript, 
and provided very constructive comments from a different perspective. As detailed below and 
highlighted in the revised version, we made extensive revisions to improve the introduction, 
justification, and implication components as the referee suggested, with a focus on clarifying 
the scope of this work, and putting it in the comprehensive context of earth system model 
concisely.  We hope the manuscript is substantially improved.  

 

Comment 2:  In general, I would suggest better connections between and within the 
introductory paragraphs. The main paragraphs jump around and paragraphs themselves lack 
coherent structure. 

Response 2: This is because that we tried to avoid lengthy discussion about the context of 
carbon mineralization and methane production, consumption, and transport. We add the 
following paragraph in the end of the introduction section to concisely describe the context and 
limit our scope of this study, which reads: 

“The carbon cycle involves coupled hydrological, geochemical, and biological processes 
interacting from molecular to global scales. The implicit empirical first order approach used in 
existing LSMs limits our understanding of the land atmosphere interaction and is a source of 
prediction uncertainty. To improve our understanding and reduce prediction uncertainty, we 
attempt to use relatively more explicit mechanistic representations developed in the reactive 
transport model literature (Tang et al., 2016). Even though explicit representation does not 
necessarily improve the match between the predictions and observations over well-tuned 
existing models immediately (e.g., Wieder et al. 2015; Steven et al. 2006), our approach 
provides a systematic means to incorporate on-going process-rich investigations to improve 
mechanistic representations in LSMs across scales. As a preliminary study, we constrain our 
scope to extending CLM-CN with minimum revision to describe anaerobic CO2 and CH4 
production from several recent microcosm studies in this work. We discuss next steps briefly 
results and discussion section.” 

We also add two paragraphs in the end of the results and discussion section to describe the 
implications as:  
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 “Another following up task is to assess the model in field studies using CLM-PFLOTRAN. This 

can be done incrementally, i.e., add/remove reactions one at a time without source code 

modifications. CLM-PFLOTRAN currently uses CLM4.5 vertical resolved grid, The resolution can 

be adjusted, possibly in three dimension, to reflect the heterogeneity of any structural soil 

column to account for the limitation of electron donors and electron acceptors at individual 

locations.  As we gradually implement more and more processes, such as gas and aqueous 

transport, through soils and aerenchyma, explicitly representing microbial processes for carbon 

decomposition, we hope the new framework will be useful for future investigation and model 

developments.” 

Note that the first paragraph is in response to the comments about headspace flushing raised 
by the second referee. 

 

Comment 3: I would also like to see a discussion/acknowledgement of other mechanisms that 
could influence anaerobic decomposition which were not captured by the proposed model. 
While not ALL processes can be included in a model, some acknowledgement of those missing 
processes and either how then can be incorporated into future work or how they influence 
current simulations are appropriate and highlight the limitations of the proposed model. 

Response 3: as in response 2, we mention the hydrological and biological processes across 
scales in general; for specific processes, we discuss about mimic impact of flushing/boundary 
condition/pressure, as well as increase the grid resolution to simulate the heterogeneous 
structured soil columns. And we talk about potential next steps. 

 

Comment 4: Relatedly the authors need to address how these detailed pool based kinetic 
models scale to well-structured heterogeneous soils. Great detail is gone into on the chemical 
processes governing methanogensis in the introduction but there is no discussion of how the 
physical structure of the soil plays into substrate and oxygen availability and the inherent 
limitations to applying mechanistic pool models to highly structured soil columns. While this is a 
common shortcoming of soil carbon models I feel that, given the level of processes detailed 
covered in the model, this is critical to address and justify utilization of a pool model with such 
explicit process representation. Minimum the authors need to acknowledge that the scaling of 
known kinetics from well-mixed experiments to highly structure soil cores is a relevant open 
question in the field. 

Response 4:  As in response 2, we add discussion about using high resolution to deal with 
heterogeneity; in Tang et al. 2016, we actually discussed potential ways to account for oxygen 
limitation and even oxygen transportation and consumption; While scaling is a grand challenge, 
there are evidences that the parameters determined in the lab are applicable for field studies in 
our previous studies (e.g., Tang et al. 2013b). As a preliminary study, we feel it is better to focus 
on the current scope. 
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 Comment 5: The great strength of this manuscript is the highly detailed and careful analysis of 
the proposed model, grounded against a data set. This was very well done and I feel should 
provide the backbone of a new discussion section which could be extended to suggest potential 
follow up experiments based on the model results. However there is no formal model-data 
integration nor a comparison with an adequate number of data sets to justify this as a mature 
component of a new CLM module, as is implied by the current introduction and discussion. If 
this is the manuscript that the authors want to write then I would suggest more data sets, a 
formal data-model integration, and demonstration of improvement to previous ratio-based 
models. But the current analysis would be completely appropriate in a different context which 
focused more on implications to future experimental designs and long term model projections. 
I strongly encourage the authors to carefully consider an alternative framing of this very 
interesting study. 

Response 5: We appreciate the referee’s positive comments, and very constructive advices. As 
discussed in response 2, this is a preliminary study with focus on mechanistic representation. 
We are interested in incorporating more existing data, but are limited by lack of detailed data 
such as pH, Fe, organic acids, etc., in the existing studies. In the revision, we mention potential 
next steps and further model data iteration exercises. 

 

--Line by line response-- 

 

Comment 6: P2L2 Actually many of the IPCC models suggest that SOC will increase in the 
northern latitudes due to increases in inputs (Todd-Brown et al 2014), I would suggest softening 
this statement to reflect the huge uncertainty in the current state of the science. Less 
controversial would be a statement referring to a general ramping up of the entire car- bon 
cycle in response to climate change, increases are expected in both primary pro- duction and 
decomposition. Whether the net effect will be to convert SOC to CO2/CH4 is highly debated. 

Response 6: revise “… are widely expected to accelerate …” to “… may …” to soften the 
statement. 

 

Comment 7: P2L2-14 I like the content of this paragraph but it needs to be re-organized. There 
are three distinct topics in this paragraph which would be better served breaking them 
up/integrating with later parts of the manuscript: a review of expected high latitude SOC 
vulnerability to climate change, summary of CLM-CN representation of anaerobic conditions 
(coupling this with a general review of aerobic decomposition would not go amiss here but that 
is a soft suggestion), and the comparison to lab incubations. 

Response 7:  we separate the paragraphs into two, and put our study in the context concisely 
(see marked revised manuscript). 
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Comment 8: P2L15 CH4 is critical not just because of it’s high global warming potential but also 
because of it’s emissions rate and residence time in the atmosphere. Please add some citations 
to reflect this. 

Response 8: add residence time and production rate (italic) as  

“Because CH4 has a 100-year global warming potential that is about 26 times greater than CO2 
(Forster et al., 2007;IPCC, 2013), and an atmospheric residence time of approximately 10 years 
(IPCC, 2013), and methanogenesis rate can be high under favorable conditions, …” 

 

Comment 9: P2L19 Why is this lag critical? 

Response 9:  add  

“The implication is that a first order rate (including constant CO2 CH4 ratio parameterization) 
overpredicts CH4 production rate before methanogenosis initiation and underpredicts CH4 
production rate afterwards, and the uncertain lag time introduces large uncertainty in CH4 
production prediction.” 

 

Comment 10: P2L25 Why is the CH4:CO2 ratio important? Maybe lead with this being a critical 
parameter for current models and then show how this is a dynamic response to the competing 
Redox ladder. I think this is where the authors are trying to go with this but it is lost in the 
paragraph. Could the proposed model be compared with the standard ratio model? 

Response 10:  As in response 9, the manuscript shows that a constant CH4:CO2 ratio approach 
introduces prediction uncertainty, and our mechanistic model has the potential to reduce the 
prediction uncertainty. We feel it to be premature to conclude whether the mechanistic model 
perform better than a standard ratio model. The mechanistic model is expected to work better 
than the empirical for these specific data sets. It is challenging to extend the comparison to 
other available datasets because the lack of measurements (e.g., pH, Fe, etc.) to support the 
mechanistic model.  Our long term goal is to evaluate if a mechanistic model performs better 
than a standard ratio model. This is only the first step toward the long term goal.   

 

Comment 11: P2L33 Why is an aqueous phase essential for these calculations? Soil 
decomposition models are implicit descriptions of carbon dynamics anyway, why do we need 
an explicit representation of this process? Can a micro scale process like an explicit terminal 
electron acceptor model be simulated on the macro scale? I would suggest placing this study in 
the context of the increasing number of ?explicit? soil carbon dynamics models  (ex: Wieder et 
al 2015). These models may or may not increase the overall accuracy of predictive dynamics 
over a well-tuned traditional model but they can provide critical scientific insights into the 
process of soil decomposition. This introduction lacks this critical nuance and oversells the 
capabilities of the proposed model. 

Response 11: The aqueous phase is essential in that pH, Eh, thermodynamics, etc., are defined 
in the aqueous phase. As in detailed in Response 2, we put this study in the general context in 
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the revision and acknowledge that explicit representation may not necessarily improve the 
match with the observation immediately over existing well-tuned models. 

 

Comment 12: Sect2.2.1(and elsewhere) Please refer to model pools and other variables by 
name (variable) consistently throughout the manuscript, ex: organic acid pool (Ac). This reduces 
the need to refer back to tables/sections. Manuscripts are rarely read linearly and having to 
search for abbreviation definitions slows down reading. 

Response 12: spell out. 

 

Comment 13: P8L20 I applaud the authors for making their scripts available in the 
supplemental. Thank you. 

Response 13: Thanks. 

 

Comment 14: P12 Nice job walking through potential drivers of model-data mismatch. These 
provide a rich pool of candidates for future investigations. I feel that this should be the main 
focus of the conclusions. Given that a single data set was used and no formal model-data 
integration done this model is not quite ready for a full land carbon model integration as is 
implied by the authors in the introduction and conclusions. What IS done quite elegantly is an 
analysis of several representations of potential mechanisms and how they influence overall 
carbon mineralization in the context of a common model structure. 

Response 14: Thanks for this nice evaluation. We revise the discussion and conclusion section 
to further strengthen these points. 

 

Comment 15: P12 WEOC, TOTC are an unusual acronym in the field. Consider writing out the 
full name instead, I found myself forgetting what it stood for around here and having to go look 
it up. See previous comment about variable/pool references. 

Response 15: spell out. 

 

Comment 16: P13L19 This is a highly controversial statement that does not belong in the 
results section. While it is appropriate to highlight the relatively low amount of mineralized 
carbon there are several possible mechanisms for this that are unrelated to the chemical 
structure as suggested by this statement. Just because that is the explanation that fits into the 
model that is presented, it is not the only explanation (I’m thinking of various physical 
mechanisms like co-location and aggregate formation, as well as the substrate rarity argument 
ala Allson 2006). Please move to the conclusion and soften this statement considerably. 

Response 16: revise “… is the rate limiting step …” to “… could be a rate limiting step…” to 
soften the statement. 
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Comment 17: P14L17 Cite the equation reference for f(pH) 

Response 17: add (Eq. 3). 

 

Comment 18: P14L26 Given the noise generally inherent in these measurements I would 
hesitate to call this a substantial difference. Could you can provide error bars for the data or 
some kind of significance testing. 

Response 18: The sentence reads “These differences translate to substantial differences in 
model predictions”. It is model predictions not observations. We add “(Fig. S7)” to avoid 
confusion. Instead of showing the average with error bars, the duplicate/triplicate observations 
were shown for headspace CO2 and CH4 to demonstrate the variation. For organic acids, Fe(II), 
and pH, the standard deviations are too small to shown as error bars. 

 

Comment 19: Figures: In general, would it be possible to add error/uncertainty bars to the data 
points in the figures? This would place the modeled sensitivity in the context of the 
measurement error. 

Response 19: see second half of response 18. 

 

Comment 20: P16L5-7 WHAM is an aqueous pool model, claiming that there is no needed 
modifications when applying it to a well structured soil column seems a bit of a stretch. 

Response 20: Windermere Humic Aqueous Model (WHAM) appears to be an aqueous model 
from its name. In fact, it treats the binding sites in soil organic matter as surface sites, and 
include other minerals such as Fe(OH)3, Al(OH)3, etc. In our implementation, we use surface 
sites to simulate organic matter. Namely, it does include solid phase, which is critical for soils. 

  

Comment 21: Table 2 Formatting needs to be fixed for the table entries and I would suggest 
replacing TOTC with Total Organic Carbon and WEOC with Water Extractable Organic Carbon. 
OC is a common enough abbr. that it could be used here without explanation but TOTC and 
WEOC are not. 

Response 21:  Spell out TOTC and WEOC. 

 

Comment 22: Figure and Table captions: Figure and table captions need to be able to stand 
alone in the manuscript, people will often scan the figures to get a sense of the results of the 
manuscript. Please expand the figure captions to more fully reflect the conclusions being 
illustrated here, this is particularly needed for the supplemental figures. 

Response 22:  This is improved as shown in the marked revised version of the manuscript and 
supplement. Please see the enclosed documents for details. 
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Response to Referee #2 

Comment 1: The manuscript proposes a new module to the CLM-CN. It attempts to address a 
key limitation of existing land surface models in that the anaerobic decomposition is poorly 
represented. This work is novel and quite thorough. Most of my comments are technical except 
that I am not 100% comfortable with the testing dataset. It appears that the incubation 
experiment did not flush the headspace of microcosms. (This manuscript and the original 
publication both neglected to discuss flushing). It is well known that the accumulation of CO2 
and other trace gases in headspace distorts gas diffusion and greatly impacts decomposition. 
The suitability of the testing dataset is worth a thorough discussion. 

Response 1: We appreciate the positive comments and the reasonable concerns this referee 
provided.  Thanks for your time and consideration.  

The major concern is the impact of head space trace gas accumulation on carbon mineralization, 
and potential limitation of the data from microcosms without flushing in reflecting field 
conditions. As traditional models (e.g., Knoblauch et al. 2013) do not explicitly account for the 
tracer gas accumulation impact on mineralization and methanogenesis, it is necessary to mimic 
the field conditions in the experiments. However, it is not clear that what level of flushing 
reflect the field conditions. Biogeochemical models like ours explicitly account for the impact of 
tracer gas accumulation in the headspace. They can describe the observations under various 
conditions, ranging from open to close system including various levels of flushing. The 
experimental data in this work were collected in well-defined conditions, and are valuable in 
quantifying these underlying processes, which is the focus of this work. 

To address this concern and acknowledge the limitation, we add numerical experiments with 10 
and 100 times headspace volumes.  In the results and discussion section, we add the following: 

“3.2.9 Predicted impact of headspace gas accumulation 

Knoblauch et al. (2013) and Yang et al. (2016) flushed the headspace of the microcosms while 
Roy Chowdhury et al. (2015) and Herndon et al. (2015) did not. The field conditions are likely 
somewhere between an open system and a closed system because neither the atmospheric 
pressure nor the hydrostatic pressure is constant, and the produced CO2 and CH4 are not 
always free to release to the atmosphere. To assess the impact of CO2 accumulation in the 
headspace on the soil carbon mineralization and methanogenesis, we conduct numerical 
experiments with 10 and 100 times the headspace volume of  the experimental values. With 
increased headspace volume, the headspace and aqueous CO2 concentrations are predicted to 
decrease (Fig. S11 f1-6, g1-6), and the pH increase is predicted to slow down. As a result, the 
biogeochemical reaction rates are generally slower (Fig. S11e1-6). Eventually, the predicted 
total CO2 and CH4 production generally decrease with lower headspace CO2 concentration (Fig. 
S11a1-6,b1-6). However, the impact on CO2 production is very small for the organic soils in the 
trough and ridge location, and the CO2 production is predicted to increase with decrease in 
headspace CO2 concentration for the organic center soils. Because of the complicated 
nonlinear relationships in the biogeochemical processes, the impact of headspace gas 
accumulation on carbon mineralization and methanogenesis is not linear. While it is debatable 
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that which experimental conditions (flush the headspace or not)  reflect the field conditions, 
biogeochemical models like ours provide a mechanistic method to account for this impact by 
using boundary conditions that reflect the reality. Additional targeted experiments and 
mechanistic models are necessary to better understand the impact under different conditions, 
and develop representations that reflect field conditions.” 

 

 

Figure S1: Impact of headspace volume on predictions: increase in headspace volume results in decrease in headspace 

and aqueous CO2 concentration, slower pH increase and biogeochemical reaction rates, and generally less CO2 and CH4 

production prediction. As an exception, predicted CO2 production is increases with increasing headspace volume for the 

center oganic soils. The impact is not linear as the underlying biogeochemical processes are nonlinear. See Fig.2 caption 

for more description about the model and experimental parameters. 
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Comment 2: I am very intrigued by this model, especially its addition of geochemical 
components. From an empirical perspective, I agree that redox dynamics and the turnover of 
pH and single substrates are all key in understanding anoxic decomposition. However, it is still 
unclear whether adding these processes make sense in modeling decomposition and trace 
gases production. Personally, I would like to see a comparison between the new model and 
CLM4ME/CLM-CN and evaluate whether the new model offers meaningful improvement. Other 
data sources could also be used to calibrate the model. These and other future directions 
should be discussed in details in the conclusion.  

Response 2:  We agree that it is debatable that whether adding these processes makes sense, 
and more work is needed to check if these improvements work. These are in our following work 
therefore are not included in this study. In our revision, we add in the end of the introduction 
section to better define our context and scope: 

“The carbon cycle involves coupled hydrological, geochemical, and biological processes 
interacting from molecular to global scales. The implicit empirical first order approach used in 
existing LSMs limits our understanding of the land atmosphere interaction and is a source of 
prediction uncertainty. To improve our understanding and reduce prediction uncertainty, we 
attempt to use relatively more explicit mechanistic representations developed in the reactive 
transport model literature (Tang et al., 2016). Even though explicit representation does not 
necessarily improve the match between the predictions and observations over well-tuned 
existing models immediately (e.g., Wieder et al. 2015; Steven et al. 2006), our approach 
provides a systematic means to incorporate on-going process-rich investigations to improve 
mechanistic representations in LSMs across scales. As a preliminary study, we constrain our 
scope to extending CLM-CN with minimum revision to describe anaerobic CO2 and CH4 
production from several recent microcosm studies in this work. We discuss next steps briefly 
results and discussion section.” 

 

Comment 3: Title, would it be better to say biogeochemical  modeling or A biogeochemical 
model of CO2 and CH4 production? 

Response 3: revise to “biogeochemical modeling of …” 

 

Comment 4: When citing references, please add a space after each semicolon. 

Response 4: Done. These were due to the automatic formatting using endnote. 

 

Comment 5: P3L2, there is a disconnect between the topic sentence and the following text. The 
topic sentence introduces ‘simple substrates’ and their importance in modeling CH4, while the 
following sentences switched the focus away from simple substrates. This paragraph can be 
reorganized to improve the flow of thought. 
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Response 5: add between the first two sentences “Instead, they are typically lumped together 
as dissolved organic matter (DOM) or low-molecular-weight organic carbon (LMWOC).” to 
connect the sentences. 

 

Comment 6: P3L8, lignin should not be classified as polysaccharides. 

Response 6: Removed “lignin” from the list. 

 

Comment 7: P3L14, acetate and H2 have been added  to models? 

Response 7: revise to “representations of acetate and H2 have been added to models…” 

 

Comment 8: When introducing soil pH and its role in LSMs, it is worth noting that soil pH 
changes rapidly as a result of redox reactions. For instance, iron(III) reduction consumes 
protons and usually increases soil pH. 

Response 8: the paragraph is revised from  

“In addition to electron acceptors and substrates, SOM turnover is also sensitive to soil pH. 
Most methanogens grow over a relatively narrow pH range (6-8), while some adapt to acidic or 
basic environments (Garcia et al., 2000; Van Kessel and Russell, 1996; Wang et al., 1993; Sowers 
et al., 1984; Rivkina et al., 2007; Hao et al., 2012; Kotsyurbenko et al., 2004; Kotsyurbenko et al., 
2007). The pH response functions in LSMs are empirical and vary substantially (Xu et al., 2016b). 
Because of the large buffer capacity, soil pH is often fixed in LSMs (Oleson et al., 2013; Tian et 
al., 2010). But in reality, pH does change 1-2 logarithmic units in laboratory incubations (Xu et 
al., 2015; Roy Chowdhury et al., 2015; Peters and Conrad, 1996; Drake et al., 2015) and in the 
field, where it can vary significantly through the soil profile and along topographic and 
vegetation gradients (Cao et al., 1995; Van Bodegom et al., 2001; Lipson et al., 2013b). pH is 
calculated using soil acidity and soil buffer capacity (Van Bodegom et al., 2001) or as a function 
of acetate concentration (Xu et al., 2015). It is desirable to use a geochemical model to describe 
pH evolution mechanistically.” 

to 

“In addition to electron acceptors and substrates, SOM turnover is also sensitive to soil pH. 
Most methanogens grow over a relatively narrow pH range (6-8), while some adapt to acidic or 
basic environments (Garcia et al., 2000; Van Kessel and Russell, 1996; Wang et al., 1993; Sowers 
et al., 1984; Rivkina et al., 2007; Hao et al., 2012; Kotsyurbenko et al., 2004; Kotsyurbenko et al., 
2007). Soil pH does change 1-2 logarithmic units in laboratory incubations (Xu et al., 2015; Roy 
Chowdhury et al., 2015; Peters and Conrad, 1996; Drake et al., 2015). It can vary significantly 
through the soil profile and along topographic and vegetation gradients in the field (Cao et al., 
1995; Van Bodegom et al., 2001; Lipson et al., 2013b). However, soil pH is often fixed in LSMs 
(Oleson et al., 2013; Tian et al., 2010). pH is calculated using soil acidity and soil buffering 
capacity (Van Bodegom et al., 2001) or as a function of acetate concentration (Xu et al., 2015). 
It is desirable to use a geochemical model to describe pH evolution mechanistically. The pH 
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response functions (reaction rate factor as a function of pH) in LSMs are empirical and vary 
substantially (Xu et al., 2016b).  Assessing the efficacy of  these functions is needed to better 
present pH impact on carbon mineralization and methanogenesis.” 

We do not feel comfortable to say soil pH change rapidly. We delete that sentence “because of 
the large buffering capacity, ” as well. 

 

Comment 9: P3L25, use pH buffering capacity instead of pH buffer capacity. It would also be 
useful to define ‘pH response functions’. 

Response 9: revise “buffer” to “buffering”, and add “(reaction rate factor as a function of pH)”  
after pH response function as described above. 

 

Comment 10: P3L26, logarithmic 

Response: 10: revise from “logarithm” to “logarithmic” as above 

 

Comment 11: P4L4, the last sentence is rather weak and does not connect with the next 
paragraph. A better transition is needed to highlight why it is necessary to compare 
temperature response functions. 

Response 11: add (italic) to the last sentence as 

“To reduce prediction uncertainty for carbon mineralization and methanogenesis under various 
temperatures, the temperature response functions need to be assessed  as well.” 

 

Comment 12: In 2.2.2, would it be possible to discuss how iron reduction and methanogenesis 
interact in the model? I can see that both of them reply on mD and kD, but what determines 
the partitioning of electron donors between these two processes? These details would be 
valuable to interpret the results later on (P9L28-35). 

Response 12: add 

“In this model, iron reducers and methanogens interact in different ways under various 
conditions. When the electron donors (acetate and H2) are abundant, iron reducers grow faster 
than methanogens when Fe(III) is not limiting (depending on the Fe(OH)3a surface sites and iron 
reducers population), i.e., iron reducers have a short doubling time than methanogens. When 
the electron donors are limiting, iron reducers are expected to outcompete methanogens, 
depending on the half saturation (substrate affinity) values. The model also accounts for the 
thermodynamics. However, it does not account for possible different responses to 
temperatures and pH for iron reducers and methanogens.” 

 

Comment 13:  P6L26, Riley et al. (2011) in fact cited Meng et al. (2012) Biogeosciences, 9, 
2793–2819 for this specific pH function. 
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Response 13:  add the citation/reference. 

 

Comment 14:  P7L8, the speciation of what? 

Response 14: add “CO2, CH4, H2, Fe, etc.” 

 

Comment 15:  P8L7, please justify why f(mega) and f(ferb) differ so much during initiation. A 
coma is missing between 0.5 and f(ferb). Also, I would keep the acronyms consistent, including 
their letter cases, throughout the manuscript. 

Response 15:  revise “fmega = fmegh = 0.5fferb = 10-6” to “fbio = 10-6, fMeGA = fMeGH = fbio, and fFeRB = 2 
fbio”. som1, som2, som3, megh, mega, and ferb in the subscripts are changed to consistent 
forms as normal text throughout the manuscript. fFeRB is twice fMeGA or fMeGH because FeRB has 
only one group while methanogens have two groups.  

 

Comment 16:  P8L10, ‘bioavailable ferric oxides’ is a vague and potentially controversial term. 
Please provide a definition. Also justify why HCl-Fe(III) is used to represent bioavailable ferric 
oxides. These papers may be useful: Hyacinthe et al. 2006 Geochimica et Cosmochimica Acta 70: 
4166-4180, Poulton and Canfield 2005 Chemical Geology 214: 

209-221. 

Response 16: modify the sentence from “we start with ffe3 = 0.005” to “While bioavailable Fe(III) 
in soils is not well defined (e.g., Hyacinthe et al. 2006; Poulton and Canfield 2005),  we start 
with ffe3 = 0.005 and evaluate the impact with a range of values.” and add the references.” 

 

Comment 17:  P8L26-27, I cannot follow this sentence. 

Response 17: the sentence  

“The overall observations appear to separate between the soil horizons (organic vs. mineral 
soils) rather than among the microtopographic locations (center, ridge, and trough) of ice-
wedge polygons.” 

is rewritten as 

“The variations in the overall observations appear to be better explained by the differences 
between the soil horizons (organic vs. mineral soils) than among the microtopographic 
locations (center, ridge, and trough) of ice-wedge polygons.” 

 

Comment 18: P8L28, it appears that soil microcosms were not flushed after gas sampling. 
Without flushing headspace, CO2 concentration builds up and consequently distorts gas 
diffusion. Without regular flushing, results from these incubations would misrepresent the 
decomposition processes in the field. Please comment. 
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Response 18: as in response 1 in the beginning, our model mechanistically describe the impact 
of headspace gas composition on mineralization and methanogenesis, therefore, better 
represent these processes; the field conditions can be simulated by using appropriate boundary 
conditions. 

 

Comment 19:  P9L8, again, the inhibitory effect of high headspace CO2 on microbial activities 
likely explained why the CO2 level off in the microcosms. Are these results appropriate for 
calibrating models? Please comment. 

Response 19:  as above, our results are generally applicable.  

 

Comment 20:  P9L10, except in the center organic soils. 

Response 20: add comma. 

 

Comment 21:  P9L15,  so does microbial activity every year 
Response 21: add “so does”. 

 

Comment 22:  P9L26, pH increased with Fe(III) reduction or the increase in pH 
Response 22: revise from “the pH increase” to “the increase in pH”. 

 

Comment 23:  Qualitatively, there is evidence to support that Fe(III) reduction competes with 
CH4 production. The center organic soils had the highest CH4 production, while their Fe(III) 
reduction was the lowest among all treatments. The authors claimed that “the impact appears 
less significant than expected”, but I don’t understand what they were expecting. Please 
elaborate. 
Response 23: This is in relative to the belief of strict thermodynamic/redox ladder where 
methanogenesis does not occur until all alternative electron acceptors that are more favorable 
than CO2 are exhausted. We add “(e.g., complete inhibition until bioavailable Fe(III) is 
exhausted )” to “the impact appears less significant than expected”. 

 

Comment 24:  P10L24-25, if microcosms in Roy Chowdhury et al. (2015) were not flushed 
regularly, then their results underestimated CO2 production. Thus, it is not surprising that the 
models appeared to overestimate CO2 production. Please comment. 

Response 24: as addressed in the beginning, our model mechanistically describe the impact of 
headspace gas composition on mineralization and methanogenesis, therefore, better represent 
these processes; the field conditions can be simulated by using appropriate boundary 
conditions. 
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Comment 25:  P10L26, notice that Knoblauch et al. (2013) flushed microcosm headspace 
whenever CO2 concentration reached 3%. 

Response 25: see response 1. 

 

Comment 26:  P12L6, Figure 3S, adsorption of CO2 on iron oxides played a bigger role in the 
mineral soils than in the organic soils. Why? 

Response 26: This is because of relatively higher Fe(OH)3a in the mineral soils than in the 
organic soils. 

 

Comment 27:  P12L19, Table 2 should be referenced here instead of Table 1. 

Response 27: corrected.  Thanks for catching this mistake. 

 

Comment 28:  P12L20-23, I agree that higher f(labileDOC) increased model performance. But 
such improvement occurred mostly in samples kept at 8 degrees. For samples in -2 degrees, 
models with the lowest f(labileDOC) were actually the best. Please comment on the interactive 
effects of temperature and f(labileDOC) on CO2 production. 

Response 28: as describe in section 3.1, the observed temperature response is diverse and 
challenging to explain. We do not feel comfortable in assessing the predictions at -2 °C.  

 

Comment 29:  P14L10-11, soil redox condition can also explain why mineral soils have lower pH 
than organic soils. Soils in reducing environments usually have high pH because reduction 
reactions consume protons. With a much higher water content (Table 2), organic soils are in 
more reducing conditions and likely have higher pH than mineral soils. 

Response 29: add “… and/or more reducing condition in the organic soils as reduction reactions 
typically consume protons.” 

 

Comment 30: Set a hanging indent for references. 

Response 30: Done 

 

Comment 31:  Tables should be reformatted. 

Response 31: done. 
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Responses to Referee #3 

Comment 1: Community land model carbon nitrogen (CLM-CN) predominantly represents 
aerobic decomposition of SOM. In this manuscript, authors propose to include anaerobic 
processes in this model by integrating new experimental data for redox potential, pH, and 
temperature parameters from Arctic soils. This manuscript is very thorough. It’s amazing to see 
parameterization of model with experimental data! While this work has some flaws, it is a huge 
step forward in closing the gap between modeling and experimental data integration. I’m 
impressed by the author’s knowledge of biogeochemical processes in soil and effort to connect 
real world mechanisms to the modeling results; this is no small feat. It is clear they gave a great 
deal of thought to their results.  

Response 1: Many thanks for the compliments and very nice constructive comments. 

 

Comment 2: In general, I would recommend the author’s provide stronger justification for 
determining that the most limiting factor for SOM turnover is hydrolysis of macromolecules. 
This both served as the foundation of this work and is continually provided as an explanation to 
observations. While it’s tough to cover all possible scenarios in soils, authors should address 
other potential factors that could drive the rate of SOM turnover and justify why they believe 
hydrolysis of macromolecules is the most limiting factor.  

Response 2: We agree that hydrolysis is a limiting factor. We also agree with referee #1 that it 
is controversial to state that hydrolysis is the most limiting factor. At least, the evidence from 
the data referred in this work does not unequivocally substantiate the statement. As a result, 
we try to be balanced and discuss about possible new data needs to better understand and 
quantify hydrolysis. 

 

All the referees comment on the need to mention other factors. In response, we make revisions 
to clarify the scope of this work, to put our work in the context of comprehensive hydrologic, 
geochemical and biologic processes that control soil carbon mineralization, and describe using 
3-D high resolution grids to account for heterogeneity, and CLM-PFLOTRAN to use reactive 
transport models to improve the mechanistic representation in land surface models. Please see 
response to other referees for more details.  

 

Comment 3. In the conclusion, I think it would be nice for the author’s to add some suggestions 
for parameters/processes that could be incorporated into this model in the future or specific 
geochemical measurements that experimentalists should consider collecting during their 
studies. 

Response 3: These are nice suggestions. As mentioned in Response 2, we add discussions about 
next steps. 
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—Specific comments— 

 

Comment 4: P3L10-11: “… the hydrolysis and fermentation reactions have been poorly 
quantified.” I’m not sure I follow the point being made here. Is this suggesting that 
hydrolysis/fermentation of SOM is poorly quantified (in general) or specifically in arctic soils? 

Response 4: add “represented and quantified in Arctic as well as temperate and tropical soils” 
to clarify the point. 

 

Comment 5: P4L28-29: What is a “low-center polygon”? It is frequently referred to the in the 
text of this article, yet it is unclear to me what it is. This seems like site-specific terminology that 
may be worth describing. I’m not sure how many readers would know what this is. I’m also 
assuming the “center” sampling location is a slope since the other two are the “ridge” and 
“trough”? 

Response 5: add “(a typical arctic geographic feature in the low lands with soils surround by ice 
wedges, see cited references for more information)”. 

 

Comment 6: P7L28: What do SOM3 and SOM4 represent? LabileDOC, SOM1, SOM2 and the 
biomass pools were described, but not SOM3 and SOM4. Furthermore, SOM4 isn’t included in 
the fractions listed on P7L29. Is it supposed to be included in this list of fractions? If not, then 
why is it excluded? 

Response 6: SOM3 and SOM4 are like SOM1 and SOM2, two additional soil organic matter 
pools in CLM-CN (Fig. 1). We add “(the rest is assumed to be SOM4, e.g., fSOM4 = 1 – fLabileDOC – 
fSOM1 …)” 

 

Comment 7: P8L1-2: The turnover time of SOM3 and SOM4 are not listed – these fractions 
need to be better described or explain why they are excluded. 

Response 7: add “(as the turnover time for SOM3 and SOM4 are 2 and 27 y, respectively, Fig. 
1)”. 

 

Comment 8: P8L7-9: Nice explanation for “back of the envelop” biomass estimation 

Response 8: Thanks. 

 

Comment 9: P10L26-27: Are there other potential reasons why the rate of CO2 would stabilize? 
Limitation of some other resource? For instance, N? Does this study have evidence to support 
that rate of CO2 respiration stabilized because of hydrolysis of polymers? 
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Response 9: We appreciated the reviewer for raising these questions. As we mention ahead of 
section 2.1, “While nitrogen (ammonium and nitrate) concentrations can affect carbon 
mineralization (Lavoie et al., 2011), we do not account for this effect because of a lack of 
nitrogen measurements from these experiments.” As we mention earlier, we do not have 
specific direct evidence to support polymer hydrolysis as the limiting factor. 

 

Comment 10: P11L8: parameter Fe3= 0.02 is above the max value in the range of observed 
values stated on P8L14, can the authors comment on why they might need to increase this 
value beyond observed values to help the model better match observations for Fe(II)? Do you 
have any suggestions for some other parameter that should be included or other parameter 
values that could be altered to help achieve a better model fit, while maintaining values within 
experimentally observed value range? 

Response 10: The observed range is from another site. It is not directly applicable here. In the 
revision, we revise from “we start with ffe3 = 0.005” to “While bioavailable Fe(III) in soils is not 
well defined (e.g., Hyacinthe et al. 2006; Poulton and Canfield 2005),  we start with fFe3 = 0.005 
and evaluate the impact with a range of values.” 

  

Comment 11: P11L11-14: How do these model observations relate to experimental data? Is 
there any experimental evidence (either from your original work or other soil Fe literature) to 
support that as Fe3 increases there is a decrease in CH4 resulting from competition between 
methanogens and iron reducers? Why wouldn’t this also be the case when Fe3 = 0.01? 

Response 11: We add “(rather than strict thermodynamic control, e.g., Bethke et al., 2011; 
direct inhibition, e.g., van Bodegom et al., 2004; or indirect inhibition through substrate 
competition, e.g., Mill et al., 2015, Reiche et al. 2008)”. As discussed in these cited references, 
Fe reduction is known for inhibition of methanogenesis. 

 

Comment 12: P11L29-31: This statement contradicts L25-26. L25-26 states as pH increases, 
CO2(aq) increases. L29-31 states as pH increases, CO2 (aq) decreases. Please provide an 
explanation. 

Response 12: This was because CO2 in the aqueous phase here means a specific aqueous 
species rather than total CO2. To avoid this confusion, we add (aq) after CO2 and the sentence 
is revised from 

“As the pH increases above the carbonic acid pKa (around 6.3 at standard condition), CO2(g) in 
the headspace and CO2 in the aqueous phase decrease as HCO3

- becomes dominant, and the 
gas-phase fraction decreases dramatically.” to 

“As the pH increases above the carbonic acid pKa (around 6.3 at standard condition), CO2(g) in 
the headspace and CO2(aq) species decrease as HCO3

- becomes the dominant species in the 
aqueous phase, and the gas-phase fraction decreases dramatically.” 
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Comment 13: P12L19: I keep having to look back at what “WEOC” means. I would recommend 
using some other terminology. Also, this sentence should reference Table 2 not Table 1. 

Response 13: As suggested by the other two referees, we spell out WEOC. The table reference 
is corrected.  

 

Comment 14: P12L20-22: Is this comparable? The values for rapid CO2 release in Figure 4 look 
nearly double or triple the observed values. It appears that CO2 values for organic center at a 
LabileDOC = 0.02 fit the experimental data best out of all of these scenarios. 

Response 14: revise to “… the underprediction of the early CO2 increase in the headspace are 
more or less mitigated.” 

  

Comment 15: P12L29: “high center polygon trough”? I thought “center” and “trough” were two 
different sampling sites? Please clarify and be consistent throughout the paper. Same error 
P13L6. 

Response 15: revise from “…from the high center polygon trough” to “…from a trough location 
in a high center polygon…” 

 

Comment 16: P13L19-20: I don’t follow – how do these studies demonstrate that hydrolysis of 
macromolecular organics by extracellular enzymes is the rate limiting step? What about 
bioavailability? Limitation of some other resource? 

Response 16: As we discuss earlier, we do not have direct unequivocal evidence for this. 

 

Comment 17: P13L24-26: Please rewrite this sentence for clarity. 

Response 17:  remove “(or produce substrate for)” and add “in the slabile = 0.2 case”. The 
sentence reads: 

“With slabile = 0.2, the model generally predicts less CH4 and more CO2 than the case with slabile = 
0.4 because less SOM is assumed to respire through  the anaerobic pathway in the slabile = 0.2 
case (Fig. S5).” 

 

Comment 18: P13L31: “the model substantially underpredicts: : :” Please include a figure 
number. 

Response 18: include figure number: Fig. 4b3. 

 

Comment 19: P14L1: It could also be attributed to populations at that particular site grow more 
rapidly than the populations at other sites. Hard to say without a T0 measurement: : : I would 
tread lightly with this, you don’t have strong experimental evidence to support this statement. 
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Response 19: remove “, indicating possible high initial abundance” 

 

Comment 20: P14- first paragraph: The text says the opposite of what is demonstrated in Figure 
5. 

Response 20: The legend was wrong. It is corrected. The numbering for the subplots was 
moved to the right corner to avoid overlap with the legend. 

 

Comment 21: Figure 5 shows the lower initial biomass results in more Ch4, FeII, pH increase, 
etc. Is it possible the figure legend is wrong? 

Response 21: See Response 20 

   

Comment 22: P14L10-12: OK, but if the OM soils are better buffered why are there rapid 
changes in pH for both the observed and experimental data for OM soils? FigureS6. OM soils 
appear to have rapid pH changes occur sooner than mineral soils, despite buffering? Please 
explain. 

Response 22: The initial drastic drop in pH for OM soils are due to the fermentation of a large 
amount of initial labile carbon. Because of the abundance of simple substrates, Fe reduction 
and methanogenesis rates are high later, resulting in fast pH increase. It is really a complex 
nonlinear relationship. 

 

Comment 23: P16L21: change “enhancing” to “enhances” 

Response 23:  revised. 

 

Comment 24: P16: Transparent science! Thanks for making your code and data available! 

Response 24: You are welcome. We are happy to share. 

 

Comment 25: P17: It’s unclear what a pH response and temperature response function are. 
Please better define. What is the reader supposed to take away from this information?  

Response 25:  add “(reaction rate adjustment factor as a function of pH)” and “(reaction rate 
adjustment factor as a function of temperature)”. As we discuss in the introduction and results 
and discussion sections, the take-away is that these two response functions are an important 
source of uncertainty. 

 

Comment 26: All tables and figures should be able to stand on their own. Improve caption text 
and add full legends (colors, symbols, and patterns defined in each figure). 
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Response 26: improved. 

 

Comment 27: -Please format Table 2. 

Response 27: this is reformed (see page 27). 

 

Comment 28: -Figure 2 caption L5 add “as” after “such” 

Response 28: added. 

 

Comment 29: -Figure 5 caption text does not match figure. Legend suggests lowest initial 
biomass results in highest CH4. Please make full legend visible (partially covered up). 

Response 29:  See Response 20. 
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Abstract. Soil organic carbon turnover to CO2 and CH4 is sensitive to soil redox potential and pH conditions. However, land 10 

surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making 

predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land 

Model Carbon Nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, 

Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. 

Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximately describe the observed pH 15 

evolution without additional parameterization. Although Fe(III) reduction is normally assumed to compete with 

methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing 

environmental stress to methanogens and accelerating methane production when substrates are not limiting. The equilibrium 

speciation predicts a substantial increase in CO2 solubility as pH increases, and taking into account CO2 adsorption to surface 

sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate 20 

representation of these speciation reactions, and the impacts of pH, temperature, and pressure, the CO2 production from 

closed microcosms can be substantially underestimated based on headspace CO2 measurements only.  Our results 

demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding 

and mechanistic representations that can be tested incorporated  into land surface models to improve climate model 

predictions. 25 

Key words. anaerobic incubation, Fe(III) reduction, methanogenesis, pH, temperature response  
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1 Introduction  

Global warming is expected to accelerate permafrost thaw, whichProjected increases in temperature and soil saturation and 

vegetation shift  are widely expected to accelerate may trigger the release of the large amount of frozen soil organic matter 

(SOM) stored in the Arctic as carbon dioxide (CO2) and methane (CH4) into the atmosphere, which maypossibly forming a 

positive feedback to climate change (Treat et al., 2015; Knoblauch et al., 2013; Elberling et al., 2013). Permafrost thawing 5 

leads to significant changes in soil water saturation, creating favorable conditions for anaerobic respiration and 

methanogenesis (Lawrence et al., 2015).  

 

Current biogeochemical models predominantly represent SOM decomposition models are developed mostly forunder aerobic 

conditions (Manzoni and Porporato, 2009). They and are modified for use under anaerobic conditions. For example, the 10 

Community Land Model Carbon Nitrogen (CLM-CN) decomposition cascade is used to implicitly represent anaerobic 

decomposition with a moisture response function that approaches unity at saturation and an oxygen scalar that has a large 

unresolved uncertainty (Oleson et al., 2013). In a recent permafrost carbon climate feedback modeling study, the carbon 

release rate from permafrost soils after thawing under aerobic conditions was assumed to be 3.4 times higher than the release 

rate under anaerobic conditions (Koven et al., 2015; Schädel et al., 2016). However, in incubations with soils from Alaska 15 

and Siberia, carbon release under aerobic conditions was 3.9–10 times greater than release under anaerobic conditions (Lee 

et al., 2012), and CO2 production appeared ceased at late times in anaerobic microcosms (Xu et al., 2015; Roy Chowdhury et 

al., 2015), indicating that these existing models do not adequately represent the anaerobic processes for accurate prediction 

of SOM turnover and heterotrophic respiration.  

 20 

In addition, it is important to accurately represent methanogenesis in the context of competing anaerobic processes Because 

because CH4 has a 100-year global warming potential that is about 26 times greater than CO2 (Forster et al., 2007; IPCC, 

2013), an atmospheric residence time of approximately 10 years (IPCC, 2013), and methanogenesis rate can be high under 

favorable conditions,it is important to accurately represent methanogenesis in the context of competing anaerobic processes. 

Methanogenesis is carried out by a group of strictly anaerobic Archaea. The free energy of methanogenesis reactions is less 25 

favorable than the reduction of O2, NO3
-
, Mn (IV), Fe(III), and SO4

2-
 along the redox ladder (Conrad, 1996; Bethke et al., 

2011). The accumulation of CH4 has been widely observed to lag behind CO2 for periods ranging from days to years in 

incubations (Knoblauch et al., 2013; Roy Chowdhury et al., 2015; Cui et al., 2015; Hoj et al., 2007; Fey et al., 2004; Jerman 

et al., 2009; Tang et al., 2013c). The implication is that a first order representation (including constant CO2 CH4 ratio 

parameterization) normally overpredicts CH4 production rate before methanogenosis initiation and underpredicts CH4 30 

production rate afterwards, and the uncertain lag time introduces large bias in CH4 production prediction.  
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Besides temperature (Fey and Conrad, 2003; Hoj et al., 2007; Jerman et al., 2009; Cui et al., 2015) and initial methanogen 

abundance (Conrad, 1996; Knoblauch et al., 2013), the wide range of redox buffers provided by the alternative electron 

acceptors is likely a cause of the wide range of observed lag times that has been observed (Estop-Aragonés and Blodau, 

2012; Fey et al., 2004; Jerman et al., 2009; Yao et al., 1999; Conrad, 1996; Knorr and Blodau, 2009). As a result, the ratio of 

CH4 to CO2 ranges from 0.00001 to 0.5 (Wania et al., 2010; Drake et al., 2009; Bridgham et al., 2013), highlighting 5 

limitation of the CH4 CO2 ratio approach. Nevertheless, some land surface models (LSM) parameterize methanogenesis as a 

fraction of carbon mineralization (Wania et al., 2013; Oleson et al., 2013; Koven et al., 2015; Tian et al., 2015;Cheng et al., 

2013). While methanogenesis is explicitly represented in some models (Xu et al., 2015; Grant, 1998) and the reduction of 

alternative electron acceptors is explicitly represented in others (Fumoto et al., 2008; Segers and Kengen, 1998; Van 

Bodegom et al., 2001; van Bodegom et al., 2000), these models do not have an aqueous phase that is essential for explicit 10 

biogeochemical calculations, e.g., pH, Eh, and thermodynamic calculations. Because methanogenesis is sensitive to redox 

conditions, the lack of explicit biogeochemical representation of the redox processes contributes to the prediction uncertainty 

of CH4 emission.  

 

Anaerobic bacteria and Archaea usually depend on simple substrates such as sugars, alcohols, organic acids, and H2 as 15 

carbon and energy sources, sources that are rarely simulated in ecosystem models (Manzoni and Porporato, 2009; Xu et al, 

2015). Instead, they are typically lumped together as dissolved organic matter (DOM) or low-molecular-weight organic 

carbon (LMWOC) (e.g., Tian et al., 2010). The abundance and importance of dissolved organic matter (DOM and ) and low-

molecular-weight organic carbon (LMWOC) in SOM turnover in the Arctic soils are becoming increasingly recognized 

(Hodgkins et al., 2014). The DOM concentration in water flowing from collapsing permafrost (thermokarsts) on the North 20 

Slope of Alaska ranges from 0.2−8 mM, with biodegradable (degrade in 40 d) DOM accounting for 10-60 % (Abbott et al., 

2014; Arnosti, 1998, 2000; Arnosti et al., 1998). Ancient LMWOC was found to fuel rapid CO2 production upon thawing 

(Drake et al., 2015). On the other hand, new SOM consists of mostly macromolecules of plant and microbial residues such as 

carbohydrates (polysaccharides, including cellulose, hemicellulose, lignin, etc.), lipids, nucleic acids, and proteins (Kögel-

Knabner, 2002). While conceptual models and measurements connecting SOM with LMWOC have long existed (Drake et 25 

al., 2009; Tveit et al., 2013; Tveit et al., 2015; Bridgham et al., 2013), the hydrolysis and fermentation reactions have been 

poorly represented and quantified in the Arctic as well as temperate and tropical soils. Among the over 250 SOM 

decomposition models that have been developed in the past 80 years (Manzoni and Porporato, 2009), only a few models 

explicitly simulate simple substrates (Xu et al., 2016b). Either a simple carbon pool (Cao et al., 1995; Cao et al., 1998; 

Kettunen, 2003) or a DOM pool (Tian et al., 2010; Xu and Tian, 2012) has been assumed for methanogenesis. The 30 

production of Acetate acetate and H2 have has been added with their production parameterized as a function of carbon 

mineralization (Van Bodegom et al., 2001; van Bodegom et al., 2000; Grant, 1998; Xu et al., 2015). It is not surprising that 

CH4 production prediction is sensitive to simple substrate production (Kettunen, 2003; Weedon et al., 2013). While detailed 

SOM decomposition models include depolymerization to produce monomers under aerobic conditions (Riley et al., 2014), 
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production and consumption of simple measurable substrates, such as acetate, H2, formate, etc., are not explicitly represented 

under anaerobic conditions.  

 

In addition to electron acceptors and substrates, SOM turnover is also sensitive to soil pH. Most methanogens grow over a 

relatively narrow pH range (6-8), while some adapt to acidic or basic environments (Garcia et al., 2000; Van Kessel and 5 

Russell, 1996; Wang et al., 1993; Sowers et al., 1984; Rivkina et al., 2007; Hao et al., 2012; Kotsyurbenko et al., 2004; 

Kotsyurbenko et al., 2007). Soil pH can change 1-2 logarithmic units in laboratory incubations (Xu et al., 2015; Roy 

Chowdhury et al., 2015; Peters and Conrad, 1996; Drake et al., 2015) and it can vary significantly through the soil profile 

and along topographic and vegetation gradients in the field (Cao et al., 1995; Van Bodegom et al., 2001; Lipson et al., 

2013b). The pH feedback on methanogenesis could be up to 30% (Xu et al., 2015). The pH response functions in LSMs are 10 

empirical and vary substantially (Xu et al., 2016b). Because of the large buffer capacityHowever, soil pH is often fixed in 

LSMs (Oleson et al., 2013; Tian et al., 2010). But in reality, pH does change 1-2 logarithm units in laboratory incubations 

(Xu et al., 2015;Roy Chowdhury et al., 2015;Peters and Conrad, 1996;Drake et al., 2015) and in the field, where it can vary 

significantly through the soil profile and along topographic and vegetation gradients (Cao et al., 1995;Van Bodegom et al., 

2001;Lipson et al., 2013b). pH is calculated using soil acidity and soil buffer capacity (Van Bodegom et al., 2001) or as a 15 

function of acetate concentration (Xu et al., 2015). It is desirable to use a geochemical model to describe pH evolution 

mechanistically. The pH response functions (reaction rate adjustment factor as a function of pH) in LSMs are empirical and 

vary substantially (Xu et al., 2016b).  Assessing the efficacy of  these functions is needed to better represent pH impacts on 

carbon mineralization and methanogenesis. 

 20 

Temperature is another critical factor controlling SOM turnover is also sensitive to temperatureto CO2 and CH4. The 

reported Q10 values for methanogen temperature response vary from 1.5 to 4 (Xu et al., 2016b). Methanogenesis has been 

widely observed to diminish when the temperature decreases toward 0 °C (Dunfield et al., 1993; Fey et al., 2004; Hoj et al., 

2007; Sowers et al., 1984), predicting little CH4 production from the surface layers of frozen Arctic soils. However, recent 

observations suggest that CH4 emissions during the winter season account for ≥ 50 % of the annual emission in the Arctic 25 

(Zona et al., 2016). The cold season CH4 production is among the most uncertain processes for predicting seasonal CH4 

cycle in northern wetlands (Xu et al., 2016a). The temperature response functions (reaction rate adjustment factor as a 

function of  temperature) need to be assessed as well. 

 

Overall, anaerobic SOM turnover is controlled by the hydrolysis of the macromolecules to produce simple substrates and the 30 

sequential microbial reduction of electron acceptors along the redox ladder. Because SOM turnover and CO2 and CH4 

productions are sensitive to redox potential, pH, and temperature, it is desirable to simulate the redox and pH explicitly with 

geochemical models. With the accumulation of new data on metabolic intermediates, electron acceptors, greenhouse gases, 

and pH from incubations with Arctic soils at various temperatures (Drake et al., 2015; Herndon et al., 2015a; Herndon et al., 
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2015b; Yang et al., 2016; Mann et al., 2015), our objectives are to integrate these new data into geochemical models to (1) 

extend the CLM-CN decomposition cascade to include simple substrates such as sugars and organic acids and add Fe(III) 

reduction and methanogenesis processes, (2) account for gas, aqueous, and adsorbed phase speciation, (3) describe pH 

mechanistically,  and (4) assess the existing temperature and pH response functions. Unlike previous LSMs, we simulate 

speciation of CO2 and CH4 in the gas, aqueous, and solid phases, and represent sugars, organic acids, Fe(II), Fe(III), Fe 5 

reducers, and methanogens, and account for both thermodynamic and kinetic control. Our results provide predictive 

understanding and mechanistic representations that can be tested incorporated in other LSMs, e.g., CLM-PFLOTRAN (Tang 

et al., 2016), to improve climate model predictions.  

 

The carbon cycle involves coupled hydrological, geochemical, and biological processes interacting from molecular to global 10 

scales. The implicit empirical first order approach used in existing LSMs limits our understanding of the land atmosphere 

interaction and is a source of prediction uncertainty. To improve our understanding and reduce prediction uncertainty, we 

attempt to use relatively more explicit mechanistic representations developed in the reactive transport model literature (Tang 

et al., 2016). Even though explicit representation does not necessarily improve the match between the predictions and 

observations over well-tuned existing models immediately (e.g., Wieder et al. 2015; Steven et al. 2006), our approach 15 

provides a systematic means to incorporate on-going process-rich investigations to improve mechanistic representations in 

LSMs across scales. As a preliminary study, we constrain our scope to extending CLM-CN with minimum revision to 

describe anaerobic CO2 and CH4 production from several recent microcosm studies in this work. We discuss next steps 

briefly in the results and discussion section.  

2 Materials and methods 20 

We extend the CLM-CN decomposition cascade (Thornton and Rosenbloom, 2005) by adding reactions for hydrolysis to 

produce sugars, fermentation to produce organic acids and H2 (Grant, 1998; Xu et al., 2015), Fe(III) reduction, and 

methanogenesis reactions (Tang et al., 2013c). We add the Windermere Humic Aqueous Model (WHAM) (Tipping, 1994) to 

simulate the pH buffer by SOM. Recent microcosm data (Herndon et al., 2015a; Roy Chowdhury et al., 2015) are used to 

assess these representations. While nitrogen (ammonium and nitrate) concentrations can affect carbon mineralization (Lavoie 25 

et al., 2011), we do not account for this effect because of a lack of nitrogen measurements from these experiments. 

2.1 Soil incubation experiment data 

The materials, experimental procedures and results for the microcosm tests were reported previously (Herndon et al., 2015a; 

Roy Chowdhury et al., 2015). Briefly, three soil cores were taken from center, ridge, and trough locations in a low-center 

polygon (a typical arctic geographic feature in the low lands with soils surround by ice wedges, see cited references for more 30 

information) in the wet tundra of the Barrow Environmental Observatory in Alaska. Soil samples from the organic and 
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mineral horizons of the three cores were analyzed for gravimetric water content, pH, Fe(II), water-extractable organic carbon 

(WEOC), organic acids, and total organic carbon content (TOTC). For each horizon and location, about 15 g of 

homogenized wet soil was placed into a 60 ml sterile serum bottle, which was sealed and flushed with pure N2 gas. The 

microcosms were incubated at -2, 4, and 8 °C for about 2 months to mimic thawing during the summer season at the site. 

The headspace CO2 and CH4 were sampled and analyzed by gas chromatography. Separate microcosms with 20 g of the 5 

homogenized soils were incubated to analyze for pH, Fe(II), water extractable organic carbonWEOC, and organic acids. 

Additional soil characterization is available elsewhere (Bockheim et al., 2001; Lipson et al., 2010; Lipson et al., 2013b).  

 

2.2 Model developments 

2.2.1 SOM decomposition 10 

The SOM in the Arctic soils was characterized using high-resolution mass spectroscopy (Herndon et al., 2015a; Mann et al., 

2015; Hodgkins et al., 2014). However, these characterizations were insufficient to partition SOM into many chemically 

distinct organic pools (Riley et al., 2014; Kögel-Knabner, 2002). Therefore, we extend the CLM-CN decomposition cascade 

to produce intermediate metabolites (Fig. 1). To limit the number of new pools, we lump reducing sugars, alcohols, etc. 

(Yang et al., 2016; Kotsyurbenko et al., 1993; Glissmann and Conrad, 2002; Tveit et al., 2015) into a LabileDOC pool, and 15 

the organic acids, such as formate, acetate, propionate, and butyrate, etc. (Herndon et al., 2015a; Kotsyurbenko et al., 1993; 

Peters and Conrad, 1996; Tveit et al., 2015) into an organic acid pool (Ac) (Xu et al., 2015; Grant, 1998). Assuming that the 

LabileDOC turns over in 20 h as the Lit1 pool in CLM-CN (Thornton and Rosenbloom, 2005) or glucose fermentation 

(Rittmann and McCarty, 2001), we split the original respiration factor into a direct and an indirect fraction, with the indirect  

fraction slabile to produce LabileDOC, which respires through the anaerobic pathway (Fig. 1) to CO2 or CH4, and the direct 20 

respiration fraction (1- slabile) respires directly to CO2. We estimate slabile by comparing the predictions with the observations 

in this work. The fermentation reaction is (Xu et al., 2015; Grant, 1998; van Bodegom and Scholten, 2001; Madigan, 2012) 

C6H12O6 + 4 H2O => 2 CH3COO
-
 + 2 HCO3

-
 + 4 H

+
 + 4 H2,        (R1) 

which lowers the pH and further respires slabile/3 of SOM into CO2. 

2.2.2 Fe(III) reduction, methanogenesis, and biomass decay 25 

Because Fe(III) reduction contributes 40-45 % of the ecosystem respiration in some Arctic sites (Lipson et al., 2013b) and 

NO3
-
 and  SO4

2-
 concentrations are typically low in the experiments, we add Fe(III) reduction reactions to represent the 

reduction of alternative electron acceptors to O2. We use the microbial reactions formed by combining electron donor 

(oxidation) half reactions, electron acceptor (reduction) half reactions, and cell synthesis reactions following bioenergetics 

(Rittmann and McCarty, 2001). Specifically, the Fe(III) reduction reactions are (Istok et al., 2010) 30 

2.1 H2O + NH4
+
 + 150.2 Fe

3+
 + 21.3 CH3COO

-
  => C5H7O2N + 150.2 Fe

2+
 + 167.4 H

+
 + 37.5 HCO3

-
,   (R2) 



7 

 

5 HCO
3-

 + NH4
+
 + 114. 8 Fe

3+
 + 57. 4 H2  =>  C5H7O2N + 114. 8 Fe

2+
  + 110. 8 H

+ 
+ 13 H2O,   (R3) 

where, C5H7O2N represents microbial (iron reducer) mass, and NH4
+
 is assumed not to be limiting (at 1 μM). These two 

reactions result in dissolution of ferric oxides, for example, Fe(OH)3a, to release OH
-
 to increase pH. The rate is 

  

  
      

     

                   

  

     
    ,         (1) 

where      is the kinetic rate constant;   is concentration of biomass;             is the microbially-available surface sites 5 

taken as the Fe(OH)3a surface sites Hfo associated with H
+
, i.e.,                               in moles per liter pore 

fluid;       accounts for the impact of               , which represents the interaction of biomass with available Fe(III) sites 

on the surface;    and    are the concentration and half saturation of the electron donors (acetate or H2); and      is a 

thermodynamic factor that goes to zero when the reaction is thermodynamically unfavourable (Jin and Roden, 2011).  

The methanogenesis reactions are (Istok et al., 2010) 10 

1.5 H
+
 + 98.2 H2O + NH4

+
 + 103.7 CH3COO

-
 => C5H7O2N + 101.2 HCO3

-
 + 101.2 CH4,    (R4) 

84. 9 H
+
 + NH4

+
 + 85. 9 HCO3

-
 + 333.5 H2  => C5H7O2N + 255.6 H2O + 80. 9 CH4.    (R5) 

These two reactions consume protons to increase pH. The rate is 

  

  
      

  

     
    .           (2) 

We use one pool FeRB for the iron reducers and separate the methanogens into MeGA and MeGH pools for acetoclastic and 15 

hydrogenotrophic methanogens (Fig. 1). The biomass decay reaction for FeRB, MeGA, and MeGH is 

0.2 C5H7O2N =>  0.1 SOM1 + 0.2 SOM2 + 0.25 SOM3 + 0.45 SOM4 + 0.1185 NH4
+
 + ….   (R6) 

Like the SOM pools, the rate is first order.  

In this model, iron reducers and methanogens interact in different ways under various conditions. When the electron donors 

(acetate and H2) are abundant, iron reducers grow faster than methanogens when Fe(III) is not limiting (depending on the 20 

Fe(OH)3a surface sites and iron reducers population), i.e., iron reducers have a short doubling time than methanogens. When 

the electron donors are limiting, iron reducers are expected to outcompete methanogens, depending on the half saturation 

(substrate affinity) values. The model also accounts for the thermodynamics. However, it does not account for possible 

different responses to temperatures and pH for iron reducers and methanogens. 

2.2.3 pH 25 

The soil pH is typically buffered by carbonates, clay minerals, metal oxides, and organic matter (Tipping, 1994; Tang et al., 

2013a). The Windermere Humic Aqueous Model (WHAM) is used to approximate SOM as humic acid and fulvic acid, with 

a number of monodentate and bidentate binding sites for protons, to describe the pH buffering due to SOM (Tipping, 1994). 

The surface complexation model for ferrihydrate is used to describe the sorption of carbonate and proton to metal oxides 
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(Dzombak and Morel, 1990).  Additional aqueous speciation reactions are also included in the reaction database available as 

supplemental information (also publicly available at https://github.com/t6g/bgcs). 

2.2.4 pH and temperature response functions 

We use the CLM4Me pH response function (Riley et al., 2011; Meng et al., 2012)  

                                          (3) 5 

and the CLM-CN temperature response function (Thornton and Rosenbloom, 2005; Lloyd and Taylor, 1994) 

              
 

     
 

 

        
 .         (4) 

The pH response functions used in DLEM (Tian et al., 2010)  and TEM (Raich et al., 1991) and a few other models (Cao et 

al., 1995; Xu et al., 2015), as described in Appendix 1, and the CENTURY temperature response function,  the Q10 equation,  

Arrhenius equation, and Ratkowsky equation, which are described in Appendix 2, are used for comparison. 10 

2.3 Implementation, parameterization, and initialization 

2.3.1 Implementation 

To calculate the speciation of CO2, CH4, H2, Fe, etc. among gas, aqueous, and solid phases under various temperature, pH, 

and pressure conditions and explicitly describe pH and redox buffer, we employ the widely used extensively tested 

geochemical code PHREEQC (Parkhurst and Appelo, 2013) to synthesize the experimental data to develop and parameterize 15 

mechanistic representations. The implementation of CLM-CN reactions in a geochemical code is detailed elsewhere (Tang et 

al., 2016). Guidelines for implementation of the microbial reactions, surface complexation, WHAM, etc., in PHREEQC are 

available in the user manual (Parkhurst and Appelo, 2013).  

2.3.2 Parameterization 

The stoichiometric and kinetic rate parameters for the CLM-CN reaction network are specified in Fig. 1. The indirect 20 

respiration faction slabile is highly uncertain. We start with slabile = 0.4, and check the sensitivity with slabile = 0.2 and 0.6. For 

the decay of biomass, and growth of methanogens, we use the general parameter values in the literature (Rittmann and 

McCarty, 2001).  The half saturation kD and ksurf values are taken from published literature (Jin and Roden, 2011). The 

parameter values and the references are listed in Table 1. 

2.3.3 Initialization 25 

The basic experimental parameters are summarized in Table 2 and Table S1. The amount of water, headspace volume, and 

temperature are set at the experimental parameter values. The initial pH, organic acids (combined formate, acetate, 

propionate, and butyrate from Table S1 to Table 2) and Fe(II) concentration are specified as measured. 
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The measured total organic carbonTOTC includes seven carbon pools in the CLM-CN decomposition cascade, as well as 

simple substrates (such as sugars, alcohols, organic acids), and biomass for FeRB, MeGA, MeGH, and other microbes. 

Because of the lack of reliable methods in partitioning the measured TOTC total organic carbon into these pools, we 

combine the Lit1 pool with LabileDOC, Lit2 with SOM1, and Lit3 with SOM2 pools as they have identical turnover times 

(Fig. 1). That is, we will split the initial TOTC total organic carbon (minus simple substrates) into LabileDOC, SOM1, 5 

SOM2, SOM3, SOM4, FeRB, MeGA, and MeGH pools, with fraction flLabileDOC, fsomSOM1, fsomSOM2, fsomSOM3, fFeRBferb, 

fMeGAmega, and fMeGHmegh (the rest is fSOM4, i.e. fSOM4 = 1 – fLabileDOC – fSOM1 - ...). Because the experiments lasted for only 2 

months, and predictions are often not very sensitive to the initial biomass (Tang et al., 2013b; Tang et al., 2013c; Xu et al., 

2015; Jin and Roden, 2011), the predictions are expected to be sensitive to flabileDOCfLabileDOC, fSOMsom1, and fSOMsom2 under the 

experimental conditions (as the turnover time for SOM3 and SOM4 are 2 and 27 y, respectively, Fig. 1). With a turnover 10 

(mean residence) time of 0.2-0.5, 6-9, and >125 years for the fast, slow, and passive pools, respectively, less than 5 % was 

estimated for the fast pool for 121 individual samples from 23 high-latitude ecosystems located across the northern 

circumpolar permafrost zone (Schädel et al., 2014). Based on incubation tests with Siberian soils for over 1200 d, the initial 

labile carbon pools were estimated to comprise 2.22 ± 1.19 and 0.64 ± 0.28 % of the TOTC total organic carbon with 

turnover times of 0.26±1.56 and 0.21±1.58 y under aerobic and anaerobic conditions, respectively (Knoblauch et al., 2013). 15 

We set flabileDOC fLabileDOC = 0.0005,  fSOMsom1 = 0.01,  fSOMsom2 = 0.02,  fSOMsom3 = 0.1, fbio = 10
-6

 , fMeGAmega = fMeGHmegh = fbio, 

and,0.5fferb = 2 fbio10
-6

 [fbio = 10
-6 

approximating with E. coli with a wet weight 10
-12

 g, 70 % water, and 50 % dry weight 

carbon (Madigan, 2012), each microbial cell contains ~1.25×10
-14

 mole C, this means ~10
8
 cells in 1 mole TOTCtotal 

organic carbon, which roughly approximates the range of reported values (Roy Chowdhury et al., 2015)].  

   20 

Bioavailable ferric oxides are assumed to be in the form of Fe(OH)3a, with initial concentration as a fraction ffe3 of the dry 

soil mass. Depending on the season and the age of the drained thawed lake basins, HCl extractable Fe(III) is reported to 

range between 100 and 700 g Fe(III) m
-3

 in the Barrow soils in a 24 cm soil profile (Lipson et al., 2013a). Using a weighted 

average of bulk density of 0.26, this translates to 0.2 to 1 % g Fe(III)/g dry soil mass. While bioavailable Fe(III) in soils is 

not well defined (e.g., Hyacinthe et al. 2006; Poulton and Canfield 2005),  We we start with ffe3 fFe3 = 0.005 and evaluate the 25 

impact with a range of values. Fe(III) reduction dissolves Fe(OH)3a and releases adsorbed protons on the mineral surface, 

which is described by the surface complexation model (Dzombak and Morel, 1990). The organic content for WHAM is set at 

TOTCtotal organic carbon. The initial total inorganic carbon (TIC) in the solution is assumed to be in equilibrium with an 

atmosphere of CO2 at 400 ppm and 1 atm. The headspace gas starts with N2 at 1 atm. These parameters are summarized in 

Table S2. Additional specifics are available in the scripts to produce input files. The reaction database [extended from (Tang 30 

et al., 2013b; Tang et al., 2013c)], the python scripts to create input files for various locations, temperatures, and other 

options (e.g., temperature and pH response functions) and scripts used to make the figures are provided as supplemental 

information. 
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3 Results and discussion 

3.1 Experimental observations 

The experimental results of anoxic soil incubation experiments were published elsewhere (Herndon et al., 2015a; Roy 

Chowdhury et al., 2015), so we briefly describe the original observed headspace CO2 and CH4 concentration, soil Fe(II) and 

organic acids concentration, and pH (Fig. 2). The variations in the overall observations appear to be better explained by the 5 

differences separate between the soil horizons (organic vs. mineral soils) rather than among the microtopographic locations 

(center, ridge, and trough) of ice-wedge polygons. Up to 20 % CO2 was observed in the headspace by the end of the 2-month 

incubations, with higher concentrations in the organic soils than in the mineral soils (Fig. 2a1-3 vs. 4-6). This can be 

attributed to the higher organic content of the organic soils compared to that of the mineral soils (Table 2, Table S1).  

 10 

CO2 in the headspace increased rapidly in the beginning and then the increase slowed (Fig. 2). The initial rapid increase can 

be attributed to fast decomposition of the easily degradable substrates such as sugars, alcohols, etc. (Yang et al., 2016; Fey 

and Conrad, 2003; Glissmann and Conrad, 2002; Kotsyurbenko et al., 1993). As the easily degradable substrates were 

exhausted, the CO2 production rate decreased. These observations are similar to those for the anaerobic incubations with 

soils from a trough location in a high center polygon at the same site (Yang et al., 2016) and deep Siberian permafrost soils 15 

(Knoblauch et al., 2013). However, CO2 continued to increase well beyond 2 months in both these previous studies , and the 

CO2 production rates stabilized, probably reaching a rate limited by the slow rate of hydrolysis in the Siberian soil 

microcosms. These observations are different from the observed CO2 level off in the current microcosms (Fig. 2a2, a4, a5). 

   

CH4 in the headspace increased slowly at the beginning and then accelerated (Fig. 2b1-5), except the center organic soils. 20 

CH4 accumulation lagged behind CO2 for about 10 d in most of the microcosms and by a few days for the center organic soil 

microcosms at 4 and 8 °C. These lag times are shorter than those observed in microcosms with deep Siberian permafrost 

soils (average 960 ± 300 d) (Knoblauch et al., 2013). This is probably because of the initial abundance of substrates such as 

organic acids in the Barrow soils (Fig. 2c1-6). In addition, the shallow Barrow soils experience freezing and thawing, and so 

does microbial activity every year, while the deep Siberian permafrost soils were frozen for extended periods; as a result, the 25 

amount of initial biomass in the shallow Barrow soils is probably much higher than that in the deep Siberian soils.  

 

Organic acids generally accumulated at the beginning, decreased as CH4 concentration increased, and exhausted in the 

mineral soil microcosms (Fig. 2c1-6). In contrast, organic acids were not exhausted in the center organic soil microcosms 

(Fig. 2c6). In comparison with similar tests with soils from the high center polygon trough, organic acids accumulated for 30 

over 5 months in the organic soils and were not exhausted in the mineral soils (Yang et al., 2016). The accumulation and 

disappearance of organic acids have been widely observed in the literature (van Bodegom and Stams, 1999; Fey et al., 2004;         
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Glissmann and Conrad, 2002; Jerman et al., 2009; Kotsyurbenko et al., 1993; Lu et al., 2015; Peters and Conrad, 1996; Yao 

and Conrad, 1999).  

 

Fe(II) concentrations increased and levelled off (Fig. 2d1-6), with similar trends for pH (Fig. 2e1-6). The pH increase in pH 

concurred with Fe(III) reduction, which released hydroxides from Fe(OH)3a dissolution. The pH increase is in contrast to the 5 

observed pH decrease when Fe(III) reduction was absent (Xu et al., 2015). While Fe(III) reduction was reported to inhibit 

methanogenesis through direct inhibition (van Bodegom et al., 2004) or substrate competition (Miller et al., 2015; Reiche et 

al., 2008), the impact appears less significant than expected in these incubations, as well as incubations with the high center 

polygon trough soils (Yang et al., 2016). This is consistent with the observation that methane production initiated in the 

presence of oxidants (Roy et al., 1997). In addition, Fe(III) reduction can both inhibit and promote methanogenesis (Zhuang 10 

et al., 2015). In the Barrow soils, the initial abundance of organic acids probably mitigates the competition between Fe(III) 

reducing and methanogenic populations, decreasing the lag time between CH4 and CO2 accumulation. 

 

Substantial microbial activity was observed at -2 °C, which is above the soil water freezing point due to osmotic and matric 

potentials. These incubations led to an increase in CO2 (Fig. 2a1-6), acetate organic acids (Fig. 2c1-6), Fe(II) (Fig. 2d1-6), 15 

and pH (Fig. 2e1-6). CH4 concentrations were low but detectable in the headspace at -2 °C. The lag time between CH4 and 

CO2 increases with decreasing temperature, which was widely observed in the literature as well (Fey and Conrad, 2003; Hoj 

et al., 2007; Jerman et al., 2009; van Bodegom and Scholten, 2001; Fey et al., 2004; Kotsyurbenko et al., 1993; Lu et al., 

2015). The transition from -2 to 4 and 8 °C appears to be gradual except for the center organic soils, where CH4 increases 

were drastic from -2 to 4 °C (Fig.2a1 vs. b1).  The observed overall temperature responses are diverse, as manifested by Q10 20 

values from 1.6 to 22 (Roy Chowdhury et al., 2015).    

3.2 Modeling results 

3.2.1 Overall  

With the same model parameter values given in Table 1 and Table S2 and different experimental parameter values listed in 

Table 2, the model roughly predicts the observed trends for different soils at the three temperatures (Fig. 2): CO2 and CH4 25 

accumulate in the headspace; CO2 accumulation slows down while CH4 speeds up at later times; CH4 lags behind CO2; 

organic acids accumulate and then decrease; Fe(II) accumulates and levels off; pH increases and levels off; and carbon 

mineralization and methanogenesis rates increase with temperature.  

 

While the model predicts little CO2 and CH4 in the headspace at -2 °C, which is similar to what was observed, it predicts 30 

little change in Fe(II) and pH as well, which is not consistent with the observations. To improve the prediction at -2 °C, 
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which can be important (Zona et al., 2016; Xu et al., 2016a), it is necessary to understand why little CO2 or CH4 was 

observed to occur with Fe(III) reduction, which was indicated by the increase of Fe(II) and pH.  

 

The same model parameter values describe the observed differences in the mineral soils better than in the organic soils. For 

the mineral soils, the model overpredicts the increasing trend for CO2 in the headspace at late times because the observations 5 

levelled off (Fig. 2a1-3). The initial rapid CO2 increases lasted for over 2 months in the 3-year incubations with Siberian 

permafrost soils under 4 °C and anaerobic conditions (Knoblauch et al., 2013). In these long-term tests, CO2 increased 

rapidly at the beginning and the rate stabilized as the carbon release became limited likely by hydrolysis of polymers. The 

observed sustained CO2 accumulation in these closed microcosms indicates that the observed trends in Fig. 2a1-6 at later 

times are probably uncertain. Except for these mismatches, the model predictions generally agree with the observations for 10 

the mineral soils reasonably well. 

 

In contrast, the predictions do not agree as well with the observations for the organic soils. For the trough organic soils, the 

model underpredicts CO2 in the headspace (Fig. 2a4) but describes the rest of the observations reasonably well. In addition to 

CO2 (Fig. 2a5), the model underpredicts Fe(II) and pH increase in the ridge organic soils (Fig 2d5, e5). The prediction of the 15 

center organic soils differs from the observations the most (last column in Fig. 2). These mismatches might be explained by 

model biases in initial Fe(III) content, LabileDOC, and biomasses. 

3.2.2 Fe(III) reduction 

Agreement between predictions and observations for the Fe(II) and pH increase can be improved for the ridge and center 

organic soils by increasing the Fe(III) content from fFe3 = 0.005 to 0.01 and 0.02 (Fig. 2d5-6, e5-6). This also increases the 20 

predicted CO2 and CH4 for the center organic soils (Fig. 2a6, b6) because of the predicted pH increase (Fig. 2e6), which 

increases the reaction rates as the pH response function increases when the calculated pH increases toward an optimal pH of 

6.2 in Eq. (3). For the ridge organic soils, fFe3 = 0.01 increases the predicted CH4 like the center organic soils, but fFe3 = 0.02 

decreases CH4 prediction because of the competition between methanogens and iron reducers and limited availability of 

substrates (Fig. 2b5). This provides an explanation as to why Fe(III) reduction can both suppress and promote 25 

methanogenesis (rather than strict thermodynamic control, e.g., Bethke et al., 2011; direct inhibition, e.g., van Bodegom et 

al., 2004; or indirect inhibition through substrate competition, e.g., Mill et al., 2015, Reiche et al. 2008). 

 

As the bioavailable Fe(III) in the organic soils is reported to range from 0.2 to 1 % of dry soil mass (Lipson et al., 2013a), 

the short-term tests are not expected to be Fe(III) limited for the mineral soils. Increasing bioavailable Fe(III) makes the 30 

model overpredict Fe(II) and pH increases at later times for the mineral soils (Fig. 2d1-5, e1-4), and Fe(III) reduction and 

methanogenesis at later times are predicted to be limited by organic substrate availability at 4 and 8 °C (Fig. 2b1-4).  The 

latter is consistent with the observed very low organic acids concentrations at the end (Fig. 2c1-5). As a result, the model 
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underpredicts CH4 accumulation, indicating the current parameterizations, in particular the half-saturation and growth rate 

constants, may over-predict the ability of iron reducing bacteria to outcompete methanogens.  

3.2.3 CO2 distribution among gas, aqueous, and adsorbed phases 

While increasing Fe(III) slightly increases the predicted CO2 for ridge mineral soils (Fig. 2a2), it decreases the predicted CO2 

in the headspace for trough and center mineral soils (Fig. 2a1 and a3). This is because CO2 solubility is predicted to increase 5 

significantly as pH increases, resulting in the dissolution of CO2 from the headspace into the aqueous phase (Fig. S1). To 

examine this impact, we conduct numerical simulations with a 45 mL headspace with an initial 1 atm N2 gas and 10 mL 

solution with 10 mM total inorganic carbon at various temperature and pH values. CO2(g) and CO2(aq) or carbonic acid 

dominate at a pH lower than 5 (Fig. 3). As the pH increases above the carbonic acid pKa (around 6.3 at standard condition), 

CO2(g) in the headspace and CO2(aq) in the aqueous phase decrease as HCO3
-
 becomes dominant in the aqueous phase, and 10 

the gas-phase fraction decreases dramatically. The gas-phase fraction also decreases with decreasing temperatures (Fig. 3).  

 

In addition, CO2 was reported to adsorb to surface sites (Appelo et al., 2002; van Geen et al., 1994; Villalobos and Leckie, 

2000). With the surface complexation reactions between Fe(OH)3a and carbonate species, we add 1 mmole Fe(OH)3a (about 

the mean values in Fig. 2 for the case fFe3 = 0.02) to the abovementioned numerical experiments. The calculations show that 15 

the adsorption phase can dominate at low pH (Fig. S2), with the total amount dependent on the abundance of surface sites. 

For the high-temperature high-Fe(III) initial content cases in Fig. 2, adding CO2 sorption reactions provides a substantial 

buffer against the early increase in CO2 in the headspace (Fig. S3). As the Fe(OH)3a is reduced and dissolved, the adsorbed 

CO2 is predicted to be released, contributing to an increase in  headspace CO2 increase later on.  

 20 

In addition to pressure, these calculations suggest the need to appropriately account for pH and its impact on the gas, 

aqueous, and adsorbed phases CO2 partition when we use headspace concentration measurements from anaerobic 

incubations to estimate CO2 emission. Otherwise, substantial uncertainties can be introduced. A geochemical model with 

accurate thermodynamic data and accounting for CO2 sorption can be useful in accurately quantifying CO2 production in 

these closed microcosms. 25 

3.2.4 Initial CO2 accumulation in the organic soil microcosms 

The model underpredicts the early CO2 increase in the headspace for the organic soil microcosms (Fig. 2a4-6), which is 

mostly apparent in the center organic soil microcosms. The reason is that the organic soil microcosms contain more labile 

organic carbon than the mineral soil microcosms, as evidenced by water extractable organic carbonWEOC (Table 2).  In 

particular, the center organic soil microcosms contain about half the amount of TOTC total organic carbon of the other 30 

microcosms, double the water volume, and three to five times water extractable carbonWEOC (Table 12). As a result, it 

produces the most CO2 and CH4 and has a very short lag time between CH4 and CO2. If we increase the initial LabileDOC 
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content flLabileDOC from 0.0005, as shown in Fig. 2, to 0.01, and 0.02 for the organic soil microcosms, the underprediction of 

the early CO2 increase in the headspace are more or less mitigatedmodel predicts an initial rapid CO2 increase in the 

headspace that is comparable to that observed for trough and ridge microcosms but still less than that for the center organic 

soil microcosms (Fig. 4).   

 5 

The predicted rapid initial CO2 increase is due to the fast fermentation reactions (Fig. S4a1-6, e1-6). The predicted steep 

transition in CO2 concentration increases appears reasonable for the center and trough soil microcosms, but less so for the 

ridge soil microcosms. In addition to the 20 h and 14 d turnover time differences, fermentation reactions decrease the pH, 

further inhibit the predicted SOM1 decomposition reactions, Fe(III) reduction, and methanogenesis, making the predicted 

transition steeper. The fast fermentation is consistent with the observed rapid disappearance of glucose and increase of CO2 10 

after glucose addition in similar experiments with soils from a high center polygon trough from the same site (Yang et al., 

2016). However, the observed decrease of natural free reducing sugars is gradual, with about one-third of the original 

reducing sugars left over after 150 d of incubations. Along with the predicted rapid initial LabileDOC decrease and CO2 

increase, the model predicts a rapid initial increase in organic acids, which is close to the observations for the center soil 

microcosms but much greater than the observations for the trough and ridge soil microcosms. The latter indicates that the 15 

ratio of organic acids to CO2 of 2:1 from the fermentation reaction (R1) may not be accurately representative of the 

experiments. 

  

Detailed measurements of organic acids showed a rapid initial increase and then a quick decrease of organic acids in the 

mineral soil microcosms and a gradual increase and slow decrease in the organic soil microcosms from a trough location in 20 

the a high center polygon trough near the site  in the first 144 d anaerobic incubations (Yang et al., 2016).  The rise and fall 

were fast in both the mineral and organic soil microcosms for ethanol, and were generally more gradual for organic acids 

than for ethanol (Yang et al., 2016). To explain the various observations for the organic soil microcosms and for accurate 

predictions, the diversity of the hydrolysis products (Feng and Simpson, 2008), and the subsequent pathways (Tveit et al., 

2015) may need to be accounted for. Additional detailed data are needed to support increasingly mechanistic models, e.g., 25 

with reducing sugars to represent less rapid fermentation, and additional specific organic acids such as propionate and 

butyrate to better describe diverse observations in the incubations. 

3.2.5 Carbon mineralization 

Less than about 1 % of the total initial carbon turned over to CO2 and CH4 in about 2 months, which is attributed mostly to 

decomposition of labile SOM (SOM1), LabileDOC, and organic acids (Fig. S4). Few changes are predicted in the slow pools 30 

(SOM3, and SOM4, not shown) even though they comprise a large amount portion of the soil of carbon pool. The small 

amount of respired carbon turnover is similar to the incubation tests conducted with Siberian permafrost soils under 4 °C, 

which was estimated to be 3.1 % and 0.55 % under aerobic and anaerobic conditions for 1200 d (Knoblauch et al., 2013), the 
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1-year aerobic incubations tests (Feng and Simpson, 2008), and the incubations from a wide range of Arctic soils (Schädel et 

al., 2014). All of these results suggest that the hydrolysis of macromolecular organics by extracellular enzymes is could be 

athe rate-limiting step at late times. To predict the long-term vulnerability of the organic carbons, it is important to 

understand and describe the hydrolysis of macromolecular components in SOM.   

3.2.6 CH4 accumulation 5 

Besides Fe(III) reduction, the predicted CH4 production is dependent on the substrate production. With slabile = 0.2, the model 

generally predicts less CH4 and more CO2 than the case with slabile = 0.4 because less SOM is assumed to respire through (or 

produce substrate for) the anaerobic pathway in the slabile = 0.2 case (Fig. S5). With increased slabile = 0.6, the model predict 

more CH4 and less CO2. The impact on the mineral soils is generally more pronounced than the organic soils because the 

former is more substrate limiting than the latter.  Unlike CO2, CH4 solubility and adsorption are much lower. Gas-phase CH4 10 

in the headspace dominates over aqueous and adsorbed phases. The model predicts the general exponential increase trend 

with a lag time behind CO2 (Fig. 2). However, the prediction is sensitive to Fe(III) reduction, pH, temperature (Fig. 2), and 

labile substrates (Fig. 4). The model substantially underpredicts early fast CH4 production for the center organic soil 

microcosms (Fig. 4b3). While the cell count for the center organic soils is not available for day 0, the data did show that the 

center organic soils had the highest amount of biomass after 100 d incubations (Roy Chowdhury et al., 2015), indicating 15 

possible high initial abundance. The disagreement between the predictions and the observations can be mitigated by 

increasing the initial biomass fbio from 10
-6

 to 10
-5

 and 2×10
-5

 for the center organic soil microcosms (Fig. 5). With increased 

initial biomass, Fe(III) reduction and methanogenesis are predicted to speed up the recovery of the initial pH drop caused by 

organic acids accumulation so that the model predicts a fast CH4 increase that is comparable to the observed. However, the 

model overpredicts the CH4 increase at late times, indicating alternative inhibition mechanisms rather than substrate 20 

limitation on methanogenesis at late times or additional CH4 consumption such as anaerobic oxidation (Caldwell et al., 2008; 

Smemo and Yavitt, 2011). 

3.2.7 pH 

With the complexation reactions involving proton or hydroxide anion with carbonate species, ferrihydrite surface, and SOM, 

the geochemical model describes the observed pH evolution reasonably well (Fig. 2). The initial pH was lower in the mineral 25 

soils than in the organic soils (Fig. 2), probably because of less buffering capacity due to less organic matter in the mineral 

soils and/or more reducing condition in the organic soils as reduction reactions typically consume protons. Because the ridge 

mineral soils have the lowest initial pH, the CLM4Me pH factor is the lowest (Table S1), contributing to the underprediction 

of CH4 (Fig. 2b2). With high organic content, the organic matter dominates the aqueous geochemistry, and the predicted pH 

is sensitive to the surface sites specified for WHAM. If the specified WHAM organic matter is reduced by 25 %, then the pH 30 

buffering capacity is decreased and the predicted pH increases substantially (Fig. S6e1-6) even though the predicted changes 

in organic acids and Fe(II) are small. For the trough soils, the predicted pH surpasses the optimal of 6.2, and f(pH) (Eq. 3) 
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decreases (Fig. S6e1, e4). As a result, predicted CO2 and CH4 are decreased. The pH impact becomes complex around the 

optimal pH. If we increase the specified WHAM organic matter by 25 %, the predicted pH is lower due to larger pH 

buffering and the reaction rates are generally smaller. Setting the WHAM sites at measured total organic carbonTOTC works 

reasonably well for the experiments with the CLM4Me pH response function.  

 5 

Comparing the CLM4Me pH response function with these used in TEM and DLEM, all three response functions show that 

the reaction rates are sensitive to pH (Fig. 6), which is expected to influence the predictions for these incubation tests as the 

pH increases from about 5.5 to 7.  In this range, CLM4Me and DLEM have a similar slope, but the latter has a greater rate 

reduction effect. While CLM4Me and TEM have a similar rate reduction effect, CLM4Me has a steeper curve than TEM. 

These differences translate to substantial differences in model predictions (Fig. S7). All calculated f(pH) values increase 10 

during the tests (Fig. S7f1-f6). As the f(pH) calculated by DLEM is the lowest, the predicted changes are the smallest. The 

f(pH) calculated by TEM is slightly greater than CLM4Me at the beginning and is the opposite at late times (Fig. 6). As a 

result, TEM generally predicts slightly faster evolution than CLM4Me as the reaction rates at the late time are limited by 

substrates rather than pH. While the pH ranges from 3.3 to 8.6 in the Arctic soils (Schädel et al., 2014), the range and the 

variability of the data are limited in the evaluation of these pH response functions. Nevertheless, model predictions are 15 

sensitive to pH response functions; the microbes are likely adapted to the site pH conditions such that the response functions 

are expected to vary among sites and functional groups. Therefore, pH response function can be an important source of 

prediction uncertainty. 

3.2.8 Temperature response 

Temperature effects on reactions between inorganic aqueous species, and the aqueous and gas species, are taken into account 20 

in the established reaction database. The temperature impact on surface complexation reactions with ferric hydrous oxides, 

and with SOM in WHAM is not quantified, which can be a potential source of uncertainty. LSMs generally use empirical 

(e.g., CLM-CN, CENTURY), Q10, or the Arrhenius equations. The CLM-CN temperature response function is compared 

with the CENTURY, Q10 equation, Arrhenius equation, and Ratkowsky equation in Fig. 7 and Fig. S8. All of these 

temperature response functions describe increasing rate with increasing temperature. When the temperature response 25 

functions f(T) are plotted in arithmetical scale, the shapes are similar except for CENTURY, which approaches 1 when the 

temperature increases above 20 °C; CLM-CN is close to Q10 with Q10 = 2.5, the Arrhenius equation with Ea = 60 kJ mol
-1

 

and the Ratkowsky equation with Tm = 260 K. When f(T) is plotted in log scale (Fig. 7), Q10 and Arrhenius equations are 

approximately linear while the rest have a similar shape; CLM-CN appears close to Ratkowsky equation with Tm = 260 K.  

At our temperatures -2, 4, and 8 °C, CLM-CN is very close to CENTURY, Q10 = 2.5, Ea = 60 kJ mol
-1

, and Tm = 260 K (Fig. 30 

7, Fig. S8). Despite their closeness, the predictions can be different for the different response functions (Fig. S9, Fig. S10), 

reflecting the sensitivity of the temperature effect on the biogeochemical reaction rates. The difference is amplified when 

different Q10, Ea, or Tm is used (not shown), introducing potentially large uncertainty in model predictions. Because the 
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temperature response functions are expected to vary for different micro-organisms, extra-cellular vs. intra-cellular enzymes, 

and geochemical reactions in the soil environment, improved quantification is needed. 

3.2.9 Predicted impact of headspace gas accumulation 

The accumulation of gases in the headspace may impact the soil carbon mineralization and methanogenesis. Knoblauch et al. 

(2013) and Yang et al. (2016) flushed the headspace of the microcosms while Roy Chowdhury et al. (2015) and Herndon et 5 

al. (2015) did not. The field conditions are likely somewhere between an open system and a closed system because neither 

the atmospheric pressure nor the hydrostatic pressure is constant, and the produced CO2 and CH4 are not always free to 

release to the atmosphere. To assess the impact of CO2 accumulation in the headspace on the soil carbon mineralization and 

methanogenesis, we conduct numerical experiments with 10 and 100 times the headspace volume of  the experimental 

values. With increased headspace volume, the headspace and aqueous CO2 concentrations are predicted to decrease (Fig. S11 10 

f1-6, g1-6), and the pH increase is predicted to slow down. As a result, the biogeochemical reaction rates are generally 

slower (Fig. S11e1-6). Eventually, the predicted total CO2 and CH4 production generally decrease with lower headspace CO2 

concentration (Fig. S11a1-6,b1-6). However, the impact on CO2 production is very small for the organic soils in the trough 

and ridge location, and the CO2 production is predicted to increase with decrease in headspace CO2 concentration for the 

organic center soils. Because of the complicated nonlinear relationships in the biogeochemical processes, the impact of 15 

headspace gas accumulation on carbon mineralization and methanogenesis is not linear. While it is debatable that which 

experimental conditions (flush the headspace or not)  reflect the field conditions, biogeochemical models like ours provide a 

mechanistic method to account for this impact by using boundary conditions that reflect the reality. Additional targeted 

experiments and mechanistic models are necessary to better understand the impact under different conditions, and develop 

representations that reflect field conditions. 20 

4 Summary and conclusion 

Soil organic carbon turnover and CO2 and CH4 production are sensitive to redox potential and pH. However, land surface 

models typically do not explicitly simulate the redox or pH, particularly in the aqueous phase, introducing uncertainty in 

greenhouse gas predictions. To account for the impact of availability of electron acceptors other than O2 on soil organic 

matter (SOM) decomposition and methanogenesis, we extend the CLM-CN decomposition cascade to link complex 25 

polymers with simple substrates and add Fe(III) reduction and methanogenesis reactions. Because pH was observed to 

change substantially in the laboratory incubation tests and in the field and is a sensitive environmental variable for 

biogeochemical processes, we use the Windermere Humic Aqueous Model (WHAM) to simulate pH buffering by SOM. To 

account for the speciation of CO2 among gas, aqueous, and solid (adsorbed) phases under varying pH, temperature, and 

pressure values, and the impact on typically measured headspace concentration, we use a geochemical model and an 30 
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established reaction database to describe observations in recent anaerobic microcosms. Our results demonstrate the efficacy 

of using geochemical models to mechanistically represent the soil biogeochemical processes for Earth system models. 

 

Together with the speciation reactions from the established geochemical database and surface complexation reactions for 

ferric hydrous oxides, WHAM enables us to approximately buffer an initial pH drop due to organic acid accumulation 5 

caused by fermentation and then a pH increase due to Fe(III) reduction and methanogenesis. The single input parameter for 

WHAM is total organic carbon content, which is available in any SOM decomposition model. Therefore, adding WHAM 

does not necessitate any additional characterization. However, the temperature effects on surface complexation reactions 

with ferric hydrous oxides and organic matter may need to be further quantified. 

 10 

The equilibrium geochemical speciation reactions predict a substantial increase in CO2 solubility as the pH increases above 

6.3 because the aqueous dominant species shifts from CO2 to HCO3
-
. Adding CO2 adsorption to surface sites of metal oxides 

further increases predicted solubility at low pH. Without taking into consideration of speciation, and pH, temperature and 

pressure impact with a geochemical model, the carbon mineralization rate can be substantially underestimated from 

anaerobic microcosms based on headspace CO2 measurements.  15 

 

Because different various microbes respond to the temperature and pH change differently, it is challenging to describe 

observed diverse responses with any single one of the existing response functions. As the microbes adapt to the low 

temperature and pH conditions in the Arctic, the optimal growth temperature and pH value may need to be adjusted in these 

response functions may need to be adjusted to account for biological acclimation. 20 

 

We demonstrate that a geochemical model can mechanistically predict pH evolution and accounts for the impact of pH on 

biogeochemical reactions, which enhancing enhances our understanding of and ability to quantify the experimental 

observations. Because pH is an important environmental variable in the ecosystems and land surface models either specify a 

fixed pH or use simple empirical equations, a geochemical model has the potential to improve model predictability for 25 

greenhouse emissions by mechanistically representing the soil biogeochemical processes. 

 

Another following up task can be assessing this new framework of anaerobic SOM decomposition in field studies with 

CLM-PFLOTRAN. This can be done incrementally, i.e., add/remove reactions one at a time without source code 

modifications. CLM-PFLOTRAN currently uses CLM4.5 vertical resolved grid. The resolution can be adjusted, possibly in 30 

three dimensions, to reflect the heterogeneity of any structural soil column to account for the limitation of electron donors 

and electron acceptors at individual locations.  As we gradually implement more and more processes, such as gas and 

aqueous transport through soils and aerenchyma, explicitly representing microbial processes for carbon decomposition, we 

hope the new framework will be useful for future investigation and model developments.  
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Code availability 

PHREEQC is publically available at http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/. 

Data availability 

The experimental data, scripts to produce the PHREEQC input files, and plot the figures are archived at 5 

https://github.com/t6g/bgcs . 

Appendix A Additional pH response functions 

With      ,      , and       of 4, 7 and 10 with no microbial activity at pH below       or above      , the pH 

response function used in DLEM is (Tian et al., 2010)   

      
    

                    
,          (A1) 10 

for pH < 7; otherwise,  

      
    

                         
.          (A2) 

TEM uses a bell-shaped function (Cao et al., 1995;Xu et al., 2015;Raich et al., 1991)  

      
                    

                                    
,        (A3) 

with      ,      , and       = 5.5, 7.5, and 9, respectively (Cao et al., 1995). Considering the typical acidic conditions in 15 

the Arctic and wetlands, we use the DLEM parameter values (Tian et al., 2010) as substantial CH4 was observed in the 

incubation tests below pH 5.5 (Roy Chowdhury et al., 2015).  

Appendix 2 Additional temperature response functions 

The Q10 method is the most common temperature response function used in LSMs (Xu et al., 2016b;Berrittella and Van 

Huissteden, 2009, 2011;Walter and Heimann, 2000;Zhuang et al., 2004;Riley et al., 2011;Oleson et al., 2013). It is  20 

        

      

  ,            (B1) 

with      as a reference temperature usually at 25 °C. However, the Q10 value varies from 1.5 to 28 (Segers, 1998;Mikan et 

al., 2002), which indicates inadequate representation of the supply of substrates (Davidson and Janssens, 2006;Davidson et 

al., 2006), and microbial functional groups (Blake et al., 2015;Svensson, 1984;Rivkina et al., 2007;Lu et al., 2015) and 

necessitates alternative temperature response functions.   25 
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The Arrhenius equation (Arah and Stephen, 1998;Wang et al., 2012;Grant, 1998;Grant et al., 1993;Sharpe and DeMichele, 

1977;Grant and Roulet, 2002)  is 

           
  

 
 
 

 
 

 

    
  ,          (B2) 

with    as the activation energy, and   as the gas constant. It is related to the Q10 method with         
    

      
. The 

introduced variability by the absolute temperature   is not able to explain the wide range of Q10 values either. Consequently, 5 

empirical equations are often used (Nicolardot et al., 1994). DayCent, ForCent, and CENTURY use (Parton et al., 2010)  

                                  .        (B3) 

A temperature response function for microbial growth is (Ratkowsky et al., 1982) 

      
    

       
 
 

,           (B4) 

with    as a conceptual temperature of no metabolic significance between 248-296 °K, depending on the bacterial cultures.  10 
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Table 2. Experimental parameter values summarized from (Herndon et al., 2015;Roy Chowdhury et al., 2015). TOTC = total 

organic carbon. WEOC = water extractable organic carbon. 

Location Horizon 
Depth 

(cm) pH 
Soil 

(dwt g) 

Water 
(g) 

TOTC 
(g) 

WEOC 

(mg) 

Acetate

Organic 
acids 

(mgC) 

Fe(II) 
(mmol) 

Bulk den. 

(g/cm3) 

Headspace 

(ml) 

Center Oa 6-21.5 5.02 1.412 13.588 0.542 9.585 2.079 0.0107 0.9106 42.5282 

 

Bgh 21.5-53.5 4.84 9.146 5.854 1.260 3.845 0.394 0.1302 

  Ridge Oe 0-8 5.21 3.212 11.788 1.249 6.790 0.016 0.0190 1.0003 44.0051 

 

Bh 8-42 4.54 8.621 6.379 1.263 3.282 0.409 0.1466 

  Trough Oe 0-19 5.23 4.310 10.690 0.886 3.324 0.022 0.1675 0.9724 43.5745 

 

Bh/ice 25-69 4.95 8.380 6.620 0.670 2.013 0.292 0.0475 

   

  5 
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Figure 1: Extension of the CLM-CN decomposition cascade (Thornton and Rosenbloom, 2005) to include a LabileDOC pool. A 

portion of the original respiration fraction is assumed to produce LabileDOC, which undergoes fermentation, Fe reduction and 5 
methanogenesis to release CO2 and CH4. FeRB, MeGA, and MeGH denote microbial mass pools for Fe reducers, acetoclastic and 

hydrogenotrophic methanogens, respectively. τ is the turnover time. 
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Figure 2: Comparison of observed and modeled CO2 (a1-6) and CH4 (b1-6) in the headspace, organic acid (Ac, c1-6), extractable 

Fe(II) (d1-6), and pH (e1-6) in the incubation tests with soils from an Arctic  lower center polygon. Symbols represent observations 

with blue, green and red for -2, 4, and 8 °C. For CO2 and CH4, different symbols of the same color represent duplicates. The 

organic acids, such as formate, acetate, propionate, and butyrate, reported by (Herndon et al., 2015)  are combined as Ac in c1-6. 5 
The rest of the data were taken from (Roy Chowdhury et al., 2015). The curves are calculations based on model parameter values 

listed in Table 1 and experimental parameter values listed in Table 2. Trough, ridge, and center denote the microtopographic 

locations in the polygon, and mineral and organic denote soil horizons. Increasing the initial bioavailable Fe(III) fFe from 0.005 

(continuous) to 0.01 (dash) and 0.02 (dashdot) brings the predictions close to the observations for Fe(II) and pH for center and 

ridge organic soils.  10 
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Figure 3: Partition of CO2 among gas and aqueous phase species under various temperatures. The calculations are conducted with 

45 ml headspace with N2 and 10 ml solution with 10 mM total inorganic carbon using PHREEQC. Gas phase dominates at lower 

pH and high temperature. As pH increases, gas phase CO2 fraction is very low after pH 7, implicating potential underestimation of 

carbon mineralization based on headspace CO2 concentration measurement only.    5 
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Figure 4: Increasing initial LabileDOC better describes the observed initial rapid CO2 increase in the headspace for the organic 

soils.  See Figure 2 caption for more information. 
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Figure 5: Increasing the initial biomass predicts rapid CH4 accumulation at early times that is close to the observations but misses 

the level-off trend at late time for the center organic soils. See Figure 2 caption for more information.  

 5 
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Figure 6: Comparison of pH response functions used in CLM4Me (Riley et al., 2011), TEM (Raich et al., 1991), and DLEM (Tian 

et al., 2010) as described by Eqs. 3, A1-3. Reaction rates are sensitive to pH and pH response functions vary substantially, 

introducing prediction uncertainty. 5 

 

 

Figure 7: Comparison of temperature response functions used in (a) land surface models CLM-CN (Thornton and Rosenbloom, 

2005), CENTURY (Parton et al., 2010), (b) Q10 (Oleson et al., 2013), (c) Ratkowsky equation  (Ratkowsky et al., 1982) and (d) 
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Arrhenius equation (Wang et al., 2013) described by Eq. (4, B1-B4). Reaction rates are sensitive to temperature and temperature 

response functions vary substantially, introducing prediction uncertainty. 
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Table S1. Additional experimental parameter values summarized from (Herndon et al., 2015;Roy Chowdhury et al., 2015) 

(TOTC = total organic carbon; WEOC = water extractable organic carbon; Acids = organic acids, f(pH) = pH factor). 

Location Horizon 

Formate 

(mgC) 

Acetate 

(mgC) 

Propionate 

(mgC) 

TOTC/d

wt Soil 

WEOC

/TOTC 

Acids/WE

OC f(pH) 

Center Oa 0.3162 1.7185 0.0445 38.35% 1.77% 21.69% 0.486 

 

Bgh 0.0198 0.3524 0.0213 13.78% 0.31% 10.23% 0.384 

Ridge Oe 0.0012 0.0046 0.0104 38.89% 0.54% 0.24% 0.601 

 

Bh 0.0270 0.3420 0.0399 14.65% 0.26% 12.46% 0.241 

Trough Oe 0.0016 0.0062 0.0140 20.55% 0.38% 0.66% 0.614 

 

Bh/ice 0.0204 0.2617 0.0104 7.99% 0.30% 14.53% 0.445 

 

Table S2. Model parameter values for base scenario 15 

Symbol Value Description 

flabilefLabileDOC 0.0005 Initial fraction of LabileC in total organic carbon TOTC 

fsom1fSOM1 0.01 Initial fraction of SOM1 in total organic carbonTOTC 

fsom2fSOM2 0.02 Initial fraction of SOM2 in total organic carbonTOTC 

fsom3fSOM3 0.1 Initial fraction of SOM3 in total organic carbon TOTC 

FFeRBferb 2×10
-6

 Initial fraction of Fe reducers in total organic carbonTOTC 

FMegamega 10
-6

 Initial fraction of acetoclastic methanogens in total organic carbonTOTC 

FMegHmegh 10
-6

 Initial fraction of hydrogenotrophic methanogens in total organic carbonTOTC 

fmega 10
-6

 Initial fraction of SOM4 in TOTC 

ffe3fFe3 0.0025 Initial Fe(III) as a fraction of soil dry weight 

slabilesLabile 0.4 Fraction of the original CLM-CN respiration factor goes through labile pool. 
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Figure S1: Calculated partition of CO2 in gas and aqueous phases as a percentage of initial TOTC with different fFe3 values. The 

results correspond to Fig. 2 for temperature 8 °C.  With increasing fFe3, the pH increases at the late times, as does the CO2 5 
solubility.  See Figure 2 caption for more information. 

 

 

Figure S2: Adding 1 mmol Fe(OH)3a into the numerical experiments shown in Fig. 3, the gas-phase fraction is decreased at low pH 

values as the sorbed phase dominates. See Fig. 3 caption for more information. 10 
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Figure S3: Impact of adsorption of CO2 to ferric oxide surfaces on the distribution among gas, aqueous and solid phases. The gas 

phase concentration is predicted to be buffered by adsorption at the beginning. At late times, reduction and dissolution of 

Fe(OH)3a sites may release CO2. See caption for Fig. 2 and Fig. S1 for more information.  

 5 
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Figure S4: Partition of carbon among various organic pools. a, and b, and c are for total CO2 distribution in the gas (head space), 

aqueous (water), and adsorbed (sorption to Fe(OH)3a)and CH4 in aqueous and gas phases. The recalcitrant pools (SOM3 and 
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SOM4) are the major fractions of soil organic carbon but have a slow turnover time relative to the experiment duration, therefore, 

not shown.  See Fig.2 caption for more description about the model and experimental parameters. 

 

 

 5 

Figure S5: Impact of indirect respiration fraction (slabile)  on predictions: less direct respiration means more simple substrates for 

iron reduction and methanogenesis . See Fig.2 caption for more description about the model and experimental parameters. 
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Figure S6: Impact of specified organic matter in WHAM on predictions.: more organic matter means more pH buffer. See Fig.2 

caption for more description about the model and experimental parameters. 
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Figure S7: Comparison of the impact of different pH response functions (CLM4Me, TEM, and DLEM) on predictions. pH 

response function can be a substantial source of prediction uncertainty. See Fig.2 caption for more description about the model 

and experimental parameters. 
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Figure S8: Fig. 7 with arithmetic vertical scale.  
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Figure S9: Comparison of impact of different temperature response functions (CLM-CN, CENTURY, Ratkowsky Equation with 

Tm =260) on predictions. Predictions are sensitive to temperature response function, which can introduce large prediction 

uncertainty. See Fig.2 caption for more description about the model and experimental parameters. 
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Figure S10: Comparison of impact of different temperature response functions (CLM-CN, Arrhenius equation (Ea), Q10 Equation) 

on predictions. Predictions are sensitive to temperature response function, which can introduce large prediction uncertainty. See 

Fig.2 caption for more description about the model and experimental parameters. 

 5 
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Figure S11: Impact of headspace volume on predictions: increase in headspace volume results in decrease in headspace (f1-6) and 

aqueous (g1-6) CO2 concentration, slower pH increase and biogeochemical reaction rates, and generally less CO2 and CH4 

production prediction. As an exception, predicted CO2 production is increases with increasing headspace volume for the center 

oganic soils. The impact is not linear as the underlying biogeochemical processes are nonlinear. TOTC = initial total organic 5 
carbon. Ac = organic acids as acetate. See Fig.2 caption for more description about the model and experimental parameters. 
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