
1 

 

The nitrogen, carbon and greenhouse gas budget of a grazed, cut and fertilised temperate 1 

grassland  2 

 3 

Stephanie K. Jones
1,2

, Carole Helfter
1
, Margaret Anderson

1
, Mhairi Coyle

1
, Claire Campbell

1
, 4 

Daniela Famulari
1
, Chiara Di Marco

1
, Netty van Dijk

1
, Cairistiona F.E. Topp

2
, Ralf Kiese

3
, 5 

Reimo Kindler
4
, Jan Siemens

5
, Marion Schrumpf

6
, Klaus Kaiser

7
, Eiko Nemitz

1
, Peter Levy

1
, 6 

Robert M. Rees
2
, Mark A. Sutton

1
, Ute .M. Skiba

1
 7 

 8 

1) Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian EH26 QB, UK 9 

2) Scotland’s Rural College, King’s Buildings, West Mains Road, Edinburgh, EH9 3JG, UK 10 

3) Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric 11 

Environmental Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, D 12 

4) Chair of Waste Management and Environmental Research, Technische Universität Berlin, 13 

Franklinstr. 29, 10587 Berlin, D 14 

5) Institute of Crop Science and Resource Conservation, Soil Science, Universität Bonn, Nussallee 13, 15 

53115 Bonn, D 16 

6) Max Plank Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, D 17 

7) Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), D 18 

 19 

Correspondence to: Stephanie K. Jones (Stephanie.Jones@sruc.ac.uk) 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 



2 

 

 36 

Abstract  37 

Intensively managed grazed grasslands in temperate climates are globally important 38 

environments for the exchange of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous 39 

oxide (N2O) and methane (CH4). We assessed the N and C budget of a mostly grazed, 40 

occasionally cut, and fertilized grassland in SE Scotland by measuring or modelling all relevant 41 

imports and exports to the field as well as changes in soil C and N pools over time. The N 42 

budget was dominated by import from inorganic and organic fertilisers (21.9 g N m
2
 yr

-1
)  and 43 

losses from leaching (5.3 g N m
2
 yr

-1
), N2 emissions and NOx and NH3 volatilisation (6.4 g N 44 

m
2
 yr

-1
). The efficiency of N use by animal products (meat and wool) averaged 11%. On 45 

average over nine years (2002-2010) the balance of N fluxes suggested that 7.2 ± 4.6 g N m
-2 

y
-

46 

1 
(mean

 
± confidence interval at p > 0.95) were stored in the soil. The largest component of the 47 

C budget was the net ecosystem exchange of CO2 (NEE), at an average uptake rate of 218 ± 48 

155 g C m
-2

y
-1

 over the nine years. This sink strength was offset by carbon export from the 49 

field mainly as harvest (48.9 g C m
2
 yr

-1
) and leaching (16.4 g C m

2
 yr

-1
). The other export 50 

terms, CH4 emissions from the soil, manure applications and enteric fermentation were 51 

negligible and only contributed to 0.02-4.2 % of the total C losses. Only a small fraction of C 52 

was incorporated into the body of the grazing animals. Inclusion of these C losses in the budget 53 

resulted in a C sink strength of 163 ± 140 g C m
-2

y
-1

. On the contrary, soil stock measurements 54 

taken in May 2004 and May 2011 indicated that the grassland sequestered N in the 0-60 cm soil 55 

layer at 4.51 ± 2.64 g N m
-2 

y
-1 

and lost C at a rate of 29.08 ± 38.19 g C m
-2 

y
-1

, respectively. 56 

Potential reasons for the discrepancy between these estimates are probably an underestimation 57 

of C and N losses, especially from leaching fluxes as well as from animal respiration. The 58 

average greenhouse gas (GHG) balance of the grassland was -366 ± 601 g CO2 eq m
-2

 y
-1

 and 59 

strongly affected by CH4 and N2O emissions. The GHG sink strength of the NEE was reduced 60 

by 54% by CH4 and N2O emissions. Enteric fermentation from the ruminating sheep proved to 61 

be an important CH4 source, exceeding the contribution of N2O to the GHG budget in some 62 

years. 63 

 64 

Keywords: grassland, carbon stocks, carbon sequestration, nitrogen cycling, budget, greenhouse 65 

gases 66 

 67 

Introduction 68 
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Nitrogen (N) is an essential component of proteins and genetic material and therefore required 69 

by all living organisms. Before N can be used by most organisms, inert atmospheric molecular 70 

nitrogen (N2) has to be transformed to reactive nitrogen (Nr). In an agricultural system Nr is 71 

added from inorganic fertiliser and cultivation-induced biological N fixation and as organic 72 

compounds from organic manure applications and dung from grazing animals. Generally N 73 

inputs into agricultural systems exceed outputs in the form of crops or animal off-takes (meat, 74 

milk and wool). In a steady state system the exceeding Nr is converted back to N2 through 75 

complete denitrification (Galloway et al., 2003). However, in agricultural systems the surplus 76 

of Nr is generally only partly converted to N2, while the rest is lost to the atmosphere or aquatic 77 

ecosystems as Nr, causing various environmental problems.  78 

Carbon (C) and N cycles in grasslands are intricately linked and tightly coupled in 79 

extensively managed low N grasslands, with sinks and sources in equilibrium. Converting 80 

such systems to intensively managed N fertilised grasslands in the short term may increase the 81 

soil organic carbon (SOC) pool from decomposed plant litter and root material as well as 82 

through rhizodeposition (Rees et al., 2005) until a new equilibrium is reached (Soussana and 83 

Lemaire, 2014). In the case of the Broadbalk experiment, Rothamsted, this equilibrium was 84 

achieved after 50 years (Powlson et al, 2011). After the conversion to intensive N 85 

management, the tight coupling of the N and C cycles becomes disrupted, leading to 86 

emissions of N2O and CH4 at rates which may outweigh the benefits of C sequestration. 87 

Several studies indicate that managed grasslands can sequester C (Kim et al., 1992; Jones et 88 

al., 2006; Soussana et al., 2004; Ammann et al., 2007) however, uncertainties are high 89 

(Janssens et al., 2003). On the contrary, Smith (2014) concluded from long-term experiments 90 

and chronosequence studies, that changes in agronomic management may lead to short-term C 91 

sequestration, but in the long-term, under constant management and environmental 92 

conditions, C stocks are relatively stable. In a grassland ecosystem the C balance is 93 

determined by the net biome exchange (the difference between total C input and losses). In 94 

managed grassland ecosystems exports through biomass harvesting, the addition of organic 95 

manures (from organic fertiliser additions and animal excretion) as well as CO2 and CH4 96 

losses from animal respiration and enteric fermentation can make significant contributions to 97 

the C budget.  98 

Worldwide an estimated 26 % of land consists of managed grassland (FAOstat, 2008). 99 

The impact of Nr losses, C sequestration and GHG emissions (CO2, CH4 and N2O) from 100 

managed grasslands on the environment is therefore of global importance and will become 101 

even more relevant in the future as an increased standard of living in developed countries is 102 

rev
Kommentar
It might be helpful to start with this part of the introduction, which contains the motivation to study grassland biogeochemistry. The paragraphs above should be shortened, e.g. very general scentences like the very first could be left out.
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expected to result in a rapid growth of livestock farming (Caro et al, 2014). Nutrient budgets 103 

are a valuable tool to summarise and understand nutrient cycling in agroecoystems and to 104 

assess their impact on the environment. As imbalances are not sustainable in the long term, N 105 

and C budgets can be used as indicators and regulatory policy instruments for nutrient 106 

management in order to reduce losses and increase efficiency. So far, different Nr species 107 

have been looked at in separate studies according to their form and impact. Few studies have 108 

attempted to calculate N budgets from managed grasslands (e.g. Ammann et al., 2009; Chen 109 

et al., 2004; Nunez et al,. 2010, Kramberger et al., 2015), whereas C budgets have been 110 

assessed more often and are available for various ecosystems (e.g. Aubinet et al., 2000; 111 

Soussana et al., 2007; Ammann et al., 2007, Rytter et al. 2015). To calculate the total C and N 112 

budget of an ecosystem all import and export processes have to be assessed by measuring or 113 

estimating all imports and exports to an ecosystem. The other method is to measure 114 

differences in N and C stocks in the soil over time. This approach has the advantage that it 115 

requires the measurement of only a single component of the system. However, a large number 116 

of samples are needed at an interval of more than 5 years before detectable changes may be 117 

statistically significant (Smith, 2004). Moreover this approach does not provide any 118 

information about the different processes leading to the final budget.  119 

In this study we assessed the C and N budget from an intensively managed grassland 120 

in Southern Scotland using both approaches. Here we report one of the most detailed analyses 121 

of C and N fluxes from a grassland ecosystem over 9 years (2002-2010). This study allowed 122 

an analysis of the importance of common grassland management practices such as cutting for 123 

silage, grazing of cattle and sheep at different stocking densities, N input by inorganic and 124 

organic fertiliser applications, as well as different weather conditions on the N, C and GHG 125 

balance. The data were collected in the frame of the three European projects GREENGRASS 126 

(EC EVK”-CT2001-00105), CarboEurope (GOCE-CT2003-505572) and NitroEurope 127 

(contract 017841). 128 

 129 

2. Methods 130 

2.1 Site description 131 

The experimental site, Easter Bush, is located in South East Scotland, 10 km South of 132 

Edinburgh (03°02’W, 55°52’ N, 190 m a.s.l). Mean annual rainfall (2002-2010) was 947 ± 133 

something mm and the mean annual temperature was 9.0 ± something °C. The field has been 134 

under permanent grassland management for more than 20 years with a species composition of 135 

>99% rye grass (Lolium Perenne) and < 0.5% clover (Trifolium repens). The soil type is an 136 

rev
Kommentar
quotation mark a typo?

rev
Kommentar
"something" - should not this be a number (for temperature es well)

rev
Kommentar
common names are "perennial ryegrass" and "white clover"; "perenne" in scientific name should be lower case.
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imperfectly drained Macmerry soil series, Rowanhill soil association (Eutric Cambisol) with a 137 

pH of 5.1 (in H2O) and a clay fraction of 20-26%. The ground water table was assumed to be at 138 

0.85 m depth on average and the main rooting zone extends down to 0.31 m below soil surface. 139 

 140 

2.2 Grassland management 141 

The grassland was grazed continuously throughout the experimental period by heifers in calf, 142 

ewes and lambs at different stocking density (Table 1 and Figure 1a). Animals were counted 143 

several times per week and it was assumed that the animal number stayed constant between 144 

observations. Livestock units used for heifers, ewes and lambs were 0.75, 0.10 and 0.04, 145 

respectively (1 livestock unit has a standard live weight of 600 kg head
-1 

(Scottish Agricultural 146 

College, 1995). Lambs were present on the field from April to September only. The grass was 147 

cut for silage on the 1
st
 of June and 8

th
 of August 2002 and on the 29

th
 of May 2003. 148 

Ammonium nitrate fertiliser was applied to the field 3-4 times per year, usually between March 149 

and July (56 kg N ha
-1

 application
-1

 on average). In 2008 an additional fifth mineral N 150 

application was applied, using urea instead of ammonium nitrate fertiliser. Organic manure was 151 

applied on the 28
th

 of September 2004 and 27
th

 of March 2005 as cattle slurry, using a vacuum 152 

slurry spreader. Rates of N and C input from fertiliser and manure and export from harvest are 153 

shown in Table 4 and 5 and in Fig. 1 a) and b).  154 

 155 

2.3. Annual budget calculations 156 

We assessed the N and C budget by measuring or estimating the import and export of all 157 

relevant fluxes to and from the grassland field on an annual basis. Throughout the manuscript 158 

all fluxes are presented following the sign convention used in micrometeorology; fluxes from 159 

the ecosystem to the atmosphere are positive (exported from the field), while negative values 160 

indicate fluxes from the atmosphere to the ecosystem (imported to the field). We set the system 161 

boundary for inputs and exports of N and C by the field perimeters (covering an area of 5.4 ha). 162 

The balance of all imports and exports results in the observed changes of N and C on this field 163 

over time.  164 

 165 

The change in the N balance (N) over time (t) of our grassland ecosystem can be 166 

written as: 167 

 168 

/t      =  FNorg fert. + FNsynt fert. + FN N2 (biol. fixation) + FNdep. +      169 

FNharvest + FNanimal + FNleaching+ FNNH3/NOx(fert.,manure, animal) +    (1)170 

 FNNOx(soil)+ FNN2O+ FNN2(denitr.)  171 

rev
Kommentar
The size of the field should be given here already. What was the relief of the field (slope and hollow are mentioned later)? 

rev
Kommentar
bracket missing

rev
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What was the grazing management? Continuous or rotational stocking? Animal numbers appear to change frequently (Figure 1a). 
Did animals receive any additional feed while on pasture?
Was the field subdivided? It seems that in 2004 and 2005  spreading oforganic manure occcurred during grazing or was immediately followed by grazing.
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 172 

N imports include the addition of N from organic and inorganic fertiliser (FNorg fert. + FNsynt fert.), 173 

the fixation of N2 through biological fixation (FNN2 (biol. fixation)) and the deposition of NH3, 174 

HNO3, NH4
+
, NO3

-
 from dry, and NH4

+
 and NO3

- 
from wet deposition (summarised as FNdep.). 175 

Exports include the N lost from plant biomass at cuts for silage (FNharvest), the off-take of N in 176 

meat and wool from animals (FNanimal), the loss of organic and inorganic dissolved N through 177 

leaching (FNleaching), the NH3 and NOx emissions from volatilisation of inorganic and organic 178 

fertiliser spreading as well as from animal excretion (FNNH3/NOx(fert., manure,  animal)), the emission 179 

of NOx from the soil (FNNOx(soil)), the emission of N2O from the soil (FNN2O) and the loss of N2 180 

from total denitrification (FNN2(denitr.)).   181 

 182 

The change in the C balance (C) over time equals the net biome production (NBP) and 183 

can be written for our site as: 184 

 185 

C/t  =  NBP = FCCO2 + FCorg fert + FCanimal + FCCH4 + FCleaching + FCharvest   (2)        186 

          187 

FCCO2 represents the net ecosystem exchange (NEE) of CO2 and FCorg fert is the C input through 188 

manure application. Carbon input from animal excretion was not included in the budget as it 189 

was assumed to be recycled C from plant and soil uptake. FCanimal includes the C off-take 190 

through animal weight increase and wool production. As grazing cows were heifers in calf, 191 

there was no C off-take through milk to be considered. Methane emissions from enteric 192 

fermentation by ruminants, animal excretion and manure application as well as CH4 fluxes 193 

from the soil are included in FCCH4.  FCleaching is the C lost through dissolved organic and 194 

inorganic C and dissolved CH4 leaching and FCharvest represents the C lost from the system 195 

though plant biomass export from harvests (cut for silage). Carbon emissions from farm 196 

operations (i.e. tractor emissions) or off farm emissions (i.e. fertiliser manufacture) are not 197 

included in the C budget.  198 

 199 

Details of methods to quantify each N and C budget component, as listed in Eq. (1) and (2), are 200 

described under Sect. 2.4 to 2.11. Some budget components were measured throughout the 9 201 

years presented, while others were only measured in some years or not at all. Missing data were 202 

derived from the literature, models or averages from available data from other years.  203 

                                                                                                                                               204 
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The annual net GHG exchange (NGHGE) was calculated from annual NEE (FCCO2), 205 

CH4 (FCCH4) and N2O (FNN2O) fluxes using global warming potentials (GWPs) at the 100-year 206 

time horizon (IPCC, 2013): 207 

 208 

NGHGE = (FCCO2) + FCCH4 * kCH4 + FNN2O * kN2O      (3) 209 

 210 

Where; 211 

 212 

kCH4 = 9.09, since 1 kg CH4-C = 9.09 kg CO2-C 213 

 214 

kN2O = 127, since 1 kg N2O-N = 127 kg CO2-C 215 

 216 

In addition the net annual greenhouse gas balance (NGHGB) was calculated by including the 217 

loss of C through animal meat and wool production, harvest off take, C leaching and input by 218 

organic fertiliser application: 219 

 220 

NGHGB = NGHGE +  FCorg fert + FCanimal  + FCleach + FCharvest    (4) 221 

 222 

2.4 Nitrogen and carbon import by fertiliser and manure (FNsynt fert + FNorg fert. + FCorg fert) 223 

Mineral fertiliser was applied by a spreader as either ammonium nitrate or urea. Data of 224 

application rates and N content were obtained from the farmer. Six month old cattle slurry was 225 

spread by a vacuum slurry tanker. Three samples from the slurry tank were taken at each 226 

application and analysed for ammoniacal nitrogen (NH3 and NH4
+
), dry matter content, total N, 227 

total C, pH and nitrate. The total N and C import to the field by the slurry was calculated by the 228 

volume of the slurry applied and the N and C analyses of the slurry.  229 

 230 

2.5 Nitrogen and carbon export by harvest (FNharvest+ FCharvest) 231 

The farmer estimated a harvest of 15 t fresh weight (FW) ha
-1

 y
-1

 at the first cut and 10 t FW ha
-

232 

1
 y

-1
 at the second cut of a year. As there were two cuts in 2002 and one cut in 2003 the 233 

estimated harvest was 25 t FW ha
-1

 y
-1

 for 2002 and 10 t FW ha
-1

 y
-1

 for 2003. A subsample of 234 

harvested vegetation was collected and dried at 80
o
C for plant N and C analysis using a Carbo-235 

Erba/400 automated N and C analyser.  236 

 237 

2.6 Nitrogen and carbon export by meat and wool (FNanimal + FCanimal)  238 

It was estimated by the farmer that heifers increased in weight by 0.8kg per day (starting 239 

weight of 450 kg). The ewe weight was assumed to be constant (60 kg), whereas lambs were 240 

brought to the field at a weight of 5 kg and removed when they reached a weight of 45 kg. The 241 

rev
Kommentar
I do not think the "equals" sign should be used here, since 1 kg N cannot be equal to 1 kg C (even if its climate forcing effect was equal).
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total meat export was calculated from the daily weight increase of heifers and lambs multiplied 242 

by the animal number per day.  To calculate the N and C export from meat we assumed an N 243 

content of 3.5 % and a C content of 21 % (Flindt, 2002). Ewes were sheared annually in June, 244 

yielding an estimated 2.5 kg of wool per sheep. Wool N and C export was calculated from wool 245 

production multiplied by the average sheep number in June, assuming a N and C content of 246 

wool of 16.5 and 50 %, respectively (Roche J., 1995)  247 

 248 

2.7 Nitrogen and carbon leaching (FNleaching + FCleaching)  249 

Two sets of ten glass suction cups (pore size <1 µm, ecoTech, Bonn, Germany) for soil water 250 

and four Teflon suction cups (ecoTech, Bonn, Germany) for soil gas collection were installed 251 

in August 2006. One set was located on a slope, another on a hollow. For the budget 252 

calculations we only used results from the slope location as the hollow location was frequently 253 

water logged. Suction cups were installed horizontally from a soil pit beneath the A horizon (30 254 

cm depth) and at 90cm depth and connected to 2-l glass bottles in an insulated aluminium box 255 

placed into the soil pit. Samples were collected every two to three weeks. For further details 256 

and description of dissolved organic and inorganic C (DIC, DOC) and dissolved CH4 analysis 257 

see Kindler et al. (2011). Dissolved inorganic and organic N (DIN, DON) and total N (TN) 258 

concentrations in leachate water were analysed by colorimetric analysis (San
++

, Automated Wet 259 

Chemistry Analyzer - Continuous Flow Analyzer (CFA), Skalar, The Netherlands). Leachate C 260 

and N concentrations were measured from October 1
st
 2006 - March 30

th
 2008. Dissolved C 261 

and N were calculated by multiplying concentrations of DIC, DOC and dissolved CH4 or DIN 262 

and DON respectively, with leachate volume. The latter was derived from a soil water model 263 

based on daily precipitation and evaporation data (Kindler et al., 2011). For the remaining years 264 

N was simulated using the LandscapeDNDC model (Haas et al., 2013, with the model tested 265 

and validated with comprehensive measured data. LandscapeDNDC is a process based 266 

biogeochemical model with unifying functionalities of the agricultural-DNDC (e.g. Li et al., 267 

1992; Li 2000) and the ForestDNDC model  (e.g. Kesik et al., 2005; Stange et al., 2000), 268 

particularly suitable for ecosystem N turnover and associated losses of N trace gases and nitrate 269 

leaching (Wolf et al., 2012; Chirinda et al., 2011; Kiese et al., 2011). For C leaching linear 270 

regression models describing the relationship between calculated C leaching fluxes and 271 

leachate volume for the measurement period (DOC; y = 0.0186x - 0.0695, R² = 0.8663, DIC; y 272 

= 0.021x - 0.0008, R² = 0.8056 and dissolved CH4: y = 0.0019x - 0.0135, R² = 0.7623) were 273 

used to extrapolate to the remaining years. 274 

 275 

rev
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2.8 Gaseous N fluxes 276 

 277 

2.8.1 N deposition (FNdep)  278 

Wet N deposition  279 

Wet N deposition was determined from daily samples collected by an automatic precipitation 280 

sampler (Eigenbrodt
®

 precipitation collector 181/KS, Königsmoor, D) at Auchencorth Moss 281 

(3°14’35W, 55°47’34 N), 17 km south west of Easter Bush (Skiba et al., 2013, McKenzie et al., 282 

2015). The precipitation collector was only open during rainfall and closed automatically when 283 

precipitation ceased. Precipitation samples were analysed for NO3
-
 and NH4

+
 by ion 284 

chromatography (Methrom AG, Switzerland). Typical detection limits were 0.5 M for NH4
+
 285 

and 0.4 M for NO3
-
. Annual inorganic N deposition at this site was then adjusted to annual 286 

rainfall amounts at Easter Bush. For years were no data were available (2002, 2003), an 287 

average mineral N concentration per mm rainfall for 2004-2009 was taken and adjusted to the 288 

annual rainfall amount at Easter Bush in 2002 and 2003.  289 

 290 

Dry N deposition  291 

Cumulative monthly concentrations of gaseous and aerosol N species (NH3, HNO3, particulate  292 

NH4
+
 and NO3

-
) were collected from another field, about 300m distance from our study field, 293 

using a DELTA system (DEnuder for Long Term Atmospheric) (Sutton et al., 2001). The 294 

DELTA system comprised of a denuder filter sampling train, an air pump (providing a 295 

sampling flow rate of 0.2-0.4 L min
-1

) and a high sensitivity dry gas meter to record sampled 296 

volumes (Tang et al., 2009) set at 1.5 m height above ground. N dry deposition fluxes were 297 

calculated using the average  flux from four different inferential models; the UK CBED scheme 298 

(Concentration Based Estimated Deposition technique (Smith et al., 2000), the Dutch IDEM 299 

model (Bleeker, 2000), (Erisman et al., 1994), the dry deposition module of the Environment 300 

Canada model CDRY (Zhang et al., 2001; Zhang et al., 2003) and the surface exchange scheme 301 

EMEP (Simpson et al., 2003; Tuovinen et al., 2009), as described in detail by Flechard et al. 302 

(2011).  303 

 304 

2.8.2 N2O fluxes (FNN2O) 305 

From June 2002 to July 2003 N2O fluxes were measured continuously by eddy covariance (EC) 306 

using an ultra-sonic anemometer coupled with a Tunable Diode Laser absorption spectrometer 307 

(TDL) at a frequency of 10 Hz. For details see Di Marco et al. (2004). The detection limit for 308 

the TDL was estimated to be 1 ppbV and the detection limit for a 30 min averaging period of 309 

the N2O flux measurement was estimated at 11 ng N2O-N m
-2

 s
-1

. From August 2006 to 310 

rev
Kommentar
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December 2009 N2O fluxes were measured using manual closed static chambers (Clayton et 311 

al.,1994, Skiba et al., 2013). Four chambers (0.4 m diameter, 0.2 m height) were inserted into 312 

the soil to 0.03 – 0.07 m depth and were accessible for animals to graze. Chambers were closed 313 

usually between 10:00 and 12:00 for 60 minutes with an aluminium lid fitted with a draft 314 

excluder. Samples of 200 ml were collected by syringe and injected into Tedlar bags at the 315 

beginning and the end of the closure time through a three way tap fitted into the lid. In the 316 

laboratory samples were transferred to glass vials and analyzed for N2O using a Hewlett 317 

Packard 5890 series II gas chromatograph (Agilent Technologies, Stockport, UK), fitted with 318 

an electron capture detector (detection limit: N2O < 33 ppbV). Fluxes were calculated from the 319 

change of gas concentration with time of closure, multiplied by the volume of enclosed space and 320 

divided by its surface. Linearity tests were performed in between measurements showing a 321 

linearity of up to 120 minutes with an average R
2
 = 0.96. The minimal detectable flux was 12 322 

ng N2O-N m
-2

 s
-1

. Fluxes were measured weekly and more frequently during fertilisation. 323 

Cumulative fluxes were calculated by gapfilling data for missing days using linear interpolation 324 

and summing up all gapfilled data over each callendar year.  For the periods where no N2O 325 

fluxes were measured (January -May 2002, July 2003-March 2004, May 2004-July 2006) 326 

fluxes were simulated by LandscapeDNDC (Haas et al., 2013).  327 

 328 

2.8.3 NOx fluxes (FNNOx(soil)) 329 

NOx fluxes from the soil were only measured for a short period (June 2009-August 2010). The 330 

NOx fluxes were measured using an autochamber system described in detail by Butterbach-331 

Bahl et al. (1997). Four Perspex chambers (0.5 m x 0.5 m x 0.15 m; total volume 0.0375 m
3
) 332 

were fastened onto shallow frames and moved fortnightly to a second position to allow free 333 

grazing of the first chamber set. One control chamber was placed onto a Perspex surface to 334 

account for ozone/NOx reactions inside tubing and chamber. Measurements were made 4 times 335 

per day, every 6 hours for an 8 min period per chamber. An in-house Labview program 336 

controlled chamber closure and activated a solenoid valve system to sample from the 4 337 

chambers in sequence, interlaced with sampling from the control chamber. PTFE tubing (25 m 338 

in length, ID x OD; 4.35 x 6.35 mm) connected chambers to the NOx (42i-TL Trace Level 339 

NOx Analyzer, Thermo Scientific US) and ozone (Model 49i Ozone Analyzer, Thermo 340 

Scientific, US) analysers located inside the mains-powered field cabin. Fluxes were calculated 341 

from the difference between control (on Perspex) and sample chambers (on grass), the flowrate 342 

into the analysers (11 lpm) and the surface are of the frames (0.25 m
2
). We used simulated data 343 

from Landscape DNDC for years where no NOx fluxes were measured.  344 
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 345 

2.8.4 NH4 + NOx volatilisation (FNNH3/NOx (fert.,manure, animal)) 346 

The fraction of nitrogen that volatilises as NH4 and NOx from applied synthetic fertiliser or 347 

cattle slurry application and animal excretion was estimated to be 10%  and 20% of total N 348 

applied, respectively (IPCC, 2006b). The animal excretion amount was estimated in accordance 349 

with the IPCC Guidelines (IPCC, 2006a). The amount of N excretion (Nex) from animals 350 

depends on the total N intake (Nintake) and total N retention (Nretention) of the animal. Nintake 351 

(amount of N consumed by the animal) depends on the gross energy (GE) intake (see section 352 

2.10) and the crude protein content (CP%) of the feed, assumed to be 15.6% (MAFF, 1990). 353 

Nretention represents the fraction of N intake retained by the animal as meat, milk or wool.  For 354 

lactating ewes the milk production was estimated at 0.618 l animal
-1

 d
-1

 and the milk protein 355 

content (Milk PR%) at 5.3% (Atti et al., 2006). Daily N excretions were thus calculated as 356 

0.0263 kg N animal
-1

 d
-1

 for ewes and varied between 0.0019-0.0106 kg N animal
-1

 d
-1

 for 357 

lambs and 0.096-0.1013 kg N animal
-1

 d
-1

 for heifers.  358 

 359 

2.8.5 N2 emission by total denitrification (FNN2(denitr.)) 360 

Di-nitrogen (N2) emissions resulting from total denitrification in the soil was not measured in 361 

our experiment. We therefore used the N2 emission rates from LandscapeDNDC simulations.  362 

 363 

2.8.6 Biological N2 fixation (FN N2 (biol. fixation)) 364 

The species composition was measured by the visual estimation method (Braun-Blanquet, 365 

1964). As the legume fraction (Trifolium repens) was smaller than 0.5% at each measuring 366 

point we assumed the nitrogen fixation through plants to be zero.  367 

 368 

2.9 Exchange of CO2 (FC CO2) 369 

NEE was measured by an eddy covariance system consisting of a fast response 3D ultrasonic 370 

anemometer (Metek USA-1, Metek GmbH, Elsmhorn, Germany) and a fast closed path CO2-371 

H2O analyser (LI-COR 7000 infra-red gas analyzer (IRGA), LI-COR, Lincoln, NE, USA). 372 

Wind velocity components were measured at 2.5m above ground and data were logged at 20 373 

Hz by a PC running a custom LabView data acquisition program. Air was sampled 0.2 m below 374 

the sensor head of the anemometer using 6.3 mm (1/4 in. OD) Dekabon tubing. The IRGA was 375 

located in a field laboratory ca. 10 m from the mast. Lag times between wind data and trace gas 376 

concentrations were synchronised and taken into account in the offline data-processing (Helfter 377 

et al., 2014). Quality control of the eddy covariance data followed the procedure proposed by 378 
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Foken and Wichura (1996). Data were filtered out if the friction velocity (u*) was smaller than 379 

0.2 m s
-1

 (insufficient turbulence), CO2 concentrations fell outside a plausible interval (330– 380 

450 ppm), CO2 fluxes fell outside the range -50 to 50 µmol m
-2

 s
-1

 and latent (LE) and sensible 381 

(H) heat fluxes fell outside the range -250 to 800 W m
-2

. Missing NEE data were gap-filled 382 

using the online tool developed at the Max Planck Institute for Biogeochemistry, Jena, 383 

Germany
1
 (Reichstein et al., 2005) NEE is the arithmetic sum of the gross primary production 384 

(GPP) and total ecosystem respiration (TER). Flux partitioning of measured NEE into GPP and 385 

TER was calculated by the same online tool used for gapfilling. In this flux partitioning 386 

approach, daytime TER is obtained by extrapolation of a night time parameterisation of NEE 387 

on air temperature and GPP is the difference between ecosystem respiration and NEE. 388 

Contrarily to unmanaged ecosystem, TER at our site also includes the respiratory loss of CO2 389 

by grazing animals. Net primary production (NPP), which represents the annual plant growth 390 

(difference between GPP and autotrophic respiration) was calculated as 50% of GPP (Waring 391 

et al., 1998).  392 

 393 

2.10 Methane fluxes (FCCH4) 394 

Methane fluxes from the soil were measured with closed static chambers simultaneously with 395 

the N2O measurements (see Sect. 2.8.2). The same GC was fitted with a flame injection 396 

detector (detection limit: CH4 < 70 ppbV). The minimal detectable flux was 17 ng CH4-C m
-2

 s
-

397 

1
. Fluxes were measured weekly and more frequently at fertiliser events. As measured soil CH4 398 

fluxes were close to zero and did not vary significantly between months, we calculated CH4 for 399 

months where no CH4 fluxes were measured (January-May 2002, July 2003-March 2004, May 400 

2004-July 2006), as an average monthly cumulative flux from other years.  401 

Methane emissions from grazing animals, i.e. animal excretion and enteric 402 

fermentation, were estimated following the IPCC Tier 2 methodology (IPCC, 2006a: Stewart et 403 

al., 2009).  For animal excretion only solid volatile production was considered, as urine has no 404 

effect on CH4 emissions (Jarvis et al., 1995). The calculation of CH4 emissions from excretion 405 

was based on the amount of volatile solids (VS) excreted, the maximum CH4 producing 406 

capacity (Bo) of the manure and the CH4 conversion factor (MCF), which is specific to the 407 

storage type (pasture, in our study). The amount of VS excreted depended largely on the GE 408 

intake of the animal. The GE intake (based on digestible energy of feed intake, milk 409 

production, pregnancy, current weight, mature weight, rate of weight gain and IPCC constants) 410 

in our study was estimated at 19.5 MJ animal
-1

 d
-1

 for ewes, while it ranged from 7.9 to 14.9 411 

                                                 
1
 http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/upload.php 

rev
Kommentar
The URL should probably be given in the reference list, or else in the text directly.

rev
Kommentar
Is it legitimate to extrapolate from findings for forests to grasslands? Both vegetation types differ considerably in the proportion of photosynthetically active tissue to total tisse (and other aspects).



13 

 

MJ animal
-1

 d
-1 

for lambs and from 160.9 to 169.7 MJ animal
-1

 d
-1 

for heifers. Emission factors 412 

for excretion were calculated as 0.198 kg CH4 head
-1

 y
-1

 for ewes and varied between 1.64-1.73 413 

kg CH4 head
-1

 y
-1

 for heifers and 0.081-0.152 kg CH4 head
-1

 y
-1

 for lambs. Methane emission 414 

factors for enteric fermentation were calculated from GE intake and CH4 conversion factors 415 

(Ym). Depending on animal type and live weight, emission factors were 7.6 kg CH4 head
-1

 y
-1 

416 

for ewes and varied between 60.1-63.8 kg CH4 head
-1

 y
-1 

for heifers and 2.0-4.0 kg CH4 head
-1

 417 

y
-1 

for lambs. Annual emissions from excretion and enteric fermentation were calculated from 418 

daily CH4 emissions per animal multiplied by the animal number.  419 

Methane emissions from slurry applications were assumed to be small. As no chamber 420 

measurements were conducted at the time of slurry spreading, the emissions were estimated as 421 

0.07 % of the applied assuming that emissions were comparable to those in a related study  422 

(Jones et al., 2006), where CH4 was measured from chambers after slurry application on a 423 

nearby field in 2002 and 2003.  424 

   425 

2.11 VOC 426 

Fluxes of non-methane volatile organic compounds (VOC) were not measured. We assumed 427 

similar VOC emissions to those reported by Davison et al. (2008) for an intensively managed 428 

grassland in Switzerland, where the daily average flux of methanol, acetaldehyde and acetone 429 

over 3 days after cutting were 21.1, 5.1. and 2.6 nmol m
-2

 s
-1

, respectively.  Based on those 430 

values, annual VOC emissions from our field were estimated to be in the order of 0.03% of the 431 

annual C offtake in harvest and 0.08 % of annual C off-take by grazing animals. We therefore 432 

assumed VOC emissions to be negligible. 433 

 434 

2.12 Soil N and C measurements  435 

Total N and C content of the soil were measured in May 2004 and May 2011. One hundred soil 436 

cores with an inner diameter of 8.7 (2004) and 8.3 cm (2009, both corers from Eijkelkamp 437 

Agrisearch Equipment BV, Giesbeek, The Netherlands) were collected along a regular grid 438 

with a distance of 10 m between sampling points on both occasions. Cores were separated into 439 

layers of 0-5, 5-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm. Coarse stones of a diameter > 4 440 

mm and roots of a diameter >1mm were removed from the samples prior to drying at 40 °C. 441 

Stone and root samples were air-dried separately. Then, soil samples were sieved to < 2 mm. 442 

Particles > 2 mm were combined with the coarse stones. Dry weights of roots and combined 443 

stone fractions were determined. Total N and C concentrations in < 2 mm soil separates were 444 

determined using dry combustion (VarioMax, Elementar Analysensysteme GmbH, Hanau, 445 
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Germany). As the site contains no inorganic C, total C equals organic C. As bulk density varies 446 

spatially and over time (e.g. through compaction by livestock), the soil N and C content per 447 

unit ground area to a fixed depth will also change, without any change in the mass fraction of N 448 

and C in dry soil. Therefore, total N and C stocks were calculated on an equivalent soil mass 449 

(ESM) basis, so that comparisons between years were valid (see Gifford and Roderick, 2003, 450 

Wendt and Hauser, 2013). A cubic polynomial was fitted to the data, to predict cumulative N 451 

and C with cumulative soil mass in the profile. A soil mass of 800 kg m
-2

 was used (Table 7), 452 

which corresponds to approximately 60-cm depth, which was the depth of the corer.  453 

Uncertainty in the estimates of stock change was based on the prediction intervals in the cubic 454 

polynomial at a soil mass of 800 kg m
-2

. 455 

 456 

2.13 Ancillary measurements   457 

Soil temperature and volumetric soil moisture were continuously recorded at four depths (3.5, 458 

7.5, 15 and 30 cm) by temperature probes (temperature probe 107, Campbell Scientific, 459 

Loughborough, UK) and TDR probes (TDR 100, Campbell Scientific, Loughborough, UK), 460 

respectively, the latter installed in June 2002. Rain was measured by a tipping bucket rain 461 

gauge, while air temperature and relative humidity were measured by an integrated humidity 462 

and temperature transmitter (HUMITTER
®
, Vaisala Ltd, Suffolk, UK).  463 

 464 

2.14  Statistical and uncertainty analysis 465 

Random error was determined as 2σ-standard error (95% confidence) of the overall mean 466 

according to Gaussian statistics. Analyses of variance (ANOVA) were used to test if values 467 

were significantly different from zero (p<0.05). For systematic errors the uncertainty range of 468 

measurements as well as of parameterisations and literature based estimates was estimated 469 

according to expert judgment. To calculate the combined effect of systematic uncertainties of 470 

each flux component on the C and N budget simple Gaussian error propagation rules were 471 

used. Confidence intervals are given at the 95% confidence level. 472 

 473 

3. Results 474 

3.1 Climate and management 475 

The meteorological conditions exhibited substantial inter-annual variability in the study period 476 

2002-2010 (Table 2 and Fig. 2). Annual rainfall ranged from 575 mm to 1238 mm with highest 477 

monthly rainfalls at 280 mm month
-1

 in September 2002. Lowest annual reported rainfall was 478 

in 2010; this low value was caused by a gap in data from January-March, due to snowfall. 479 
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Average annual air temperature ranged from 8.3 to 9.6 ºC with highest daily air temperatures of 480 

30.4 ºC in August 2005 and lowest in December 2010 at -10.3 ºC. Highest average monthly air 481 

temperatures were measured in July 2006 at 17ºC and lowest monthly average air temperatures 482 

at 2ºC in November 2009. In 2003 the highest average annual temperature (9.6º C) and lowest 483 

annual rainfall (680 mm) were measured with a correspondingly low annual soil water content 484 

of 31 %. The duration of the growing season was defined per calendar year as the period 485 

bounded by the first and last 5 consecutive days with mean daily air temperature  5 °C. The 486 

length of the growing season (LGS) varied between 151 days (2006) and 242 days (2009) 487 

(Table 2).   488 

Livestock stocking density exhibited both intra- and inter-annual variability. The 489 

average annual stocking density was lowest in 2002 and 2003 at 0.27 LSU ha
-1

 y
-1

 and 0.54 490 

LSU ha
-1

 y
-1

, respectively
 
(Table 1), which were the years where the grass was cut for silage 491 

and no lambs were present in the field. In 2007, 2008, 2009 and 2010 no heifers were present in 492 

the field. Highest annual average stocking density occurred in 2004 and 2007 at 0.99 LSU ha
-1

 493 

y
-1

 and 0.91 LSU ha
-1

 y
-1

, respectively. Maximum monthly stocking density occurred in 494 

September 2006 at 13.8 LSU ha
-1

, while interim periods with no grazing at all were observed in 495 

all years (Fig. 1a). Mineral N fertiliser was applied split into 3 to 5 applications per year, 496 

ranging from 2.5 to 9.6 g N m
-2

 application
-1

 (Fig. 1b). Organic manure was applied in 2004 497 

and 2005 as cattle slurry, spread at a rate of 6.9 and 15.8 g N m
-2

 application
-1

, respectively, 498 

which resulted in a C input of 55.4 and 171.8 g C m
-2

 application
-1

, respectively (Fig. 1b and c). 499 

The grass was only cut in 2002 and 2003. Harvested biomass in 2002 and 2003 ranged from 500 

2.60 to 3.75 t DW ha
-1

 cut
-1

 which resulted in an N off-take  ranging from 1.7 to 4.7 g N m-2 501 

cut
-1

 and a C removal from the field ranging  from 113.1 to 169.5 g C m
-2

 cut
-1 

(Fig. 1c).  502 

 503 

3.2 Uncertainty analysis 504 

Systematic uncertainties for each component of the C and N budget are shown in Table 3. 505 

Uncertainty values were estimated according to expert judgment. The systematic uncertainty of 506 

the N input from mineral fertiliser was assumed to be minimal (1 %), while the systematic 507 

uncertainty of the N and C spread by the manure was assumed to be 17 % on average for the C 508 

and N analysis. Together with an uncertainty of 10 % of the volume spread, this resulted in a 509 

total uncertainly of 20 %. The uncertainty of the C and N analysis for harvest were 4 and 12 %, 510 

respectively. We assumed an error of 10% in the farmer’s estimate of the harvest amount, 511 

which resulted in a total uncertainty of 16 % for N and 11 % for C off take. We attributed a 512 

systematic uncertainty of 30 % to the modelled data for C and N leaching. The systematic 513 
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uncertainty of the meat and wool consists of the estimated uncertainty in the animal weight, 514 

animal numbers and literature values for wool and meat C and N contents. We assign an 515 

uncertainty for animal weight of 10 %, for animal numbers of 5 % and for literature values of 516 

wool and meat C and N content of 3 %, resulting in a total uncertainty of 12 %. The uncertainty 517 

of wet N deposition was 30 % resulting from the error of sample analysis and a potential bias 518 

from dry deposition on the funnel. The uncertainty of dry N deposition consisted of an error of 519 

7 % for the analysis of DELTA samples and an 80% uncertainty of the variation of the output 520 

from the four models, which resulted in a total uncertainty of 80%. The systematic uncertainty 521 

attributed to the annual cumulative N2O fluxes was 30 %, due to the uncertainty of gapfilling. 522 

The uncertainty attributed to the modelled NOx fluxes is 30 %. The uncertainty attributed to the 523 

NH4 and NOx volatilisation was 30 % from applied synthetic fertiliser and 50 % from cattle 524 

slurry application and animal excretion. The uncertainty attributed to the N2 fluxes was 30 %. 525 

The total uncertainty for NEE values was estimated to be 80 g C m
-2

 y
-1

 (Levy et al., 526 

submitted). The systematic uncertainty of annual cumulative soil CH4 fluxes was very high at 527 

160 %, due to the uncertainty of gap filling and as values were close to zero. The uncertainty of 528 

CH4 from enteric fermentation and animal excretion estimates were each assumed to be 20%, 529 

according to IPCC (2006a). The uncertainty of CH4 fluxes from organic manure application 530 

was estimated at 120 %.  531 

 532 

3 3. N budget  533 

In our grassland system the N balance is the difference between the N input through fertiliser 534 

and atmospheric deposition and the N output through harvest, animal export, leaching and 535 

gaseous emissions. The total resulting balance over the nine years, derived from flux 536 

calculations and estimations, showed that N was stored at an average rate of -7.21 ± 4.6 g N m
-2

 537 

y
-1

 (p<0.05). From 2003 to 2010, N was stored at a rate of -3.1 to -17.9 g N m
-2

 y
-1

, whilst in 538 

2002 N was lost at a rate of 6.3 g N m
-2

 y
-1 

(Table 4). The major N input consisted of inorganic 539 

fertiliser, ranging from -11 to -25.9 g N m
-2

 y
-1

, averaging at -19.2 g N m
-2

 y
-1

, while N 540 

deposition represented only between 1.9 and 5.9% of the total N input. During the years where 541 

N was stored, a significant positive correlation between total N input from fertiliser and N 542 

storage was observed (R² = 0.55). Largest losses resulted from leaching at an average rate of 543 

5.34 ± 3.4 g N m
-2 

y
-1 

and were estimated to be highest in 2002 at 14.9 g N m
-2

 y
-1

 and lowest in 544 

2003 at 0.09 g N m
2
 y

-1
. We found a strong correlation between N leaching and rainfall (R

2 
= 545 

0.82), if values from 2004 were excluded, a weak correlation between livestock density and N 546 

leaching if the years 2002 and 2004 were excluded (R
2
=0.47), while no correlation with total N 547 
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input could be found. The total N off take through meat and wool ranged from 0.15-3.12 g N 548 

m
-2 

y
-1

, while the total annual N offtake from harvest was 5.0 g N m
-2 

y
-1

 in 2002 and 4.68 g N 549 

m
-2

y
-1

 in 2003. Amongst gaseous exchanges, highest losses were estimated from N2 emissions, 550 

averaging at 2.76 g N m
-2

 y
-1

 with maximum losses of 4.12 g N m
-2

y
-1

 in 2009, although in 551 

2004 and 2005 losses from NOx/NH3 volatilisation from excretion and organic fertilisation 552 

exceeded losses from N2 emissions. Losses through NOx from the soil were always less than 553 

1% of the total N exchange (0.2 g N m
-2 

y
-1

). Nitrous oxide emissions ranged from 0.11 to 1.27 554 

g N m
-2

 y
-1

, representing 1.3-8.4 % of the total N export. Annual N2O emissions showed no 555 

correlation with precipitation, livestock density or total N input. However, there was a positive 556 

correlation with rainfall if 2004 and 2007 data were excluded (R
2
=0.78); with livestock density 557 

if the years 2002 and 2004 were excluded (r
2
=0.70); and with total N input if the years 2002, 558 

2003 and 2010 were excluded (R
2
=0.76). N2O emission factors (percentage of N lost from total 559 

N inputs by mineral and organic fertiliser), ranged between 0.6 and 7.5 % (Table 6).  560 

To investigate the influence of different managements on the N and C budget, we 561 

separated experimental years into harvested and grazed (2002 and 2003) and grazed only years 562 

(2004-2010 Fig. 3 and 4). During the harvested years, the main loss of N from the system 563 

occurred through leaching (39.2% of total N inputs), followed by the export through harvest 564 

(25.2%), while the export from animals (meat and wool) accounted for less than 2 % of total 565 

losses (Fig. 3a). The main loss to the atmosphere resulted from total denitrification (N2; 566 

15.4%), followed by NOx/NH3 volatilisation from inorganic N fertiliser applications (9.5%), 567 

while N2O emissions accounted for 3.3%, NOx/NH3 volatilisation from excretion for 2.7% and 568 

NOx from soil for less than 1%. The residual 2% represents the N storage in the soil and the 569 

uncertainty of the budget. When grazed-only years were considered (Fig. 3b), the residual part 570 

was the highest at 38.6%. Losses through leaching (19.9%) and N2 (11.4%) were lower in 571 

grazed years compared to harvested years, while the export through grazing animals were 572 

considerably higher at 15.8%  (sum of N loss through meat, wool and NOx/NH3 volatilisation 573 

from excretion). An additional loss occurred in grazed years through the volatilisation of 574 

NOx/NH3 from organic fertiliser applications in 2004 and 2005 (3%). Losses through N2O and 575 

NOx/NH3 from inorganic fertiliser were comparable to harvested years at 2.5% and 8.3%, 576 

respectively. 577 

Cumulative soil N stocks were derived from soil core measurements taken in May 2004 and 578 

May 2011. Nitrogen storage over the 7 years was calculated from the cumulative equivalent 579 

soil mass (ESM) for the soil mass increment of 800 kg m
-2

, which corresponds to approximate 580 

60 cm depth. The estimated N storage over the 7 years was -4.51 ± 2.64 g N m
-2

 y
-1

 (Table 7) 581 
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and was a significant N accumulation to the soil (p < 0.01).The estimated N storage derived 582 

from flux calculations between 2004 and 2010, however was -9.20 ± 4.10 g N m
-2

 y
-1

, which is 583 

2 times more than that calculated by sequential soil analysis.   584 

 585 

3.4. C budget 586 

Annual C inputs through photosynthesis (GPP) varied between -982.1 and -2162.9 g C m
-2

, and 587 

losses through autotrophic and heterotrophic respiration (TER) varied between 972.1 and 588 

2183.2 g C m
-2

, both considerably larger than any other C fluxes (Table 5). If only the NEE 589 

was considered (difference between GPP and TER), the grassland acted as a sink for CO2 at an 590 

average of 218 ± 155 g C g C m
-2

 y
-1

, and the CO2 uptake was significantly different from zero 591 

(p < 0.05).
 
The sink strength ranged from -10 g C m

-2
 y

-1
 (2006) to -606 g C m

-2
 y

-1
 (2009), 592 

only in 2004, the grassland was a small source of CO2 (72 g C m
-2

 y
-1

). Taking into account all 593 

C inputs and outputs (NBP), C was sequestered on average at 164 ± 140 g C m
-2

 y
-1 

over the 594 

nine years, although the storage was not significantly different from zero (p<0.05). In 2004 and 595 

2006 C was lost from the ecosystem. The major C import resulted from NEE in all years apart 596 

from 2005, when the C input from manure application was larger. Highest C export occurred 597 

from harvest in 2002 and 2003 (270.6 and 169.5 g C m
-2

y
-1

 respectively), while second largest 598 

export in 2002 and 2003 and largest exports in other years was leaching (6.8 to 25.1 g C m
-2

y
-

599 

1
). The measured C leaching value for 2007 (15.4 g C m

-2
y

-1
, table 5) differs from the leaching 600 

value published for Easter Bush by Kindler et al. (2011), as we only used values of one of the 601 

two measured sites in this manuscript (slope, not hollow, as the hollow location was frequently 602 

water logged).  The third largest C loss consisted of C export from meat in 2004-2010, ranging 603 

from 6.4-15.8 g C m
-2

 y
-1

. In 2002 and 2003, when no lambs were present in the field, C export 604 

from meat was exceeded by CH4 losses from enteric fermentation. Carbon export from wool 605 

ranged from 0.5 to 2.1 g C m
-2

 y
-1

. CH4 emissions from organic fertilisation, soil processes and 606 

animal excretion were always less than 1 % of the total C losses. CH4 losses from enteric 607 

fermentation ranged from 1.5 to 5.7 g C m
-2

 y
-1

, corresponding to 0.5-22.5 % of all C losses 608 

from the ecosystem. The annual carbon balance (NBP) was dominated by the NEE.  A high 609 

livestock density tended to reduce the net sink strength. A significant negative correlation of 610 

NEE as well as NBP with stocking density could be seen (R
2
=0.77 and R

2
=0.83, respectively), 611 

if the years with cuts (2002 and 2003) were excluded. The NBP correlated positively with 612 

rainfall (R
2
=0.48) whereas the correlation improved if the dry year 2003 was excluded 613 

(R
2
=0.78). There was only a weak correlation between NEE and rainfall (R

2
=0.38 for all years, 614 

R
2
=0.47 without the year 2003). 615 
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Net primary production (NPP) in years when grass was harvested and grazed (2002 and 616 

2003) and grazed only (2004– 2010) are presented in Figure 4. In both management types most 617 

C was lost through ecosystem respiration, (67% and 71% of NPP, respectively). Harvest export 618 

represented 21% of NPP. Leaching accounted for 1.5% of NPP during harvested years and 619 

2.2% in grazed only years. Animal export (meat and wool) consisted of 1.5% of NPP in grazed 620 

only years and was less than 0.2% of NPP in grazed and harvested years.  The sum of all CH4 621 

emissions (from organic fertilisation, excretion, enteric fermentation and soil) was less than 1% 622 

of the NPP. The residual part, which includes the C storage in the soil as well as the uncertainty 623 

of the budget, was estimated at 10% and 24% of NPP in harvested and grazed or grazed years, 624 

respectively.  625 

The C content for the cumulative soil mass increment 0-800 kg m
-2

 (~ 0-60 cm) was lower in 626 

2011 compared to 2004, resulting in a C loss of 29.08 ± 38.19 g C m
-2

 (Table 7). In 627 

comparison, based on flux calculations C was stored at 180 ±180 g C m
-2

 y
-1

 over the 7 years. 628 

However, neither C loss calculated by sequential soil analysis, nor C storage estimated from 629 

flux calculations were significantly different from zero. 630 

 631 

3.5. Greenhouse gas budget 632 

In order to calculate the global warming potential for the Easter Bush grassland fluxes of the                        633 

greenhouse gases CO2, N2O and CH4 were expressed in CO2 equivalents considering the 634 

different global warming potentials for each gas at the 100 year time horizon (1 for CO2, 298 635 

for N2O and 25 for CH4, IPCC, 2013).  Average greenhouse gas fluxes, net GHG exchange 636 

(NGHGE) and attributed net GHG balance (NGHGB) for 2002-2010 are shown in Figure 5. 637 

The CO2 storage from the NEE provided the largest term in the annual GHG budget. Carbon 638 

dioxide (NEE) was sequestered over the 9 years at a rate of -799 ± 567 g CO2 m
-2

 y
-1

.
 
This 639 

storage was significantly different from zero (p < 0.05). On average, the net GHG exchange 640 

(NGHGE) was highly correlated with NEE (R
2
=0.96). On average the grassland was a source 641 

of the GHGs CH4 and N2O at a rate of 148 ± 30 and 285 ± 131 g CO2 m
-2

 y
-1

, respectively, both 642 

being significantly different from zero (p < 0.001 and p < 0.01, respectively). Nitrous oxide 643 

losses ranged from 52 g CO2 eq. m
-2

 y
-1

 (2004) to 588 g CO2 eq. m
-2

 y
-1 

(2007) (data for each 644 

year not shown). Methane from soil processes, manure input as well as animal excretion, 645 

accounted for less than 5% of total CH4 emissions. Methane emissions from enteric 646 

fermentation ranged from 53 g CO2 eq. m
-2

 y
-1 

(2002) to 199 g CO2 eq. m
-2

 y
-1

(2004). The CH4 647 

emissions, which were predominately (> 97%) of ruminant origin weakened the sink strength 648 

of NEE by 18 %. If both CH4 and N2O were considered the total trade-off of NEE was a 649 
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substantial 54% and increased to a total of 67 %, if only grazed years were considered.  On 650 

average the grassland represented a GHG sink of -366  ± 601 g CO2 m
-2

 y
-1

, if only NEE, CH4 651 

and N2O were included (NGHGE). If all C components (FCorg.fert, FCanimal, FCleaching, FCharvest) 652 

are included, the sink strength of the grassland decreased to -182 ± 560 g CO2 m
-2

 y
-1 

653 

(NGHGB). This represents a weakening of the sink strength of the NGHGE by 50 %, mainly 654 

due to the export of harvest. However, it has to be noted that in harvested years the return of the 655 

manure, resulting from the grass fed to livestock off -site, would reduce the GHG balance. If 656 

only grazed years were considered the sink strength increased slightly by 5.4 %, due to the C 657 

input from manure in 2004 and 2005. Both, NGHGE and NGHGB were not significantly 658 

different from zero.  659 

 660 

4. Discussion 661 

4.1. N balance         662 

Our experimental field has been under grazing/cutting management for more than 20 years with 663 

regular N inputs from mineral fertilizers, manure and animal excretion. As biological N2 664 

fixation by legumes is inhibited by soil mineral N (Streeter, 1988), the legume fraction was less 665 

than 1% and therefore a negligible source of N in our system. Atmospheric N deposition (wet 666 

and dry) accounted only for a small fraction of the total N input on our managed grassland. 667 

This is in contrast to semi natural systems, where atmospheric N deposition represents the main 668 

N input (Pheonix et al., 2006, Bleeker et al., 2011). The main N inputs in our study were from 669 

inorganic and organic fertilizer additions. The amount of N added through fertilizer was 670 

governed by recommended maximum levels (SRUC, 2013)  and lies within the range of N 671 

applied in other European studies with similar management (e.g. Laws et al., 2000; Allard et 672 

al., 2007; Ammann et al., 2009).  Nitrogen added through the excretion from grazing animals 673 

was not considered an N input as this represents an internal redistribution of N within the 674 

system. 675 

 676 

4.1.1 N use efficiency     677 

The ratio between N input and percentage of N uptake into the crop or animal products (meat, 678 

wool and milk) is defined as the N use efficiency (NUE). In our study a substantial amount of 679 

N was removed by harvest, with an NUE of herbage in cut years (2002 and 2003) of 25% 680 

(Figure 3a). This seems low compared to reported N efficiencies of 55-80% in harvested 681 

herbage from managed temperate grasslands (Ball and Ryden 1984; Ammann et al., 2009). The 682 

inclusion of grazing ruminants alters the NUE of herbage as the nitrogen in the grazed grass is 683 
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consumed is and converted to meat, milk, wool, or is excreted. The lower NUE in the grass 684 

production in our study is therefore partly due to grazing. Furthermore, it has been shown that 685 

the proportion partitioned to plant uptake decreases as the total amount of soil inorganic N 686 

increases (Scholefield et al., 1991), which is a further explanation for a low NUE in herbage in 687 

our high N input system. There are different mitigation options to reduce N losses and thus 688 

increase NUE. The introduction of clover into grassland has been shown to reduce the 689 

requirement of N input from fertilisation, thereby resulting in the same yield (Herrmann et al., 690 

2001; Ledgard, 2001). Adherences with fertiliser recommendation systems and avoidance of 691 

over fertilisation is also likely to increase the efficiency of N use without compromising 692 

productivity (Rees et al., 2013). The use of nitrification inhibitors applied onto grassland has 693 

been shown to result in a reduction of N2O emissions (McTaggart et al., 1997). Furthermore, a 694 

novel approach to reduce N losses from sheep urine, by infusing N process inhibitors into the 695 

gastrointestinal tract of the animals, has been demonstrated by Ledgard et al. (2008), however, 696 

the evidence for this as a mitigation option is still limited, and could face legal and ethical 697 

challenges.  698 

 The NUE in crops is significantly higher compared to the NUE in animal production. The 699 

NUE of animal products on our grassland system ranged from 5 to 18% in grazed years (2004-700 

2010), with an average of 10.6 %. This is in agreement with the NUE reported for sheep of 6.2 701 

% by Van der Hoek (1998) and studies for beef production systems, which reported N 702 

efficiencies range from 6 to 12% (Whitehead et al., 1986; Tyson et al., 1992) and 5-20% (Ball 703 

and Ryden, 1984). Approximately 85% of crops produced are used for animal feed, which is 704 

significantly less efficient than if the crops were used to feed humans directly. A measure to 705 

reduce N pollution could therefore be the reduction of meat consumption (Smith et al. 2013).   706 

 707 

4.1.2 N loss to the environment: 708 

Nitrogen leaches from grassland soils in the form of nitrate (NO3
-
), ammonium (NH4

+
) and 709 

dissolved organic N (DON). Whereas NO3
-
 is highly mobile in water and can be easily leached 710 

into groundwater, NH4
+ 

is less prone to leaching as it is mostly bound to soil particles (Brady 711 

and Weil, 2002). Leaching depends on the water-holding capacity of the soil, amount of 712 

rainfall, water use by plants and soil nutrient content, which are in turn influenced by 713 

management. Leaching occurs predominantly from late autumn to early spring when 714 

precipitation often exceeds evapotranspiration (Askegaard et al., 2005). In our field leaching 715 

losses varied widely over the years. This variation can mainly be explained by differences in 716 

precipitation. Overall, leaching from our field (5.3 ± 3.4 g N m
-2

 y
-1

)
 
was comparable to values 717 
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measured at intensively grazed pastures in Ireland (1.8-6.4 g N m
-2

 y
-1

, Watson et al., 2007) and 718 

England (3.8-13.3 g N m
-2

 y
-1

, Scholefield et al., 1993) or croplands (e.g. Bechmann et al., 719 

1998), max. leaching losses of 10.4 g N m
-2

 y
-1

). However, leaching from our study was high 720 

compared to the Swiss NitroEurope site, where a maximum loss of 3.5 kg N ha
-1

 y
-1

 was 721 

estimated from an ungrazed grass/clover sward, despite annual rainfall and N inputs 722 

comparable to our site (Ammann et al., 2009). This difference can be explained by the different 723 

plant cover and management. It has been shown that clover introduction can reduce leaching 724 

(Owens et al., 1994), whereas grazing tends to increase leaching (Cuttle and Scholefield, 1995). 725 

Grazed grasslands tend to have higher N leaching rates than cut grasslands as the N added as 726 

fertiliser is not removed by harvest, but returned to the soil in urine and dung from consumed 727 

herbage, prone to leaching. The uneven distribution of excreted organic N further enhances 728 

leaching due to the formation of N hotspots, which has been observed at outdoor pig farms (e.g. 729 

(Eriksen, 2001). Ryden et al., (1984a) showed a 5.6 times higher leaching loss from grazed 730 

compared to cut grassland with 36% of total N inputs lost from grazed compared to 6% lost 731 

from cut grassland. On our site leaching equaled about 20 % of total inputs in grazed years, 732 

compared to 39% in the cut years. However, the higher value in cut years was due to the high 733 

rainfall in 2002.  734 

 735 

  Due to high atmospheric N2 background, N2 fluxes cannot be measured directly in the 736 

field.  However, there are different methods to measure N2 fluxes indirectly, which have been 737 

summarized by Groffman et al. (2006). In our study, we estimated N2 losses using the process 738 

based biogeochemical model LandscapeDNDC (Haas et al, 2013, Molina-Herrera et al. 2016). 739 

They represented the highest gaseous losses from our grassland in most years, with an average 740 

of 12.6 % of total N inputs and 14 % of inorganic fertilizer N inputs. This is comparable with 741 

the average N2 loss of 12.5 % from inorganic N applications measured by the acetylene 742 

inhibition method from a fertilized and cut, but ungrazed grassland in Switzerland (Rudaz et 743 

al., 1999). Using the same method, van der Salm et al. (2007) reported a higher loss of 22% of 744 

total N input from a cattle grazed pasture on a heavy clay soil in the Netherlands. Apart from 745 

the impact of the heavy clay soil, which could have enhanced denitrification due to reduced 746 

oxygen concentrations, grazing is likely to have enhanced denitrification rates in van der 747 

Salm’s study. Grazing not only enhances denitrification through soil compaction caused by 748 

trampling animals but also due to the formation of N hot spots resulting from unevenly 749 

distributed soil N from excretion. In our study N2 losses simulated by LandscapeDNDC are 750 

based on average (per ha
-1

) changes of the soil N pool instead of the more uneven distribution 751 
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of soil N in hot spots like urine patches. Therefore is it is likely that N2 losses in our study have 752 

been underestimated. 753 

 754 

  Nitrous oxide emissions are influenced by both management and environmental 755 

conditions (Flechard et al., 2007, Bell et al., 2015; Cowan et al., 2015). In our study N2O fluxes 756 

showed typical temporal variations with high N2O peaks after N application decreasing to 757 

background levels after < 1 to 20 days, increased losses during wetter periods, and reduced 758 

losses during the colder winter months (Skiba et al., 2013). Spatial variability was high due to 759 

the uneven distribution of excreta and urine and uneven soil compaction from grazing animals 760 

(Jones et al., 2011). Values measured in our study (0.1 to 1.3 g N m
-2

 y
-1

) are within the range 761 

of literature values from reported grazed as well as un-grazed European grasslands (Velthof 762 

and Oenema, 1997; Leahy et al., 2004; Flechard et al., 2007). Generally N2O losses are higher 763 

from grazed grassland compared to cut, ungrazed pasture (Velthof and Oenema, 1995; Luo et 764 

al., 1999) due to a more anaerobic environment as a consequence of soil compaction caused by 765 

animal treading and the influence of N and C from the deposition of animal excreta to the soil 766 

(Oenema et al., 1997). We could only find correlations between annual N2O emissions and 767 

stocking density, rainfall or total N input if certain years were excluded. This shows that N2O 768 

emissions are not a uniform fraction of N applied, as suggested by the Tier 1 IPPC 769 

methodology, but are also influenced by the type of N applied, by stocking density, and by the 770 

rainfall at the time of fertilization (Jones et al., 2007; Flechard et al., 2007). We found a 771 

relationship between the cumulative precipitation 1 week before plus 3 weeks after fertilization 772 

and N2O emissions (R
2
=0.53) (Skiba et al., 2013). This relationship, together with the influence 773 

of stocking density and type of N applied needs to be considered when developing Tier 2 774 

emission factors. Emission factors, calculated as a simple fraction of total N input (mineral and 775 

organic fertilizer) showed a variation of 0.6 and 7.4% on our field. In five out of eight  years 776 

this value was above the uncertainty range (0.3 - 3 %) given by IPCC Tier 1 guidelines (IPCC, 777 

2006b). However, it has been shown that the N2O emission factor from managed grassland can 778 

be higher, especially under wet conditions and with a high soil C content as this is the case for 779 

Scottish soils (Jones et al., 2007; Dobbie et al., 1999; Bell et al., 2015).  780 

 781 

  In grazed pastures NH3 volatilizes from urine patches, decomposing dung as well as 782 

from fertilizers containing urea and NH4
+
 (Twigg et al 2011). Increased rates of NH3 losses 783 

have been associated with high stocking densities under a rotational grazing system by Ryden 784 

and Mc Neill (1984). In our study, N volatilized as NH3 and NOx from inorganic and organic 785 
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fertiliser and animal excretion, before it was incorporated into the soil, and accounted for a 786 

considerable amount of total N, with losses of 13 % in cut and grazed years (2002, 2003) and 787 

17 % in grazed only years. Apart from 2004, where stocking rates were highest, NOx and NH3 788 

volatilizations from inorganic fertilizer applications exceeded those from animal excretion, 789 

while those from organic manure applications exceeded those from inorganic fertilizers (2004, 790 

2005). However there is a high uncertainty attributed to those estimates.  791 

Soil NOx emissions result predominately from microbial nitrification of either added N 792 

fertilizers or following the mineralization of soil organic matter, animal excretions or added 793 

manure. Emissions tend to be linked with aerobic soil conditions (Davidson, 1991). In relation 794 

to the total N loss from our grassland system, soil NOx emissions were estimated to be 795 

negligible, accounting for less than 1% of the total budget.   796 

  797 

4.1.3 N storage in the soil   798 

Results from soil analysis taken in May 2004 and May 2011 indicate that our field has stored 799 

N. The N budget assessed from the net N flux balance also showed that N was stored in the soil 800 

of our grassland, although at a higher rate (average N storage of -7.2 ± 4.6 g N m
-2

 y
-1 

over all 9 801 

years and average N storage of -9.16 ± 4.09 g N m
-2

 y
-1 

in grazed years, 2004-2011). The slight 802 

shifts in measurement periods (May 2004 – May 2011) for the soil stock calculations and the 803 

period (Jan 2004 – Dec 2010), is presumed to be insignificant in this comparison. 804 

Results from both methods are within the range of literature values. Neeteson and 805 

Hassink (1997) found a N accumulation in SOM of 0-25 g N m
-2

 y
-1

 from two cattle grazed 806 

farms in the Netherlands, while Watson et al. (2007) reported a N storage in grazed Irish 807 

grasslands ranging from 10-15.2 g N m
-2

 y
-1

, depending on N inputs. Soil N storage assessed 808 

from soil measurements from a cut grassland close to our field, where plots were treated with 809 

cattle slurry, stored N over 6 years at a rate of -2.17 g N m
-2 

y
-1 

in the top 10 cm, while, in the 810 

same experiment, a N loss was observed from mineral N and urea treatments (4.5 and 8.3 g N 811 

m
-1

y
-1

, respectively) (Jones et al., 2007). In contrast, Schipper et al. (2007) reported an average 812 

loss of 9.1 g N m
-2

 y
-1

 in the top 100cm from managed grasslands over 20 years in New 813 

Zealand.  814 

The reason for the difference between methods (flux measurements vs sequential soil 815 

sampling) in our study might lie in a possible underestimation of losses from flux 816 

measurements. Uncertainties of our estimates are high, especially those from N losses. The 817 

largest absolute systematic uncertainty for the N balance was attributed to N leaching. Leaching 818 

was modelled for most years, whereas the model was validated using measured data from 819 

rev
Kommentar
missing space



25 

 

October 1
st
 2006 - March 30

th
 2008. The spatial variability of leaching was not considered in 820 

the measured data, as only one location has been used. The uncertainty of the leaching estimate 821 

would therefore be reduced if the model could be validated with data measured from several 822 

locations. The second highest systematic uncertainty was attributed to losses through N2, 823 

NOx/NH3 emission from excretion, NOx/NH3 emission from inorganic fertilization and inputs 824 

from organic fertilization. Combined uncertainties from all components lead to a total 825 

systematic uncertainty in the N balance of 2.1 g N m
-2

 y
-1 

(2004-2010). 
 

826 

 827 

4.2. Carbon balance  828 

4.2.1. Net ecosystem exchange 829 

We observed large variations of NEE between years, caused by varying management and 830 

environmental conditions. The maximum uptake of CO2 measured in our study is close to the 831 

upper range of NEE reported for temperate grasslands (100 to 600 g C m
-2

 y
-1

, (IPCC, 1996). 832 

On an annual basis our grassland site was a sink for atmospheric CO2 in most years. NEE was 833 

only positive in 2004, which was likely to be due to a combination of slurry spreading and a 834 

high livestock density. Generally, grazing causes a very gradual impact on the CO2 uptake as a 835 

part of the field is defoliated each day. The reduced leaf area index (LAI) then leads to a 836 

reduced CO2 uptake by plants. In addition to the reduced LAI, grazing presents a source of CO2 837 

from animal respiration, thereby reducing the CO2 sink of the grassland (Levy et al., 838 

submitted). Indeed, annual NEE of all years correlated negatively with livestock density if 839 

years with cuts were excluded. On average over the 9 years the magnitude of the NEE on our 840 

grassland (-218.0 ± 154.5 g C m
-2

 y
-1

) was  close to the average NEE measured in a comparison 841 

of nine European grasslands over two years (240 ± 70 g C m
-2

 y
-1

) by Soussana et al. (2007) 842 

and comparable to the CO2 sink capacity of managed Irish grasslands measured by Byrne et al. 843 

(2007) (290 ± 50 g C m
-2

 y
-1

) or Leahy et al. (2004) (257 g C m
-2

 y
-1

). Despite high variability 844 

over the 9 years, the average NEE value was significantly different from zero (p < 0.05). The 845 

NEE represents the difference between the gross primary production (GPP) and the total 846 

ecosystem respiration (TER), both influenced by temperature, precipitation and management, 847 

though GPP is mainly controlled by PAR above a certain temperature threshold. The range of 848 

the calculated annual GPP (-982 to -2163 g C m
-2

 y
-1

) and TER (972 to 2183 g C m
-2

 y
-1

) from 849 

our field were within reported values for other managed grasslands.  Gilmanov et al. (2007) 850 

reported the GPP of 18 intensively managed European grasslands ranging from 467 to 1874 g 851 

C m
-2

 y
-1 

and TER ranging from 493 to 1541 g C m
-2

 y
-1

, while Mudge et al. (2011) reported 852 

values of 2000 g C m
-2

 y
-1 

for GPP and TER from a intensively grazed dairy pasture in New 853 
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Zealand.   854 

 855 

4.2.2. Net biome production 856 

The total C budget (=NBP), which includes all components of C import and export in addition 857 

to the CO2 exchange, was negative on average, meaning that C was stored in the grassland over 858 

the 9 years. However, due to the high variability between years, NBP was not significantly 859 

different from zero (p = 0.05), suggesting that our site is carbon neutral. The average C storage 860 

value on our site (164 ± 140 g C m
-2

 y
-1

) is higher than most estimates reported in literature, but 861 

due to the high annual variation, still within the range of reported values; Soussana et al. (2007) 862 

reported C storage estimates from European grazed and cut grasslands of 104 ± 73 g C m
-2

 y
-1

, 863 

and Mudge et al. (2011) reported for a grazed and cut grassland in New Zealand fluxes of 59 ± 864 

56 g C m
-2

 y
-1 

and
 
90 ± 56 g C m

-2
 y

-1
 in two consecutive years. NBP estimates from a Swiss 865 

grassland cut for silage was shown to sequester C at a rate of 147 ± 130 g C m
-2

 y
-1

 (Ammann 866 

et al., 2007), while estimates from a cut grassland in Germany was shown to vary from being a 867 

sink (-28 g C m
-2

 y
-1

) to being a source of C (+25 g C m
-2

 y
-1

), depending on years (Prescher et 868 

al., 2010). The inclusion of all C imports and exports lead to a weakening of the C sink strength 869 

assessed from NEE measurements in 5 years and even changed the grassland from being a sink 870 

to being a source in 2006. Due to the C export from harvest, C sequestration tends to be lower 871 

in cut systems. This is represented in the lower residual value of NPP in cut years (Figure 4a) 872 

compared to the residual value from grazed only years (Figure 4 b), whereas the residual value 873 

represents the C storage in the soil as well as the uncertainty of the budget. The grassland off-874 

take from harvest weakened the annual C sink capacity assessed from the NEE by 51 % (2002) 875 

and 43 % (2003). However, it has to be kept in mind that the herbage yielded from cuts will 876 

end up as animal feed; C will be digested and respired off-site, releasing CO2 to the atmosphere 877 

as well as being returned to the grassland as manure. It is likely that much of the organic C in 878 

the manure is decomposed and evolved to the atmosphere as CO2, with very little being 879 

retained in soil because of the lack of contact between manure and soil: there is some evidence 880 

of this from two long-term grassland experiments in the UK (Hopkins et al., 2009). When the 881 

only management was grazing (2004-2010) the NEE showed to be a good proxy of the NBP. In 882 

those years the plant biomass was digested on-site by the grazing animals and thereby 883 

contributed to total ecosystem respiration  884 

 Only a small fraction of the digested C was incorporated into the body of the grazing 885 

animal as meat and wool, while the largest part was respired as CO2 shortly after intake.  886 
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We estimated that CH4 emissions from grazing animals were only 0.7 % of NPP. Methane 887 

emissions were also measured by eddy covariance technique over several months in 2010 on 888 

the same field (Dengel et al., 2011). By dividing CH4 fluxes by the number of sheep in the field 889 

each day, Dengel et al. calculated CH4 emissions per head of livestock as 7.4 kg CH4 head
-1

 y
-1 

890 

for sheep, which is close to the emission factor used in our budget of 7.6 kg CH4 head
-1

 y
-1 

for 891 

ewes, showing that our estimates were realistic. Methane emissions from slurry spreading were 892 

relatively high on specific days (up to 0.28 g C m
-2

 d
-1, 

measured
 
with chamber method), 893 

however, they were negligible on an annual basis as peaks only lasted for 2–3 days.  894 

 895 

Carbon leaching from managed grasslands has not been reported in many studies. 896 

Kindler et al. (2011) reported C leaching from various European ecosystems, whereas the 897 

measured data (2007) from our experimental field was part of the study. Our data (30.0 g C m
-1

 898 

y
-1

, average of two locations as published in Kindler et al. (2011) were close to the average 899 

value (29.4 g C m
-1

 y
-1

) of the reported European grasslands, which showed a range of C losses 900 

of 6.5-42.5 g C m
-1

 y
-1

. Higher losses have been observed by McTiernan et al. (2001), who 901 

measured DOC export from grassland lysimeter plots treated with N fertilizer and slurry over 902 

two months. Up-scaled to one year, they measured DOC loss between 25.2 and 70.8 g C m
-2

 y
-

903 

1
, all above what we measured in our study. Important factors controlling the magnitude of C 904 

leaching have shown to be drainage, the topsoil C/N ratio and the saturation of the subsoil’s 905 

sorption capacity for organic C (Kindler et al., 2011; McTiernan et al., 2001).  In waterlogged 906 

soils the soil organic matter (SOM) decomposition and groundwater recharge tend to be 907 

reduced and thus the amount of C prone to leaching compared to that under more aerobic 908 

conditions associated with drainage. Although our field was drained more than 50 years ago, 909 

the drainage system does not operate very well, resulting in large puddles of standing water 910 

during prolonged periods of rain. The measured data used for the budget were taken at one 911 

sampling point, which was not in a waterlogged area. Therefore our leaching estimates are 912 

highly uncertain and could be significantly lower and C exports overestimated. The spatial 913 

heterogeneity within the grassland field caused by uneven water management as well as faeces 914 

and urine patches requires to sample at more points in order to obtain a representative leaching 915 

value.  916 

 917 

  The systematic uncertainty of the C balance is mainly determined by the error of the 918 

CO2 exchange, followed by the systematic uncertainty of the harvest export, organic fertilizer 919 

input and leaching losses. Combined uncertainties from all components lead to a total 920 
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systematic uncertainty of the C balance of 18.3 g C m
-2

 y
-1

. 921 

 922 

4.2.3 C sequestration  923 

Unlike forests, most of the C stored by grasslands is contained within soil organic matter. 924 

Carbon sequestration in grasslands can therefore be either determined directly from measuring 925 

soil organic carbon changes or indirectly by measuring the net C balance flux. If measuring soil 926 

C changes, the internationally recommended practice in carbon accounting is to express soil C 927 

stocks to a depth of 30 cm (IPCC, 1997). However, as the bulk density often changes over time 928 

with land use, the soil C content per unit ground area to a fixed depth will also change even 929 

without any change in the mass fraction of C in dry soil. By using the ESM method this 930 

problem is avoided, by considering the whole soil mass present in the 0-60 cm soil layer. A 931 

comparison of the C storage calculated from the net C flux balance from 2004-2010 with C 932 

stock changes measured from soil sample analysis (Table 7) show that, although the flux 933 

balance estimated a C sequestration, while based on soil measurements C was lost, neither 934 

value was significantly different from zero. A literature search by Soussana et al. (2010) 935 

showed that generally C sequestration calculations on grassland were lower if derived from 936 

SOC stock changes (average -5±30 g C m
-2

 y
-1

) compared to C flux balances (average -22±56 g 937 

C m
-2

 y
-1

), although these estimates were not significantly different from each other. However, 938 

in none of those reviewed studies were C flux and C stock change measured in the same field 939 

experiment. A reason for the discrepancy between calculation methods in our study might lie in 940 

a possible underestimation of C exports in the flux balance calculation, leading to an 941 

overestimation of C storage in the soil. One underestimated flux could be the export of DIC and 942 

DOC. Leaching was only measured in one year (2008), while values for remaining years were 943 

estimated using a simple regression model with an attributed high uncertainty of 30 % (4.9 g C 944 

m
-2

 y
-1

of average fluxes). Further uncertainty could be due to the use of only one sampling 945 

location, which might not representative of the whole field due to high spatial heterogeneity 946 

(see Sect. 4.1.2.). Indeed, Siemens (2003) hypothesized that the underestimation of C leaching 947 

from soils can explain a large part of the difference between atmosphere- and land-based 948 

estimates of the C uptake of European terrestrial ecosystems. Gapfilling can introduce 949 

uncertainties in the NEE data especially for years with low data capture. Furthermore, CO2 950 

losses from animal respiration could be underestimated at times due to the animals moving out 951 

of the footprint of the EC mast.  Using animal respiration values from chamber experiments of 952 

12.1 g CO2 kg
-1

 live weight d
-1

 for cows and 11.7 g CO2 kg
-1

 live weight d
-1

 for sheep and 953 

lambs (Shane Troy, SRUC, personal communication), we estimated a maximum CO2 loss from 954 
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animal respiration of 53 g C m
-2

 y
-1

 (2002-2010) or 59 g C m
-2

 y
-1

 (2004-2010).So if we assume 955 

that all animal respiration has been missed by eddy covariance measurements then the C sink 956 

estimated from NEE measurements would be reduced by 24 % (2002-2010) or 33 % (2004-957 

2010). This theoretical maximum 33% reduction would reduce the net carbon balance to ~ 122 958 

g C m
-2

 y
-1

 (2004-2010).   959 

  In the literature, losses as well as storage of C at various rates have been reported from 960 

managed grasslands assessed from soil stock measurements. Soil stock measurements from our 961 

field are comparable with the C sequestration of 10-30 g C m
-2

 y
-1

, measured from US 962 

rangelands (0-60 cm, Schuman, et al., 2002), while Watson et al. (2007) measured a C storage 963 

at 112-145 g C m
-2

 y
-1 

in the top 15 cm soil layer from a grazed Irish grassland. Bellamy et al. 964 

(2005) showed no evidence of increased C in the topsoil of grasslands in England and Wales 965 

and Hopkins et al. (2009) found no significant change of SOC over time in two UK long term 966 

experiments. Depending on the study, managed grasslands in Belgium were shown to either 967 

lose (90 g C m
-2

 y
-1

, Lettens et al.,  2005a) or sequester carbon (4.4 g C m
-2

 y
-1 

in 0-30 cm, 968 

Goidts and Van Wesemael, 2007; 22.5 g C m
-2

 y
-1 

in 0-30 cm, Lettens et al. 2005b). Schipper et 969 

al. (2007) reported losses of C from pastures in New Zealand over 20 years at an average rate 970 

of 106 g C m
-2

 y
-1 

(top 100 cm), whereas these losses were a result of an earlier land use change 971 

from forestry. The above mentioned results are contrasting and inconclusive, because observed 972 

C sinks in grasslands are the effect of land management or land use change prior to the 973 

beginning of the C stock change measurement. Soussana et al (2014) concluded in a theoretical 974 

study that grassland SOC sequestration has a strong potential to partly mitigate the GHG 975 

balance of ruminant production systems at low grazing intensities, but not with intensive 976 

systems. Smith (2014) examined evidence from repeated soil surveys, long term grassland 977 

experiments and simple mass balance calculations and concluded that, although grasslands can 978 

act as C sinks, they cannot act as a perpetual C sink and thus could not be used as an offset for 979 

GHG emissions. 980 

 981 

4.3 Greenhouse gas budget 982 

In the overall N and C budget N2O and CH4 emissions were negligible in terms of N and C 983 

losses from the system (1 – 8 % of total N losses and 0.6 - 4.5 % of total C losses, 984 

respectively). However, in terms of CO2 equivalents, N2O emissions as well as CH4 emissions 985 

strongly affected the GHG budget. Since the radiative forcing effect of N2O is 298 times 986 

greater than that of CO2 a relatively small emission of N2O can exert a strong influence on the 987 

total radiative forcing budget of an ecosystem. Indeed, the sink strength of the NEE was 988 
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weakened by N2O emissions by 29 % over all years. Methane emissions from soil processes, 989 

manure input and animal excretion were negligible in terms of the C budget as well as in the 990 

GHG budget. In contrast, enteric fermentation proved to be an important GHG source. The 991 

positive correlation of CH4 emissions with the stock density indicates that any changes in 992 

animal production will have a major impact on the global CH4 budget. The weakening of the 993 

GHG sink strength of the NEE by N2O and CH4 emissions, show the importance of those two 994 

gases in terms of global warming. Thus, adapting the management of grasslands by adding 995 

fertilizer or manure to increase plant growth and thus improve C sequestration in soils may 996 

increase N2O emissions, while changing land use from cropland to pasture in the attempt to 997 

reduce C losses from soils might lead to increased CH4 losses from grazing animals.  998 

 999 

5. Conclusion  1000 

In our study only a small proportion of the N inputs from inorganic fertilizer and organic 1001 

manure were converted to animal outputs or stored in the soil, while the main part was lost 1002 

through leaching and gaseous emissions. An improvement of the NUE would mean both an 1003 

economic profit for the farmer as well as an environmental benefit. Estimates from flux budget 1004 

calculations indicated that our grassland was sequestering C. However, although grasslands can 1005 

act as C sinks, they can not act as a perpetual C sink and thus could not be used as an offset for 1006 

GHG emissions. Instead, as it is easier and faster for soils to lose than to gain carbon, care must 1007 

be taken to preserve C loss by management options, rather than trying to increase carbon stocks 1008 

in grasslands. There was a discrepancy between soil stock measurements and flux budget 1009 

calculations for the C as well as the N budget. The reason for the discrepancy between C 1010 

storage estimates might lie in a possible underestimation of C exports such as leaching and 1011 

animal respiration as well as the uncertainty due to gapfilling in the NEE data. The N budget 1012 

storage might have been overestimated by the flux calculations through a possible 1013 

overestimation of N losses, mainly through leaching as well as through N2 and NOxNH4 1014 

emissions.  Our data have shown that the information about the potential of managed 1015 

grasslands to act as sinks or sources for GHG is important for mitigation and adaption 1016 

purposes. High plant productivity, stimulated by fertilisation, resulted in high plant CO2 1017 

fixation. However, increased N losses through N2O emissions counteracted the benefits of C 1018 

sequestration in terms of GHG emissions. Furthermore, CH4 emissions from enteric 1019 

fermentation largely reduced the positive effect of CO2 uptake, especially in years where NEE 1020 

rates were small. We therefore conclude that CO2 exchange alone is not sufficient for the 1021 

estimation of the GWP of a managed grassland ecosystem.  1022 
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Tables  1538 

 1539 
Table 1. Average annual livestock densities [LSU ha

-1
 y

-1
]. 1540 

 1541 

 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Heifers 0.12 0.38 0.05 0.15 0.27 0 0 0 0 

Ewes 0.14 0.16 0.82 0.56 0.51 0.68 0.68 0.61 0.53 

Lambs 0 0 0.12 0.12 0.12 0.23 0.14 0.11 0.12 

all animals 0.27 0.54 0.99 0.83 0.90 0.91 0.83 0.72 0.65 

 1542 

 1543 

Table 2. Weather characteristics of each measurement year.  1544 

 1545 

 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Annual mean temperature [ºC] 9.2 9.6 8.9 8.8 9.3 9.1 8.6 8.9 8.3 

Maximum temperature [ºC] 23.6 29.5 27.4 30.4 26.6 21.4 23.5 28.0 24.0 

Minimum temperature [ºC] -5.1 -8.4 -4.9 -6.6 -5.5 -7.5 -5.8 -7.8 -10.3 

Annual rainfall [mm] 1238 680 1169 1028 1120 904 1065 744 575 

Soil water content [%] 36.9 31.0 40.3 45.2 36.6 37.7 41.5 39.4 - 

Water filled pore space [%] 68.0 57.2 74.3 83.3 67.5 69.5 76.5 72.6 - 

Length of growing season   180 196 156 177 151 186 193 242 226 

 1546 

 1547 
Table 3. Systematic uncertainties attributed to each budget component. Combined uncertainties were  1548 

calculated according to simple Gaussian error propagation rules.  1549 

 1550 

Nitrogen budget component N [%] Carbon budget component C [%] 

Mineral fertiliser 1   

Organic manure
a
  20 Organic manure

a
  20 

Harvest
b
 16 Harvest

b
 11 

Leaching
c
  30 Leaching

c
  30 

Animal (wool and meat)
d
 12 Animal (wool and meat)

a
 12 

Wet deposition 30 CH4 soil 160 

Dry deposition
e
 80 CH4 enteric  20 

N2O 30 CH4 excretion 20 

NOx soil  30 CH4 organic 120 

NH4 volatilisation 30   

NOx volatilisation 50   

N2 30   
a
combined uncertainties of  C and N analysis (17%) and volume spread (10%) 1551 

b
combined uncertainty of  total C (4%) and N (12%) analysis and farmer’s estimate in harvest amount (10%)  1552 

c
modelled 30, how much for measurements? 1553 

d
combined uncertainties from animal numbers (5%), animal weight (10%) and literature values for C and N content for 1554 

meat and wool (3%) 1555 
e
combined uncertainty of  DELTA sample analysis (7%) and variation of outputs from the four models (80%)  1556 

 1557 

  1558 

 1559 
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Table 4. Nitrogen budget and balance for each measurement year and average values, confidence intervals at p > 0.95 (CI) and systematic uncertainties 

(uncert.) for 2002-2010 [g N m
-2

 y
-1

]. Negative numbers represent uptake while positive numbers represent loss of N from this grassland ecosystem.  

 

 2002 2003 2004 2005 2006 2007 2008 2009 2010 2002-2010 

          average CI uncert. 

Organic fertilisation 0 0 -6.9 -15.8 0 0 0 0 0 -2.5 3.6 0.2 

Inorganic fertilisation -20.6 -16.0 -11.0 -17.3 -22.4 -17.3 -25.9 -25.0 -19.0 -19.4 3.1 0.2 

Wet deposition -0.4 -0.6 -0.6 -0.7 -0.6 -0.6 -0.5 -0.4 -0.5* -0.5  0.1 0.2 

Dry deposition -0.5 -0.4 -0.3 -0.3 -0.2 -0.3 -0.2 -0.2 -0.3* -0.3  0.1 0.2 

Harvest 5.0 4.7 0 0 0 0 0 0 0 1.1  1.4 0.2 

Meat 0.2 0.5 1.9 2.6 2.2 2.4 1.5 1.1 1.2 1.5  0.5 0.2 

Wool  0 0 0.6 0.5 0.4 0.7 0.7 0.2 0.2 0.4  0.2 0.0 

Leaching 15.0 0.1 0.1 4.6 10.6 4.2 5.6 2.6 5.3* 5.3  3.4 1.6 

N2 3.7 2.2 1.3 1.7 2.8 3.0 3.3 4.1 2.8* 2.8  0.6 0.8 

N2O 1.1 0.1 0.1 0.4 0.9 1.3 0.8 0.4 0.4 0.6  0.3 0.2 

NOx (soil) 0.3 0.1 0 0.1 0.2 0.2 0.3 0.1 0.1 0.2  0.1 0.1 

NOx,NH3 (inorg.fert.) 2.1 1.6 1.1 1.7 2.2 1.7 2.6 2.5 1.9 1.9  0.3 0.6 

NOx,NH3 (org.fert.) 0 0 1.4 3.2 0 0 0 0 0 0.5  0.7 0.3 

NOx,NH3 (excretion) 0.4 0.7 1.7 1.3 1.3 1.6 1.5 1.3 1.2 1.2  0.3 0.6 

N balance 6.3 -7.0 -10.6 -17.9 -2.5 -3.1 -10.3 -13.2 -6.6 -7.2  4.6 2.1  
*average value of 2002-2009  
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Table 5. Carbon budget and balance for each measurement year and average values, confidence intervals at p > 0.95 (CI) and systematic uncertainties 

(uncert.) for 2002-2010 [g C m
-2

 y
-1

]. Negative numbers represent uptake, while positive numbers represent loss of C from the grassland ecosystem. 

 

 2002 2003 2004 2005 2006 2007 2008 2009 2010 2002-2010 

          average CI uncert. 

GPP -2162.9 -1982.0 -2111.4 -1662.4 -982.1 -1722.7 -1441.2 -1722.4 -2015.4 -1755.8 244.4 105.3 

TER 1726.9 1725.9 2183.2 1638.5 972.1 1606.7 1324.0 1116.7 1547.0 1537.9 236.2 92.3 

NPP -1081.5 -991.0 -1055.7 -831.2 -491.1 -861.3 -720.6 -861.2 -1007.7 -877.9  122.2 -52.8 

CO2 (NEE) -436.0 -256.1 71.8 -24.0 -10.0 -115.9 -117.1 -605.7 -468.4 -217.9 154.5 80.0 

Organic fert. 0.0 0.0 -55.4 -171.8 0.0 0.0 0.0 0.0 0.0 -25.2  37.8 5.0 

Harvest 270.6 169.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.9  65.5 5.4 

Meat 0.9 3.0 11.5 15.8 13.1 14.5 9.1 6.4 7.3 9.1  3.4 1.1 

Wool  0.0 0.0 1.7 1.5 1.3 2.1 2.0 0.7 0.5 1.1 0.5 0.1 

Leaching* 25.1 7.0 22.1 18.7 19.4 15.4 17.0 6.8 16.4* 16.4  4.3 4.9 

CH4 (organic fert.)  0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 

CH4 (soil) 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0  0.0 0.1 

CH4 (excretion)
 
 0.0 0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1  0.0 0.0 

CH4 (enteric ferm.) 1.5 3.2 5.7 4.8 5.2 5.2 4.8 4.1 3.8 4.3  0.8 0.9 

C balance (NBP) -137.8 -73.3 57.7 -154.7 29.3 -78.6 -84.0 -587.6 -440.3 -163.2 139.5 15.9 

*average value of 2002-2009  
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Table 6. Annual N2O exchange, total N input by fertiliser (mineral and organic) and N2O 

emission factors, expressed as percentage of total N inputs in 2002-2010.  

 

 N2O flux 

[g N m
-2

 y
-1

] 

Total N input 

[g N m
-2

 y
-1

] 

EF 

[%] 

 

2002 1.14 20.60 5.5  

2003 0.14 15.98 0.9  

2004 0.11 11.00 0.6  

2005 0.36 17.25 1.1  

2006 0.88 22.43 3.9  

2007 1.25 17.25 7.2  

2008 0.84 25.93 3.2  

2009 0.41 24.95 1.6  

2010 0.35 18.98 1.9  

 

 

 

Table 7. N and C budget (g N or C m
-2 

y
-1

)
 
over 7 years based on repeated soil N and C stock 

inventories (May 2004 and May 2011) and flux budget calculations (January 2004  - December 

2010). Soil stock changes are based on a soil mass of 800 kg m
-2

, which corresponds to 

approximately 60 cm depth. The flux budgets are averages for the years 2004 – 2010 (Table 4 

& 5). Numbers in brackets represent confidence intervals. Negative numbers are sinks.  

 

 N  balance  C balance 

soil stock change -4.51 (2.64)    29.08 (38.19) 

flux budget -9.20 (4.10) -180.7 (180) 

 

 

 

 

 

 

  

rev
Kommentar
Since this is only the mean of 2002-2009, it should not be included here.
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Figure captions 

 

Figure 1. Livestock density (c), nitrogen (c) and carbon (b) input and export from inorganic and 

organic fertiliser and harvest from 2002-2010. 

 

Figure 2. Maximum, minimum and average monthly air temperature, derived from daily 

averages (a) and monthly cumulative rainfall and soil water content (b) from 2002-2010.  

 

Figure 3.  Mean annual  nitrogen budget for Easter Bush, showing the fate of  total N input 

(fertiliser and deposition) in (a) years when harvested for silage (2002 and 2003) and (b) in 

years when only grazing took place (2004–2010). The residual term includes all the error in the 

budget calculation, as well as any net accumulation of soil organic nitrogen. 

 

Figure 4.  Mean annual carbon budget for Easter Bush, showing the fate of net primary 

productivity (NPP) in (a) years when harvested for silage (2002 and 2003) and (b) in years 

when only grazing took place (2004–2010). Heterotrophic respiration includes the respiration 

of soil microbes, cows and sheep.  The residual term includes all the error in the budget 

calculation, as well as any net accumulation of soil organic carbon.   

 

Figure 5. Average greenhouse gas fluxes, net GHG exchange (NGHGE) and attributed net 

GHG balance (NGHGB, includes FCorg fert, FCanimal, FCleaching ,FCharvest) for 2002-2010. Positive 

values correspond to losses and negative values to storage of greenhouse gases to and from the 

grassland system, respectively. The CH4 component comprises CH4 fluxes from enteric 

fermentation, animal excretion, slurry application and soil exchange, while the N2O component 

is the N2O flux from the soil.  Global warming potentials of 298 and 25 were used for N2O and 

CH4 respectively, using a time horizon of 100 yrs (IPCC, 2013). Thin error bars represent 

variations (confidence intervals at p > 0.95) between years, while thick error bars represent the 

systematic uncertainty of each value. 

 

 

 

 

 

rev
Kommentar
"Stocking density" would be more accurate here; LSU should be explained; Letters for sub-figures a, b, c, are not quite correct;
"input and export" should be replaced by "fluxes", otherwise it is not intuitive that input is negative and output positive; "fluxes" should probably be added to the y axis as well.

rev
Kommentar
Volumetric or gravimetric soil water content?

Given that only annual averages are presented for the measured values, this Figure might not be necessary.

rev
Kommentar
Figures 3 and 4 essentially duplicate information contained in Tables 4 and 5; regarding the division into grazing-only vs. grazing-and-cutting years, please see my general comments

rev
Kommentar
Abbreviation NEE should be explained here
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