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Abstract. Monitoring the terrestrial carbon cycle for responses to disturbances, caused for example by extreme climate events

and insect outbreaks, has the potential to provide early warnings about ecosystem change. However, our capability to detect

these carbon balance responses by atmospheric CO2 monitoring remains unknown despite sub-ppm comparability of many

well-calibrated CO2 measurement sites. Here, this study explores how accurately atmospheric CO2 and transport models

can detect imposed carbon flux anomalies against a background terrestrial flux. Air mass back trajectories from three CO25

monitoring stations in the central U.S. Rocky Mountains for one year (2008) were computationally simulated. To simulate

reduced CO2 uptake, a constant +0.2 µmol C m−2 s−1 anomaly was added to all surface fluxes within perturbation domains of

varying size. A spatially and temporally uniform 10◦x10◦ +0.2 µmol C m−2 s−1 flux anomaly (+6 TgC mo−1) was detectable

above a comprehensive model-data mismatch detection threshold in a large majority of months at each site, but only when

the perturbation was located in the central Mountain West. The intensity of the perturbation and its area were important to10

detection, but the effect of area declined exponentially with increasing source-to-station distance. To further evaluate response,

a more realistic spatio-temporally varying drought extracted from a dynamic global vegetation model with a monthly varying

perturbation area (1◦x1◦ to 5◦x5◦) and higher peak intensity (+0.8 µmol C m−2 s−1) was applied. Detectability of excess CO2

from this experiment by the nearest CO2 site (Utah) was similar to detectability of the largest (10◦x10◦) uniform perturbation.

These experiments demonstrate disturbance and drought related carbon-cycle perturbations do create a discernible impact on15

the composite signal of atmospheric CO2 if sufficiently proximal to a measurement station.

1 Introduction

The increasing burden of anthropogenic carbon dioxide emissions in the atmosphere, leading to global climate change, is

partially offset by the terrestrial carbon sink (Pan et al., 2011; Le Quéré et al., 2013). The magnitude and variability of this

sink is strongly sensitive to impacts from ecological disturbance and extreme climate events (Bonan, 2008; Martínez-Vilalta20

et al., 2012; Reichstein et al., 2013; Gatti et al., 2014; Wang et al., 2014), both of which are projected to increase in a changing
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climate (Diffenbaugh and Field, 2013). In particular, ecosystems that are geographically or topographically near the edges

of their niches or in regions with high rates of climate change may be most likely to suffer from changes in the frequency

of events that stress plant productivity or enhance rates of decomposition (Allen et al., 2010; Walter et al., 2013). Forests and

grasslands in the Western United States meet these criteria and are particularly vulnerable to changes in frequency and intensity

of drought (van der Molen et al., 2011), wildfire (Jolly et al., 2015), and disturbances from insect outbreaks (Harte et al., 2006;5

van Mantgem et al., 2009; Hicke et al., 2012).

However, it has been difficult to assess the climate and disturbance sensitivity of the carbon cycle of these ecosystems

owing to the large spatial scale, complex terrain leading to heterogeneous biogeography (Göckede et al., 2006), and lack of

sufficient long-term observations. Consequently, several efforts are underway to monitor western North American forests and

grasslands from space, monitoring plots, and flux towers (e.g., ForWarn, National Insect and Disease Risk Map, MODIS Global10

Disturbance Index, Global Fire Emission Database). One promising approach is the use of atmospheric inversions for detection

of changes in regional carbon balance (Ciais et al., 2010; Peters et al., 2010). While global tracer-transport inversions, based

on inferring surface fluxes from the global network of CO2 measurement sites and large-scale transport models, have been

employed in diagnosing the magnitude of regional carbon sources and sinks (Peters et al., 2010; Hayes et al., 2012), there has

been less study on their reliability for detecting changes to regional carbon sinks in response to major disturbances (Ciais et al.,15

2005). Prior work has shown that mountaintop CO2 observations, such as those used in this study, can be used in regional and

global inversions to improve capabilities to resolve regional carbon sources and sinks (Brooks et al., 2012). Here, we ask: To

what extent and with what precision can these CO2 observations tell us anything about the sensitivity of regional mountain

carbon fluxes to the effects of large-scale disturbance and climate extremes such as drought?

The analysis here does not resolve the underlying mechanisms that drive changes in terrestrial net ecosystem exchange (NEE)20

of CO2, but rather what factors of atmospheric CO2 monitoring network design (location and measurement compatibility) and

atmospheric transport fidelity are needed to observe carbon flux changes in intensity, spatial extent, and geographical coverage.

We examine whether these Mountain West CO2 stations (Hidden Peak, Utah; Niwot Ridge T-Van, Colorado; Storm Peak

Laboratory, Colorado) are sufficiently sensitive to capture the effects of short-lived and persistent climate extremes on the

carbon-cycle for proximal and distant perturbations.25

2 Methods

In these simulated experiments, a Lagrangian trajectory model (STILT) coupled with a regional meteorological model (WRF)

was used to simulate backward Lagrangian particle trajectories for one year from three continuous CO2 observing sta-

tions in the Mountain West that are part of the Regional Autonomous Continuous CO2 Network in the Rocky Mountains

(Rocky RACCOON). Simulated carbon fluxes from the NOAA CarbonTracker inverse model (CT2013, Peters et al., 2007,30

http://carbontracker.noaa.gov) were convolved with 1◦x1◦ WRF-STILT back trajectories to generate spatially and temporally

explicit CO2 values estimating the amount of CO2 that each 1◦x1◦ location and time contributed to the CO2 measured at

a RACCOON station. To simulate differently located droughts fluxes were perturbed over different domains and intensities.
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The spatial aggregate of these perturbed CO2 values when subtracted from the unperturbed case revealed the excess atmo-

spheric CO2 that is expected to be observed at that station given transport as simulated by WRF-STILT. For the first set of

perturbations a uniform flux anomaly was imposed with an intensity equivalent to the difference between the annual mean

of the strongest and weakest carbon uptake years from CarbonTracker’s (CT2013) biospheric CO2 fluxes (Table 1, Fig. 1).

In addition a space and time varying prototypical perturbation, i.e. a drought, was also imposed and compared. The uniform5

flux anomaly was applied to all grid cells within the perturbation domain with equal intensity throughout the year. The proto-

typical drought on the other hand, had a monthly varying intensity and spatially variable pattern based on data taken directly

from the VEgetation-Global-Atmosphere-Soil terrestrial carbon cycle model (VEGAS, Zeng, 2003; Zeng et al., 2004, 2005),

which simulates vegetation growth and competition in addition to the full terrestrial carbon cycle for predicting decadal-scale

feedbacks to climate variability.10

The primary goal of this study was to evaluate how strongly carbon flux anomalies would appear relative to a comprehensive

model-data mismatch uncertainty threshold based on the error associated with the ability to model atmospheric concentrations

observed at specific measurement sites (which include not only the measurement error, but also transport model error, aggre-

gation error, and representation error). Results in the main paper are evaluated over monthly timescales. We additionally show

in the Appendix our results at 3-hourly timescales against a measurement error threshold that is based on the uncertainty of the15

atmospheric observations themselves.

2.1 CO2 observing station descriptions

The three CO2 measurement stations used in this study (Fig. A5) are part of the RACCOON Network. Each station has a

well-calibrated CO2 sampling system (Stephens et al., 2011) maintained by the National Center for Atmospheric Research,

and provides coverage in a difficult-to-monitor and under-sampled Western U.S. landscape. More than nine years of sub-hourly20

CO2 profile observations are available from locations spanning Colorado, Utah, and Arizona. High elevation, multiple inlet

heights and fast sampling allow these CO2 observations to be filtered and used as constraints within data assimilation model

systems. The three RACCOON stations for this study represent high elevation locations in Colorado and Utah. NWR T-Van

site is a ridge-top station (3523 m.a.s.l.) located above tree-line on Niwot Ridge 5 km west and 470 m higher than the Niwot

Ridge AmeriFlux Forest Site. SPL (Storm Peak Laboratory, 3210 m.a.s.l.) samples mountaintop air 100 km to the northwest25

near Steamboat Springs, Colorado. HDP (Hidden Peak, 3351 m.a.s.l.) lies 30 km southeast and 2054 m above the center of

Salt Lake City, Utah. This network has included an additional valley site in Colorado and mountaintop site in Arizona, not

discussed here. Further details and data from these stations are hosted online at http://raccoon.ucar.edu.

2.2 CO2 observing station influence functions

Influence functions are probabilistic representations of the sensitivity of available observations to upwind fluxes, and are derived30

using the back-trajectories of virtual transported particles. We examined the influence of points across a 1◦x1◦ gridded domain

(170◦− 50◦ W longitude, 10◦− 70◦ N latitude) at 3-hourly resolution for the year 2008. These influence functions were the
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same as those used in Chatterjee et al. (2012) and Shiga et al. (2013) and were calculated by the Stochastic Time-Inverted

Lagrangian Transport model, STILT, coupled to WRF (Lin et al., 2003; Nehrkorn et al., 2010).

Each hourly WRF-STILT time step provided 240 prior hours (10 days x 24 hours) of back trajectory data for each RAC-

COON station representing the gridded particle locations at past hourly time points for all 500 particles that were released. We

truncated our backward time horizon to the most recent 3 days, which focused our analysis on the continental flux influences5

rather than the Pacific Ocean (Fig. A6). The final step prior to convolution with surface fluxes was to aggregate the back trajec-

tories to generate influence functions, which represent summed and corrected boundary-layer particle masses aggregated over

each prior 3 day window. These back trajectories simulated each station at its ground-relative height above the STILT model

surface (18, 5, and 9 m.a.g.l. for HDP, NWR and SPL, respectively).

2.3 CO2 flux estimates from CarbonTracker10

Regional ecosystem carbon flux estimates from CT2013 (Peters et al., 2007, with updates described at http://carbontracker.

noaa.gov) were used as our baseline carbon fluxes. CT2013 is an ensemble Kalman filter data assimilation system that combines

observations of atmospheric CO2 with ecological and atmospheric transport models to determine suitable CO2 flux estimates

that best fit observed CO2 mixing ratio constraints. CT2013 uses data from HDP, NWR, and SPL, among many other CO2

measurement stations, as constraints in its optimization. In order to determine each CO2 site’s sensitivity it was necessary to15

apply a flux perturbation to the CT2013 fluxes. For the first set of perturbations the flux anomaly was a constant applied to all

grid cells within each perturbation domain. We chose to use a value equal to regional interannual variability of the carbon cycle.

To determine this value we calculated the CT2013 mean annual ecosystem fluxes for a western domain from 100◦− 115◦W,

and 35◦− 50◦N for years 2000-2010 (Table 1, Fig. 1) and took the difference between the minimum and maximum of all

years to be our nominal perturbation intensity. This amounted to +0.2 µmol C m−2 s−1 and is referred to as the uniform flux20

anomaly.

2.4 Convolution of CO2 fluxes and influence functions

For each CO2 measurement station during the 2008 year CT2013 ecosystem fluxes were multiplied by the corresponding

WRF-STILT influence function values to develop spatially explicit (1◦x1◦) values of CO2 contributions (ppm). These data

indicate the locations and amounts of CO2 that in theory contributed to the total CO2 concentration observed at a particular25

measurement location and time.

Convolution was done by an algorithm that stepped through each day of data and multiplied the ecosystem fluxes (µmol C m−2 s−1)

by their corresponding influence functions (ppm µmol−1 m2 s1). To match the differing hourly and 3-hourly sampling rates the

previous three days of ecosystem fluxes were interpolated to an hourly time step using a cubic spline function. At each time

step (hour) for the 2008 year the previous 72 hours of ecosystem fluxes were multiplied against the corresponding 72 hours of30

back-trajectory influence functions to obtain the gridded CO2 values, which can be summed over space and time to give the

total CO2 contribution for the modeled domain at that time step.
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To illustrate the convolution products Fig. 2 provides four snapshot maps of CO2 simulated to have contributed to the

total CO2 arriving at NWR at 08:00 LT on 12 July. Figs. 2a-c reveal upwind sinks from 36-34 hours prior to 08:00 LT that

contributed air depleted in CO2 relative to background concentrations, whereas at 33 hours prior (Fig. 2d) a source contributed

additional CO2 to the air mass simulated to arrive at NWR. Collectively these air masses (virtual particles) and their composite

signal represents the amount of biospheric influence over the previous three days on atmospheric CO2 at NWR at 08:005

LT. Four ecoregion types including grass/shrub, conifer forest, semi tundra, and crops were represented within the area of

influence in CarbonTracker’s land classification scheme (Gibbs, 2006). In addition to ecoregion type, Fig. 2 implicitly includes

biospheric and environmental effects (e.g., PAR, precipitation) based on variable weather conditions at those times. Fig. 2 does

not, however, indicate information about disturbance history or land-use changes.

2.5 Excess-CO2 from a uniform flux anomaly10

As described above the total range in central Mountain West CO2 flux variability from CT2013 was used to determine the

intensity of the uniform flux anomaly, +0.2 µmol C m−2 s−1. We found that this value is reasonable by comparison to region-

ally averaged NEE (16 AmeriFlux forest and grassland sites representing 100◦− 115◦W, 35◦− 50◦N ) that varied over the

observational record on a monthly basis from about -3 to +1 µmol C m−2 s−1 (daily from -10 to +7 µmol C m−2 s−1, and

half-hourly from -27 to +26 µmol C m−2 s−1). +0.2 µmol C m−2 s−1 represents about 5% of the regional AmeriFlux monthly15

range, which is not unrealistic in terms of a persistent flux throughout the year (cf. Ciais et al., 2005, for discussion of coherent

regional drought effects on eddy covariance towers). To test the importance of disturbance location perturbations were cen-

tered in three different regions (Fig. A5), namely central (Colorado/Utah), southwest (Arizona/New Mexico), and northwest

(Oregon/Idaho). For each perturbation location four perturbation sizes were tested each representing an approximate dou-

bling of area 3.5◦x3.5◦ (∼ 120,000 km2), 5◦x5◦ (∼ 240,000 km2), 7◦x7◦ (∼ 470,000 km2) and 10◦x10◦ (∼ 950,000 km2).20

The average monthly perturbation magnitudes over these domains are +0.7 TgC mo−1, +1.5 TgC mo−1, +3 TgC mo−1 and

+6 TgC mo−1 for the 3.5◦x3.5◦, 5◦x5◦, 7◦x7◦ and 10◦x10◦ perturbation domains respectively. In total this made for 3 (sta-

tions) x 3 (locations) x 4 (sizes) = 36 test cases.

2.6 Excess-CO2 from a prototypical drought

Real carbon cycle perturbations (e.g., droughts) have spatially varying patterns and their effects on atmospheric CO2 are25

varyingly conveyed through the atmosphere to the measurement sites. Duration and intensity of perturbation are also important,

as well as the seasonal timing of water limitation and source (Hu et al., 2010). Therefore, in addition to the uniform flux

anomaly described above, we were interested in how a spatially and temporally realistic carbon cycle extreme might affect our

analysis. To do this we obtained CO2 flux extremes from the VEGAS model, forced by observed meteorology (Zeng et al.,

2005) run for MsTMIP (Huntzinger et al., 2013), the same data that were examined by Zscheischler et al. (2014). We selected30

VEGAS out of a set of the ten models examined purely on the basis of carbon cycle perturbations that occurred upwind of, or

nearby the RACCOON CO2 monitoring stations. Only one prototypical extreme in net CO2 exchange (caused for example by

a drought or a heat wave) from VEGAS was selected according to the following methodology. Flux extremes were identified
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by searching anomaly data within the stations’ zonal domain 100◦− 115◦W, and 35◦− 45◦N. Following the technique for

assessing spatiotemporally contiguous extremes in Earth observation data by Zscheischler et al. (2013) a CO2 flux anomaly

subset was preprocessed first by removing the seasonal cycle, trend, and normalizing the data (see Figure 5a in Zscheischler

et al., 2013) and filtering for CO2 flux anomalies that were more positive (toward release) than 95% of the data. Throughout

the lat, lon, time data-space of preprocessed values, flux extreme events were identified based on the number of adjacent lat,5

lon, time pixels that were also 5% extremes and then ranked by the total integrated flux anomaly. One year of ecosystem

flux anomaly data were extracted and applied as a perturbation with intensity, spatial distribution and seasonal duration taken

directly from the original VEGAS model output. Because sub-monthly data was not available from VEGAS the prototypical

perturbation intensity and extent changed only with each new month. Fig. A7 illustrates the spatial distribution and intensity of

the biggest found prototypical drought within the U.S. Mountain West, which lasted three months, had a maximal spatial extent10

of 260,000 km2, and contained a peak drought intensity of +0.8 µmol C m−2 s−1 within the most drought stressed grid cell

(0.5◦). If aggregated to an annual total (as was done for the uniform flux anomaly) the average monthly perturbation magnitude

of the prototypical drought is +1.6 TgC mo−1. The key differences for the prototypical drought are that it occurred with four

times the peak intensity of the uniform flux anomaly, had a varying spatial distribution, and lasted only three months (April,

May, June).15

2.7 Detection thresholds

Two detection thresholds are described here (model-data mismatch and measurement error), each with applicability that de-

pends on the purpose of the analysis. To simplify exposition of our analysis in the main paper we use the model-data mismatch

(MDM) detection threshold at monthly timescales. The MDM threshold is station-specific, based on the model-data mismatch

values (1σ) for that site, and is relevant for attributing a signal to an anomaly in fluxes. MDM reflects uncertainty in modeled20

CO2 at each RACCOON site that is due to transport model error, representation error, and aggregation errors from hetero-

geneous flux influences (Shiga et al., 2014). We define detectability as the ability to distinguish an excess CO2 signal above

MDM uncertainty.

The model-data mismatch error variances used for the MDM threshold were derived from a regional inverse modeling study

(Shiga et al., 2014) that used the same atmospheric model used here. Shiga et al. (2014) provided 1σ values based on 3 hourly25

averages throughout the 2008 year for HDP (0.9 ppm), NWR (2.6 ppm) and SPL (1.2 ppm) (Table 2, see also supporting

information ts01.xlsx in Shiga et al., 2014). These MDM error variances are used to develop monthly detection thresholds

relevant to the uncertainty associated with modeling atmospheric concentrations observed at specific measurement sites, which

includes not only the measurement error, but also the three other sources of error mentioned above. Although the specific

application in Shiga et al. (2014) was different than ours, the errors are expected to be generally representative of uncertainty30

in this study because identical models and resolutions were used.

The results below are given at monthly timescales, which are relatable to monthly aggregated regional carbon balances and

budgets. Monthly excess CO2 values were obtained by averaging 3-hourly values, as Σ/n where n = 8 ∗ 30 = 240. To calculate

a reasonable comprehensive detection threshold the MDM error estimates were aggregated differently, however, because trans-
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port model errors are autocorrelated over hourly timescales (Lauvaux et al., 2009), which is problematic when comparing to

high-frequency observations. To compensate we calculated a standard error for the monthly sample size parsimoniously using

n = 30. Thus, we divided each site’s MDM 1σ value by
√

30 to represent a month of daily values in which each day is statisti-

cally independent. The monthly mean detection thresholds, therefore, are 0.16ppm for HDP, 0.47ppm for NWR, and 0.22ppm

for SPL (Table 2). While results in Fig. 3 are aggregated across all 3 sites (with no detection threshold for comparison), Fig. 45

breaks the data down by individual sites with comparison to their MDM σ/
√

n detection thresholds.

Our additional measurement error threshold appears in supplementary Fig. A11 in the Appendix where 3-hourly data are

reported, which are closer to the timescale of the measurement detection threshold. Although the measurement threshold has

relevance for detecting anomalies over shorter timescales it is important to consider that it does not account for the sources

of uncertainty as comprehensively as the MDM threshold. Measurement error (compatibility) is based on a 1σ uncertainty10

over 100 seconds of 1 Hz observations, which is 0.2 ppm, and was determined though NOAA flask sample comparisons from

NWR. Since all RACCOON stations are based on the same sampling platform (Stephens et al., 2006, 2011) and reference

gas standards the measurement error threshold reflects the amount of uncertainty to be expected from two RACCOON sites

measuring air with identical CO2 concentrations. Previous work has shown CO2 data from these RACCOON stations are

typically comparable with one another and the WMO CO2 scale to within this 0.2 ppm limit (Stephens et al., 2011). Thus the15

measurement threshold is useful for detecting an anomaly in CO2 observations, where any atmospheric transport biases are

assumed to be constant.

3 Results and Discussion

3.1 Effects of perturbation location and area on detection

The most evident outcome of our simulation experiments was that shifting the location of the perturbation domain strongly20

affected the amount of additional (excess) atmospheric CO2 simulated across these three sites. This is illustrated by the box

and whisker plots in Fig. 3, which compare the aggregated sensitivities of all three sites to the central, northwest and southwest

flux anomalies (prototypical will be discussed later). The central perturbation was better detected across all stations due to a

greater overlap between station footprints and the central perturbation domain (Fig. A6). Furthermore, these stations lie along

the same latitudinal band as the central perturbation domain, across which zonal transport dominates. The significance of25

perturbation location can be seen in Fig. 3 across increasing perturbation area where even an increase in perturbation area of

eight times (3.5◦x3.5◦ to 10◦x10◦) for the northwest or southwest perturbations still yielded less excess CO2 than the smallest

central perturbation (3.5◦x3.5◦). Perturbations domains that do not overlap measurement stations do not strongly influence

excess CO2. This is tempered somewhat by the apparent, though unsurprising, observation that when a perturbation domain

overlaps a measurement station doubling the perturbation area yielded a less than double effect on excess CO2. For example30

in Fig. 3, each doubling in area of the central perturbation (e.g., 5◦x5◦ to 7◦x7◦ to 10◦x10◦) resulted in less than a doubling

of excess CO2. The same patterns in excess CO2 among stations occurs in the 3-hourly data pictured in Fig. A11 with the
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notable difference that the magnitude by which excess CO2 exceeds the measurement (intercompatibility) threshold can be

much larger.

As opposed to the results from uniform flux anomalies, excess CO2 from the drought period (April, May, June) of the

spatio-temporally varying prototypical drought is shown in the rightmost boxplot inset in Fig. 3. When aggregated across the

three stations the prototypical drought appears weaker than even the smallest central perturbation. There are two reasons for5

this. First, the prototypical drought perimeter was generally situated more over HDP’s footprint (Fig. A7) than the other two

stations, which strongly hampered coherent detection by all three. Second, the prototypical drought occurred across late spring

and early summer, rather than throughout the entire year, as was the case for the uniform flux anomalies. This particular period,

although ecologically critical to carbon uptake in the Mountain West (Monson et al., 2005; Moore et al., 2008), happens also to

coincide with seasonal changes that amount to reduced site sensitivity to flux anomalies within these prescribed domains (see10

also Fig. 4, which shows seasonality in excess CO2 despite a constant flux perturbation).

The geographical position of each CO2 measurement site was also particularly relevant for detection. Each site has a unique

physiographic setting with particular airflow patterns and sensitivities to the surrounding landscape. Differences in amplitude

of excess CO2 between stations in Fig. 4a-c reflect differences in sensitivity of those locations to the same flux anomaly.

With respect to the central perturbation, SPL revealed the largest amplitude in excess CO2 as well as the best signal detection15

(relative to its site-specific detection threshold). SPL’s monthly mean excess CO2 values exceeded its MDM detection threshold

even at the smallest perturbation scale (3.5◦x3.5◦, see Fig. A10c). NWR did not show significant detectability of the central

perturbation until the 5◦x5◦ scale largely due to its higher MDM detection threshold (Fig. A9b). HDP, despite having the lowest

MDM uncertainty, did not register significant detectability of any perturbation until the 10◦x10◦ perturbations scale, which can

be attributed to the station’s far-western location and limited overlap of footprint and perturbation domains (Figs. A5, A6).20

3.2 Quantifying detection of perturbations based on excess CO2

These three mountaintop CO2 stations do indeed have different sensitivities to CO2 flux perturbations. While at first glance,

this is not surprising, the results do reveal a remarkable level of variability that reflects the fact that transport is not random and

site influence to fluxes decreases rapidly with distance (Fig. A6). Time series for each site appear in Fig. 4, and represent the

monthly means of excess CO2 values from three (central, northwest, southwest) uniform flux perturbations at 10◦x10◦ scale25

and a prototypical drought for the 2008 year (excess CO2 plots from the 7◦x7◦, 5◦x5◦ and 3.5◦x3.5◦ perturbations appear in

Figs. A8–A10).

Across the three stations in Fig. 4 the excess CO2 signal was most consistent at HDP among shifting perturbation locations.

This suggests that HDP could be the best positioned site for observing high magnitude, wide-spread disturbances throughout

the Mountain West region, and was particularly sensitive to northwest and central perturbations. HDP was also best able to30

detect flux anomalies from the prototypical perturbation during May, well above the MDM detection threshold. NWR showed

significant detection of the central perturbation (but not northwest or southwest), which was above the detection threshold for all

months except April and May. Although SPL showed the strongest detection of the central perturbation, the other perturbation

locations (northwest, southwest, prototypical) were not significantly detected. This was also the case for NWR.
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Seasonal variations in detection are also apparent in Fig. 4. Excess CO2 values for a given site differed by nearly a factor

throughout the year. Peak values occurred during the non-summer months, while minima occurred from April through June,

which coincides with the June through August peak in regional carbon uptake (Fig. 1 and see Sun et al., 2010). Since intensity of

the uniform flux perturbations was equivalent throughout the year, any seasonal differences in detectability point to seasonally

controlled atmospheric transport effects and thus sensitivity to upwind fluxes.5

Shiga et al. (2014) examined seasonal sensitivities to fossil fuel emissions in North American in situ CO2 measurements.

It was found that sensitivity attenuated during non-winter months due to compounding effects including biospheric fluxes,

atmospheric transport-related errors, and reduced sensitivity of observations to underlying fluxes due to mixing in the planetary

boundary layer. In our simulated experiments the detection thresholds do not consider confounding effects from biospheric

fluxes or seasonal variability in atmospheric transport errors, thus the seasonal changes in detection at these three sites can10

only be attributed to seasonal differences in atmospheric transport, either enhancing or reducing detection of a signal from the

locations where the droughts were imposed.

3.3 Relevance of results and comparison to carbon balance estimates

Climate extremes are now recognized to be a key process of growing importance in the regulation of the global carbon budget

(Reichstein et al., 2013). Understanding the terrestrial biosphere’s carbon sequestration potential in the face of changing climate15

and disturbance regimes requires empirical information about carbon balance responses. This underscores the need to determine

the sensitivity of CO2 measurement stations to carbon cycle perturbations of known intensity, as we have examined in this

study.

U.S. forests are the dominant sink with an estimated carbon sequestration capacity of −14 TgC mo−1 (Zhu et al., 2010).

‘What magnitude must a carbon cycle anomaly have in order to be detected by a Mountain West CO2 observing station?’ We20

produced a data set of excess CO2 values for each experimental case to address this question. Here the total monthly magni-

tude (area times intensity) of the perturbation is compared against the −14 TgC mo−1 sequestration rate. The monthly mag-

nitudes of the uniform flux anomalies were +0.7 TgC mo−1 (3.5◦x3.5◦), +1.5 TgC mo−1 (5◦x5◦), +3 TgC mo−1 (7◦x7◦),

+6 TgC mo−1 (10◦x10◦) and +1.6 TgC mo−1 (prototypical). We estimate the magnitude of our 3.5◦x3.5◦ to 10◦x10◦ and

prototypical perturbations to represent about 5%, 11%, 21%, 43% and 11% of the total monthly U.S. forest carbon seques-25

tration capacity. On a per unit area basis the uniform flux anomaly resulted in an additional release to the atmosphere of 6.3

gC m−2 mo−1.

Excess CO2 values exceeded MDM detection thresholds at SPL for the central perturbation at the smallest scale, 3.5◦x3.5◦

(i.e., 5% of U.S. forest sequestration capacity). At NWR site-specific MDM uncertainty was much higher, requiring a 5◦x5◦

perturbation (11% of U.S. forest sequestration capacity) in order to produce significant detection. HDP required the largest30

area central perturbation (10◦x10◦, 43% of U.S. forest sequestration capacity) before revealing significant detection.

Perturbations to ecosystems that are of limited or fragmented spatial extent, are out of range of CO2 monitoring stations,

or cannot elicit carbon cycle perturbations of at least 3.5◦x3.5◦ and +0.2 µmol C m−2 s−1 may not be well represented in the

CO2 observations currently available for the U.S. Mountain West. Mountain pine beetle outbreaks resulting in mass lodgepole
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pine mortality and carbon release, could have a more varied spatial structure depending on the location of the trees, in a way

not considered by this study. However future work could investigate such nuances by imposing a random flux field on top of

the prototypical drought or perturbation with intensity approximating large scale tree mortality.

Pinning down ecosystems whose carbon balances are unstable or sensitive to exogenous change is critical to climate change

prediction efforts (Frank et al., 2015). Earth system models must accurately represent the sensitivities of ecosystems in order5

to realistically forecast changes in the terrestrial carbon balance. The work described here provides a useful sensitivity study

of disturbance strength relative to uncertainty of observed atmospheric CO2.

4 Conclusions

This study evaluated the ability of atmospheric CO2 measurement stations in the U.S. Mountain West to detect moderate to ex-

treme changes in the net carbon balance (5-43% of U.S. forest carbon sequestration capacity). Location of the CO2 station rel-10

ative to the perturbation perimeter is critical. At the smallest perturbation scales (3.5◦x3.5◦) the uniform +0.2 µmol C m−2 s−1

flux anomaly was discernible above the model-data mismatch detection threshold consistently at SPL station (Fig. A10c) be-

cause it is positioned at the center of the perturbation domain (Fig. A5a), while the other two stations, positioned off-center or

outside the perturbation perimeter, revealed much smaller excess CO2 values. By comparison, at 10◦x10◦ scale the northwest

and southwest perturbations (still with limited overlap, Fig. A5d) were overall less detectable by these three stations than the15

3.5◦x3.5◦ centrally located perturbation (Fig. A10 Cen vs. Fig. 4 NW, SW). The higher sensitivity to perturbations covering

the central domain (40◦N) than those centered 5◦ farther north or south was due to the dominance of zonal flow and overlap

with station footprint perimeters.

Each station had a different sensitivity that was particular to its physiographic setting. Unsurprisingly, the amplitude in

excess CO2 between stations was more equitable at larger perturbation domain sizes due to greater overlapping area between20

footprint and perturbation domain. This underscores the importance of incorporating suitable stations (e.g., Roof Butte Site,

Arizona, http://raccoon.ucar.edu; Terra-PNW, http://terraweb.forestry.oregonstate.edu/research.htm) to enhance detection of

less spatially pervasive droughts.

Despite constant intensity of the uniform flux anomaly, excess CO2 was found to vary throughout the year at these sites,

which points to seasonal changes in atmospheric transport and thus sensitivity to upwind fluxes. Detectability was greatest25

during non-summer months, which implies that flux anomalies occurring during the growing season may not be as well repre-

sented in CO2 observations as anomalies that occur at other times of year. Note, however, that in this study we did not consider

seasonal variability in atmospheric transport errors or confounding effects from biospheric fluxes, which could be used to

develop seasonally adjusted detection thresholds, as opposed to the invariant ones used here.

Through this study we learned important qualitative rules for carbon cycle disturbance detection in the U.S. Mountain West30

in particular that: (1) seasonal differences in atmospheric transport favor detection of perturbations occurring during fall and

winter significantly more than late spring and summer; and (2) although perturbations may be localized their impacts on

atmospheric CO2 can be detected by nearby CO2 stations even without significantly affecting the annual carbon budget. An
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elaboration of this approach, if applied to many more measurement sites, might provide a system for carbon cycle quantification

of disturbances in net carbon fluxes in the future.
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Figure 1. Biospheric carbon exchange by year from CT2013. Monthly mean C-flux averaged over the Mountain West domain (approx.

35◦− 50◦N, 100◦− 115◦W) is plotted as a function of month of year. Carbon flow from the atmosphere to biosphere (uptake) is indicated

by negative values. 2008 is our test year and for sensitivity experiments we compared the original 2008 data (red line) against a perturbed

analogue (2008*, black dashed line) for which each 2008 flux estimate is incremented by an amount (+0.2 µ molC m−2 s−1) equal to the

total difference in annual means across all CarbonTracker years (2000-2010).
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Figure 2. Upwind gridded (1◦x1◦) CO2-excess values for NWR station at 08:00 LT determined by convolving WRF-STILT with CT2013.

Boxes indicate the 10◦x10◦ perturbation domains. These plots reveal the location and contribution of upwind sources to simulated CO2 at

NWR. Ecosystem sources contributing air relatively depleted in CO2 appear green, while sources contributing CO2 enriched air appear red.

These snapshots (a-d) represent fluxes at 36-33 hours prior that influenced CO2 at NWR at 08:00 LT.
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Figure 3. Combined (3 stations) monthly excess CO2 by perturbation size and perturbation location. Box and whisker quantiles from

monthly mean excess CO2 values from the three CO2 stations are shown for differently positioned perturbations. Each box and whisker for

Cen, NW, and SW represent data points from 12 monthly means x 3 sites, while Pro represents 3 months x 3 sites. The change in excess CO2

with increasing perturbation area is shown from left to right, except prototypical, which has an area of approximately equivalent to 5◦x5◦.

Perturbation magnitude, as monthly mean from the annual total, is shown for each perturbation size across the top.
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Figure 4. Monthly mean excess CO2 values for the 10◦x10◦ and prototypical perturbations are indicated by the height of the vertical

bars. Figure panels a-c distinguish the three measurement stations HDP, NWR, and SPL respectively. Perturbation cases (central, northwest,

southwest, prototypical) are distinguished by color. Station-specific σ/
√

n values are used as detection thresholds derived from MDM error

variances (Shiga et al., 2014, see Section 2.7).
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Table 1. Mean annual carbon flux for the U.S. Mountain West from CT2013. This provides a profile of comparison for our study year (2008)

and the uniform flux perturbation case (2008*)

Mean annual

C flux

Year (µmolC m−2 s−1)

2000 -0.103

2001 -0.098

2002 -0.043

2003 -0.170

2004 -0.120

2005 -0.225

2006 -0.023

2007 -0.101

2008 -0.036

2009 -0.083

2010 -0.161

2008* 0.164

Note that 2008*, the perturbation case,

is adjusted toward carbon-release by

+0.2 µmol C m−2 s−1, our nominal

flux anomaly, which represents the range

of all the annual means above.

Table 2. 1σ model-data mismatch values from 1 year of 3 hourly averages (see supporting information ts01.xlsx in Shiga et al., 2014) from

which we derive our detection thresholds. To account for imperfect atmospheric transport in the model, we use the more stringent assumption

that each day (not each 3-hourly average) is independent. Thus we use detection thresholds that are standard errors for the larger (longer)

sampling period calculated parsimoniously as σ/n, where n = 30.

σ σ/
√

n

Site (ppm) (ppm)

HDP 0.9 0.16

NWR 2.6 0.47

SPL 1.2 0.22
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Data and code availability

Data files containing the biospheric fluxes from CarbonTracker, influence functions from WRF-STILT, as well as R code used

for convolution and generating our plots are freely available upon email request (bjorn@geobabble.org). These data are 3.6 GB

in size and will be downloadable via ftp server.
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Appendix A: Supplementary figures
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Figure 5. Maps illustrating dimensions and locations of the perturbation domains imposed over the U.S. Mountain West region.
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Figure 6. Site footprints for the 2008 year determined by WRF-STILT from 2008 back-trajectory analysis for (a) HDP, (b) NWR, and (c)

SPL stations with 10◦x10◦ perturbation domains (note log scale). Although the CO2 footprints of these mountaintop stations are orders of

magnitude larger than the flux footprint of eddy covariance towers, the proximity to site is important to CO2 concentration observation.
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Figure 7. Prototypical carbon cycle perturbation from VEGAS DGVM (Zeng et al., 2005) with 10◦x10◦ domains for comparison.
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Figure 8. Monthly mean excess CO2 values for 7◦x7◦ perturbations are indicated by the height of the vertical bars. Figure panels a-c

distinguish the three measurement stations HDP, NWR, and SPL respectively. This figure is the same as Fig. 4 except that the perturbation

is one-half the area (7◦x7◦ not 10◦x10◦) and it excludes the prototypical perturbation. The same station-specific MDM detection thresholds

are used.
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Figure 9. Monthly mean excess CO2 values for 5◦x5◦ perturbations. Same as Fig. 4 except that the perturbation is one-fourth the area and

it excludes the prototypical perturbation.
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Figure 10. Monthly mean excess CO2 values for 3.5◦x3.5◦ perturbations. Same as Fig. 4 except that the perturbation is one-eighth the area

and it excludes the prototypical perturbation.
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Figure 11. Combined (3 stations) 3-hourly excess CO2 by perturbation size and perturbation location. Box and whisker quantiles from

3-hourly excess CO2 values from the three CO2 stations are shown for differently positioned perturbations. The horizontal line indicates the

0.2 ppm measurement error threshold. Each box and whisker for Cen, NW, and SW represent data points from all 3-hourly values throughout

the year, while Pro only represents values during the 3 drought months (April-June). The change in excess CO2 with increasing perturbation

area is shown from left to right, except prototypical, which has an area between the 5◦x5◦ and 7◦x7◦ scales. Perturbation magnitude, as

monthly mean from the annual total, is shown for each perturbation size across the top.
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