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Abstract. To describe the underlying processes involved in
oceanic plankton dynamics is crucial for the determination
of energy and mass flux through an ecosystem and for the
estimation of biogeochemical element cycling. Many plank-
tonic ecosystem models were developed to resolve major5

processes so that flux estimates can be derived from numeri-
cal simulations. These results depend on the type and number
of parameterisations incorporated as model equations. Fur-
thermore, the values assigned to respective parameters spec-
ify a model’s solution. Representative model results are those10

that can explain data, therefore data assimilation methods are
utilised to yield optimal estimates of parameter values while
fitting model results to match data. Central difficulties are 1)
planktonic ecosystem models are imperfect and 2) data are
often too sparse to constrain all model parameters. In this re-15

view we explore how problems in parameter identification
are approached in marine planktonic ecosystem modelling.

We provide background information about model uncer-
tainties and estimation methods, and how these are consid-
ered for assessing misfits between observations and model20

results. We explain differences in evaluating uncertainties in
parameter estimation, thereby also discussing issues of pa-
rameter identifiability. Aspects of model complexity are ad-
dressed and we describe how results from cross-validation
studies provide much insight in this respect. Moreover, ap-25

proaches are discussed that consider time and space depen-
dent parameter values. We further discuss the use of dynam-
ical/statistical emulator approaches, and we elucidate issues
of parameter identification in global biogeochemical models.

Our review discloses many facets of parameter identification, 30

as we found many commonalities between the objectives of
different approaches, but scientific insight differed between
studies. To learn more from results of planktonic ecosystem
models we recommend finding a good balance in the level of
sophistication between mechanistic modelling and statistical 35

data assimilation treatment for parameter estimation.

1 Introduction

The growth, decay, and interaction of planktonic organisms
drive the transformation and cycling of chemical elements
in the ocean. Understanding the interconnected and com- 40

plex nature of these processes is critical to understanding
the ecological and biogeochemical function of the system
as a whole. The development of biogeochemical models re-
quires accurate mathematical descriptions of key physiologi-
cal and ecological processes, and their sensitivity to changes 45

in the chemical and physical environment. Such mathemati-
cal descriptions form the basis of integrated dynamical mod-
els, typically composed of a set of differential equations that
allow credible computations of the flux and transformation
of energy (light) and mass (nutrients) within the ecosystem 50

(U.S. Joint Global Ocean Flux Study Planning Report Num-
ber 14, Modeling and Data Assimilation, 1992).

Generalised mechanistic descriptions of how energy is ab-
sorbed and how mass becomes distributed in an ecosystem
already exist, such as dynamic energy budget models (Kooij- 55
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man, 1986) or the metabolic theory of ecology (Brown et al.,
2004). But these theories still have limitations, and include
incompatible assumptions (van der Meer, 2006). So far no
fundamental ecophysiological principle has been further ex-
acted beyond the conservation of mass. A consistent theme5

running through most ecosystem models is the determination
of mass flux of certain biologically important elements, such
as nitrogen, phosphorus, iron and carbon (N, P, Fe and C).
Nonetheless, the precise details of how mass is transformed
and allocated within an ecosystem is far from being estab-10

lished. For this reason, we find a large variety of plankton
ecosystem models that differ in their number of state vari-
ables as well as in their parameterisation of individual phys-
iological and ecological processes.

1.1 Mass flux induced by plankton dynamics15

Dynamical marine, as well as limnic, ecosystem models usu-
ally start from a description of the build-up of biomass by
photoautotrophic organisms (phytoplankton) as these take up
dissolved nutrients from the water column and exploit light
energy by photosynthesis. Phytoplankton biomass, as a prod-20

uct of primary production, is subsequently removed by nat-
ural mortality (cell lysis due to starvation, senescence, and
viral attack), predation by zooplankton, and vertical export
away from surface ocean layers via sinking of single or ag-
gregated cells and of fecal pellets. Parameterisations of these25

three loss processes can be interlinked e.g. grazing of phy-
toplankton aggregates by large copepods. Depending on the
trophic levels considered in a model, the predation among
different zooplankton types (e.g. between herbivores, carni-
vores or omnivores) can be explicitly parameterised. Mor-30

tality and aggregation of phytoplankton cells and the excre-
tion of organic matter (fecal pellets) by zooplankton act as
primary sources of dead particulate organic matter (detritus)
that can be exported to depth via sinking. Exudation by phy-
toplankton and bacteria can be a major source of labile dis-35

solved organic matter that represents diverse substrates for
remineralisation. The transformation of particulate and dis-
solved organic matter back to inorganic nutrients is param-
eterised as hydrolysis and remineralisation processes. Often
hydrolysis and remineralisation are assumed to be propor-40

tional to the biomass of heterotrophic bacteria, which is con-
sidered in many models. Heterotrophic bacteria remain un-
resolved in some models where microbial remineralisation is
parameterised only as a function of concentration and quality
of organic substrates.45

At some level most models include a parameterisation to
account for the net effect of higher trophic levels that are not
explicitly resolved. This is usually formulated as a closure
flux back to nutrient pools and whose rates simply depend on
the biomass of the highest trophic level resolved. These clo-50

sure assumptions ensure mass conservation while neglecting
the actual mass loss to higher trophic levels like fish, which
would be subject to fish movements and changes in biomass

on multi-annual rather than seasonal time scales. Every ma-
rine planktonic ecosystem model can thus be described as a 55

simplification of the dynamics inherent to a system of nutri-
ents, phytoplankton, zooplankton, detritus, dissolved organic
matter, and possibly bacteria.

In many cases marine ecosystem models are embedded in
an existing physical ocean model setup that simulates envi- 60

ronmental conditions, advection and mixing of the biological
and chemical state variables. Feedbacks from the ecosystem
model states on physical variables can be relevant (e.g., Mur-
tugudde et al., 2002; Oschlies, 2004; Löptien et al., 2009;
Löptien and Meier, 2011) but are rarely considered in cur- 65

rent marine biogeochemical studies.

1.2 Parameters of plankton ecosystem models

Amongst the most influential model approaches to study the
nitrogen flux through such a marine plankton ecosystem at
a local site was proposed by Fasham et al. (1990). Their 70

model involves 27 parameters and they stressed the invidi-
ous situation of finding a reliable ecosystem model solution
by choosing parameter values that are uncertain or unknown.
Laboratory measurements, as well as ship-based experiments
with field samples, can provide information about the range 75

of typical values for some parameters, for example the maxi-
mum growth rate of photo-autotrophs or the maximum inges-
tion rate of herbivorous plankton. Other model parameters
are extremely difficult to measure, like exudation rates of dis-
solved organic carbon by phytoplankton or by bacteria. An- 80

other difficulty is that parameter values from laboratory ex-
periments are often specific with respect to plankton species,
temperature, and light conditions. Their values may not be
directly applicable for ocean simulations where parameter
values need to be representative for a mixture of different 85

plankton species in a continuously varying physical environ-
ment. For example, for a natural composition of diverse phy-
toplankton cells that all differ in their genotypic- and pheno-
typic characteristics, we may expect values of some model
parameters to follow a distribution rather than having a sin- 90

gle fixed value.
In practice, there are always some fixed model parameters

that need to be assigned values, whether they describe the
behaviour of fixed plankton functional types or the distribu-
tions of traits in a stochastic community. In the end, it is the 95

choice of these parameter values that determines a specific
model solution of any ecological- or biogeochemical model
setup.

1.3 The vital role of observational data

Model solutions of interest are typically those that can simu- 100

late and explain complex data. Model calibration, which can
be considered a form of data assimilation (DA), is the pro-
cess by which model parameter values are inferred from the
observational data. Optimal parameter values are regarded
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as those that generate model results that match observations
(data-model misfit) but are also in accordance to the range of
values known e.g. from experiments or from preceding DA
studies. To determine optimal parameter estimates we have
to account for uncertainties in data and in model dynamics5

as well, which is specified by an error model. Parameter esti-
mates are thus conditioned by a) the dynamical model equa-
tions, b) the data, c) our prior knowledge about the range of
possible parameter values, and d) the underlying error model
(Evans, 2003).10

Situations can occur where model results that are com-
pared with data are insensitive to variations of some param-
eters. Values of those parameters remain unconstrained by
the available data, which is a problem of parameter iden-
tifiability. The availability (type and number) of data thus15

places limitations on the number of model parameters whose
values become identifiable, and values of some parameters
may never be fully constrained. This in turn sets restrictions
on the complexity of plankton interactions that can be un-
ambiguously confined during ecosystem model calibration20

(Matear, 1995). Choosing appropriate model complexity is
ambiguous and is still subject to discussion (e.g., Franks,
2002; Denman, 2003; Fulton et al., 2003; Anderson, 2005;
Le Queré, 2006; Friedrichs et al., 2007; Franks, 2009; Kri-
est et al., 2012; Ward et al., 2013), a situation which sustains25

large differences in the level of complexity of current plank-
ton models.

1.4 Inferences from data assimilation

Much of the literature on DA in oceanography is focussed on
state estimation (e.g., Allen et al., 2003; Natvik and Evensen,30

2003; Dowd, 2007; Nerger and Gregg, 2008; van Leeuwen,
2010). In these studies, the primary objective is to improve
hindcasts, nowcasts, or forecasts of time-dependent variables
such as chlorophyll a (Chla). However, many of the DA
methods originally developed for state estimation have more35

recently been adapted to estimate static parameters, espe-
cially for stochastic models where random noise is injected
into the model dynamics. Stochastic noise offers a plausible
way to represent model error, but it should be noted that it
can lead to violations of mass conservation unless it is in-40

jected in certain ways (e.g. by perturbing growth rate param-
eters). Deterministic plankton ecosystem models guarantee
mass conservation and have a longer tradition in parameter
estimation for marine ecosystem models, although they im-
ply a less explicit treatment of model error. To identify and45

gradually eliminate model deficiencies it can be helpful to
analyse model state and flux estimates while mass conser-
vation is imposed as a strong constraint. The optimisation
of only parameter values assures that simulation results re-
main dynamically and ecologically consistent, which is com-50

parable with those DA approaches in physical oceanogra-
phy that produce dynamically and kinematically consistent

solutions of ocean circulation (e.g., Wunsch and Heimbach,
2007; Wunsch et al., 2009).

Thorough reviews of common DA methods applied in ma- 55

rine biogeochemical modelling are given by Robinson and
Lermusiaux (2002) and by Matear and Jones (2011). Dowd
et al. (2014) provide a helpful and up-to-date overview of
mainly sequential DA approaches where state estimation is
combined with parameter estimation. Gregg et al. (2009) 60

and Stow et al. (2009) discuss how the success of DA re-
sults of marine ecosystem models have been evaluated in the
past and how model performance can be generally assessed.
Fundamentals on DA that include aspects relevant to marine
ecosystem and biogeochemical modelling are explained in 65

Wikle and Berliner (2007) and in Rayner et al. (2016).
In our review we primarily focus on topics related to

parameter identification, thereby including basic aspects of
DA. Parameter identification in marine planktonic ecosys-
tem modelling is a wide field and we do not attempt to dis- 70

cuss differences between various DA tools or techniques. We
rather put emphasis on models, including parameterisations
of ecosystem processes, statistical (error) models, model un-
certainties, and structural complexity. We adopt and explain
mathematical notation that is often used for DA studies in 75

operational meteorology and oceanography. On the one hand
we provide background information that should facilitate in-
telligibility when studying DA literature. On the other hand
we like to elucidate typical objectives and common problems
when simulating a marine planktonic system. In this manner 80

we hope to support a mutual understanding between ecologi-
cally/biogeochemically and mathematically/statistically mo-
tivated studies.

The paper starts with some theoretical background infor-
mation (Sect. 2), introducing mathematical notation and de- 85

picting prevalent assumptions that are typically made for pa-
rameter identification analyses and model calibration (Sect.
2.1). We then branch off from DA theory and discuss the
parameters typically dealt with in plankton ecosystem mod-
els. In Sect. (3) we disentangle major differences between 90

approaches to parameterising photoautotrophic growth and
briefly discuss simple but common parameterisations of
plankton loss rates. In this context we also address the utilisa-
tion of data from laboratory and mesocosm experiments. Er-
ror models are described in order to elucidate error assump- 95

tions made in previous ecosystem modeling studies (Sect. 4).
This is followed by a description of different approaches to
specify uncertainties in parameter values (Sect. 5). An ex-
ample of parameter estimation with simulations of a meso-
cosm experiment connects aspects of Sect. (3) with the the- 100

oretical considerations of Sect. (5). Thereafter, model com-
plexity is jointly addressed together with cross-validation in
Sect. (6), followed by a review of space-time variations in
marine ecosystem model parameters (Sect. 7). Emulator, or
surrogate-based, approaches are briefly explained and ex- 105

emplified (Sect. 8) before we discuss parameter estimation
of large-scale and global biogeochemical ocean circulation
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models (Sect. 9). Finally, we summarise the insights that we
gained on parameter identification in Sect. (10), and we will
briefly address prospects of some marine ecosystem model
approaches that could improve parameter identification.

2 Theoretical background5

The term parameter identification is used broadly to describe
parameter estimation problems, including the specification
of uncertainties in parameter estimates and model parame-
terisations. It involves the following procedures:

a) Parameter sensitivity analyses: the evaluation of how10

model results change with variations of parameter val-
ues.

b) Parameter estimation: the calibration of model results
by adjusting parameter values in light of the data.

c) Parameter identifiability analyses: the specification of15

parameter uncertainties in order to reveal structural
model deficiencies and shortages in data availabil-
ity/information.

All three aspects are interrelated and should not be viewed as
mutually exclusive procedures. For example, before starting20

with parameter estimation it is helpful to include information
from a preceding sensitivity analysis, e.g. selecting only pa-
rameters to which model results are sensitive to. Likewise, an
identifiability analysis complements the sensitivity analysis
by providing information about error margins and possible25

ambiguities of optimal parameter estimates.

2.1 Statistical model formulation

2.1.1 Model states, parameters, and dynamical model
errors

The prognostic dynamical equations of a marine ecosystem30

model can be expressed as a set of difference equations:

xi+1 =M [xi,θe,f i,ηi(θη)] (1)

with index i representing a particular time step (i.e. ti). The
model state vector xi has dimension Nx =Ng ×Ns where
Ng is the number of spatial grid points and Ns is the number35

of model state variables (e.g. phytoplankton biomass). The
dynamical model operator M is typically at least a nonlinear
function of the earlier state xi, a set of ecosystem parameters
θe describing rate constants and coefficients in the dynami-
cal model, and a set of time and space dependent forcings and40

boundary conditions f i. If the ecosystem model is coupled
“online” with a physical ocean model, f i includes both phys-
ical model forcings (e.g. wind stress) and ecosystem model
forcings (e.g. surface short-wave irradiance). If the physics is
coupled “offline”, f i includes ecosystem model forcings and45

physical model outputs (e.g. seawater temperature).

For stochastic dynamical models, M also depends on ran-
dom noise variables or dynamical model errors ηi while
for deterministic models we have ηi = 0. These errors are
described by distributional parameters θη , e.g. location and 50

scale parameters of a probability density function. Dynami-
cal model errors usually enter the dynamics additively, mul-
tiplicatively, or as time/space- dependent corrections to f or
θe. They may represent the individual or combined effects of
errors in forcings, boundary conditions, random variability in 55

model parameters, and structural errors in both the physical
transport model (e.g. due to limited spatial resolution) and
the biological source-minus-sink terms (e.g. due to aggrega-
tion of species into model groups). In the geophysical DA
community, error models that explicitly account for dynam- 60

ical model errors (noise) are often termed weak constraint
models, while those that assume a deterministic model are
termed strong constraint (Sasaki, 1970; Bennett, 2002, page
25).

2.1.2 True states and kinematic model errors 65

To relate the dynamical model output of Eq. (1) to obser-
vations, it is helpful to first consider how it may relate to a
conceptual and hypothetical true state xt, which is then im-
perfectly observed. In this respect we must also consider the
averaging scales. In marine ecosystem modelling there is al- 70

most always a large discrepancy between the spatio-temporal
averaging scales of the model, that define the meaning of the
“concentrations” in x, and the averaging scales of the obser-
vations from in-situ sampling or remote sensing. For exam-
ple, the spatial averaging scale of a model may be defined 75

by a model grid cell of size 10 km in the horizontal and 10
m in the vertical, while the averaging scale of the observa-
tions might be the 10 cm scale, e.g. of a Niskin bottle sample.
Even with a perfect model, data from finescale observations
may diverge from model output due to unresolved sub-grid 80

scale variability induced by fluid structures such as eddies
and fronts, forming patches of high next to low concentra-
tions e.g. of nutrients or organic matter.

A general relationship between the true state and model
state can be expressed as: 85

xt = T [x,ζ(θζ)] (2)

where T is a truth operator, and ζ is a set of random variables
described by distributional parameters θζ . We will refer to
the ζ as kinematic model errors because they are associated
with the model state, while the dynamical model errors η in 90

Eq. (1) act to perturb the model dynamics. The true values
of the kinematic model errors therefore define the potential
discrepancy between the target true state and a hypothetical
ideal model output (i.e. with the “true” values of the param-
eters and, if applicable, also with the “true” values of the 95

dynamical model errors).
How we interpret and specify Eq. (2) depends on the

spatio-temporal averaging scales chosen to define the true
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state xt, which in turn depends on the objectives of the mod-
elling study. One approach is to define these averaging scales
as equal to or larger than the shortest space and time scales
that are fully resolved by the model. Kinematic model errors
ζ may then represent the integrated effects of the various5

dynamical sources of model error, if these are not already
accounted for by dynamical model errors η in Eq. (1). Al-
ternatively, the true state can be defined over scales smaller
than those resolved by the model, possibly at the scales of
the observations. This may lead to a simpler model for ob-10

servational error (see below), but now the ζ must account for
the unresolved scales, in addition to any error effects in the
model dynamics otherwise not accounted for. With stochas-
tic dynamical models (η 6= 0), the true state is usually defined
on the scales of the model and assumed to coincide with the15

model output for some (θe, η), such that no kinematic error
model is needed.

2.1.3 Data and observational errors

The observation vector y can be related to the true state via:

y =O
[
xt,ε(θε)

]
(3)20

where O is the generalized observation operator and ε is
a set of random observational errors described by distribu-
tional parameters θε and accounting for uncertainties asso-
ciated with the usage and interpretation of the data. These
include at least the random measurement error due to, for25

example, instrument noise. In addition they may include a
contribution from representativeness error due to finescale
variability, if xt is defined as an average over larger scales
than those of the observations (see above). Alternatively, if
the observations are preprocessed into estimates on the larger30

scales ofxt, there may be an undersampling error component
due to inexhaustive coverage of the raw samples. The obser-
vation operatorO may also contribute to ε, for example if the
model output needs to be interpolated from the model grid to
the data coordinates, or ifO includes conversion factors such35

as chlorophyll a-to-nitrogen (Chla:N) ratios.
The simplest possible example of an observational error

model assumes additive Gaussian errors. Equation (3) then
becomes:

y = H
(
xt
)

+ ε (4)40

−→ ε= y−H
(
xt
)

where H accounts for interpolation and units conversion and
ε∼G(0,R) is Gaussian distributed with mean zero and co-
variance matrix R. This may be a reasonable error model
for most physical variables and chemical concentrations with45

ranges well above zero (e.g. dissolved inorganic carbon or
total alkalinity in the open ocean). However, many nutrients
and plankton biomass variables may vary close to their lower
bounds of zero, and display positive skew in their observa-
tional errors. For such variables, a lognormal observational50

error model may be more appropriate:

y = H
(
xt
)
◦ exp(ε̃− σ̃

2

2
) (5)

−→ ε̃= log(y)− log
(
H
(
xt
))

+
σ̃2

2

where ◦ denotes element-wise multiplication and σ̃2 denotes
the variance in logarithmic space. The bias correction term 55

(σ̃2/ 2) ensures unbiased errors, but is frequently neglected
in practice. The various options and challenges of defining an
appropriate error model are discussed in detail in Sect. (4).

2.2 Estimation methods

2.2.1 Basic probabilistic approaches 60

We now consider how to estimate uncertain parameters Θ
given the data y, where Θ includes all biological parameters
θe and possibly distributional parameters (θη ,θζ ,θε). There
are basically two probabilistic approaches for doing this:
Bayesian estimation and maximum likelihood estimation. In 65

the Bayesian approach, we treat the parameters as random
variables, and choose parameter values on the basis of their
‘posterior probability’ i.e. the conditional probability density
of the parameter values given the data p(Θ | y). The posterior
probability is computed using Bayes’ theorem: 70

p(Θ | y) =
p(y |Θ) · p(Θ)

p(y)
∝ p(y |Θ) · p(Θ) (6)

where p(y |Θ) is the likelihood and p(Θ) is the uncondi-
tional or ‘prior’ distribution of the parameter values. The pro-
portionality follows in Eq. (6) because the probability of the
data p(y), otherwise known as the “evidence” for the model, 75

is independent of the parameter values.
In general the likelihood can be expressed as an integral

over probabilities conditioned on particular values of the
model state and true state:

p(y |Θ) =

∫ ∫
p(y | xt,Θ) · p(xt | x,Θ) · p(x |Θ) dxt dx

(7) 80

where the conditional probabilities p(y | xt,Θ), p(xt |
x,Θ), and p(x |Θ) are specified by the chosen models for
observational error (Eq. 3), kinematic model error (Eq. 2),
and dynamical model error (Eq. 1) respectively. In practice
we are unlikely to require such a complex expression for 85

numerical evaluation; aggregation of error terms and redun-
dancy between kinematic and dynamical model error usually
allows simplifications.

The Bayesian approach encourages us to explicitly quan-
tify our prior knowledge about the parameter values through 90

the prior p(Θ). In marine ecosystem modelling, we are un-
likely to ever consider cases of complete parameter igno-
rance, where a parameter value could possibly switch sign
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or get incredibly large. Every parameter is expected to have a
value that falls into a credible range, otherwise the associated
parameterisation would be difficult to defend. In some cases,
when broad uniform or “uninformative” priors are assumed,
it may not be necessary to specify exact limits of these dis-5

tributions as the analyses may become insensitive to these
limits once the range becomes sufficiently broad. There are
inherent difficulties with the concept of “ignorance” priors:
for example, a flat prior distribution over φ will correspond
to an informative prior for some function g(φ) (see Cox and10

Hinkley, 1974 for further discussion). In any case, trying to
minimise the impact of prior distributions is rather defeating
the object of Bayesian estimation, which explicitly aims to
synthesise information from new data with prior information
from previous analyses.15

Once the likelihood is formulated and a prior distribution
is prescribed, classical Bayes estimates (BEs) may be com-
puted from posterior mean or posterior median values of Θ.
Assuming the statistical assumptions are correct, these esti-
mators will minimise the mean square error or mean absolute20

error respectively of the parameter estimate Θ̂ (e.g., Young
and Smith, 2005). To obtain BEs can be computationally
expensive, requiring sophisticated techniques to sample effi-
ciently from the posterior distribution (e.g. by Markov Chain
Monte Carlo, MCMC, methods). An alternative Bayesian es-25

timator, very widely used in geosciences, is the joint poste-
rior mode or maximum a posteriori (MAP) estimator (e.g.,
Kasibhatla, 2000; Bocquet, 2014), given by maximising the
posterior probability p(Θ | y) as a function of Θ. Such es-
timates are more computationally feasible in large problems30

where the search for the maximum of the posterior (or the
minimisation of its negative logarithm) can be greatly accel-
erated by techniques such as the variational adjoint (Bennett,
2002, Chapter 4).

In maximum likelihood (ML) estimation we seek the pa-35

rameter values Θ̂ML that maximise the probability of the data
given the parameter set, i.e. p(y |Θ). When considered as a
function of Θ, this probability is called the likelihood of the
parameter values L(Θ | y) because it is strictly a probability
of the data, not of the parameter values. Indeed, in ML esti-40

mation we do not need to consider the parameter values as
random variables at all; rather they are considered as fixed,
unknown constants. For this reason the ‘|’s are sometimes re-
placed by ‘;’s to emphasise that, in a non-Bayesian context,
the likelihood is not a conditional probability in the sense of45

one set of random variables dependent on another (e.g., Cox
and Hinkley, 1974). In the ML approach, no prior informa-
tion on the parameter values is used except possibly to define
upper or lower plausible limits or allowed ranges for the pa-
rameter search (Young and Smith, 2005).50

Historically, Bayesian methods (Bayes, 1763; Bayes and
Price, 1763) predate ML methods of Fisher (1922) by some
margin. Fisher introduced ML methods partly to avoid prob-
lems in defining prior ignorance (see above) but also to avoid
the noninvariance property of Bayesian estimators (Hald,55

1999). This property means that given the BE of one param-
eter φ̂B, the corresponding BE of a nonlinear function of that
parameter g(φ) is not simply given by plugging in the es-
timate (ĝB 6= g(φ̂B)), while for ML estimates the invariance
property does hold (ĝML = g(φ̂ML)). We will see an example 60

of this in Sect. (2.3).

2.2.2 Sequential methods

In some problems, assimilating all the data at once from all
available sampling times can be computationally impractical.
This is particularly likely for models with stochastic dynam- 65

ics (η 6= 0 in Eq. 1), if the data are clustered in time, or if
model states need to be repeatedly updated as new data come
in. In such cases a sequential approach can be expedient. The
basic idea is to break the large integration problem defined by
Eq. (7) into a number of smaller problems by sequentially as- 70

similating observations in subsets defined by sampling time.
The method comprises a consecutive sequence of two ma-
jor steps, a forecast- and an analysis step respectively. If the
sequential algorithm is accurate, it should approximate the
posterior parameter distribution defined by Eqs. (6 and 7) at 75

times where all available data have been assimilated.
To see how this works, suppose we know the probability

density p(xtj | y1:j ,Θ) of the true state at sampling time tj
(possibly an initial condition) for a given value of the uncer-
tain parameters Θ and given all the previously assimilated 80

observations y1:j (possibly null). The probability density at
sampling time tj+1 is given by the forecast density:

p(xtj+1 | y1:j ,Θ) =

∫
p(xtj+1 | xtj ,Θ) · p(xtj | y1:j ,Θ) dxtj

(8)

In general this integral can be approximated by an ensem-
ble of Monte Carlo simulations, sampling an initial condition 85

from p(xtj+1 | y1:j ,Θ) and then running the model to the
next sampling time tj+1 (possibly including stochastic dy-
namical noise, and possibly accounting for kinematic model
error). Next, in the analysis step, the new observations are
assimilated by applying Bayes’ theorem: 90

p(xtj+1 | y1:(j+1),Θ)∝ p(yj+1 | xtj+1,Θ)·p(xtj+1 | y1:j ,Θ),

(9)

which again can be approximated e.g. by Monte Carlo sam-
pling. The forecast and analysis steps can then be repeated
until all the data are assimilated. Note that Eq. (9) assumes
conditional independence of the observations, allowing us to 95

write p(yj+1 | xtj+1,Θ) instead of p(yj+1 | xtj+1,y1:j ,Θ).
This amounts to assuming that the observational errors
are independent between sampling times (Evensen, 2009),
which may not be strictly true if sampling is frequent and
if there is a noticeable contribution from representative- 100

ness/undersampling, or from errors in conversion factors (see
Sect. 2.1.3).



Schartau et al.: Parameter identification in planktonic ecosystem modelling 7

Once the predictive filtering densities p(xtj+1 | y1:j ,Θ)
have been approximated for all sampling times (tj with j =
1, . . . ,Nt), these can be used to approximate the likelihood in
Eq. (7), since:

p(y |Θ) =

Nt∏
j=1

p(yj | y1:j−1,Θ) (10)5

=

Nt∏
j=1

∫
p(yj | xtj ,y1:j−1,Θ) · p(xtj | y1:j−1,Θ) dxtj

=

Nt∏
j=1

∫
p(yj | xtj ,Θ) · p(xtj | y1:(j−1),Θ) dxtj

For j=1 in Eq. (10) we have a set of zero members and p(yj |
y1:j−1,Θ) = p(y1 |Θ). The third line of Eq. (10) again as-
sumes conditional independence of the observations and the10

final integral can in general be approximated using the pre-
dictive ensembles (see Jones et al., 2010; Dowd, 2011; Dowd
et al., 2014). This procedure can be repeated for different val-
ues of Θ and combined with Eq. (6) to assess posterior prob-
ability.15

Alternatively, p(Θ | y) can be calculated from a single ap-
plication of the filter using a ‘state augmentation’ approach
whereby the parameters Θ are appended to the vector x as
additional state variables with zero dynamics. In practice,
random parameter noise may need to be added to avoid filter20

degeneracy, such that this approach may be considered a sep-
arate estimation method (Dowd, 2011). However, if such ad
hoc noise can be avoided, or if the parameters are in fact as-
sumed to vary stochastically, then the augmented-state filter
at the end of the assimilation interval should approximate the25

theoretical Bayesian posterior for this time. For other times,
a ‘smoother’ algorithm would be required. A further benefit
of the augmented-state filter is that the parameter estimates
for intermediate time periods may show temporal pattterns
that expose deficiencies in the model formulation and pro-30

vide useful information for model development (e.g., Losa
et al., 2003).

The various types of filter differ essentially in terms of how
the integrals in Eqs. (8) and (9) are approximated. Particle fil-
ters (van Leeuwen, 2009) use Monte Carlo sampling for both35

steps while the Ensemble Kalman Filter (Evensen, 2003,
2009) uses Gaussian and linear approximations for the analy-
sis step, enabling the use of smaller ensembles but at the cost
of lower accuracy in strongly nonlinear/non-Gaussian prob-
lems. The (Extended) Kalman Filter applies when the model40

dynamics are (quasi-) linear and both model and observa-
tional errors are Gaussian. These conditions allow both inte-
grals to be evaluated analytically, but appear to be rarely ap-
plicable to parameter estimation in marine ecosystem mod-
els. For reviews of sequential approaches the reader is re-45

ferred to Dowd et al. (2014) for marine biogeochemical mod-
elling and to Bertino et al. (2003) for oceanography in gen-
eral.

2.2.3 Variational methods

At present there appears to be some ambiguity regarding 50

the term “variational” in the context of DA. It is sometimes
used to describe approaches explicitly based on control the-
ory or “inverse methods” that may not include explicit as-
sumptions on error distributions and where cost functions are
defined a priori, rather than being derived from statistical or 55

probabilistic models. However, a distribution-free approach
seems difficult to recommend in general for marine ecosys-
tem model parameter estimation, given the strong nonlinear-
ity, non-Gaussianity, and relatively weak data constraint of-
ten encountered in such problems. Within the marine ecosys- 60

tem modelling community, the term “variational DA” is often
used more broadly to refer to all non-sequential methods that
involve the minimisation of a cost function, whether or not
this is based on a probability model.

In any case, there are some powerful mathematical tools 65

developed for variational DA that can be applied to minimise
cost functions. Adjoint methods allow the gradient of the cost
function with respect to all fitted parameters to be computed
in an extremely efficient manner, see Lawson et al. (1995),
and Appendix (C). This is particularly useful when dealing 70

with a large number of fitted parameters (high-dimensional
Θ) of computationally expensive models (e.g., Tjiputra et al.,
2007). The application of the adjoint method helps reducing
the number of model runs to provide access to joint posterior
mode and maximum likelihood estimates. 75

Pelc et al. (2012) provide useful theoretical background
for different 4DVar approaches (four-dimensional, in space
and time, variational approaches) and show how this adjoint
method can be used to estimate ecosystem model parameters
jointly with a large number of initial condition parameters. 80

See also Bennett (2002) for an introduction to variational DA
and adjoint methods in physical oceanography.

However, it can be disadvantageous to employ a search al-
gorithm that relies too much on local gradients (e.g. from
an adjoint model) to minimise the cost function, because 85

this may result in finding a local minimum rather than
the global minimum that defines the MAP or ML estimate
(Vallino, 2000). This issue appears to be frequently en-
countered in marine ecosystem modelling applications, and
should be expected as a product of strong nonlinearity and 90

weak data/prior constraint. For such cases, a non-local ap-
proach such as simulated annealing, following Hurtt and
Armstrong (1996, 1999) or a microgenetic algorithm, follow-
ing Schartau and Oschlies (2003), may be preferable, at least
during an initial period of the search before the broader re- 95

gion of the global minimum is located (Ward et al., 2010).
The main drawback of these non-local search algorithms is
that they tend to require a larger number of model runs (at
least order of 103) to have a good chance of accurately lo-
cating the global minimum, although they may yet provide 100

meaningful improvements to prior parameter estimates for
order of 100 runs (Mattern and Edwards, 2017).
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2.2.4 Recent approaches

Much recent interest has focused on combined state and pa-
rameter estimation, whereby model parameters Θ are esti-
mated together with a true state xt (e.g., Simon and Bertino,
2012; Fiechter et al., 2013; Parslow et al., 2013; Weir et al.,5

2013; Dowd et al., 2014). In the Bayesian approach, model
parameters and system state are both random variables.
We can therefore apply Bayes’ Theorem to the composite
random variable Ψ = (Θ,xt) and decompose the prior as
p(Ψ) = p(xt |Θ) · p(Θ) to obtain an expression for the joint10

posterior:

p(xt,Θ | y)∝ p(y | xt,Θ) · p(xt |Θ) · p(Θ) (11)

This equation has so far been applied to stochastic dynamic
models with no kinematic model error (cf. Fiechter et al.,
2013; Parslow et al., 2013). Equation (6) can be recovered15

from Eq. (11) by integrating (marginalising) both sides over
xt.

In some other recent studies emphasis is put on “hierar-
chical” error models (Zhang and Arhonditsis, 2009; Parslow
et al., 2013; Wikle et al., 2013). Here, the traditional model20

parameters are replaced with stochastic processes over time
and/or space, and parameter identification focuses on the hy-
perparameters that describe the stochastic processes (e.g.
means, variances, autocorrelation parameters). This is es-
sentially similar to the case of parameter estimation for a25

stochastic dynamical model (Sect. 2.2.2) and fits into the
general formulation in Sect. (2.1), if we treat the stochas-
tic parameters as additional state variables with dynamical
model errors η. The hyperparameters could in principle be
estimated by ML, sometimes referred to as an “empirical30

Bayesian” approach (Cox and Hinkley, 1974), but it appears
that computational tractability may favour the “hierarchical
Bayesian” approaches (e.g., Zhang and Arhonditsis, 2009),
which may also make use of sequential Monte Carlo meth-
ods (e.g., Jones et al., 2010; Parslow et al., 2013).35

Another important initiative is the estimation of hyperpa-
rameters of the kinematic error model along with the ecosys-
tem parameters (Arhonditsis et al., 2008). The posterior of
the kinematic model error provides an estimate of the model
discrepancy, introduced by Kennedy and O’Hagan (2001)40

and originally referred to as model inadequacy. The model
discrepancy is defined as the model error for the “true” val-
ues of the model parameters, i.e. the unknown values of the
parameters for which the model best represents xt. Estimates
of model discrepancies may thus provide useful diagnostics45

for model skill assessment and development.

2.3 From statistical model to cost function

The choice of a suitable estimation method for marine
ecosystem model parameters should be mainly based on the
availability of relevant prior information, as well as on the50

basic error assumptions (Eqs. 1, 2, 3). Once the error model

and estimation method have been chosen, we can derive the
probability densities and cost functions that can be used for
parameter estimation.

As a simple but common example, consider a deterministic 55

model with no model error and data with additive Gaussian
observational errors, Eq. (4), with known covariance matrix
R. We wish to use a total of Ny data, summing over all data
types, to estimate NΘ parameters by Bayesian estimation.
A survey of the literature might lead us to model the prior 60

distribution of Θ as Gaussian with a mean Θb and covariance
matrix B. From Eq. (6) the posterior density is proportional
to a product of the likelihood and the prior density:

p(Θ | y)∝ 1√
(2π)Ny detR

· exp

[
−1

2
dTR−1d

]
· 1√

(2π)NΘ detB
· exp

[
−1

2
∆T

Θ B−1∆Θ

]
(12)

where the data-model residual d is defined by d= y−H (x) 65

(see ε in Eq. 4). The deviation from the prior is
∆Θ = Θ−Θb. A MAP or joint posterior mode estimate of Θ
can then be obtained by minimising the cost function J(Θ) =
−2 logp(Θ | y) + constant, given by:

J(Θ) = dTR−1d+ ∆T
Θ B−1∆Θ (13) 70

where constant terms (since independent of Θ) have been
dropped.

Alternatively, nonnegativity constraints on the variables
and parameters may lead us to prefer the lognormal obser-
vational error model. Likewise, we can assume lognormal 75

priors for the parameters. In this case the posterior density
becomes:

p(Θ | y)∝ 1√
(2π)Ny detR̃

∏
j yj

· exp

[
−1

2
d̃T R̃

−1
d̃

]

· 1√
(2π)NΘ detB̃

∏
lΘl

· exp

[
−1

2
∆̃
T

Θ B̃
−1

∆̃Θ

]
(14)

where the data-model residuals and parameter corrections
on the transformed scale are defined by d̃= log(y)− 80

log(H (x)) +
σ̃2

2
and

∆̃Θ = log(Θ)− log(Θb)+
(σ̃b)2

2
. A MAP estimator of Θ is

then obtained by minimising:

J(Θ) = d̃T R̃
−1
d̃+ 2

NΘ∑
l=1

log(Θl) + ∆̃
T

Θ B̃
−1

∆̃Θ (15)

The MAP or posterior mode estimator of log(Θ) is equiv- 85

alent here to the posterior median estimate and is obtained
by maximising p(log(Θ) | y). This leads to a cost function
given by Eq. (15) without the second term, 2

∑NΘ

l=1 log(Θl)
(cf., Fletcher, 2010). Due to the noninvariance property of
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Bayesian estimates, the exponent of the MAP estimator of
log(Θ) will generally differ from the MAP estimator of Θ.
By contrast, ML estimates are obtained by minimising the
cost functions without any of the prior terms (second terms
in Eq. 13, second and third terms in Eq. 15). In each case5

the same ML estimator for Θ is obtained whether we use Θ
or log(Θ), as expected from the invariance property of ML
estimates.

2.4 Remarks on data assimilation terminology

We close this section with some cautionary remarks about10

different terminology that the reader may encounter the lit-
erature. First, many DA papers and textbooks start by as-
suming a certain cost function, based on variational or op-
timal control theory, rather than deriving it from a proba-
bilistic treatment as herein (e.g., Le Dimet and Talagrand,15

1986; Bennett, 2002; Fletcher, 2010). These studies tend to
refer to MAP estimates obtained by minimising cost func-
tions such as Eq. (13) as “weighted least squares estimates”.
However, any analogy with regression analysis is stretched
because these estimates are fundamentally dependent on, and20

potentially biased by, the assumed prior distributions. Sec-
ond, many DA papers and textbooks use the term “likeli-
hood” to refer to the posterior probability p(Θ | y) in Eq.
(6), and the term "maximum likelihood estimators" although
modifiers such as "(Bayesian)" (Jazwinski, 2007, page 156)25

or "(posterior)" (Tarantola, 2005, page 40) are sometimes
added. This obscures the fact that posterior mode estimators,
like all BEs, are dependent on assumed prior distributions.
Maximum likelihood avoids this dependence, but in doing so
tends to be unsuitable for high-dimensional parameter esti-30

mation in the partially-observed systems typically encoun-
tered in oceanography and geophysics.

3 Typical parameterisations of plankton models and
their parameters

Deviant parameter estimates of a model may point towards a35

deficiency in model structure, forcing, or in boundary con-
ditions. Estimates of the effectively same parameters may
turn out to be different within dissimilar plankton ecosystem
models, even if those models may have been calibrated with
the same data and although they possibly share an identical40

physical (environmental) setup. To understand why parame-
ter estimates can be different it is helpful to unravel some of
the basic differences between major parameterisations that
describe growth and loss rates of phytoplankton.

A crucial element of most plankton ecosystem models is45

the description of phytoplankton growth as a function of
light, temperature, and nutrient availability. How growth of
algae is parameterised is relevant and the associated parame-
ter values affect timing and intensity, e.g. of a phytoplankton
bloom in model solutions.50

3.1 Differences between maximum carbon fixation and
maximum growth rate

The build up of phytoplankton biomass depends on how
much of the available nutrients can be utilised and how
much energy can be absorbed from sun light. Under nutrient- 55

replete and light-saturated conditions, the carbon fixation
(gross primary production, GPP) reaches a (temperature de-
pendent) maximum rate, described as a parameter (PCm ) with
unit d−1. For models that do not resolve mass flux of carbon
explicitly, PCm is substituted by a maximum growth rate (µm) 60

to express the phytoplankton’s maximum assimilation rate of
nitrogen (N), or of phosphorus (P). The maximum GPP and
the maximum growth rate are interrelated and in principle
one can be derived from the other (Smith, 1980). In reality,
maximum C-fixation, maximum N- or P-assimilation, and 65

cell doubling rates are highly variable. This requires at least
cellular C, N and Chla to be explicitly resolved, (linking for
example, intracellular nutrient allocation to photoacclimation
Shuter, 1979; Laws et al., 1983; Pahlow, 2005; Armstrong,
2006). 70

In practice an analogy between PCm and µm is often as-
sumed in N- or P- based biogeochemical models (assum-
ing fixed stoichiometric elemental C:N:P ratios for algal
growth). The parameter PCm or µm is typically multiplied
with a dimensionless temperature function (fT ) (e.g., Arrhe- 75

nius, 1889; Eppley, 1972), allowing for temperature induced
changes of metabolic rates. The actual potential maximum
rate (PCm · fT or µm · fT ) is then reached at some prefixed
reference or optimum temperature accordingly. In early N-
based plankton modelling studies (e.g., Evans and Parslow, 80

1985; Fasham et al., 1990; Doney et al., 1996) the maximum
growth rate was mainly adopted from Eppley (1972). In sub-
sequent DA studies this maximum rate was either subject
to optimisation (e.g., Fasham and Evans, 1995; Spitz et al.,
2001) or it was kept fixed because then parameter values of 85

the limitation functions could be better identified (Matear,
1995; Fennel et al., 2001).

3.2 Combining parameterisations of light- and nutrient
limitation

In many marine ecosystem models two separate limitation 90

functions are combined: one that expresses the photosynthe-
sis versus light relationship (P-I curve) and another that de-
scribes the dependence between ambient nutrient concentra-
tions and nutrient uptake. The two functions are similar in
their characteristics, starting from zero (no light or no nutri- 95

ents) and approaching saturation at some high light and at
replete nutrient concentration. Three approaches are gener-
ally found in marine ecosystem models to limit algal growth
by photosynthesis and nutrient uptake. The first is to apply
Blackman’s law (Blackman, 1905), assuming that growth is 100

reduced by the most limiting factor, either by light or by nu-
trient availability (e.g., Hurtt and Armstrong, 1996; Oschlies
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and Garçon, 1999; Klausmeier and Litchman, 2001). The
second is to multiply both limitation functions (e.g., Evans
and Parslow, 1985; Fasham et al., 1990; Follows et al., 2007).
The third approach involves combinations of light- and nutri-
ent limitation that resolve interrelations between cell quota,5

N-uptake and the photoacclimation state of the algae (e.g.,
Armstrong, 2006, see Sect. 3.5 ). Whether the first, second
or third approach is considered can be expected to affect es-
timates of the associated parameter values.

3.3 Photosynthesis as a function of light (P-I curve)10

In a P-I curve the level of increase from low to high irradi-
ance is specified by the initial slope parameter (the maximum
of the first derivative of the P-I curve with respect to light),
also referred to as photosynthetic efficiency (αphot) (Smith,
1936; Jassby and Platt, 1976; Cullen et al., 1992; Baumert,15

1996). Photosynthetic efficiencies were derived from P-I
measurements, for example by Platt and Jassby (1976), Pe-
terson et al. (1987), and Platt et al. (1992) and their mean val-
ues were used for many N-based models (e.g., Fasham et al.,
1990; Sarmiento et al., 1993; Doney et al., 1996; Oschlies20

and Garçon, 1999). Published measurements of αphot were
typically normalised to Chla concentrations. In case of N- or
P-based models careful considerations are then needed with
respect to the phytoplankton’s cellular Chla content, which
can vary by a factor of ten and more. Values of αphot were25

found to vary by a factor of three (Côté and Platt, 1983) dur-
ing a three month period, which can be attributed to changes
in phytoplankton community structure as well as to photoac-
climation. Platt and Jassby (1976) reported an even larger
variational range over a one year period, from αphot = 0.03 to30

0.63 mg C (mg Chla)−1 h−1 W−1 m2 within the upper ten
meters.

3.4 Algal growth and nutrient limitation

Typical parameterisations of growth limitation by nutrient
availability (ambient nutrient concentrations) are expressed35

with the half-saturation constant (Ks) of a classical Monod
equation (Monod, 1942, 2012). Another approach is to pa-
rameterise limitations of the nutrient uptake rate, described
with a parameter referred to as nutrient affinity (αaff) (Aksnes
and Egge, 1991). The affinity based parameterisation may40

also be applied to describe nutrient-limited growth, assum-
ing that the rates of nutrient uptake and growth are balanced.
In this case both parameters (Ks and αaff) can be interpreted
as being interrelated αaff = µm · fT / Ks. However, αaff is
derived from mechanistic considerations that are fundamen-45

tally different from former interpretations of Ks of a Monod
equation (Pahlow, 2005; Armstrong, 2008; Pahlow and Os-
chlies, 2013; Fiksen et al., 2013). For comparison between
estimates of αaff it is important to know whether this param-
eter describes limitation of growth or of nutrient uptake. The50

description of nutrient limited growth with the Monod equa-

tion, thereby retrieving values for Ks from measurements,
had been discussed in the past (e.g., Eppley et al., 1969;
Falkowski, 1975; Burmaster, 1979; Droop, 1983). This dis-
cussion regained attention during recent years and the sole 55

application of the Monod equation is currently viewed as a
considerable drawback when simulating plankton growth un-
der transient (unbalanced growth) conditions (Flynn, 2003;
Smith et al., 2009; Franks, 2009; Smith et al., 2014, 2015).

3.5 Algal growth and intracellular acclimation 60

More complex growth dependencies are described with
models that consider intracellular acclimation dynamics
(e.g., Geider et al., 1998; Pahlow, 2005; Armstrong, 2008;
Wirtz and Pahlow, 2010). In these models, photoautotrophic
growth rates become dependent on cell quota, e.g. usually 65

normalised to carbon biomass (N:C), and the amount of syn-
thesised Chla per cell. With such approaches, the changes of
the mass distribution of phytoplankton C and N, as well as
the cellular Chla content, have to be explicitly resolved in
the model. One advantage is that these models are more sen- 70

sitive to variations in light conditions and nutrient availabil-
ity. The respective equations involve physiological parame-
ters that are related but not identical to those of classical N-
or P-based growth models, which impedes a direct compari-
son of older estimates of growth parameters with values cur- 75

rently used in models with acclimation processes resolved.

3.6 Losses of phytoplankton biomass

Parameterisations of phytoplankton cell losses involve lysis
(starvation and/or viral infection), the aggregation of cells to-
gether with all other suspended matter, and grazing by zoo- 80

plankton. Exudation and leakage are processes of organic
matter loss that occur while the physiology of the algae is
functional. Cell lysis, exudation and leakage are usually ex-
pressed as a single rate parameter and this loss of organic
matter is assumed to be proportional to the phytoplankton 85

biomass.
Parameterisations of phytoplankton losses due to the pro-

cess of coagulation and sinking of phytoplankton and detrital
aggregates are basically derived from the principle theory of
coagulation. The application of coagulation theory to simu- 90

late phytoplankton aggregation is well established for models
that resolve size classes of particles (of phytoplankton cells
and detritus) explicitly (Jackson, 1990). But the representa-
tiveness of simplifications (e.g. reduction to two size classes)
assumed for model simulations remains an open task (e.g., 95

Ruiz et al., 2002; Burd and Jackson, 2009). Aggregation pa-
rameters in marine ecosystem models are often assumed to
represent the combination of a collision rate and the prob-
ability of two particles sticking together after collision (e.g.
stickiness of algal cells). These two parameters, collision rate 100

and stickiness, are multiplied with each other to yield a final
aggregation rate. They are therefore difficult to estimate sep-
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arately. Unless prior information can be used their estimates
are always collinear, which suggests to estimate their product
instead (as done in example in Sect. 5.4).

A common problem is to find constraints that allow for
a clear distinction between phytoplankton losses due to the5

export of aggregated cells and the loss because of grazing.
Both processes can be responsible for the drawdown of phy-
toplankton biomass, and data that cover the onset, peak and
decline of a bloom are needed for a possible distinction.
How the complex nature of predator-prey interaction is pa-10

rameterised remains a critical element of plankton ecosys-
tem models. Compared to the approaches that describe algal
growth an even larger number of different parameterisations
exist for grazing (Gentleman et al., 2003). Experimental data
of grazing rates and collections of field data of zooplankton15

abundance are therefore of great value.
Elaborate analyses of meso- and microzooplankton

biomass, grazing and mortality rates were done by Buiten-
huis et al. (2006, 2010). For their two studies they compiled
an extensive database with laboratory and field measure-20

ments. With their data syntheses they could derive parameter
values for simulations with a global ocean biogeochemical
model. Furthermore, independent field data, not used to de-
rive the meso- and microzooplankton parameter values, were
considered for assessing the performance of their model on25

global scale. Their work reflects the large effort that can be
dedicated to this topic for achieving reliable simulation re-
sults of zooplankton grazing.

The explicit distinction between zooplankton size classes,
like meso- and microzooplankton, was bypassed in Pahlow30

et al. (2008). Their model allows for omnivory within a the
zooplankton community, which is resolved by introducing
adaptive food preferences. These preferences are treated as
trait (property) state variables that adapt to the relative avail-
ability of different prey. This reduces the number of param-35

eters needed to describe a variety of different behaviour in
grazing responses. Field data from three ocean sites in the
North Atlantic were used by Pahlow et al. (2008) for cali-
brating their plankton model. They conducted a two-step ap-
proach for parameter optimisation. First they optimised pa-40

rameter values so that depths and dates of minimum and
maximum observed values become well respresented by their
model at all three sites. In a second step they refined their pa-
rameter estimates by minimising weighted data-model resid-
uals. After parameter optimisation they identified distinctive45

complex patterns between zooplankton grazing and plankton
composition for the three simulated ocean sites. Besides their
phytoplankton grazing losses it turned out that their opti-
mal estimates of photo-acclimation and maximum C-fixation
(αphot, PCm ) agree with those values derived from model cal-50

ibrations with laboratory data.

3.7 Constraining simulations of algal growth with
laboratory and mesocosm data

Parameter values of acclimation models have typically been
adjusted to explain laboratory measurements (Geider et al., 55

1998; Flynn et al., 2001; Pahlow, 2005; Armstrong, 2006;
Smith and Yamanaka, 2007a; Pahlow and Oschlies, 2009;
Wirtz and Pahlow, 2010). So far, there is a limited num-
ber of experimental studies whose data were used to cali-
brate these acclimation models (Laws and Bannister, 1980; 60

Terry et al., 1983, 1985; Healey, 1985; Flynn et al., 1994;
Anning et al., 2000). Model calibrations were usually done
by tuning parameter values so that model solutions provide
a qualitative good fit to the laboratory data. In many cases
the parameter adjustments relied on the researchers’ experi- 65

ence and intuition, sometimes accounting for prior parameter
values obtained from preceding model analyses (e.g., Flynn
et al., 2001). Analyses of parameter uncertainties of recent
acclimation models are often lacking. Most laboratory mod-
elling studies had put emphasis on the physiological mecha- 70

nistic model behaviour while error assumptions for quantita-
tive data-model comparison were hardly considered.

Explicit error assumptions for parameter optimisations
and for comparisons of acclimation model results with lab-
oratory data were introduced by Armstrong (2006) and by 75

Smith and Yamanaka (2007a). In both studies additive un-
correlated Gaussian observational errors were assumed and
optimised results of different model versions had been com-
pared. Armstrong (2006) applied a "simulated annealing" al-
gorithm (Metropolis et al., 1953) to fit his optimality-based 80

model version to the data of Laws and Bannister (1980). The
same data were used to also fit the model of Geider et al.
(1998) and he evaluated the likelihood ratio of the two ML
estimates, to discuss and underpin the improved performance
of his refined acclimation parameterisations. Smith and Ya- 85

manaka (2007a) also compared the performance of two ac-
climation models, of Geider et al. (1998) and Pahlow (2005)
respectively. Optimal parameter values for the two model
versions were obtained with the MCMC method, minimising
the misfit between model results and data of the Flynn et al. 90

(1994) experiment. Apart from mechanistic considerations,
Smith and Yamanaka (2007a) concluded that the models of
Pahlow (2005) and Geider et al. (1998) were describing the
assimilated data equally well, since both cost function min-
imum values were comparable. However, the simulated N:C 95

and Chla:N ratios of the model proposed by Pahlow (2005)
were in much better agreement with observations during the
exponential growth phase, which remained undifferentiated
by their error model (assuming C, N and Chla data to be in-
dependent). Different considerations for error models will be 100

addressed hereafter in Sect. (4).
To collect diverse data that fully resolve onset, peak and

decline of an algal bloom at ocean sites is difficult to achieve.
Data derived from remote sensing, e.g. Chla concentration
and primary production rates, provide limited information to 105
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explain relevant differences between processes described be-
fore, like N-utilisation, fixation and release of C, and syn-
thesis and degradation of Chla. Mesocosm experiments that
enclose a large volume of a natural plankton and microbial
community can be helpful in this respect, if they provide a5

good temporal resolution of the exponential growth phase as
well as of the post-bloom period. Vallino (2000) highlighted
the benefits of using mesocosm data to test plankton ecosys-
tem models, as done before by Baretta-Bekker et al. (1994,
1998). One advantage is that mesocosms are, apart from the10

surface, closed systems and measurements of inorganic nu-
trients, dissolved and particulate organic matter should, in
principle, add up to approximately constant concentrations
of total nitrogen and total phosphorus. Total carbon concen-
trations may only vary due to air-sea gas exchange. By design15

these experiments often integrate valuable series of joint and
parallel measurements, yielding detailed data from various
scientist with different expertise (e.g., Williams and Egge,
1998; Riebesell et al., 2008; Guieu et al., 2014). Drawbacks
are uncertainties in initial conditions and also the representa-20

tiveness of mesocosm data to reflect the real dynamics in the
ocean is subject to discussion (e.g., Watts and Bigg, 2001).
In spite of these limitations, simulations of mesocosms or
of enclosures experiments (e.g. with large carboys deployed
in the field) have helped to identify credible model parame-25

ter values and assess model performance. This is particularly
true for tracing microbial dynamics (Van den Meersche et al.,
2004; Lignell et al., 2013) or for details in the composition
and fate of particulate organic carbon and nitrogen (POC and
PON) (Schartau et al., 2007; Joassin et al., 2011).30

In contrast to laboratory measurements, data from meso-
cosm experiments reflect some natural variability of the
plankton community, mainly captured by replicate meso-
cosms. The availability of measurements from replicate
mesocosms is also helpful when defining error models that35

specify the statistical treatment of the data used for parame-
ter estimation.

4 Error models

Error models define our assumptions about uncertainties
and the statistical relationships between observed data, the40

true state, model output, model inputs (forcings and ini-
tial/boundary conditions), and model parameters. Here we
review error models that have been applied to address the
various sources of uncertainty in marine ecosystem models
and consider their implications for parameter identification.45

An explicit treatment of each source of uncertainty may not
be necessary but we do recommend to reflect on how these
uncertainties can be accounted for when modelling plankton
dynamics and biogeochemical cycles.

4.1 Uncertainty in observations 50

The simplest and most common models for observational er-
ror assume that the observational errors ε are: i) additive nor-
mal, ii) constant variance between samples, and iii) indepen-
dent between samples and variable types. Such models are
also commonly used to represent aggregated errors account- 55

ing for both observational and kinematic model error (see
Sect. 2.1); we will refer to these as residual errors.

The additive normal assumption (i) is straightforward but
also restricted, as it does not capture three common charac-
teristics of some ecosystem data such as Chla concentrations: 60

1) larger values tend to have larger errors, 2) values cannot
be negative, and 3) the error distribution has positive skew.
Characteristic (1) may be captured by scaling the standard
error with modelled values (e.g., Hurtt and Armstrong, 1996)
or with observed values (e.g., Harmon and Challenor, 1997), 65

while characteristic (2) can be resolved using truncated er-
ror distributions (e.g., Hooten et al., 2011). All three char-
acteristics together can be captured by gamma distributions
(Dowd, 2007) or power-normal distributions whereby nor-
mality is assumed on a power-transformed scale (Freeman 70

and Modarres, 2006). The power-normal family includes log-
normal (e.g., Hemmings et al., 2003) and square-root normal
models (e.g., Fasham and Evans, 1995).

For power-normal, gamma, or proportional error assump-
tions we have the difficulty that the variance on the original 75

scale approaches zero at low values. This may be unrealis-
tic, at least in regard to instrumental noise. In normal models
this problem can be addressed by adding a constant term to
the variance (Schartau et al., 2001; Schartau and Oschlies,
2003) or standard deviation (Vallino, 2000). Another diffi- 80

culty is that transform-normal models may require unbiasing
factors when assuming unbiased errors on the original scale
(e.g. exp−σ̃2/2 for the log-transform). More flexible mod-
els may be obtained by e.g. fitting the power transform pa-
rameter (Box and Cox, 1964), assuming generalised Gaus- 85

sian distributions (Tarantola, 1987; Evans, 2003), or using
‘anamorphic’ transformations (Bertino et al., 2003; Simon
and Bertino, 2012). It is yet unclear whether such extra flex-
ibility is generally necessary, but it has been demonstrated
that the choice of transformation can strongly affect esti- 90

mates of plankton ecosystem fluxes (Evans, 2003) and that
a good choice can improve parameter estimation in twin ex-
periments (see Fig. 1 and Simon and Bertino, 2012).

The validity of the constant variance assumption (ii) may
be improved by a scale transformation, although the transfor- 95

mation that best normalises the error distribution (see above)
may not best promote the homogeneity of variance. Spa-
tiotemporal variations in the error variance may naturally
occur, for example due to seasonal modulations of the un-
resolved variability and hence the representativeness error 100

component. Accounting for this variation should improve
parameter estimates and uncertainty assessment (cf., Hem-



Schartau et al.: Parameter identification in planktonic ecosystem modelling 13

mings and Challenor, 2012), but in applications this has
rarely been attempted (Hemmings et al., 2003; Dowd, 2007).

In some contexts e.g. mesocosms, the error covariance ma-
trix might be estimated from experimental replicates prior to
fitting the model (Sect. 5.4). In problems where sampling is5

sparse and/or when the model error contribution is large, the
error variances may not be estimable from data alone (Evans,
2003). Here the variances may instead be parameterised and
estimated jointly with the ecosystem model by Bayesian or
ML estimation, which has been done in few studies (Hurtt10

and Armstrong, 1996, 1999; Stock et al., 2005; Malve et al.,
2007; Lignell et al., 2013).

The assumption of independent errors between samples
and variable types (iii) can be invalidated in cases where con-
tributions from representativeness error or kinematic model15

error are large, or where the data have been derived by in-
terpolation or application of a regression model. Neglected
correlation may result in parameter estimates that are less ef-
ficient (higher variance) and more strongly correlated (e.g.
see example in Sect. 5.4). Pre-averaging the data is some-20

what helpful to promote independence (and normality, via
the Central Limit Theorem), but might also remove some of
the informative variability. One common ad hoc intervention
in the cost function is to scale the residual error variance with
the sample size of each data type, to avoid biasing the fit25

in favour of better-sampled variables (e.g., Schartau and Os-
chlies, 2003; Friedrichs et al., 2007). More formal treatments
have fitted parameterisations of the error correlations jointly
with the ecosystem model (e.g., Stock et al., 2005; Arhondit-
sis et al., 2008).30

Whatever the assumptions of the observational/residual er-
ror model, it is possible to test their validity using the assim-
ilated data, either by analysing the residuals and performing
lack-of-fit tests (Bennett, 2002, p43; Stock et al., 2005; Wall-
head et al., 2014) or by comparing fit statistics with those35

obtained under alternative error models (using e.g. likeli-
hood ratio tests, information theoretic or Bayesian criteria,
see Sect. (6.2).

Finally, we caution that certain interpolated or derived
data may strictly invalidate the observational error model,40

not only due to error correlation (see above), but also due
to the introduction of smoothing bias. Data interpolated onto
a model grid will tend to systematically underestimate true
values where they are high and overestimate them where low;
an effect that will be difficult to account for in the observa-45

tional error model. In this situation parameter estimates can
become biased towards values that suppress spatiotemporal
variability in plankton dynamics. Similarly, if the data are de-
rived from a regression model, these estimates may also “trim
the peaks and fill the valleys”, because in a regression model50

(e.g. y = a0 + a1p+ ε, where p is some predictor data) there
is always some part of the true variability that is included in
the error term, and therefore subject to smoothing bias. In
principle this could be avoided by including an inverted re-
gression relationship in the operator O and assimilating the55

“raw” predictor or proxy data instead of the regression-based
estimates.

4.2 Prior uncertainty in Θ

Prior uncertainty plays an important role in estimating model
parameters. Typically, there is not enough information in 60

the assimilated data to constrain all parameters of a biogeo-
chemical model. The results may well be sensitive to the
“error model of prior uncertainty”. Prior uncertainty can be
represented by prior probability densities in Bayesian ap-
proaches or plausible ranges in non-Bayesian approaches. To 65

account for nonnegativity constraints, prior distributions typ-
ically include lognormal (Parslow et al., 2013), square-root
normal (Gunson et al., 1999), or beta distributions (Dowd
and Meyer, 2003), although normal distributions may yet
be applicable for parameters that are well constrained above 70

zero (Parslow et al., 2013). To our knowledge no applica-
tion has yet incorporated prior correlations between param-
eters in Θ (i.e. off-diagonal terms in matrix B introduced in
Sect. 2.3). This is surprising, given the fact that posterior un-
certainty assessments consistently reveal strong correlations 75

(e.g., Matear, 1995; Prunet et al., 1996; Fennel et al., 2001;
Faugeras et al., 2003; Kreus and Schartau, 2015).

Quantifying the prior uncertainty in Θ is often difficult
due to: 1) the existing diversity of model structure, functional
forms used in the various parameterisations, and definitions 80

of model state variables, and 2) the intrinsic variability be-
tween assimilated data sets in terms of taxonomic composi-
tion of the plankton community vs. (usually monospecific)
laboratory cultures. As a result, it may not be advantageous
to simply set the prior uncertainty in Θl as the posterior un- 85

certainty from one previous study. A more common approach
is to first gather best estimates of Θl from a series of previ-
ous studies that included parameterisations and state variable
definitions sufficiently consistent with the present, and then
treat these as unbiased data from which a prior distribution 90

or plausible range can be determined.
When posterior uncertainty becomes unacceptably high, it

can be reduced by reducing the prior uncertainty in Θ, and
there are several strategies for doing this. First, we should
incorporate further data, perhaps of a qualitative nature, into 95

the prior constraints. For example, if it is known a priori that
certain species or functional groups coexist in certain regions
at certain times of the year, then any Θ resulting in compet-
itive exclusion of one of these groups might be ruled out a
priori. Another possibility within the Bayesian paradigm is 100

to incorporate the subjective opinion of experts (O’Hagan,
2006). A second strategy is to model statistical structure in
the prior parameter values, and thereby fill in missing prior
parameter estimates for certain species included in the mod-
elled species or groups. Examples here include the use of al- 105

lometric scaling relationships with cell size (e.g., Edwards
et al., 2012) and phylogenetic relationships derived from
stochastic modelling of trait evolution (Bruggeman et al.,
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2009; Bruggeman, 2011). Third, we may seek to reduce the
model complexity in terms of the number of free param-
eters, thereby removing poorly-constrained parameters and
parameter correlations that may act to inflate the posterior
uncertainty. This may be achieved using sensitivity analysis5

(e.g., Friedrichs, 2001; Garcia-Gorriz et al., 2003; Hemmings
et al., 2003) or model selection criteria (e.g., Ward et al.,
2013). A risk here is that parameter estimates and uncertainty
assessment may be compromised if model selection uncer-
tainty is not properly accounted for (Burnham and Anderson,10

2002). Fourth, it may be possible to reformulate the model in
such a way that the prior parameter uncertainty is reduced.
For example, a hierarchical model in which parameters vary
randomly over space (Zhang and Arhonditsis, 2009) or time
(Parslow et al., 2013) may enable the use of stronger prior15

constraints on the distributional parameters describing this
variability (i.e. the ‘hyperparameters’). Similarly, a stochas-
tic trait-based approach (e.g., Follows et al., 2007) may em-
ploy distributional parameter values that are better known a
priori than values for individual species or functional groups,20

although such a reduction in prior uncertainty has not yet
been clearly demonstrated in the literature.

4.3 Uncertainty in initial conditions (ICs)

Dynamical marine ecosystem models are usually specified
by differential equations that are first-order in time, and25

therefore require for solution one initial condition (IC) for
each grid cell or spatial location in the model. These inputs
are, in general, uncertain, and liable to impact the model out-
put, at least during a transient relaxation period, or indefi-
nitely if the uncertainty spans more than one basin of attrac-30

tion of the dynamical system or if the model dynamics are
chaotic (e.g., Huisman and Weissing, 1999).

In some cases it is possible to neglect IC error because
of accurate measurements, or because a steady state (equi-
librium or seasonal cycle) that is only sensitive to Θ can be35

assumed. Caution is required if neglecting IC uncertainty be-
cause initial concentrations are known to be small (e.g. in
January); small absolute errors may be large relative errors
that can still affect e.g. timing and magnitude of a spring
bloom (Evans and Parslow, 1985).40

In non-spatial (0D) models, IC errors have been modelled
as both fixed parameters (e.g., Vallino, 2000) and as random
variables (Bayesian parameters) with specified prior distri-
butions (e.g., Arhonditsis et al., 2008). In mesocosm studies,
ICs can play a critical role in determining the model trajec-45

tory, and can comprise a large proportion of the fitted param-
eters (e.g., Lignell et al., 2013). For spatial models, it seems
necessary to limit the degrees of freedom of the IC uncer-
tainty (Li et al., 2006), e.g. by using a Bayesian error model
with spatial covariance in the prior (Smith et al., 2009; Pelc50

et al., 2012). To model IC uncertainty, Gaussian distributions
are most often employed, often with a log transform to im-
prove realism of the distributional form (see Sect. 4.1). For

systems with strong physical control, it may be possible to
limit IC uncertainty to only the physical variables, allowing 55

this to generate biochemical uncertainty over an initial burn-
in period (Natvik and Evensen, 2003; Simon et al., 2015).

4.4 Uncertainty in forcings and boundary conditions
(BCs)

Marine ecosystem models are usually modulated by time 60

and space-dependent environmental drivers (forcings) and
boundary conditions that are not predicted by the model dy-
namics but are necessary inputs to determine the evolution of
the model state variables. Studies have demonstrated the sen-
sitivity of biogeochemical variables to errors in bottom-up 65

forcings such as wind stress and vertical mixing (e.g Evans,
1988; Friedrichs et al., 2006; Béal et al., 2010; Sinha et al.,
2010) and top-down forcings such as fishing (e.g., Heath,
2012). BC errors may have little impact on variables strongly
controlled by internal dynamics at sufficient distance from 70

the boundaries, but they may become critical if they affect
internal system constraints such as the supply of limiting nu-
trients or fluxes of heat/salinity that drive internal circulation
and stratification.

There are basically two approaches to modelling the ef- 75

fects of BC/forcing error: 1) to consider individual or net im-
pacts on model dynamics as dynamical model errors (η in
Eq. 1), thus requiring a stochastic model, or 2) to consider
the net impacts on state variables as kinematic model errors
(ζ in Eq. 2), which may permit a deterministic model. The 80

dynamical approach (Eq. 1) is arguably more realistic, more
likely to generate realistic temporal correlations and cross-
correlations, and accounts for time and parameter-dependent
variation in the form and correlation structure of the joint
state variable probability density. It also allows individual er- 85

ror sources to be considered separately. However, approaches
based on stochastic models can be computationally inten-
sive and methodologically complex, and parameterising all
individual sources of BC/forcing error poses a major chal-
lenge. Rather than attempting a comprehensive treatment, 90

current approaches tend to restrict the dynamical noise to cer-
tain key sources such as the atmospheric forcing (Natvik and
Evensen, 2003; Simon and Bertino, 2009) or surface irradi-
ance and background light attenuation (Torres et al., 2006;
Ciavatta et al., 2011), and/or they model the net effect of 95

BC/forcing errors and structural errors synthetically as ad-
ditive (e.g., Losa et al., 2003, 2004) or multiplicative (e.g.,
Dowd and Meyer, 2003; Weir et al., 2013) perturbations. It
may be questioned to what extent the simple parameterisa-
tions used to describe these noise processes accurately de- 100

scribe the net or individual error sources, and it can be dif-
ficult to constrain the distributional parameters a priori, es-
pecially if the structural component is important. Hierarchi-
cal filtering methods may allow these “hyperparameters” to
be estimated jointly with the other parameters (Jones et al., 105
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2010) but these may incur a computational cost that is pro-
hibitive for spatial models at present.

The kinematic approach (Eq. 2) offers an immediate com-
putational saving because the integral over model error con-
figurations (over xt in Eq. 7) can usually be performed ana-5

lytically, such that accounting for model error may amount
to simply adding variance and correlation structure to the
observational error covariance matrices. However, this may
require a more complex parameterization of the error covari-
ance that may still not properly capture seasonal or ecosys-10

tem parameter dependence (Stock et al., 2005; Arhonditsis
et al., 2008; Zhang and Arhonditsis, 2009). Hemmings and
Challenor (2012) demonstrated a Monte Carlo simulation ap-
proach to determine the variability of kinematic error vari-
ances due to BC/forcing error, but without accounting for15

correlations or θe-dependence. Note that with a determinis-
tic model, and model error treated kinematically, the ecosys-
tem parameters θe will likely be optimised to reproduce the
ensemble-mean or ensemble-median behaviour of the true
system. This may be convenient for future simulations, but20

it may also result in biases when using previous parameter
estimates from laboratory experiments or stochastic model
data assimilations to constrain the prior uncertainty in θe (see
Sect. 4.2).

In either case, BC/forcing error models may fall short in25

describing potential errors in phase, like the timing of nutri-
ent depletion. Model solutions that predict the right sequence
of events (e.g. a plankton bloom) but with slightly wrong tim-
ing or spatial location, perhaps due to phase error in the at-
mospheric forcing or ocean circulation, may suffer a double30

penalty due to changes where none occur in the data and no
change where the data do vary. DA may then “smooth out”
the model variability in order to minimise this double penalty
(Wallhead et al., 2006; Ravela et al., 2007). The problem of
phase/timing error has received substantial attention in nu-35

merical weather forecasting and geophysical DA (e.g., Hoff-
man et al., 1995; Lawson and Hansen, 2005; Mittermaier,
2007; Ravela et al., 2007; Ziegeler et al., 2012) and has been
highlighted as an issue for marine ecosystem models (Schar-
tau and Oschlies, 2003; Friedrichs et al., 2006). A simple40

remedy is to average the data and model over larger spatio-
temporal scales in the data assimilation (e.g., Schartau and
Oschlies, 2003), but again this may remove informative vari-
ability and result in a Θ̂ that is only suited to those larger
scales. Wallhead et al. (2006) explored a more explicit ap-45

proach assuming random time lags between the true state and
model state i.e. kinematic model errors in phase, which can
be expressed as ζ(θζ) in Eq. (2) (see Appendix A). This may
improve the bias and variance of ecosystem parameter esti-
mates compared to a simpler approach assuming only addi-50

tive residual error (Wallhead et al., 2006, Table A1).
For some problems, in particular for chaotic systems, the

phase noise may be too intense or ill-defined to allow effec-
tive use of a parametric phase lag model. A better approach
here might be to use a ‘synthetic likelihood’ (Wood, 2010),55

whereby the raw data and model output are replaced with a
carefully chosen, informative set of phase-insensitive sum-
mary statistics (e.g. means, standard deviations, and lag cor-
relations; cf., Heath, 2012). This approach could incorporate
the comparison of modelled vs. observed Fourier spectra and 60

cross-spectra/coherences (e.g., Powell et al., 2006). Whether
the statistics e.g. of spectral slopes by themselves provide
good constraint on ecological parameters should be tested
since it may not be sufficient (Armi and Flament, 1985; Mar-
tin, 2003; Franks, 2005). 65

4.5 Uncertainty in model formulation and structure

Even with perfectly-known parameters, forcings and ini-
tial/boundary conditions, we would still not expect the mod-
elled fluxes such as primary productivity and grazing to per-
fectly reproduce the true fluxes, or the state variables to per- 70

fectly follow the true variability. Aggregation of species into
model functional groups, effects of finite spatial and tempo-
ral resolution, and inherent approximations in the flux param-
eterisations and model structure may all contribute to “struc-
tural error” in the model dynamics. 75

One promising approach to account for structural error
is to add stochastic noise (dynamical model errors) to the
ecosystem model parameters θe (see Sect. 7). This preserves
mass conservation and may allow information on the tempo-
ral (e.g. seasonal) variability of species composition within 80

functional groups to be utilised within the stochastic process
parameters (e.g., Parslow et al., 2013). However, as with ex-
plicit treatments of BC/forcing error (see Sect. 4.4), a com-
prehensive treatment of all sources seems likely to result in
an overparameterised error model and appears to be not yet 85

attempted. An alternative (or complementary) approach is to
treat the structural errors as synthetic dynamical or kinematic
model errors, with one noise process for each state variable.
Here it seems the challenges are to control mass conservation
and to find some efficient way to constrain the distributional 90

parameters a priori or a posteriori.
We note that some structural errors may impose persis-

tent or intermittent biases in the model output that may not
be amenable to a simple statistical description. For exam-
ple, a succession in blooming phytoplankton species might 95

extend or multiply the bloom periods in ways that are not
“random” and that are difficult to reconcile with a single
model functional group, even with stochastic parameters.
Limited spatial resolution can also impose persistent biases
that lead to poor extrapolation properties when we try to cor- 100

rect them by adjusting θe (Wallhead et al., 2013). In such
cases, rather than elaborating the error models, effort might
be better spent improving the explicit biological or spatial
resolution of the model, or exploring implicit resolution tech-
niques (e.g., Wirtz and Eckhardt, 1996; Merico et al., 2009; 105

Wallhead et al., 2013).
An alternative approach might be to employ the tools of

multimodel inference (Burnham and Anderson, 2002; Link
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and Barker, 2006). The idea here is to base inference of target
parameters, states, and fluxes on a family of candidate mod-
els, each differing in structure and parameterisation, rather
than on a single model. For example, we might be fairly
certain about the form of the photosynthesis-irradiance (P-5

I) function in phytoplankton, but much less certain about
the appropriate formulation of zooplankton grazing. Multi-
model inference would allow the P-I parameter values and
their uncertainties to be inferred on the basis of several can-
didate models, each assuming the same P-I function but dif-10

ferent grazing parameterisations. The resulting multimodel
estimates and uncertainties would be less likely to be biased
by a poor choice of grazing formulation than the inference
premised on a single a priori formulation.

5 Posterior parameter uncertainties15

The determination of parameter uncertainties has many
facets, getting to the core of discussions of Bayesian and
frequentist approaches and interpretations (e.g., Efron, 1986;
Cox, 2005; Lele and Dennis, 2009). Depending on the esti-
mator, uncertainties in the combination of parameter values20

may either disclose a credible region of a random distribution
of parameter values (Bayesian interpretation) or they mark a
confidence region that should include the true value with a
certain nominal probability of e.g. 95% (frequentist interpre-
tation). The latter means that different data sets would yield25

different confidence regions and e.g. 95% of those regions
are expected to include the true “fixed” value.

In general, if we wish to make inference about uncertain-
ties of parameter estimates (Θ̂) we need some knowledge
about the distributional shape of the posterior p(Θ̂ | y) or30

of the likelihood p(y | Θ̂). Likewise, we can gather informa-
tion about the parameter-cost function manifold in the vicin-
ity of (Θ̂,J(Θ̂)). For this we may consider some threshold
offset value ∆J , which is an upper limit for the deviation
from the minimum value J(Θ̂). Such a limit may identify all35

cost function values that are insignificantly larger than J(Θ̂).
Large deviations from optimal estimates might be required
for some parameters (components of Θ̂) before the corre-
sponding cost function values reach this threshold, while for
other components only small variations are enough. Such tol-40

erance limit defines an uncertainty region in parameter space:

{
Θ : J(Θ)− J(Θ̂)≤∆J

}
(16)

Typical threshold values are defined as the α quantile of a
parametric or nonparametric probability distribution.45

For an unbiased ML estimator, the χ2-distribution with
the degree of freedom (df=Ny−NΘ) has been suggested for
deriving a threshold value χ2(df, α) (e.g., Kuczera, 1990;
Meeker and Escobar, 1995; Raue et al., 2009, 2011). But for
nonlinear models the χ2-distribution might be inappropriate50

and the α quantile of the actual distribution, J(Θ)− J(Θ̂),
needs to be evaluated by other means (e.g., Raue et al., 2011).
Furthermore, the degree of freedom (df) that specifies loca-
tion and shape of the χ2-distribution may not be represen-
tative. Only if error correlations have been correctly speci- 55

fied in J (see Sect. 4) and the asymptotic approximation (for
large Ny) is applicable, then the correct degree of freedom
is Ny −NΘ.The effective number of independent observa-
tions can be lower and the considered error correlations can
be imprecise, for example when measurements like Chla and 60

carbon dioxide concentrations are negatively correlated dur-
ing exponential growth but can then become positively cor-
related shortly after the peak of an algal bloom. We therefore
expect the effective degree of freedom to be often lower than
(Ny −NΘ) and χ2(df, α) would therefore be an optimistic 65

threshold, i.e. likely to underestimate the true range of un-
certainty, unless the correct number of degrees of freedom is
determined.

5.1 Confidence and credible regions

Uncertainty regions in parameter space can be determined 70

basically in two different ways, either based on a Bayesian-
or frequentist interpretations. According to the Bayesian in-
terpretation a credible region is specified by conditional
probability distribution of the true value given the data. For
maximisations of the likelihood p(y |Θ) it is often stated 75

that credible and confidence regions are practically identical.
Such interpretation is imprecise since the methods to confine
either regions can be very different with respect to the under-
lying assumptions, e.g. MCMC versus bootstrap approaches.

In case of classical BEs no tolerance limit ∆J is explic- 80

itly prescribed. Instead, an efficient sampling of (Θ,J(Θ)),
or directly of the posterior p(Θ | y), is applied. Sequential
methods can provide approximations of the posterior param-
eter distribution once all data have been assimilated. These
approximations differ, depending on how Eqs. (6) and (7) are 85

sampled and evaluated, as discussed in Sect. (2.2.2). A help-
ful overview with some comprehensible examples (of four
different methods and three different ensemble sizes) is given
by Weir et al. (2013). BE methods that do not rely on sequen-
tial approaches may also be applied and credible regions are 90

then simply inferred from selective (acceptance/rejection)
sampling schemes in a MCMC approach, e.g. Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970).
MCMC methods for the derivation of credible regions are
also used for ML estimation problems (e.g., Smith and Ya- 95

manaka, 2007a). The main point is that here the data are as-
sumed fixed.

A fundamentally different approach to the BE methods is
to repeat parameter optimisations many times but with data
subsamples or resample data sets. Large data sets are split up 100

into a series of subsamples that should be as independent as
possible. Or many synthetic data sets are created by applying
a random number generator to independently draw bootstrap
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samples (Efron, 1985; Efron and Tibshirani, 1986). This ap-
proach accounts for variable data and it mimics a repetition
of an experiment or a repeated sampling at ocean sites. For
each bootstrap data set (y∗) a corresponding optimum esti-
mate Θ̂∗ is obtained. A distribution of ∆Θ = Θ∗− Θ̂∗ can5

be derived from a series of optimisations with different boot-
strap data sets. Furthermore, nonparametric density estimates
of all J(Θ̂∗) can be derived and the α quantile can then be
determined from the cumulative distribution of such proba-
bility density. For some situations a bootstrap approach with10

as few as ten resample data sets may suffice to highlight
specific uncertainties in some model parameters (e.g., Schar-
tau et al., 2007). But to ascertain confidence regions, much
larger bootstrap sample sizes are typically needed (Efron and
Tibshirani, 1986). In the end, both approaches, MCMC and15

bootstrap methods, require a large number of model evalu-
ations, typically o(102) - o(104). The benefit is that skewed
and contorted posteriors can be better resolved.

5.2 Profile likelihoods

An alternative to ensemble-based sequential, MCMC, and20

bootstrap methods for determining uncertainties of param-
eter estimates is the construction of 1D- or 2D profile likeli-
hoods (Venzon and Moolgavkar, 1988). For a 2D profile like-
lihood an array of combinations of two parameters (Θm,Θn)
is constructed. For every combination of parameter values25

(elements of the 2D array) a minimisation of J(Θ) is re-
peated while varying all other parameters (Θl 6=m,n). This is
done for all arrays with possible combinations of two pa-
rameters, which requires a large number of additional opti-
misations. The advantage is that uncertainty intervals [Θ̂l−30

u−l ,Θ̂l +u
+
l ]) can be well resolved for each component (l)

of Θ, with lower and upper uncertainty limits possibly being
different (u−l 6= u

+
l ). Unfortunately, the evaluation of a pro-

file likelihood is impracticable for most marine ecosystem
model applications, because of the associated computational35

costs. Parameter identifiability analyses based on profile like-
lihoods have been applied to problems where fast evaluations
of J(Θ) were possible (e.g., Brun et al., 2001; Raue et al.,
2009, 2011). Brun et al. (2001) evaluated confidence regions
for three parameters (rate constants of production, respira-40

tion and water-air gas exchange) from profile likelihoods and
they showed that the error margins of the parameter estimates
can be much larger than those derived with e.g. a point-wise
approximation of a posterior uncertainty covariance matrix,
described in the following.45

5.3 Point-wise approximations of posterior uncertainty
covariance matrix

A single point in parameter space is identified by ML and
MAP estimators, i.e Θ̂ where the posterior p(Θ | y) has its
maximum. Because of the computational costs we often find50

studies where parameter uncertainties of ecosystem models

had been approximated point-wise in the immediate vicinity
of Θ̂. A common theory for deriving variance information
of a ML estimate is based on the inverse of the Fisher in-
formation (Fisher, 1922; see also e.g., Fisher, 1934; Efron 55

and Hinkley, 1978; Cao and Spall, 2010). The underlying
assumption is that the likelihood p(y | Θ̂) is nearly nor-
mal shaped nearby its maximum, which is tantamount to a
quadratic increase of J(Θ) as parameter values are varied
around the estimate. Series expansions, like Taylor power se- 60

ries, around the estimate Θ̂ can be applied to derive relevant
properties of J(Θ) that are theoretically attributed to an un-
certainty covariance matrix (UΘ). Confidence regions for Θ̂
can then be expressed in terms of approximations of UΘ. For
example, for some prescribed df an upper critical confidence 65

level can be specified by the α quantile of a F-distribution
(Marsili-Libelli et al., 2003):{

Θ :
(

Θ− Θ̂
)T

U−1
Θ

(
Θ− Θ̂

)
≤NΘ ·F 1−α

df

}
(17)

Confidence ellipsoids are described with Eq. (17), thus yield-
ing symmetric uncertainty limits around Θ̂, i.e. ul = u−l = 70

u+
l . With an approximation of UΘ a confidence interval for

every single parameter can be described as [Θ̂l±ul]. The
individual uncertainty limits can be computed as

ul = t
1−α/2
df

√
UΘll

. (18)

where t
1−α/2
df is the two-tails Student’s t-distribution for 75

prescribed α and df (Marsili-Libelli et al., 2003). Two ap-
proaches to point-wise approximations of UΘ are found in
ecological and ecosystem modelling studies. One approach
uses first derivates of the model’s observation vector with re-
spect to the parameters (Jacobian) whereas the other requires 80

calculations of second derivatives of J(Θ) (Hessian).

5.3.1 Uncertainty covariances based on the Jacobian
matrix

A first approach considers a linearisation (first order power
expansion) of the model’s observation vector H (x) around 85

the point estimate Θ̂. As long as H
(
x(Θ̂)

)
is not subject

to strong nonlinearities, its first derivatives (sensitivity) with
respect to Θ can be used to estimate UΘ. For an unbiased
ML estimator the covariance matrix can be approximated as:

90

UΘ =
J(Θ)

df
·
(
HT

ΘR−1HΘ

)−1

(19)

with the Jacobian matrix HΘ(Θ̂), its transpose (HT
Θ), and

with the observational error covariance matrix R (e.g.,
Thacker, 1989; Kuczera, 1990; Omlin and Reichert, 1999;
Brun et al., 2001; Omlin et al., 2001). The term J(Θ)/df 95

is added as an approximation of the residual variance of J ,
which should be considered unless H(x) is in such good
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agreement with data so that the minimum of J(Θ) actually
matches the exact degree of freedom, df. The rows of the
Jacobian HΘ are the first derivatives with respect to the pa-
rameters ∇H (x), with ∇= (∂/∂Θ1,∂/∂Θ2, . . . ,∂/∂ΘNΘ

)
being the Napla operator of first partial derivatives.5

5.3.2 Uncertainty covariances based on the Hessian
matrix

Another more common approach for a point-wise approx-
imation of UΘ is derived from a Taylor expansion around
J(Θ̂). Since∇J(Θ̂)≈ 0 in the minimum, the first order term10

of the Taylor expansion is negligible. The series expansion
then approximates the distribution:

J(Θ)− J(Θ̂)≈ 1

2

(
Θ− Θ̂

)T
HΘ

(
Θ− Θ̂

)
(20)

The matrix HΘ is the Hessian whose elements are second
derivatives of J(Θ) with respect to the parameters (e.g.,15

Tziperman and Thacker, 1989; Matear, 1995):

HΘ = ∇T∇J(Θ)
∣∣∣
Θ=Θ̂

(21)

With the Taylor expansion in Eq. (20) we obtain an approx-
imation of the local curvature of J(Θ) at point Θ̂, also re-
ferred to as the observed Fisher information. Like in Eq. (19),20

but instead of using first derivatives of H (x), a posterior un-
certainty covariance of Θ̂ is then approximated by computing
the inverse of a Hessian matrix:

UΘ =
J(Θ)

df
· 2 ·H−1

Θ (22)

Both approximations (Eqs. 19 and 22) yield, in principle,25

similar results for accurate ML estimates i.e. when the ac-
tual minimum of J(Θ) has been identified by the optimisa-
tion algorithm. In practice search algorithms can terminate at
some distance from the actual minimum for numerical rea-
sons, e.g. when the minimum is located in a flat valley of J30

and the imposed convergence criterion makes an algorithm
terminate the search in the periphery of the valley. Marsili-
Libelli et al. (2003) proposed an approach where the accu-
racy of parameter estimates can be improved by minimising
differences between the results of Eq. (19) and Eq. (22).35

5.3.3 The Hessian: its approximation and inversion

Hessian matrices have often been approximated with a finite
central differences approach for first and second derivatives
of J with respect to ecosystem model parameters at the point-
estimate Θ̂ (e.g., Matear, 1995; Kidston et al., 2011; Kreus40

and Schartau, 2015). A critical issue of finite difference cal-
culations of the Hessian’s elements is the choice of an ap-
propriate increment size (δ), which sets the distance of de-
parture from the optimal parameter point estimate Θ̂. Some-
times a compromise between resolving flat regions around45

(Θ̂ + δ,J(Θ̂ + δ)) and numerical precision has to be found
(Kreus and Schartau, 2015). To approach a high accuracy of
the Hessian approximation it is possible to consider a set of
different increment sizes for the central differences approach,
as given in Marsili-Libelli et al. (2003). 50

The problem of increment size reduces if first derivatives
of J with respect to the parameters (gradient, ∇J) are read-
ily obtained with an adjoint model, e.g. as used in a varia-
tional DA approach (Sect. 2.2.3). Adjoint versions of plank-
ton ecosystem models have been constructed primarily to 55

compute∇J for an efficient search with gradient descent al-
gorithms in the parameter-cost function manifold (e.g., Law-
son et al., 1996; Fennel et al., 2001; Schartau et al., 2001;
Spitz et al., 2001; Friedrichs, 2002; Faugeras et al., 2003;
Zhao et al., 2005; Friedrichs et al., 2007; Xiao and Friedrichs, 60

2014a). To elucidate the nature of adjoint model develop-
ments is beyond the scope of this paper, but a brief summary
about adjoint model developments is given in the Appendix
(C). The advantage is that all elements of the Hessian can be
approximated with finite differences of adjoint model results 65

(e.g., Fennel et al., 2001; Friedrichs, 2002; Faugeras et al.,
2003; Friedrichs et al., 2007; Kreus and Schartau, 2015).

Computations of the Hessian, Eq. (21), provide valuable
identifiability information even if this matrix is not explic-
itly used to specify confidence regions of parameter esti- 70

mates. For example, a decomposition of the Hessian matrix
into its eigenvalues and the corresponding eigenvectors re-
veals which parameters are weakly constrained by the data
or it helps to identify structural deficiencies of a model. The
eigenvectors’ components (l) represent the components of 75

Θ. Components of those eigenvectors that belong to small
eigenvalues indicate parameter combinations that are poorly
constrained or cannot be estimated. In contrast, those eigen-
vectors that correspond with the largest eigenvalues show pa-
rameter combinations that are well constrained. The studies 80

of Fennel et al. (2001) and Faugeras et al. (2003) are infor-
mative in this respect, because they provide insight into the
range of characteristic eigenvalues and eigenvectors of 0D
and 1D marine ecosystem models.

Ideally, every eigenvector would exhibit only one single 85

component, meaning that values of every parameter can be
estimated independently of the other parameters’ values. In
practice this is only the case for few parameters of a plank-
tonic ecosystem model. Eigenvectors with two or more dis-
tinct components disclose those parameters whose estimated 90

values are correlated and for which correlation coefficients
can be explicitly derived (e.g., Matear, 1995; Prunet et al.,
1996). Correlations between parameter estimates are referred
to as collinearities. A useful collinearity index was intro-
duced by Brun et al. (2001). Their index expresses how a 95

change in J (or in H (x)), due to a shift in the value of one
parameter can be entirely compensated by adjusting the value
of another (correlated) parameter.
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5.4 Parameter collinearities: an example with
phytoplankton loss parameters

In Sect. (3.6) we discussed the difficulty of constraining pa-
rameters that determine loss rates of phytoplankton biomass
due to grazing, aggregation or exudation and leakage or or-5

ganic matter. With an example we illustrate typical uncertain-
ties and collinearities in the estimation of phytoplankton loss
parameters in the absence of explicit zooplankton observa-
tions like micro- and mesozooplankton abundance or grazing
rates. Three parameters that affect the loss of phytoplankton10

biomass have been optimised together with other parameters.
For this we assimilated five different types of daily mean ob-
servations of a mesocosm study (Engel et al., 2005; Delille
et al., 2005) into a plankton ecosystem model with optimal
nutrient allocation and photo-acclimation (Pahlow, 2005), as15

mentioned in Sect. (3.5).
Details of the cost functions and the corresponding map-

ping from model results x to observations H (x) are given
in the Appendix (B). In our example we consider two cost
functions, with and without covariances respectively (Eqs.20

B4 and B5). For both cost functions no prior information is
included. As an error model we assume additive Gaussian
errors, applying Eq. (4) in Sect. (2.1.3). A simulated anneal-
ing (SA) algorithm is first used to identify a best parameter
estimate in the vicinity of the global cost function minimum.25

This point estimate is then used to derive error ellipses (confi-
dence regions) according Eq. (22). These point-wise approx-
imations of parameter uncertainties are finally incorporated
to initialise the MCMC method that derives a credible region
of posterior parameter uncertainties, based on an algorithm30

provided by Soetaert and Petzoldt (2010).
Figure (2) shows contours of J(Θ̂m±∆m,Θ̂n±

∆n;m,n= 1,2,3) around the optimum at
(Θ̂m,Θ̂n,min(J)), while all other parameters are fixed
to their optimal estimates (Θ̂l 6=m,n). Each plot is thus a35

combination of two loss parameters: maximum grazing
(Θ1 = gm) and carbon loss rate (Θ2 = γC) on top (1a/b in
Fig. 2); γC and aggregation parameter (Θ3 = Φagg) in the
middle (2a/b); Φagg and gm on the bottom (3a/b). Results
from MCMC (dots and asterisks) reveal similar collinearities40

between parameter combinations that involve gm for the
two cost functions (1a/b and 3a/b in Fig. (2). It means that
gm can only be estimated in combination with Φagg and
γC . Only if Φagg and γC were known, then gm could be
identified in this mesocosm model setup with these available45

data types. We do not find such strong collinearity expressed
between γC and Φagg and their estimates seem to be rather
independent (2a/b of Fig. 2), given the mesocosm data.

Another peculiarity is that the ranges of the MCMC’s pos-
terior indicate larger uncertainties if the cost function with-50

out covariance information is applied (right side of Fig. 2),
although model and data are identical. This behaviour is also
resolved by the 95% confidence regions that are obtained

with a point-wise approximation of error ellipses (lines). Fur-
thermore, collinearities according to the error ellipses are 55

smaller for the cost function with covariances compared to
the case of independent data. Here, confidence regions of the
error ellipses correspond well with the credible regions of
the MCMC results. We stress that this may not be the gen-
eral case and the good correspondence is likely attributable 60

to the low dimension of the example looked at.
Overall, these results exemplify the uncertainty in con-

straining major loss parameters in the presence of grazing,
if no explicit prior information about grazing rates or data
of zooplankton biomass are available. Collinearities between 65

grazing parameters and other phytoplankton biomass losses
may be reduced by testing model performance against inde-
pendent data, e.g. as done for the meso- and microzooplank-
ton grazing in Buitenhuis et al. (2010). In cross-validation
studies some combinations of parameters that produce indis- 70

tinguishable solutions for one experiment or for one ocean
site are compared with data of another experiment or at an-
other ocean site, which will be addressed in the following
Sect. (6).

6 Cross-validation and model complexity 75

Good performance should be attributable to a model captur-
ing the predominant plankton dynamics under varying con-
ditions in different environments. Parameter values are often
optimised for local ocean sites, but ideally, parameter esti-
mates from one site should improve model performance at 80

other locations as well. The generality of optimised models
can be tested by cross-validating against independent data,
providing a direct and effective test of predictive skill (Gregg
et al., 2009).

6.1 Cross-validation 85

Parameter optimisations can often improve the fit of a model
by selecting unrepresentative parameter values that serve
only to compensate for misfits between data and model re-
sults. It is therefore essential to check whether the resultant
’optimised’ model is giving the right answer for the correct 90

reasons.
Xiao and Friedrichs (2014b), for example, found that

while the optimisation of a range of NPZD models to satel-
lite data tended to reduce model-data misfit, this was often
achieved through the adoption of extremely unrealistic pa- 95

rameter estimates, sometimes being multiple orders of mag-
nitude higher or lower than their best a priori estimates.
The same authors (Xiao and Friedrichs, 2014a) showed that
adding synthetic noise to assimilated satellite data led to the
introduction of similar errors, and a significant deterioration 100

of one model’s predictive skill. The extreme parameter esti-
mates were not representative for the system and the model
performance turned out to be poor when the model was tested
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against independent data that were not used during the opti-
misation procedure.

This is the principle of cross-validation, in which an opti-
mised model is tested in terms of its ability to reproduce data
that were not included in the calibration phase. This is of-5

ten achieved by excluding a subset of the original calibration
dataset, for later use in model evaluation. For example, in
a variational data assimilation exercise for the Arabian Sea,
Friedrichs et al. (2006) repeated their optimisation a num-
ber of times, each time excluding data from a particular sea-10

son. The calibrated models were then used to predict the sys-
tem behaviour during the withheld season, with the resultant
model-data misfit labelled the ’predictive cost function’.

The cross-validation approach has the advantage of testing
one of the key attributes of marine biogeochemical models,15

namely their predictive skill. The technique is, however, not
without its difficulties. The first issue is that it is important
to ensure the test data are truly independent from the training
data. In this regard, Friedrichs et al. (2006) took advantage of
the highly seasonal nature of the Arabian Sea, but it would20

perhaps be less appropriate in regions with a less pronounced
seasonal cycle, such as at the centre of a subtropical gyre.
A potentially more serious problem occurs when researchers
simply divide the available data at random, such that highly
correlated data appear in the assimilated and the test data.25

Under such circumstances, the cross-validation would give
no indication as to the ability of the model to predict inde-
pendent data.

The potential to select unrealistic, compensatory, param-
eter values may not always be obvious, especially if good30

estimates of the ’true’ (or at least sensible) values of the
model parameters are not well known a priori. Such errors
may, nonetheless, strongly impact the ability of a model to
reproduce anything but the assimilated data. This issue ap-
pears to be a common theme in simple marine biogeochemi-35

cal models calibrated to time-series data, as a number of stud-
ies (Fennel et al., 2001; Friedrichs et al., 2006; Ward et al.,
2010) have found that parameter optimisation resulted in de-
creased predictive skill, relative to ’off-the-peg’, prior param-
eterisations. A notable counterpoint to those studies is given40

by Oschlies and Schartau (2005), who found that simulta-
neous optimisation of an NPZD model at three time-series
sites (Schartau and Oschlies, 2003) led to improved perfor-
mance when the model was applied within a 3D simulation of
the North Atlantic. On the one hand, it seems likely that this45

improvement was dependent on assimilating data from three
highly dissimilar North Atlantic locations, which prevented
the inclusion of compensatory errors that were highly spe-
cific to any one site (see also Xiao and Friedrichs, 2014a). On
the other hand, in Schartau and Oschlies (2003) and in Os-50

chlies and Schartau (2005) it is also stressed that the apparent
improvement is associated with some ambiguous rapid nitro-
gen remineralisation pathway in their simple NPZD model,
which can be incorrect in either simulations (1D and 3D), but

with the same positive effect on primary production rates in 55

the central North Atlantic.

6.2 Model performance as a function of model
complexity

Of the many factors that affect the ability of a biogeochem-
ical model to reproduce and predict observations, the appro- 60

priate degree of model complexity in any given situation is
both one of the most important, and one of the least well
defined. This is because there exists a fundamental trade-off
between simplicity and complexity. Simple models have the
advantage of being easier to understand, and with fewer pa- 65

rameters they should also be better constrained (both before
and after optimisation). Nonetheless, simplification requires
a degree of abstraction, and it can sometimes be difficult to
draw parallels with the complexities of the observed system.

At the other end of the spectrum, a highly complex model 70

can explicitly resolve more processes, allowing more de-
tailed comparison with observations. As models become
more complex, the number of degrees of freedom increases,
and the calibrated model will generally be able to match the
observations better than a simpler model. If insufficient ob- 75

servations are available, the extra degrees of freedom can
lead to the introduction of compensatory errors at the assim-
ilation site, which could then increase uncertainty at other
locations, as illustrated by Xiao and Friedrichs (2014b). Sim-
ilarly, for small changes in the assimilated data an extra flexi- 80

bility may lead to very different model solutions, also leading
to increased uncertainty in model predictions (e.g. Xiao and
Friedrichs, 2014a) .

A range of statistical techniques are available to assess
this trade off, and a useful review is given by Johnson and 85

Omland (2004). One of the most practical (if not the most
general) techniques is cross-validation, as described in the
previous section (see also Hastie et al., 2009, section 7.10
for an excellent discussion in a general statistical context).
By looking at the effects of adding noise to assimilated re- 90

mote sensing data, Xiao and Friedrichs (2014a) found that
the most complex model they evaluated was also the most
sensitive to the introduction of synthetic errors in the assimi-
lated data (Fig. 3). They attributed this result to the extra de-
grees of freedom that could be ’fit to noise’. This is consistent 95

with earlier findings that model predictive skill deteriorates
as complex models can become “overfit” to the data (i.e. too
many parameters are fit to inadequate data) (Friedrichs et al.,
2006, 2007; Ward et al., 2010).

Aside from directly assessing a model’s predictive skill us- 100

ing cross-validation, a number of alternative approaches are
available to identify the minimum number of model parame-
ters that are supported by the available data. One of the sim-
plest techniques (in terms of its applicability), is the Akaike
Information Criterion (AIC, Akaike 1973). The AIC consid- 105

ers two opposing terms corresponding to the maximum log-
likelihood of the parameters given the data (ln[L(Θ̂ | y)],
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measuring model data misfit) and a bias-correction factor,
that increases with the number of free parameters (NΘ).

AIC =−2 ln
[
L
(

Θ̂p | y
)]

+ 2NΘ (23)

Note that for a model fitted by least-squares, the log-
likelihood can be approximated by the residual sum of5

squares (RSS), following Johnson and Omland (2004):
ln[L(Θ̂p | y)]≈−Ny/2·ln(RSS/Ny), withNy being the to-
tal number of observations. The AIC, and alternative tech-
niques (weighted AIC, or Bayesian Information Criterion,
BIC), seek to quantify the trade-off between bias and vari-10

ance (e.g., Burnham and Anderson, 2004). Of a range of
competing models, the one with the lowest AIC has the great-
est empirical support.

A perhaps more intuitive approach is given by the Like-
lihood Ratio Test (LRT) for e.g. comparing so-called nested15

models, in which the simpler model is a special case of the
more complex model, in the sense that Mp = f1 is a spe-
cial case of Mp+1 = f1 + f2 where f2=0. Like the AIC, the
LRT aims to account for model complexity in the sense that
it compares log-likelihoods:20

LRT = J(Θ̂p)− J(Θ̂p+q) (24)

with J(Θ̂) =−2 ln[L(Θ̂ | y)] and index p+ q indicating the
number of free parameters of the full model. An alternative
simpler model (with p parameters) that is not significantly
worse than the full model (with p+ q parameters) can be se-25

lected using this ratio. There is a clear analogy to Eq. (16) in
Sect. (5). In other words, although having removed individ-
ual parameters (going from Θp+q to Θp) we may still have
an increase in the data-model misfit that is tolerable or in-
significant within some limit ∆J . For nested models only, a30

value for ∆J can be derived from a χ2(df = q,α) distribu-
tion. The respective degree of freedom (df) is then assumed
to be equal to the difference in the number of free parame-
ters between the full and the reduced model, which is q. For
LRT with non-nested models an empirical, non-parametric35

distribution needs to be derived by other means instead, for
instance using synthetic (or resample) data sets (e.g., Lewis
et al., 2011).

The theory mentioned above is well described by Johnson
and Omland (2004), and have already been applied in few40

ecosystem modelling studies (e.g., Crout et al., 2009; Mc-
Donald and Urban, 2010; Ward et al., 2013). The techniques
for model selection have generally shown that more complex
models are more vulnerable to over-tuning than simpler mod-
els. This appears to be because the number of uniquely iden-45

tifiable parameters in marine biogeochemical models is often
very low. Studies based on classic NPZD type models have
typically found that the inclusion of as few as three to 15
parameters was supported by the assimilated data (Matear,
1995; Friedrichs et al., 2007; Ward et al., 2013; Löptien and50

Dietze, 2015). It should however be noted that these studies

made use of only very limited datasets, and a higher level of
complexity would likely be supported with the incorporation
of more comprehensive datasets, especially those describing
fluxes. 55

Ward et al. (2013) sequentially removed parameters from
a relatively simple 2NPZD model to show that much of the
model structure was redundant, with respect to the assimi-
lated data, Fig. (4). They applied an F-score where the rel-
ative change in LRT is related to the relative change in par- 60

simony (i.e. difference in the number of free parameters be-
tween the reduced and the full model divided by the degrees
of freedom of the full model, dfp+q=Ny - NΘp+q

):

F =

[
LRT

J(Θ̂p+q)

]
·
[
NΘp+q −NΘp

dfp+q

]−1

(25)

As model complexity was reduced, model predictive skill 65

was initially very slow to deteriorate, and J remained simi-
larly low. The increased parsimony of the simpler models led
to improved performance in terms of the LRT, and the AIC
and Bayesian information criterion (BIC). Once all of the re-
dundant components of the model were removed, removal 70

of essential components led to a rapid increase in J , with
an associated increase in the other metrics. The LRT selects
the simplest model with an F-score below a variable thresh-
old value. The AIC and BIC can be used to select a single
model with the lowest score, or preferably to provide indi- 75

vidual model weightings for multimodel inference (Burnham
and Anderson, 2002), although it appears that this latter has
so far seen little application to planktonic ecosystem models.

7 Space-time variations in model parameters

Theoretical arguments, as well as results from cross- 80

validations, have revealed problems with the portability of
locally calibrated models (e.g., Hurtt and Armstrong, 1999;
Friedrichs et al., 2007) and raise the question of how repre-
sentative local estimates are if applied at larger scales. These
limitations encourage estimators that allow spatial and/or 85

temporal variations of parameter values.
For spatial or temporal variation to be useful we have to

make sure that the corresponding parameter adjustments re-
flect changes in the actual underlying (real-world) dynam-
ics. To assess whether this condition is met is a particularly 90

challenging problem that has yet to be adequately addressed.
Direct comparisons are needed between optimisations that
allow variation in posterior parameter vectors and those that
do not. In studies where direct comparisons are made, a com-
mon finding is a reduction in the model misfit to the assimi- 95

lated data by allowing these kinds of variations, but this tells
us little. A reduction of the cost function is expected, as a
direct consequence of an effective increase in the number of
adjustable parameters. As pointed out by Gregg et al. (2009),
“skill assessment using assimilated data lacks the indepen- 100

dence necessary for a comprehensive, objective evaluation”.
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Studies where cross-validation is performed to test predic-
tive skill are more informative. Switching between different
parameter sets in time or for specific regions may not neces-
sarily be a solution per se but may indicate where model re-
finements have to be investigated (Huret et al., 2007). From5

analyses of spatially- and temporally varying parameter esti-
mates that improve predictive skill we can learn where and
when particular model equations are limited in reproducing
changes in plankton dynamics with fixed parameter values.
Such analyses should provide important feedback informa-10

tion on revising these parameterisations.

7.1 Regional differences between parameter estimates

Satellite ocean colour data are widely used to investigate spa-
tial differences in parameter estimates. In many cases, a lo-
cal calibration method is applied where parameters are opti-15

mised separately to fit Chla data for a number of pre-defined
sites or regions spanning a domain of interest. For example,
parameters of a 3D-NPZ model were optimised by Garcia-
Gorriz et al. (2003) for January and June for two regions,
the North- and South Adriatic basin in the Mediterranean20

Sea. They inferred comparable parameter vectors for the two
regions during bloom conditions in January but consider-
able differences between the regionally optimised parameter
sets emerged for June. Garcia-Gorriz et al. (2003) attributed
this difference to unresolved variations in plankton composi-25

tion and changes in biomass concentration between the two
basins. Huret et al. (2007) performed a similar assimilation
experiment for the Loire and Gironde river plumes in the Bay
of Biscay. On the one hand, they found some similarities be-
tween parameter estimates for the two distinct river plumes30

for particular conditions during spring, suggesting the possi-
bility of a common set of parameter values for both plume
areas. On the other hand, the authors stressed their optimal
parameter estimates to be based on data for a specific period
and obtained excessively high Chla concentrations in the Bay35

of Biscay for the entire simulation year when utilising the
mean of parameter estimates for the two plume regions.

Pronounced regional and seasonal differences are not re-
stricted to adjacent seas and coastal areas. Large scale stud-
ies for the North Atlantic have shown comparably strong re-40

gional differences between parameter estimates (Hemmings
et al., 2003; Losa et al., 2004; Doron et al., 2013; Kuhn et al.,
2015). A set of sites representing distinct latitude bands was
considered for a one year calibration of a NPZ and a NPZD
model in Hemmings et al. (2003). The annual cycle at loca-45

tions on a five degree grid was simulated with variable pa-
rameter estimates of a NPZD model in Losa et al. (2004)
and individual parameter estimates for thirteen provinces
in the North Atlantic, pre-defined according to Longhurst
(1995), were derived for a six-compartment 3D biogeochem-50

ical model in Doron et al. (2013). Kuhn et al. (2015) esti-
mated NPZD model parameters for six 5 × 10 degree re-
gions of the central North Atlantic. Despite the fact that these

studies used different models, it is possible to compare some
optimised parameters that are equivalent or closely related 55

between all studies. However, little obvious consistency is
seen in the spatial patterns between their estimates, although
Doron et al. (2013) suggested some similarity between their
estimates of phytoplankton maximum growth rate and zoo-
plankton maximum grazing rate with those of Losa et al. 60

(2004). Patterns of spatial variation in parameters are not eas-
ily validated as most parameters do not have well-observed
equivalents in nature. Nevertheless, Losa et al. (2004) were
able to document the plausibility of their posterior photo-
synthesis parameter values for the maximum phytoplankton 65

growth rate (µm in Sect. 3.1) and intial slope of the P-I curve
(αphot in Sect. 3.3) by comparison with observational esti-
mates of Platt et al. (1991). Six parameters were optimised
in all and the posterior parameter fields were cross-validated
in a 3D version of their model by comparing the output with 70

an independent SeaWiFS chlorophyll data from 1997-2003
(Losa et al., 2006). The spatially-varying parameter set of
Losa et al. (2004), obtained by assimilating Coastal Zone
Color Scanner (CZCS) data for the period 1979-1985, was
interpolated and extrapolated onto the spatial grid of the 3D 75

model as shown for the two parameters relevant for phyto-
plankton growth, µm and αphot respectively (Fig. 5). This en-
abled the model to simulate the seasonal patterns in SeaW-
iFS data much better than with a fixed prior parameter vec-
tor. An important caveat is that the calibration and validation 80

data sets are essentially two realisations of the same emerg-
ing spatio-temporal patterns. To demonstrate improved pre-
dictive skill attributable to its dynamics the model would be
expected to resolve differences between the two independent
data sets, given physical forcing data specific to each period. 85

7.2 Combining sites or regions

The presence of parameter variation between sites or regions
for which a model was calibrated independently does not re-
fute the existence of a common parameter vector with which
the model could achieve similar results. Garcia-Gorriz et al. 90

(2003) and Hemmings et al. (2003) performed alternative
experiments in which regions were combined under a uni-
form parameter vector constraint, but did not include predic-
tive skill tests for direct comparisons of the performance of
spatially-varying and uniform parameter solutions. In other 95

studies, sites have been combined without considering the
alternative of allowing parameters to vary spatially. By op-
timising a 13-parameter model for locations of the Ocean
Wheather Ship India (OWSI) and of the Bermuda Atlantic
Time-series Study (BATS) simultaneously Hurtt and Arm- 100

strong (1999) found that it could capture the primary ob-
served characteristics of the annual cycle at both sites, de-
spite being unable to reproduce the cycle at BATS when cal-
ibrated at OWSI. As mentioned in the previous section, the
approach of data assimilation over multiple sites has since 105

been used by Schartau and Oschlies (2003) with some suc-
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cess in improving predictive skill of a 3D North Atlantic
simulation (Oschlies and Schartau, 2005) based on a simul-
taneous three-sites calibration. A relatively complex global
model with 45 adjustable parameters was similarly demon-
strated to improve the predictive skill after assimilating time5

series data at five different calibration sites (Kane et al.,
2011).

There is a clear advantage of combining sites or regions, in
that it makes more data available to constrain parameters. It
also creates a representative sample for the domain of inter-10

est, reducing the risk of over-fitting. In contrast, when assim-
ilating data at a single site, Friedrichs et al. (2007) found it
necessary to limit the number of adjustable parameters (to
four or even less) to avoid portability problems. Use of a
larger data set representing a wider diversity of ecosystem15

behaviour should support a greater number of parameters to
be constrained, which would allow a model’s true flexibil-
ity to be more fully exploited. However, there is a potential
disadvantage of combining sites or regions, particularly over
large spatial scales, in that the resultant parameter vectors20

may be less suitable for either region than parameter vectors
obtained by local calibration.

Hemmings et al. (2004) introduced the idea of allow-
ing provinces that are in a sense optimal for calibration to
emerge during the data assimilation process. A sample of25

sites from the domain of interest is divided into two simi-
larly distributed sets, one for calibration and the other for
cross-validation. The objective is to find “the number and
geographic scope of parameter vectors which allow the low-
est possible cost of the calibrated model, with respect to the30

stations in the validation set, to be obtained". The method
involves first performing a whole-domain calibration where
parameters are optimised for all calibration sites, then recur-
sively splitting the domain into two geographic provinces to
investigate whether a better calibration can be achieved by35

optimising parameters for each one separately, a procedure
referred to as split-domain calibration. The relative merits of
the calibration procedures are assessed by cross-validating
the posterior parameter vector or vectors against sites from
the validation set.40

Application of the method to the North Atlantic data set
used by Hemmings et al. (2003), with the same NPZ model
and twelve adjustable parameters, resulted in the discovery
of a two-parameter vector solution having a cross-validation
misfit cost 25% lower than that for the single vector solution45

obtained for all calibration sites. The two sub-domains are
shown in Fig. (6). The validation cost was also 24% lower
than that obtained when the model was calibrated locally us-
ing individual sites. This is consistent with subsequent find-
ings of Xiao and Friedrichs (2014b), where combining sites50

tends to reduce validation costs. Note that the validation
scheme used by Hemmings et al. (2004) may not be able
to discriminate well between skill associated with the model
dynamics and that associated with the ability of the model to
interpolate spatio-temporal patterns between the calibration55

sites shown in Fig. (6). This could be resolved by comparison
with interpolated output from some purely empirical model
fitted to the calibration data.

7.3 Spatially varying parameter estimates derived with
Bayesian hierarchical modelling 60

Zhang and Arhonditsis (2009) proposed a Bayesian hier-
archical formulation for calibrating aquatic biogeochemical
models at multiple sites. In this framework, posterior pa-
rameter distributions can vary between sites but the sites
share common prior distributions. Fiechter et al. (2013) used 65

this approach to estimate parameter distributions for a 1D
NPZD-iron model at two sites in the Gulf of Alaska. Non-
informative prior distributions were employed for each pa-
rameter so the influence of the priors on the solution for
each site was fairly weak. In a parallel Bayes’ hierarchical 70

modelling study for the same model, Leeds et al. (2013)
assimilated satellite chlorophyll data at nine sites using a
spatial Gaussian process model for the parameters with an
anisotropic correlation matrix to allow for differences be-
tween along-shelf and cross-shelf dependence. The meth- 75

ods employed by Leeds et al. (2013) and Fiechter et al.
(2013) seem promising because of their potential for rigorous
treatment of uncertainty. However, in the absence of cross-
validation experiments, their potential for improving the pre-
dictive skill of the models is not well evaluated at present. 80

7.4 Time-varying parameters

The idea of representing seasonal variation in part by tempo-
ral variations in the parameters has been examined in various
studies (Losa et al., 2003; Brasseur et al., 2005; Dowd, 2006;
Roy et al., 2012; Mattern et al., 2012, 2013a, 2014; El Jarbi 85

et al., 2013; Melbourne-Thomas et al., 2013). In some cases,
parameters are allowed to vary in space and in time (Tjiputra
et al., 2007; Fan and Lv, 2009; Doron et al., 2013; Li et al.,
2013). Cross-validation tests comparing the merits of vary-
ing and non-varying parameter solutions are mostly lacking, 90

which prevents inferences being drawn about the superiority
of these parameter variations for improving predictive skill.
Temporal variation is handled naturally by adapting widely
used sequential state estimation techniques to obtain param-
eter values along with state estimates. 95

Losa et al. (2003) applied a SIR particle filter to a model
with 15 time-varying parameters in an assimilation of multi-
year time series at the BATS site. The model was treated
as a weak constraint with an additive system noise term
that was uncorrelated between state variables. Mattern et al. 100

(2013a) instead added noise to their two parameters in a 7-
compartment 3D biogeochemical model of the Middle At-
lantic Bight, with the advantage that the state evolution over
each forecast step was true to the model and correlated errors
between state variables were represented. In both cases, the 105

error model is highly subjective, yet it can have a major im-
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pact on the results. For instance, Losa et al. (2003) found the
level of noise to be a critical factor affecting their solution.
This motivated subsequent experiments in which additional
time-varying parameters representing the noise level for each
state variable were optimised (Brasseur et al., 2005). The5

posterior parameter trajectories thus obtained were not con-
sistent with the earlier results. Despite the subjective char-
acteristics of the system noise, the solution of Losa et al.
(2003) improved the model prediction of unassimilated bac-
teria data. The necessity of time-variation in the parameters10

for achieving this is unclear, since no alternative results for
static parameter solutions were analysed.

In a more recent BATS assimilation study with a sim-
pler NPZD model, El Jarbi et al. (2013) did compare the
performance of time-varying and static parameter solutions.15

Rather than employing a sequential method, they opted to
solve the optimal control problem, i.e. to find parameter tra-
jectories that minimise a cost function for the complete time
period. An annual periodicity constraint on posterior param-
eter trajectories was introduced to allow the calibrated model20

to be also applied for time periods beyond the range of ob-
servations. Optimal periodic parameters were obtained using
a two-year data set and validated against independent data
for the following three-year period. In cross-validation tests,
this solution was shown to improve predictive skill over the25

static parameter solution of Rückelt et al. (2010). Their re-
sults suggest that the time-varying parameter model may cap-
ture some aspects of the inter-annual variability, which would
indicate dynamical skill.

Mattern et al. (2014) compared the predictive skill of ver-30

sions of their two-parameter model with time-varying and
static parameter solutions. Here, the time-varying solution
was obtained using an alternative, emulator-assisted sequen-
tial data assimilation scheme. Their cross-validation exper-
iments show a modest improvement in the ability to pre-35

dict the annual cycle with time-varying parameters. Ability
to predict the inter-annual variability was not tested and the
achievability of similar predictive skill by purely empirical
representations of the annual cycle derived from the observa-
tional data is not ruled out.40

An experiment allowing both time and space variation in
biogeochemical parameters that includes cross-validation is
presented by Simon et al. (2015). Performance is compared
against that of a model with constant spatially uniform pa-
rameters specified a priori but not against static and/or uni-45

form parameter solutions to the data assimilation problem.
The study employed an Ensemble Kalman Filter approach
for combined parameter and state estimation in a coupled
model of the North Atlantic and Arctic Oceans. Estimates for
4 model parameters that varied spatially and seasonally over50

the domain were obtained by assimilating satellite chloro-
phyll data for 2008 and 2009 and applied to the estimation of
chlorophyll in 2010. A slight improvement was seen in 2010
chlorophyll relative to that for the prior parameter simulation.
This suggests a small improvement in predictive skill, per-55

haps attributable in part to a better representation of persis-
tent patterns in the annual cycle. A comparison of the assim-
ilating run against independent nutrient data at Station ‘M’
was generally inconclusive with regard to the potential of the
final parameter estimates to improve predictive skill for the 60

nutrient fields

7.5 Learning from space and time variation in
parameter estimates

As shown in this section, a variety of approaches have been
explored for DA with parameters varying in space or time or 65

both. We conclude the section by considering what might be
learnt from these types of studies. A common finding is that
the posterior misfit cost with respect to the assimilated data is
reduced by allowing variation, but this provides no evidence
in itself to support the case for parameter variation. Allowing 70

parameter variation increases the number of parameter values
to be optimised, making it easier to fit a given data set.

Goodness-of-fit statistics that penalise model complexity
in terms of number of parameters (e.g. the F-score of Ward
et al., 2013, described in Sect. 6.2) could prove more infor- 75

mative, but are not used. Cross-validation can be used to pro-
vide a direct demonstration of differences in predictive skill.
In the few studies which do use cross-validation to com-
pare uniform and varying parameter solutions (Hemmings
et al., 2004; Mattern et al., 2014; El Jarbi et al., 2013), some 80

evidence of predictive skill is seen but the cross-validation
schemes are not shown to discriminate reliably between pre-
dictive skill associated with model dynamics and that due
to interpolation of patterns in space or persistence of an an-
nual cycle. Better cross-validation schemes will be needed 85

before we can convincingly demonstrate real improvements
in the models as a result of introducing spatial and/or tempo-
ral variation in parameters.

Allowing parameters to vary reduces the extent to which
their values can be constrained by a given set of observations, 90

making an already under-determined problem worse. It could
therefore be argued that parameter variation is justified only
when there is good evidence to infer that a given model can-
not adequately represent the observed variability under the
uniform parameter vector constraint. The evidence should be 95

statistically robust, taking into account all relevant sources of
uncertainty. The consideration of these additional uncertain-
ties, motivated by its potential for improving parameter esti-
mates (Hemmings and Challenor, 2012), may tend to weaken
data constraints further and make the introduction of param- 100

eter variation less practical, as well as affecting the strength
of the evidence in support of it.

Heterogeneity in the parameter vector is most likely to
be useful for structurally simple models. Those models may
lack the required flexibility to capture some distinct spatial 105

features observed within large domains or they may fail to
resolve specific events during a complete annual cycle. Its
introduction may be a sensible alternative to increasing struc-
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tural complexity as it does not increase the computational de-
mands of 3D simulations. From an ecological point of view,
the need to introduce space and time variations in parame-
ter values reflects limitations in resolving physical environ-
mental changes, or deficiencies in physiological or ecologi-5

cal processes, or all of these factors together. For example,
variations in plankton elemental stoichiometry, e.g. variable
Chla:C and C:N ratios, induce variations in photosynthetic
rates that may not be well described by a model’s parame-
terisation of Chla synthesis and assimilation of nutrients (as10

discussed in Sect. 3.2). It is helpful to consider biological or
environmental reasons why space or time variations of pa-
rameter values are expected to improve model performance.

If good reasons are found to support the use of parameter
variation for model improvement, then the issue of how15

to benefit from this spatio-temporal information must be
addressed. Spatially varying parameters can be applied
directly in 3D models (e.g., Losa et al., 2006). This should
work well for hindcasts and short-term forecasts where the
application is not compromised by large scale ecological20

changes. For forecasting, climatological trajectories such
as those estimated by El Jarbi et al. (2013) are likely
to be of advantage, although their direct application to
long-term prediction in the context of global change would
be difficult to justify. Application of spatially varying25

parameters to long-term predictions of global change is
possible but will be more complicated than their use in
short-term forecasting and it may be necessary to find
ways of allowing spatial patterns in biogeochemical parame-
ters to evolve with predicted changes in the physical regimes.30

8 Emulator approaches

Systematic approaches for parameter optimisation that were
successfully applied in 0D or 1D set ups, may become too
costly as resolution in space is increased and if the time35

period for integration is prolonged. This is the case when
spatially three-dimensional models with high resolution or
steady annual cycles (i.e. periodic solutions) are considered.
For the computation of a steady annual cycle (or fixed-point)
typically thousands years of model time are necessary, which40

may result in a number of time steps in the order of o(107).
Since DA usually involves an iterative optimisation process,
typically hundreds or more model evaluations are necessary
to obtain a satisfactory parameter set. Thus the necessary
time steps during procedures of parameter identification can45

even reach o(1010). Recent attempts aim at replacing com-
putationally costly models with approximations that are less
expensive; i.e. emulators have the goal to provide an approxi-
mation of the model output trajectory x := (xi)

Nt
i=0, recalling

Eq. (1) of Sect. (2.1):50

xi+1 =M [xi,Θ,f i,ηi], i= 0, . . . ,Nt− 1, (26)

by substituting the original model M by a simpler one, the
emulator (M̃ ). Here we disregard a stochastic model ap-
proach and consider ηi = 0 for simplicity.

The application of emulators has emerged in many differ- 55

ent fields of science and thus the theoretical background is
relatively well developed (e.g. Kennedy and O’Hagan, 2000,
2001; Phillips, 2003; Lucia et al., 2004; van der Merwe et al.,
2007; Bliznyuk et al., 2008; Conti et al., 2009; Liu and West,
2009; Castelletti et al., 2012). Two distinct approaches to 60

emulation exist, which we refer to as dynamic emulation
and statistical emulation. Both approaches are outlined in the
following. Note that the terminology in literature may vary
somewhat depending on the respective research field.

8.1 Dynamic Emulators 65

A dynamic emulator (or reduced order or surrogate model)
is a substitute for the original model M . It makes use of the
original model equations but is a simpler representation in
terms of resolution or details resolved in the dynamics. The
term “simple model” refers here to the computational effort 70

needed to evaluate a solution that is a useful approximation
of the solution obtained with the full model. A typical num-
ber of model evaluations needed for an automised optimisa-
tion process can easily reach the order of 1010. In this case
an emulator becomes particularly valuable, because its appli- 75

cation should be much faster than the original model, while
as much as possible main properties of the original model
are retained. Only then an emulator-based DA approach will
give satisfactory results.

Dynamical or physical emulators are based on a simpli- 80

fied model version (M̃ ), which might be additionally aligned
with interim evaluations of the original model. The term “dy-
namic” refers to the fact that the emulator is still based on dy-
namical physical or biogeochemical equations. These can be
similar to the ones in the original model but might have some 85

reduced complexity, either by neglecting some processes or
by simplifying e.g. the forcing f̃ . Another option is the re-
duction of accuracy in model output by coarsening the spatial
or temporal discretization. For instance, the Transport Matrix
(TM) method (Khatiwala, 2007) can be interpreted as an em- 90

ulator approach with a kind of coarse model. The TM is an
emulator that simplifies the original model M by using an
approximated and averaged forcing f̃ in Eq. (26) and a lin-
ear approximation of the spatial discretisation, compared to
nonlinear advection schemes typically used in ocean models. 95

For the case of a spin-up, as mentioned above, a reduction
of accuracy can be achieved by introducing a different crite-
rion that specifies when a tolerable steady periodic solution
as been approached.

When using dynamic emulators, it is often insufficient to 100

take the output of the faster but less accurate coarse model
during optimisation, because the accuracy of the coarse
model M̃ might be too low to effectively support parame-
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ter search process. It can be worthwhile or even necessary to
gradually enhance (or update) the emulator’s accuracy during
the optimisation procedure by introducing special alignment
or correction operators. To explain their definition, let us as-
sume we have computed state vectors of the original and of5

the coarse model with a current set of values for the parame-
ter vector Θ` in the `-th step of the optimisation run, i.e.

xi+1 = M [xi,Θ`,f i],

x̃i+1 = M̃ [x̃i,Θ`, f̃ i], i= 0, . . . ,Nt− 1.

We recall that the model state vector xi consists of the val-10

ues of the Nx state variables. Thus, in a spatially distributed
model, xi is a vector where every element represents the val-
ues at a certain spatial grid point. We here assume that the
same numbering is used for the coarse model state x̃i.

The alignment operator in optimisation step ` is then de-15

fined element-wise for xi and point-wise in time by

A`iM̃ [x̃i,Θ`, f̃ i] =M [xi,Θ`,f i]. (27)

Thus, every A`i is a diagonal matrix. At the current iterate
Θ`, the emulator’s output equals the output of the original
model. For a parameter vector Θ close to Θ`, the emulator20

uses the correction of Eq. (27) – being exact at Θ` – for the
coarse model evaluated at Θ, thus giving only an approxima-
tion of the original model. The idea of this response correc-
tion method is that the deviation between both model outputs
remains uncritically similar in a vicinity of Θ`. The emu-25

lator is thus not just the coarse model M̃ , but an aligned
one, A`iM̃ , that is now locally optimised. The local opti-
misation process does not require any additional evaluations
of the original model, but only of the cheaper, coarse one.
When this inner optimisation gives some new parameter vec-30

tor Θ`+1, the original model is evaluated once again, and the
procedure in Eq. (27) is repeated, defining the new emulator
for the (`+ 1)-th outer optimisation step. In the inner opti-
misation loop no runs of the original model are needed, and
the total number of outer iterations is expected to be lower35

than in an classical direct optimisation usingM . This type of
optimisation procedure fits in the framework of trust region
methods, a class of state-of-the-art algorithms for which a
mathematical convergence analysis is shown in Conn et al.
(2000).40

The method was successfully applied for parameter identi-
fication of a transient 1D configuration with a NPZD ecosys-
tem model and for periodic states with climatological forc-
ing in a three-dimensional setting in a N-based model with
dissolved organic phosphorus (DOP) (Prieß et al., 2013a, b).45

Therein, a coarser time-stepping and a less accurate compu-
tation of the fixed-point (i.e. a shorter spin-up), respectively,
was used to construct the simple model M̃ . For this compu-
tationally very costly 3D model, it turns out that the most ef-
ficient way is to start the optimisation using the emulator- or50

surrogate-based optimisation procedure (with a very coarse

model), and then increase its accuracy during the outer opti-
misation (Slawig et al., 2014).

8.2 Statistical Emulators

In contrast to a dynamical emulator, statistical emulators re- 55

late the input parameters statistically to the model output and
thus to H(x) regardless of the dynamical model structure.
Generally, statistical emulators interpolate the results of a
numerical model from a set of training runs with differing
parameters. The aim is to approximate the unknown model 60

output for other input parameters, not included in the training
parameter set. Common approaches are based on a polyno-
mial fit (of varying degree). Typically, such interpolations are
extended by Bayesian techniques to also obtain uncertainty
estimates. For this purpose it is commonly assumed that the 65

model outcome can be represented by a Gaussian process
and also that the model output changes smoothly as param-
eter values are varied. Priori assumptions about reliable pa-
rameter ranges and their distribution are required. Another
prior choice needed is to determine the respective model out- 70

put of interest, e.g. results required for H(x) to determine
p(Θ | y) orL(y |Θ), Sect. (2.2). Although there are methods
available to reduce the dimensionality for multi-dimensional
model output (e.g., Higdon et al., 2008; Leeds et al., 2014),
it remains practically infeasible to capture the complete out- 75

put of a 3D-coupled ocean ecosystem model. While the the-
ory for statistical emulation is relatively well described (e.g.,
Kennedy and O’Hagan, 2000; O’Hagan, 2006; Liu and West,
2009; Conti and O’Hagan, 2010), statistical emulators are so
far rarely applied in biogeochemical ocean modelling. 80

In Fig. (7) an example of a statistical emulator is provided
based on a simple NPZD-type box-model. The model setup
is adopted from Löptien and Dietze (2015), thereby resolving
seasonal variations in photosynthetically available radiation.
Since computational costs are low, the chosen example setup 85

would not necessarily require emulation. However, the model
is well suited for testing an emulator approach, because it al-
lows us to evaluate a wide range of model solutions. Fig-
ure (7) depicts simulated and emulated root mean square
(RMS) errors relative to a set of synthetic observations (i.e. 90

with noise added to model results that are obtained for a pre-
scribed set of parameter values). For our example we use the
maximum growth rate of phytoplankton and the maximum
grazing rate as free model parameters, while all other model
parameters remain fixed. The emulation is based on a second 95

order polynomial, following the approach of Kennedy and
O’Hagan (2000). The training runs comprise 25 model simu-
lations in a Latin hypercube design, according to (Urban and
Fricker, 2010).

Figure (7) shows very similar results for the emulator and 100

for the full model. In particular, the location of the minimum
can be well reproduced by the emulator. Thus, the agree-
ment between emulated and simulated model-data misfit is
satisfactory and the emulator could be applied for parame-
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ter optimisation. The precision might be further enhanced by
considering higher order polynomials and/or more trainings
data sets. Note, however, that the complexity of the prob-
lem increases with the number of free parameters. In particu-
lar, the numerous parameter collinearities in biogeochemical5

models (e.g. Matear, 1995; Kreus and Schartau, 2015; Löp-
tien and Dietze, 2015) can complicate emulation. Increasing
the dimension of the model introduces additional difficulties.
One suggestion on how to reduce the dimension of a complex
model output is given by Hooten et al. (2011). The authors10

decomposed modelled surface Chla concentrations of a suite
of training runs into singular vectors and predicted the lead-
ing modes in dependence of a suite of biological and physical
model parameters. During a subsequent parameter optimisa-
tion with respect to satellite chlorophyll, they identified zoo-15

plankton grazing rate and the light response of phytoplank-
ton to be the most influential parameters. In contrast to most
other approaches, where variances are estimated based on
Bayesian techniques, Hooten et al. (2011) used a Bayesian
approach to estimate the mean values. The study of Leeds20

et al. (2014) applied a similar technique for DA.
Another example for statistical emulation in biogeochem-

ical modelling is presented by Mattern et al. (2012). Their
emulator approach was based on polynomial chaos expan-
sion (e.g. Askey and Wilson, 1985; Wan and Karniadakis,25

2006). Mattern et al. (2012) emulated simulation results of
Chla concentrations as a function of “maximum zooplank-
ton grazing rate” and the Chla:C-ratio in the Middle Atlantic
Bight in year 2006. The authors used an emulator instead
of the model to minimise the model-data misfit with respect30

to daily Chla concentrations observed from remote sensing.
They optimised time-constant as well as time-varying param-
eter estimates. Both approaches improved the overall model
performance with respect to Chla. While the original time-
varying estimates disregard the actual state of the system, the35

use of the polynomial chaos method formed the basis of an
updated, more reliable method in the study of Mattern et al.
(2014) previously discussed in Sect. (7).

Another study of Mattern et al. (2013b) analysed the un-
certainty of modelled hypoxia for the Texas-Louisiana shelf40

based on statistical emulators. The authors investigated the
uncertainty due to initial and boundary conditions of biologi-
cal variables as well as river nutrient loads and phytoplankton
growth rate. Additionally, physical factors like river runoff,
wind forcing and ocean mixing coefficients were taken into45

account. The authors revealed considerable uncertainties as
their estimates for the hypoxic area varied by more than
40%, when considering reasonable uncertainties in freshwa-
ter runoff. Such an extensive analysis would not have been
possible without taking advantage of emulators. Further-50

more, the use of emulators opens up the possibility of new
approaches to exploring the parameter space. One emulator-
based technique referred to as “history matching” (Craig
et al., 1996), now well-established in other fields and re-
cently applied to the constraint of coupled ocean-atmosphere55

model parameters (Williamson et al., 2013), seems a par-
ticularly promising approach for parameter identification in
marine ecosystem modelling. This relatively simple method
uses Bayesian inference to rule out areas of parameter space
as implausible, given some set of observations. Estimated un- 60

certainties in both the observations (with respect to the truth)
and the emulator (with respect to the model) can be taken into
account. The method can be applied iteratively with different
observation sets to reduce the size of the plausible region at
each stage, either as a precursor to more formal model cal- 65

ibration or as a parameter identification method in its own
right.

8.3 Combining dynamical and statistical approaches

While emulations based on statistical approaches are com-
paratively fast, such methods rely on sufficiently large sets of 70

training data (i.e. full model simulations). To generate such
training data can be costly, especially for 3D models with
high spatial resolutions. To overcome this problem one might
consider a combination of statistical and dynamical emula-
tors. 75

A two stage emulation process is suggested by Hemmings
et al. (2015). Their idea is to use a set of 1D models as a
dynamical emulator that describes the evolution of the 3D
model at representative sites. This Stage 1 emulator allows
large ensemble simulations to be run, providing output that 80

could be used as training data for construction of a statistical
emulator (Stage 2). The dynamical emulator of Hemmings
et al. (2015) is not used in an inner optimisation loop but is
used instead to predict 3D model output for arbitrary param-
eter vectors. It is thus used more like a statistical emulator. 85

In fact, a particular innovation in their study was to quantify
uncertainty in the emulator outputs for inference purposes.
Another innovation was the inclusion of biogeochemical per-
turbations associated with lateral advection that are typically
ignored in 1D calibration studies. These were derived by av- 90

eraging 3D model diagnostics over a 10-member ensemble
simulation based on a sample of parameter vectors from the
search space. Accounting for the lateral flux information was
helpful, contributing strongly to the emulator accuracy. The
emulator with uncertainty estimates gave robust results for 95

the surface Chla concentration of an ecosystem model of in-
termediate complexity, considering variation in 8 parameters.

The ultimate aim of the two stage procedure would be to
use a sufficiently large number of state estimates of the model
based on a (sufficiently precise) dynamical emulator, which 100

can then be used for the construction of a statistical emulator
for a cost function or similar metric. The dynamical emula-
tor would effectively bridge the gap between a small refer-
ence ensemble that is practical to generate with the full 3D
model and the statistical emulator that requires a relatively 105

large training set. The respective metric must incorporate an
error model that takes into account all sources of uncertainty
in the statistical emulation of the full model. Thus, the uncer-
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tainty estimates obtained when training the statistical emula-
tor must be inflated by combining them with the dynamical
emulator’s own uncertainty estimates. Stage 1 emulation re-
sults suggest that it may be important to first extend the latter
to include temporal covariance estimates for the parametric5

uncertainty associated with the averaged 3D model output
used. Another important consideration is that global 3D mod-
els require long spin-up times to overcome an initial model
drift (see Sect. 9.1). The application of dynamical emulation
techniques for accelerated spin-up, such as the TM method10

(Khatiwala, 2007) mentioned in Sect. (8.1), could help to
provide a better representation of the parametric variation by
increasing the practical length of the spin-up period.

9 Parameter estimation of large-scale and global
biogeochemical ocean circulation models15

Global biogeochemical ocean models are commonly used to
investigate the mutual interactions between ocean biota and
climate change, a famous example being coupled Earth sys-
tem models (ESMs) applied in the fifth assessment of the In-
tergovernmental Panel on Climate Change (IPCC, 2014) and20

those models that are evaluated as part of the Coupled Model
Intercomparison Project (CMIP5; Taylor et al., 2012). Be-
sides individual evaluations of biogeochemical ocean model
components (e.g., Ilyina et al., 2013; Tjiputra et al., 2013),
global ocean biogeochemical simulation results are often25

specifically evaluated in terms of their representations of the
carbon cycle (e.g., Schwinger et al., 2016). More recent stud-
ies also focus on analysing the spread of oxygen minimum
zones (e.g., Cocco et al., 2013; Cabre et al., 2015).

9.1 Consistency between tracer distribution and ocean30

circulation field

A major challenge in calibrating biogeochemical models on
global scale is that the simulations require many millennia
until tracer distributions are in equilibrium with the given cir-
culation field and the biogeochemical processes (Wunsch and35

Heimbach, 2008). Equilibrium solutions are usually achieved
by integrating tracer fields for several thousand years in a
so-called model spin-up, based on some seasonally cycling
climatological circulation fields. Convergence to steady state
conditions depends on the region, tracer type, and form of40

boundary condition (Wunsch and Heimbach, 2008; Primeau
and Deleersnijder, 2009; Siberlin and Wunsch, 2011). It also
depends on the values assigned to the parameters of the bio-
geochemical model, and it is not necessarily a monotonic
function of time, but can exhibit inflection points that reflect45

the interaction of diverse processes happening on different
time scales (Kriest and Oschlies, 2015). For parameter op-
timisation it is meaningful to exclude from a cost function
those transient model solutions that involve continuing trends
in the redistribution of tracers (see also Séférian et al., 2016).50

To attain some equilibrated biogeochemical cycling re-
quires considerable computational time, which makes it
particularly difficult to employ methods that exploit the
parameter-cost function manifold with a large ensemble of
model runs like the MCMC method. The derivation and ap- 55

plication of emulators, as described in Sect. (8), is therefore
of great value for parameter optimisation of global biogeo-
chemical ocean models. An alternative approach to accel-
erate the spin-up time is to apply Newton-Krylov methods,
by iteratively solving the dynamical system for steady state 60

(e.g., Khatiwala, 2008; Li and Primeau, 2008; Piwonski and
Slawig, 2016).

Some speed up of long-term model simulations can also be
achieved with an appropriate balance between a model’s spa-
tial resolution and the complexity of biogeochemical tracer 65

dynamics, as approached by Ridgwell et al. (2007). Using
a coarse grid and a time step of 0.05 yr (≈ 18 days), they
could apply an Ensemble Kalman Filter for estimating pa-
rameters of their relatively “abstract” biogeochemical com-
ponent of an ESM of intermediate complexity, building on 70

a DA setup of Annan et al. (2005). Another option is to de-
crease the number of model runs by applying the variational
adjoint method for parameter optimisation (Sect. 2.2.3). Re-
sults of an adjoint global biogeochemical model were used
by Tjiputra et al. (2007) to determine first derivatives of a 75

cost function with respect to the parameters, see also Ap-
pendix (C). However, because of local minima or flat regions
in the cost function optimal estimates may then depend on
the initial guess of parameter values, as discussed in Sect.
(2.2.3). 80

Some DA applications may not require equilibrated tracer
dynamics to maintain steady seasonal cycles, e.g. when ap-
plying sequential DA approaches with recurrent analyses
steps and corrections of the simulated state variables. An ex-
ample is the study of Simon et al. (2015) who introduced an 85

ensemble-based DA method for a large-scale biogeochemi-
cal model of the North Atlantic and Arctic Ocean. The fo-
cus of their study was to estimate spatial and temporal vari-
ations of phytoplankton and zooplankton loss rate parame-
ters as well as model states, in order to establish an opera- 90

tional system for hind- and forecasts of Chla concentrations.
Their model was initialised with climatological data of nutri-
ents and oxygen and initial values of the other biogeochem-
ical state variables were set to low constant values. Prior to
the DA period (2007-2010) their model was integrated for 95

a six year period, starting in year 2000. This simulation pe-
riod is much shorter than the few hundreds of years typically
needed to equilibrate tracer distribution and ocean circulation
in the North Atlantic and Arctic Ocean (e.g., Wunsch and He-
imbach, 2008) and the optimised hindcast simulations may 100

therefore not be expected to represent detrended seasonal cy-
cles of biogeochemical tracer distributions and mass flux.

In summary, various procedures for calibrating large-scale
and global biogeochemical ocean circulation models exist,
but are presently challenged by overcoming limitations in 105
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computational time to approach equilibrated steady cycles
in biogeochemical tracer distributions. Data availability on
global scale introduces additional limitations to act as con-
straints for parameter identification of global biogeochemical
models.5

9.2 Data for parameter estimation and calibration in
global ocean biogeochemical models

In regard to the ocean’s key role in global carbon cycling
and hence for the climate system, four different types of data
are typically considered for assessing and calibrating global10

biogeochemical ocean models: i) data of dissolved inorganic
tracers, e.g. distributions of nutrients, oxygen, alkalinity and
dissolved inorganic carbon, ii) data products derived from re-
mote sensing measurements, e.g. of chlorophyll a, or plank-
ton primary- or net community production, iii) in situ mea-15

surements or composite data of organic and inorganic matter
concentrations, fluxes and rates e.g. at different time-series
stations, and iv) observations of the gravitational flux of or-
ganic particles to the ocean interior, transporting particulate
organic matter through the water column.20

For the calibration and assessment of large-scale or global
biogeochemical models many studies resort to using clima-
tological data sets, e.g. of nutrients and oxygen, components
of the carbonate system (e.g., Watanabe et al., 2011; Tjipu-
tra et al., 2013). Also common is the additional or exclusive25

use of observational estimates that were derived from remote
sensing measurements, like primary production rates and sur-
face concentrations of Chla (e.g., Carr et al., 2006; Tjiputra
et al., 2013; Nevison et al., 2015; Simon et al., 2015). Given
the often high level of structural complexity of ocean biogeo-30

chemical models we find only few studies that involved more
elaborate data such as organism groups or fluxes of organic
matter. Examples can be found in Gehlen et al. (2006), who
compared simulated and observed particle fluxes, or Aumont
et al. (2015), who compared simulated and observed dis-35

solved iron concentrations and nitrogen fixation rates. Like-
wise, Ward et al. (2012) considered satellite based estimates
of surface Chla concentrations of different taxonomic groups
as specified in Hirata et al. (2011).

One reason for the fallback to rather basic data types such40

as climatological nutrient concentrations for global model
evaluation is the sparse distribution of open ocean, in situ
observations. One example is the scarcity of global micro-
zooplankton biomass observations in the ocean, as depicted
in Buitenhuis et al. (2010). Direct, in situ, open ocean ship-45

based observations are sparse in space and time mainly for
logistic reasons (and costs) and we therefore find available
sets of situ data to be noticeably biased towards certain areas
and periods (e.g. towards coastal areas, summer season in
the high latitudes, and the northern hemisphere, Kriest et al.,50

2010).
Ocean measurements of rates are particularly valuable, but

these may not be straightforward to accomplish, e.g. isotopic

measurements on a research vessel. Some rate measurements
may also suffer from large methodological uncertainties, e.g. 55

measurements of nitrogen fixation. Of similar value, compa-
rable to rate measurements, are observations of oceanic par-
ticle flux, as obtained from sediment traps or from optical
methods (e.g., Gardner, 2000; Buesseler, 1991). These data
provide only patchy information about the particle flux in the 60

world ocean. Their analysis and interpretation are also dif-
ficult, since particles produced at the surface are subject to
horizontal transport by advection, hampering the establish-
ment of correlations between surface and deep fluxes, par-
ticularly for slowly sinking particles (e.g. a meter per day) 65

in energetic current fields (e.g. a meter per second) (e.g.,
Siegel et al., 2008; Frigstad et al., 2015). Attempts to cali-
brate global models against individual observations of parti-
cle flux have not yet revealed any unique “best” model solu-
tion (Gehlen et al., 2006; Kriest and Oschlies, 2013). To es- 70

tablish a consistent linkage between surface primary produc-
tion rates, e.g. as derived from remote sensing, and observed
in-situ measurements of particle flux remains a major chal-
lenge. This requires a close look at parameters that link pro-
duction the euphotic zone to deep carbon export. Parameters 75

that specify vertical flux and remineralisation of organic mat-
ter ultimately determine carbon storage (Kwon et al., 2009).

9.3 Parameters relevant for global ocean
biogeochemical modelling

The joint effect of particle flux and remineralisation is of- 80

ten described by one or two parameters in global models.
Early models referred to an exponential function of reminer-
alisation with depth (Bacastow and Maier-Reimer, 1991),
which - in equilibrium - would correspond to a constant par-
ticle sinking velocity and constant remineralisation. Another, 85

common description of particle flux (and hence of subse-
quent remineralisation) is the consideration of a power law
of depth: F (z) z−b, where b is usually set to b= 0.858, rep-
resenting the open-ocean composite value derived by Martin
et al. (1987) from sediment traps (e.g., Maier-Reimer, 1993). 90

Empirical fits to various observations of particle flux sug-
gest that b may vary between 0.3-1.4 (Martin et al., 1987;
Berelson, 2001; Van Mooy et al., 2002; Buesseler et al.,
2007). This typical range of variation of b has been used
and tested in global biogeochemical models e.g. analysing 95

how its value affects dissolved tracer concentrations in the
ocean (Kwon and Primeau, 2006, 2008; Kriest and Oschlies,
2013). Kwon et al. (2009) coupled a simple global biogeo-
chemical model with a one-box atmosphere and found a large
effect of this parameter on atmospheric pCO2, highlighting 100

the relevance of this parameterisation in ESM simulations.
Since this parameterisation is widely used (e.g., Kwon and
Primeau, 2006, 2008; Najjar et al., 2007; Parekh et al., 2005)
we will have a closer look at its implicit assumptions in the
following and discuss potential constraints for the estimation 105

of respective parameters.
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Under steady state conditions b can be interpreted as be-
ing equal to a constant remineralisation rate r divided by a
particle sinking speed a that increases with depth: b= r/a
(Kriest and Oschlies, 2008). The associated potential mech-
anisms that may lead to a vertical increase in sinking speed5

are selective export of large and fast particles to deeper lay-
ers, or repackaging of small particles into larger ones by zoo-
plankton egestion. An alternative interpretation is to assume
the sinking speed to be constant while the remineralisation
rate decreases with depth. This implies that particles may be-10

come more refractory and less susceptible to bacterial degra-
dation, or that bacterial activity is reduced by the decrease
in temperature at depth. Other parameterisations of particle
flux profiles have been applied in global models, e.g., con-
stant sinking and remineralisation (leading to an exponen-15

tial flux curve; e.g., Bacastow and Maier-Reimer, 1991), or
models that explicitly simulate different groups of particles
with different size and properties (e.g., Gehlen et al., 2006;
Schwinger et al., 2016). Cabre et al. (2015) provide an excel-
lent overview about different parameterisations for models20

applied in CMIP5.
So far few attempts have been made to systematically cal-

ibrate parameterisations of particle export and remineralisa-
tion in global biogeochemical models. Kwon and Primeau
(2006) assimilated annual mean phosphate data into a sim-25

ple global ocean biogeochemical circulation model to opti-
mise globally uniform b. Their study shows that the value of
of b≈ 1 can be well identified for their model when using
global climatological data. According to their approach, the
tracer distributions are dynamically consistent with their so-30

lution of ocean circulation. Such consistency is relevant and
b may not be derivable by applying any simulated circulation
field to climatological data, e.g. of phosphate (Wilson et al.,
2015). Furthermore, Wilson et al. (2015) also discussed how
the identification of b is affected by uncertainties in the trans-35

port and remineralisation of dissolved organic matter.
In a recent study of Kriest et al. (2017) the export parame-

ter b turned out to be well identifiable, with an optimal value
of ≈ 1.3, based on annual mean climatologies of dissolved
nutrients and oxygen. As in Kwon and Primeau (2006) their40

biogeochemical model explicitly resolves seasonal cycles.
Plankton parameters that act on seasonal scale within the up-
per, near surface layers are more difficult to identify, if annual
mean climatological data are used. Figure (8) exemplifies this
difficulty, based on results from Kriest et al. (2017) who op-45

timised six biogeochemical parameters in total. The exam-
ple reveals differences in the sensitivity of the cost function
with respect to variations of two contrasting parameters, the
zooplankton mortality (κzoo) and b respectively. These dif-
ferences can be visualised from projections of the parameter-50

cost function manifold (Θ,J(Θ)), as obtained during param-
eter optimisation (Schartau and Oschlies, 2003; Ward et al.,
2010). To better illustrate the discrepancy between the two
parameters in Fig. (8) we defined two arbitrary cost function
threshold limits ∆J = J(Θ)/J(Θ̂)− 1 and ∆J = 0.01 and55

∆J = 0.001 (see Eq. 16 in Sect. 5). The projected pattern
of the zooplankton mortality reveals a much smaller sensi-
tivity of the cost function (larger uncertainty), compared to
the robust (nearly quadratic) pattern of the export parame-
ter b. Furthermore, for κzoo some bimodal structure exists 60

within ∆J ≤ 0.01, which impedes parameter identification.
Clearly, annual mean climatologies of dissolved inorganic
tracers provide only little information on plankton dynamics
in the upper layers, while particle export dynamics (which
integrates over large spatial and temporal scales) are well 65

constrained by the large-scale distribution of dissolved inor-
ganic tracers. Thus, simulated tracer concentrations at great
depth do not critically depend on every parameter that speci-
fies growth and mortality of the plankton.

In the presence of very diverse time and space scales, 70

which is typical in global biogeochemical ocean modelling,
the selection of data sets and the definition of the error
model strongly affect parameter identification. We also stress
that parameter estimates of global biogeochemical modelling
studies are conditioned by the applied circulation, which can 75

have a large impact on simulated tracer fields (Najjar et al.,
2007), and by the boundary conditions of e.g. of organic mat-
ter burial at the sea floor (Kriest and Oschlies, 2013). To date,
it remains unclear whether parameters optimized for a given
circulation field will improve model simulations in a differ- 80

ent setting, e.g. with a different circulation or forcing, as in-
duced by climate change scenarios.

9.4 Impact of parameter uncertainties on climate
model projections into the future

A typical large-scale application of marine biogeochemical 85

models is their use in ESMs from which projections of fu-
ture climate change can be derived for different emission
and land-use scenarios. Output of such models helps to in-
form scientists, but also society and policymakers about pos-
sible consequences of human action on the climate system. 90

A key example is the most recent assessment report of the
IPCC that featured ESMs with fully interactive carbon cy-
cles (IPCC, 2014). An appropriate treatment of the uncertain-
ties contained in the applied scenarios and employed mod-
els is crucial for correctly interpreting model projections, in- 95

forming the societal debate about climate policies and thus
strengthening the base for developing relevant measures. A
full treatment of uncertainties in the projections of ESM is
beyond the scope of our review and we can only address this
topic here briefly. 100

A comprehensive attempt to account for uncertainties in
the models when determining likelihoods of reaching cer-
tain climate goals, like the politically widely accepted 2◦C
warming goal, was presented by Steinacher et al. (2013) and
Steinacher and Joos (2016). Employing a somewhat sim- 105

plified ESM of intermediate complexity, they ran perturbed
parameter ensembles with some ad hoc assumptions about
prior probability distributions of the model parameters. The
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skill of individual ensemble members was then measured
by comparison of model hindcasts with available observa-
tions of the current state of the Earth system. A single, prag-
matic skill score was used in the assessment and led to an
improved posterior estimate of parameter probability distri-5

butions. The model dynamics then mapped the parametric
uncertainty onto the model projections. From the large en-
semble of model solutions that were, in hindcast mode, not
inconsistent with the observational constraints, the authors
could then successfully derive likelihoods of reaching vari-10

ous climate goals.
Note that reproducing the current climate state is merely a

necessary condition for model skill, but may not constrain the
model’s ability to correctly simulate the sensitivity to natural
or anthropogenic environmental change. Observational infor-15

mation on past climate change, such as glacial-interglacial
changes may help to better constrain the models’ sensitiv-
ity to changing environmental conditions, even though no
historical analog of the current anthropogenic perturbation
is known in terms of the rapid rate of change. Still, any in-20

formation about model sensitivities to applied perturbations
is extremely valuable, be it derived from lab or mesocosm
experiments or from historical information. DA is a promis-
ing tool to combine such information on very different space
and time scales and to develop an improved understanding25

of how the earth system works and may respond to ongoing
environmental change.

10 Summary and perspectives

The survey of Arhonditsis and Brett (2004) revealed that
relatively few aquatic biogeochemical modelling studies a)30

considered parameter optimisation (8.5%), b) provided val-
ues of data-model misfit (30 %), or c) performed quantitative
parameter sensitivity analyses (28%). Since then there has
been a vast increase in the number of those studies where
the assimilation of biological and chemical data into plank-35

tonic ecosystem models is described. Likewise, we now find
a wide field of different studies that address problems of pa-
rameter identification. Although positive, this development
has also brought up diverse approaches whose contexts and
connections are sometimes difficult to understand. Further-40

more, we face a variety in terminology and notation, which
makes it even more arduous to comprehend the various stud-
ies and the significance of their findings. With this review we
aim to provide support to readers.

The theoretical backbone for studies of parameter esti-45

mation and uncertainty builds first of all on how model er-
rors and observational errors are treated. Specifying the error
model is an essential first step in the workflow of parameter
identification, enabling the subsequent derivation of condi-
tional probabilities and cost functions. Our review shows that50

there is no ultimate standard error model or procedure but a
meaningful practice is to become explicit about these errors

and to reconsider the underlying assumptions for discussions
of parameter estimates and model results. Whether the DA
approach conserves mass and/or energy is relevant in this re- 55

spect, depending on the scientific problem addressed. Some
ecosystem model applications may not critically depend on
mass conservation, e.g. when simulating plankton growth to
act as food source in regional simulations of fish stock size
and recruitment. In biogeochemical applications the conser- 60

vation of mass can be essential, in particular for large-scale
or global ocean applications.

As in many other fields of science, the basic estimation
methods considered in plankton ecosystem DA studies are
Bayesian estimation and Maximum Likelihood. Their ma- 65

jor differences are how prior information enters the DA ap-
proach and how estimates and uncertainties are evaluated.
The consideration of prior parameter values from preced-
ing studies is meaningful and likely alleviates parameter
identification problems. A drawback then is that asymptotic 70

(point-wise) approximations of posterior uncertainty covari-
ance matrices, as described herein, may not apply. But when
the model parameters in question have been estimated be-
fore in a number of comparable settings, it may seem a tragic
waste of effort and information to pursue an ML approach 75

without prior information. A similar issue arises in specify-
ing an “ignorance” prior, and the choice of using BEs when
no prior information is available can also be questioned.

We included a section on typical basic parameterisations
of plankton models, mainly to stress that the treatment of 80

light- and nutrient limitation may differ between modelling
studies. Furthermore, we touched on the problem of resolv-
ing phytoplankton losses specified by e.g. grazing and aggre-
gation parameters. Latest plankton growth models account
for physiological acclimation effects, responsible for varia- 85

tions between carbon fixation, cellular allocation of nitrogen
and phosphorus, and Chla synthesis. Those variations are rel-
evant for DA, in particular if flux estimates of carbon (e.g.
CO2 utilisation and respiration) are of primary concern. It is
thus worthwhile to discuss some of the underlying dynam- 90

ics that can be resolved with the plankton ecosystem model
rather than treating it as a “black box” for simulating Chla
concentrations.

Many acclimation or optimality-based models have been
qualitatively calibrated with data from laboratory experi- 95

ments. DA approaches for parameter estimation were only
done in a few of these studies. Going from laboratory data
to the assimilation of data from mesocosm experiments can
be a useful intermediate step for testing e.g. acclimation or
adaptive models and for assessing uncertainty ranges of pa- 100

rameter values. In this respect, parameter estimates of one
experiment can be used for cross-validation with data of an-
other independent mesocosm experiment. On the one hand,
simulations of the physical environment of mesocosms are
easier to implement, compared e.g. to setting up a 1D model 105

for an ocean site. On the other hand, parameter estimates ob-
tained from the assimilation of mesocosm data might not be



32 Schartau et al.: Parameter identification in planktonic ecosystem modelling

representative for ocean simulations. Although more diffi-
cult, model cross-validations between different ocean sites
or regions provide valuable insight, eventually specifying a
model’s predictive skill under oceanic conditions.

Some studies have shown that an increase in model com-5

plexity may not automatically improve predictive skill. This
can be partially attributed to over-fitting, which can yield
parameter estimates that improve model-data misfits at one
site but induce unreasonable model results at other ocean
sites. Such results illustrate the vital role played by well-10

designed cross- validation experiments. A critical element of
cross-validation is whether the assimilated data are truly in-
dependent from the data used for testing model skill. This
is, for instance, not typically the case if observations from
different years but of the same characteristic region are used15

unless inter-annual variability dominates over the repeating
seasonal dynamics. Regional differences between parameter
estimates are informative and have the potential to reveal a
model’s limitations in a way that can suggest improvements.

Parameter identification becomes more difficult as we go20

from local and regional scale to large-scale and global model
simulations. Algorithms for parameter optimisation require
multiple model evaluations, which can be computationally
expensive for global biogeochemical models. The procedure
for optimising parameter values can be accelerated with the25

application of an emulator. We discussed the use of dynam-
ical and statistical emulators. The dynamical emulator is a
simpler representation of a full model operator that is com-
putionally expensive, thereby approximating the underlying
model dynamics. A statistical emulator interpolates model30

output from a set of training runs with different values as-
signed to the parameter vector. Based on the derived statis-
tics it can be applied to approximate unknown model out-
put for other input parameters. Both emulator approaches
have been shown to efficiently support the search for op-35

timal parameter values. The development and use of emu-
lators of biogeochemical models will likely gain in impor-
tance along with improved computer performance. A promis-
ing approach is to apply models with coarser resolution or a
series of 1D models (distributed over ocean regions) as dy-40

namical emulators for 3D global biogeochemical model sim-
ulations. Studies have shown that sufficient accuracy of the
emulator can be achieved with repeated intermediate align-
ments of the dynamical emulator. Alternatively, differences
between 1D- and 3D results can be statistically quantified as45

emulator uncertainty, impacting on the parameter search pro-
cess and used to modify the emulator-based cost function.

Parameter identification in global marine biogeochemi-
cal circulation models is still in its infancy, due to the high
computational requirements, the huge range of spatial and50

temporal scales to be covered, and the comparatively sparse
spatial-temporal distribution of data in the ocean. In contrast
to local optimisations, the consideration of all relevant spatial
and temporal scales has one major advantage in that it pro-
vides the opportunity to rigorously test and benchmark bio-55

geochemical models. In addition to tasks and complications
mentioned in our review, care must be taken in the selection
of appropriate data sets, assuring their relevance (or poten-
tial) for answering the questions posed. Moreover a critical
evaluation of the respective roles of physics, biogeochem- 60

istry, exchanges across the model’s boundaries and, possibly,
ecology is an as yet unresolved task.

A recurring problem associated with parameter optimisa-
tion is that marine biogeochemical models are often unreal-
istically simplified, while at the same time remaining uncon- 65

strained by data. Ideally, models should be developed to min-
imise the number of uncertain parameters yet maintain a level
of complexity that is suited to their intended use in answering
specific questions (e.g., Denman, 2003). To accomplish this
we may not only think of new model approaches, but also of 70

collecting respective data that can help to constrain solutions
of these models.

10.1 Modelling prospects

A commonality of new model formulations is to focus on
principles, e.g. by considering the adaptation of traits towards 75

optimal trade-offs (e.g., Wirtz and Pahlow, 2010; Dutkiewicz
et al., 2009; Smith et al., 2015), or by accounting for allomet-
ric relationships in growth and plankton interaction (e.g., Ba-
nas, 2011; Acevedo-Trejos et al., 2015), or by using micro-
bial traits in a functional gene approach (Reed et al., 2014). 80

Recent studies have begun to simulate ecosystem complex-
ity and allow the model to “self-organise” according to a rel-
atively simple set of ecological and physiological rules or
“trade-offs” (Bruggeman and Kooijman, 2007; Follows et al.,
2007). A major advantage of this approach is that the mod- 85

els are able to resolve greater ecological diversity with fewer
specified parameters whose values can be assumed to be spa-
tially invariant. This diversity allows the simulated plankton
community to reorganise across broad environmental (e.g.
spatial) gradients. But the identification of the most impor- 90

tant trade-offs governing competition between organisms re-
mains a major challenge (Tilman, 1990; Litchman et al.,
2007, 2012).

Perhaps one of the most remarkable developments is the
revival of thermodynamically inspired ecosystem theories 95

for modelling biogeochemical cycling in the oceans (e.g.,
Vallino, 2011). In the review of Vallino and Algar (2016) the
concept and potential of the maximum entropy production
principle are addressed. In this modelling approach life in the
ocean is perceived as units of e.g. covalent bonded chains of 100

carbon atoms that create disequilibria of energy and mass be-
tween organisms. These disequilibria lead to different func-
tional pathways in biogeochemical cycling, accompanied by
a flexible evolution of structural dependencies between nu-
trient or substrate availability, plankton and other organisms. 105

Such novel or revised approaches are expedient and help to
create new ideas in terms of how to design models and mea-
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surement strategies that may alleviate the problems of param-
eter identification.

10.2 Examples of recent advances in data availability

The use of previously underexploited data sets (for example
those linking organism size to key ecophysiological rates;5

Baird and Suthers, 2007; Banas, 2011; Ward et al., 2012)
have the potential to bring new constraints on model be-
haviour, and may go some way to alleviating the degree of
underdetermination that is typically associated with parame-
ter estimation. New data sources, such as the Bio-Argo pro-10

filing floats, should also advance our understanding, e.g. by
documenting seasonal variations of deep Chla maxima in re-
mote oligotrophic regions (Mignot et al., 2014). These Bio-
Argo profile data have the advantage that they resolve bio-
geochemical properties with a relatively high frequency of15

five to ten days over a sampling period of up to two years.
A substantial fraction of recent fluourescence measure-

ments from Bio-Argo platforms has already been included
in a new global Chla database described and provided by
Sauzède et al. (2015b). Their quality-controlled data com-20

prise profiles of total Chla concentration together with some
additional estimates of the relative contributions from pico-,
nano-, and micro phytoplankton. The employed relationship
between the relative size distributions and total Chla concen-
tration was derived from an extensive analysis of High- Per-25

formance Liquid Chromatography pigment data in combina-
tion with Chla fluorescence measurements (Sauzède et al.,
2015a). The consideration of these profile data will possibly
facilitate the estimation of photoacclimation parameters in
particular, and of phytoplankton growth parameters in gen-30

eral.
Data products from remote sensing measurements are con-

tinueously improved and new empirical relationships be-
tween photosynthesis and respiration are derived to estimate
net community production (NCP) on the global scale (e.g.,35

Westberry et al., 2012; Tilstone et al., 2015). These spa-
tially resolved estimates may help to constrain parameters
of plankton respiration and remineralisation rates. In spite of
large uncertainties, the assimilation of NCP estimates from
remote sensing into biogeochemical models may impose ad-40

ditional constraints on parameters that affect solutions of air-
sea exchange of CO2 and of organic matter export. In this re-
spect we also stress that upgrades and analyses of time-series
data are more then ever essential to make inference about or-
ganic matter flux and ecosystem functioning (e.g., Emerson,45

2014), which may introduce additional constraints for iden-
tifying values of a larger number of parameters of plankton
ecosystem models. Finally, we point to latest products from
compilations and syntheses of oceanic and atmospheric CO2

data collected by a large international community (Röden-50

beck et al., 2015; Bakker et al., 2016). Data products like
air-sea CO2 flux of specified ocean regions (biomes), as de-
rived in (Rödenbeck et al., 2015), in combination with data

of nutrient concentrations and O2 will likely put new light on
those parameters that determine variations of the elemental 55

stoichiometry (C:N:P:O2) in model results of inorganic and
organic matter cycling.

10.3 Harmonising research foci in marine ecosystem
modelling and data assimilation

The application of DA methods has become standard for cal- 60

ibrating marine ecosystem- and biogeochemical models. But
scientific insight can differ between DA studies considerably.
In the literature we find that there is often an imbalance be-
tween level of sophistication of the ecosystem model used
and the DA method employed. This is likely due to the fact 65

that marine ecosystem-/biogeochemical modelling studies
integrate knowledge from different scientific fields, of which
each has its own foci, objectives, and expertise i.e. plankton
ecology, physical oceanography, marine geochemistry, and
mathematics and statistics. It is difficult to track major ad- 70

vancements in marine ecosystem modelling when consider-
ing the different views from each of these research fields.
Furthermore, the design of experimental studies and the col-
lection of field data are often achieved without harmonising
the needs of biologists with the modelers’ exigencies (Flynn, 75

2010).
Facets of parameter identification in biological modelling

disclose major commonalities and disparities between the
objectives expressed in the different research fields. Dis-
cussions on parameter identification are therefore helpful to 80

achieve a common understanding and to promote communi-
cation between observers, modelers, and statisticians. Prob-
lems of parameter identification may thus be well addressed
by pooling expertise across multiple disciplines, without los-
ing sight of scientific objectives. Such joint efforts should 85

help planktonic ecosystem models to fulfil their potential as
quantitative tools for aquatic sciences.
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Figure 1. Time evolution of parameter estimates in a simulation test of an Ensemble Kalman Filter using untransformed data (a-c, top
row) and using logarithmic transformed data (d-f, bottom row) (Simon and Bertino, 2012, Fig. 3). Solid lines and shading show ensemble
means and standard deviations averaged over 20 simulation experiments, while dashed lines show the true parameter values. The data were
generated using Gamma-distributed observational errors with standard deviation 30% (see Simon and Bertino, 2012). A transformation
can significantly reduce the bias of parameter estimates by the end of the assimilation period. Figure was redrawn from results provided by
Ehouarn Simon, with permission from Elsevier. Copyright of figure content by Elsevier.
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Figure 2. Cost function contours when varying values of a combination of two parameters J(Θ̂m±∆m,Θ̂n±∆n) around the optimum
estimate at (Θ̂m,Θ̂n,min(J)), while values of all other parameters remain fixed. Each plot resolves a pairwise combination out of three
parameters that all specify phytoplankton biomass losses. The two columns reveal differences in error margins due to different cost functions
with same data for the same model: a) with covariances explicitly regarded and b) all data are assumed to be independent. First row (1a
and 1b): combination of maximum grazing rate (Θ1 = gm) and carbon exudation rate (Θ2 = γC ). Second row (2a and 2b): combination
of the aggregation parameter (Θ3 = Φagg) and γC . Third row (3a and 3b): combination of gm and Φagg. Markers show credible regions of
parameter estimates obtained with Markov Chain Monte-Carlo (MCMC) method (dots for J with covariances, asterisks for J with variances
only). Error ellipses (lines) depict point-wise 95% confidence regions derived from an approximated and inverted Hessian matrix, according
Eq. (22). The cyan colored region embeds all cost function values that are lower than an upper threshold 4J∗(α= 0.05), derived from a
distribution of J(Θ̂)− J∗(Θ̂), where J∗(Θ̂) are cost function values at Θ̂ using resampled data (Fig. B1 in Appendix).
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Figure 3. Predictive skill for five ecosystem models of different complexity, after assimilation of satellite data (black) and after assimilation
of satellite data with 20% added noise (grey) (Xiao and Friedrichs, 2014a). The most complex model appear to be the most sensitive to errors
in the data, in terms of its cross-validated predictive skill.
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Figure 4. Model selection metrics at the Bermuda Atlantic Time-series Study (BATS) and the North Atlantic Bloom Experiment (NABE),
as a function of complexity across a suite of nested ocean biogeochemical models (Ward et al., 2013). The least-squares misfit, J (left-hand
axis), increases monotonically with decreasing complexity, as it does not penalise model complexity. The likelihood ratio test, F (first right-
hand axis), compares each reduced model to the full model, and selects the simplest that is not significantly worse than the full model (F<F
threshold). The AIC and BIC (second right-hand axis) both contain terms that account for model data misfit and complexity, and the optimal
model is the one with the lowest score. In each case, the optimal model is indicated by a dot.
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Figure 5. Spatially varying estimates for the phytoplankton maximum growth rate (µm in unit d−1) and photosynthetic efficiency (αphot, in
m2 W−1 d−1) used in a 3D modelling study of the North Atlantic (Losa et al., 2006). The parameter estimates are based on those obtained
in a previous assimilation of satellite chlorophyll data (Losa et al., 2004). Permission to include Fig. (2) from Losa et al., (2006) was granted
by the authors. Figure is used with permission from Elsevier. Copyright of original figure by Elsevier.
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zero-dimensional context, forced by time series of physical fields, combined with vertical profiles of annual
mean nitrate concentration.

The method was successful in identifying a good number of potential calibration groups. The
optimal fit to the validation data is given by two regional parameter sets dividing the domain as shown in
figure 1. This calibration has an associated misfit-based cost 25% lower than that for the parameter set
obtained using the full set of calibration stations. The fact that further division does not significantly
improve the fit suggests that the observed differences between annual cycles in the Atlantic Arctic, Atlantic
Subarctic and North Atlantic Drift provinces can be accounted for by differences in the physical forcing.

Posterior parameter distributions were generated by starting the parameter optimisation procedure
from different points in parameter space. These showed that most of the model parameters are poorly
constrained by the observations, contributing to a high degree of uncertainty in model output for the
unobserved variables and suggesting that limited progress towards a definitive model calibration can be
made without including other types of observations. However, the model fails to reproduce much of the
observed variability in the annual cycle on time scales of weeks to months, possibly because of
inaccuracies in the forcing data, so conclusions based on this study must be treated as preliminary.
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FIG. 1 : Geographic extent of the two sub-domains giving the optimal calibration. Biogeochemical
provinces defined by Longhurst [1] are shown for reference. ARCT: Atlantic Arctic Province; SARC:
Atlantic Subarctic Province; NADR: North Atlantic Drift Province; GFST: Gulf Stream Province; NAST:
North Atlantic Subtropical Gyral Province.

Reference

[1] A. Longhurst. Ecological geography of the sea. Academic Press, San Diego, 1998.

Figure 6. Geographic extent of the two sub-domains giving the optimal calibration in the split-domain calibration study of Hemmings et al.
(2004), shown here in yellow and green. Also shown are the distributions of the sites used from the calibration set to obtain the parameter
vectors for each sub-domain and the sites used for cross-validation. Biogeochemical provinces defined by Longhurst (1998) are shown for
reference. ARCT: Atlantic Arctic Province; SARC: Atlantic Subarctic Province; NADR: North Atlantic Drift Province; GFST: Gulf Stream
Province; NAST: North Atlantic Subtropical Gyral Province. Figure (6a) of Hemmings et al., (2004) is shown with permission from Elsevier.
Copyright of original figure by Elsevier.
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Figure 7. Simulated (a,c) and emulated (b,d) RMS (root mean square) error depending on the maximum growth rate of phytoplankton and
the maximum grazing rate. Simulated and emulated RMS-errors are provided relative to “synthetic observations”, based on a simulation for
a given parameter set (HI=15 W m−2; m=0.06 d−1; µmax=0.51 d−1; Hn=0.8 mmol N m−3; mPD=0.1 d−1; mDN=0.1 d−1; HZ=0.9 mmol N
m−6; mZN=0.01 d−1; mZD=0.01 d−1; gmax=0.21 d−1), which is disrupted by reddish noise (AR(3)-process) with a standard deviation of
0.09 mmol N m−3. (Notation after Löptien and Dietze, 2015). Sub panels (a,b) are based on all prognostic variables, while the RMS error in
(c,d) is based on nitrate (NO−3 ) only (c,d). Red crosses mark the training data.
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Figure 8. Projections from parameter-cost function manifold (Θ̂l,J(Θ)) as obtained during the optimisation of six biogeochemical param-
eters. Parameters shown are quadratic zooplankton mortality κzoo (left panels) and rate of vertical increase of particle sinking speed, a,
expressed as quotient b= r/a, where r is particle remineralization rate (right panels). Upper panels: cost function (volume-weighted root-
mean square error, divided by global mean concentration of each tracer) expressed as its deviation from the minimum. Parameters of all
model simulations in the optimisation trajectory were grouped into 50 classes. Grey bars show minimum cost within each class. Red and
black horizontal lines indicate deviation from minimum cost of 1% and 0.1%, respectively. Squares show the cost of each individual. Note
that the y-axis only extends to 5% above minimum cost at (Θ̂,J(Θ̂). Lower panels: parameter distribution (PDF) of all model simulations,
whose cost do not exceed a threshold limit of 4J = 1.01 · J(Θ̂) (1%, red bars) or 4J = 1.001 · J(Θ̂) (0.1%, open bars) 0.1% (open bars)
of the minimum cost, see Eq. (16 and text).
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Appendix A: The Variable Lag Fit with unknown error
variances (Sect. 4.4)

In a Variable Lag Fit (VLF), we assume that the truth at time ti is
related to the model output by a kinematic model error (ζ) in phase
or time lag τi. Equation (2) becomes:5

xt(ti) = x(ti + τi) (A1)

A notable feature of this model error representation is that it intro-
duces unknowns τ that can be conditionally optimised by search-
ing forwards and backwards in time within saved model output, i.e.
without rerunning the dynamical model. For the demonstration in10

Fig. (A1) we assumed that the time lag errors are normal and inde-
pendent: τi ∼N(0,σ2

τ ). This independence assumption may seem
restrictive; for example, a misplaced eddy might be expected to im-
pose some correlation between the τi for a set of cruise data. Nev-
ertheless, we find that the method is somewhat robust to neglected15

lag correlation. Moreover, this formal neglect enables a large com-
putational simplification since the lags can then be optimised one
by one, see Wallhead et al. (2006).

For the observational error in Fig. (A1) we assumed lognor-
mal errors with no interpolation or conversion factors, and that all20

measured variables were sampled simultaneously. Equation (3) be-
comes:

yij = xtij · exp(εij −
σ2
j

2
) (A2)

at each measurement time ti and for each measured variable j (Nu-
trient, Phytoplankton and Zooplankton). For simplicitly we further25

assumed that the observational errors were independent between
measurements and data types, hence εij ∼N(0,σ2

j ). Note that the
ε may be considered to include a component of kinematic model
error (ζ) without affecting the parameter estimation, hence we re-
fer to them as residual errors below. Assuming that the ecosystem30

parameters θe, time lags τ , time lag variance στ and observational
error variances σ are all unknown, a joint posterior mode estimate
of Θ = (θe,τ ,στ ,σ) is obtained by maximising the posterior density
p(Θ | y), equivalent to minimising the following cost function:

J(Θ) =n logσ2
τ +

∑
i

τ2
i

σ2
τ

+n
∑
j

logσ2
j35

+
∑
ij

(logyij − logxj(ti + τi) + 0.5σ2
j )2

σ2
j

(A3)

To test this cost function, we simulated data from the NPZD model
of Oschlies and Garçon (1999) in a 0D setting using the parame-
ters values and sine-squared forcing function from Wallhead et al.
(2013). Three years of simultaneous weekly samples of N , P , and40

Z were simulated assuming independent normal time lag errors
with standard deviation στ = 10 days and independent normal resid-
ual errors σlogN = 0.1, σlogP = 0.2, σlogZ = 0.3. The data were
assimilated into the same NPZD model by one of two methods.
In the ‘standard fit’, no time lag error was assumed and search45

parameters Θ = {θe,σlogN ,σlogP ,σlogZ} were estimated by min-
imising only the final two terms in A3 with τi = 0 for all i. In
the VLF, Θ = {θe,τ ,στ ,σlogN ,σlogP ,σlogZ} was estimated by min-
imising Eq. (A3). In both cases, we assume uncertainty in only two
of the 15 biological parameters, namely the phytoplankton maxi-50

mum uptake rate Vm and the zooplankton maximum grazing rate

g (hence θe = (Vm,g)). For all search parameters, allowed ranges
were ±50% about the true values, equivalent to unbiased uniform
priors with 29% prior uncertainty. Initial values of the search pa-
rameters were chosen at random from this prior, and optimisations 55

were repeated over 10 random restarts to avoid local minima. The
experiment was repeated over 20 simulated data sets to obtain the
statistics in Table (A1).

Caution must be exercised here regarding the estimation of στ .
If the prior for στ permits very low or zero values then the MAP 60

estimation will push the estimate of στ towards zero irrespective of
its true value. This is because, unlike the fourth term in Eq. (A3), the
second term can be made exactly zero with τ = 0 as long as σ2

τ > 0,
in which case the negative contribution of n logσ2

τ may produce a
spurious, deeper minimum of J near to στ = 0. We have found that 65

this spurious minimum need not influence estimation as long as the
sample size and the lower limit of the allowed range or rectangular
prior for στ are sufficiently large, Fig. (A2). An alternative solution
may be to assume a prior that drops smoothly to zero as σ2

τ → 0,
such as an inverse gamma distribution (cf., Kavetski et al., 2006). 70

To investigate estimation of the time lag variance parameter στ
we obtained cost function profiles by fitting the same data set using
a range of fixed values of στ , Fig. (A2). We see that with three years
of weekly NPZ sampling the cost function function has a strong
minimum close to the true value of 10 days, and this minimum 75

should be approached even if the allowed range (prior uncertainty)
for στ reaches as low as 1 day. However, if we decrease the number
of sampled years, or especially the number of sampled variables,
the minimum becomes weaker and a spurious minimum close to στ
= 0 starts to encroach on the profile. A sufficiently low minimum 80

allowed value σ(min)
τ may then lead to estimates converging to this

spurious minimum.
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Figure A1. Demonstration of the Variable Lag Fit (VLF) applied to a simulated data set. a) shows the system trajectory with the true
parameter values (solid lines), the data (dots) simulated assuming normal and independent time lag errors (στ = 10 days) and residual errors
(σlogN,P,Z = 0.1, 0.2, 0.3, see Table A1), and the system trajectory with the VLF parameter estimates (dashed lines, overlapping with solid).
b) compares the true time lags (solid) with those estimated from the VLF (dashed). c) compares the true residual errors with those estimated
by the VLF (dashed, same colour code as in a)). Three years of data were assimilated but only the initial and post-bloom period of the first
year is shown for clarity.
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Figure A2. Profiles of the Variable Lag Fit cost function (-2× posterior density) relative to the minimum value for a range of assumed values
of the time lag error standard deviation στ . For each στ , Eq. (A3) was minimised over (θ, τ , σlogN,P,Z ) for the same data set. Different
curves correspond to different scenarios for the number of sampled years (at weekly sampling frequency) and number of simultaneously
sampled variables (black = 3 years, blue = 2 years, solid lines with circles = Nutrient-Phytoplankton-Zooplankton sampling, dashed lines
with triangles = Nutrient-Phytoplankton sampling). The extent to which each curve has a deep minimum close to the true value στ (true) =
10 days indicates the feasibility of estimating στ for the corresponding sampling plan.
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Table A1. True parameter values and means ± 1 SD of estimates over 20 simulated data sets, using a standard fit method and a variable lag
fit method (see Eq. A3). Three years of weekly NPZ data were simulated using the true values (first row) for the maximum nutrient uptake
rate Vm, zooplankton grazing rate g, residual standard deviations σlogN,P,Z , and time lag standard deviation στ (for experiments with lags
imposed). With no time lags, the standard fit accurately recovers the true parameter values (third row), but with time lags (fourth row) the
standard grazing rate estimates are biased and imprecise, while the residual variances have strong positive bias as they are forced to account
for the time lag errors. The variable lag fit avoids these biases and accurately partitions the variance between residual error and time lag error
(fifth row).

Lags? Vm (day−1) g (day−1) σlogN σlogP σlogZ στ (days)
True values — 0.66 2.00 0.10 0.20 0.30 10.0

First guesses — 0.66 ± 0.19 2.00 ± 0.58 0.10 ± 0.03 0.20 ± 0.06 0.30 ± 0.09 10.0 ± 2.9
Standard fit No 0.66 ± 0.00 2.03 ± 0.07 0.10 ± 0.01 0.20 ± 0.01 0.31 ± 0.01 —
Standard fit Yes 0.68 ± 0.03 2.61 ± 0.44 0.27 ± 0.02 0.46 ± 0.07 0.75 ± 0.14 —

Variable Lag Fit Yes 0.67 ± 0.01 2.03 ± 0.19 0.07 ± 0.01 0.18 ± 0.02 0.29 ± 0.02 9.2 ± 0.7
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Appendix B: Mesocosm example (Sect. 5.4)

For our example we account for six different types of measurements
from mesocosms of the Pelagic Ecosystem CO2 Enrichment Study
(PeECE I, Engel et al., 2005; Delille et al., 2005): 1) dissolved in-
organic carbon (DIC, mmol m−3), 2) nitrate (NO−3 , mmol m−3), 3)5

nitrite (NO−2 , mmol m−3), 4) Chla (mg m−3), 5) PON (mmol m−3),
6) POC (mmol m−3). Concentrations of NO−3 and NO−2 are not ex-
plicitly resolved by the model and therefore these measurements
are combined. We refer to their sum as dissolved inorganic nitrogen
(DIN). Thus, the number of components of the observation vector10

is y isNy = 5. Observations are available on a daily basis over a pe-
riod of 23 days (Nt = 23). The vector includes daily means of nine
mesocosms at ti, i = 1, ... , Nt. The dynamical model equations de-
termine twelve state variables (Nx = 12). The corresponding vector
of model counterparts to observations is Hi (x), with carbon and15

nitrogen biomass concentrations of phytoplankton (PhyN & PhyC),
of zooplankton (ZooN & ZooC), of detritus (DetN & DetC), and
carbon concentration of (particulate) macrogels (GelC). The data-
model residual vector is:

di = yi−Hi (x) (B1)20

=


DICi
DINi
Chlai
PONi
POCi


︸ ︷︷ ︸

obs

−


DICi
DINi
θChl:C
i · PhyCi

(PhyN + ZooN + DetN)i
(PhyC + ZooC + DetC + GelC)i


︸ ︷︷ ︸

model

As an error model we assume additive Gaussian errors applying Eq.
(4) in Sect. (2.1.3). The standard errors (σi) represent the observed
variability between the nine mesocosms, based on daily measure-25

ments. Residual error covariance matrices can thus be derived for
every sampling day: Ri = Si C(y) Si . The matrices Si include
diagonal elements with σi at date ti, while off-diagonal elements
are zero. The elements of matrix C(y) represent correlations be-
tween the different types of observations, which were determined30

for two time intervals: exponential growth and post-bloom period.
The distinction between periods of bloom buildup and post-bloom
can be particularly meaningful when C and N (or P) data are assim-
ilated. Correlations can switch sign and thus the sign of the data-
model residual di = yi−Hi (x) matters. For example, PON and35

dissolved inorganic carbon (DIC) are strongly negatively correlated
during the exponential growth phase. During the post-bloom period
DIC may still decrease at times when PON concentration declines
as well, which yields a weak but positive correlation.
The standard errors (σi) can be written in matrix notation with off-40

diagonal elements being zero:

Si =


σ

(DIC)
i 0 · · · 0

0 σ
(DIN)
i · · ·

...
...

...
. . . 0

0 · · · 0 σ
(POC)
i

 (B2)

Correlations during exponential gowth (ti; i = 1, ... , 13) / and during

post bloom period (ti; i = 14, ... , 22): 45

C(y) =



DIC DIN Chla PON POC

1 0.96/0.2 −0.95/− 0.22 −0.97/0.20 −0.97/− 0.64

. 1 −0.96/− 0.37 −0.95/− 0.26 −0.95/0.16

. . 1 0.96/0.63 0.92/−0.26

. . . 1 0.94/−0.55

. . . . 1


(B3)

For days with some missing observations (e.g. no PON measure-
ments), the dimension of the vectors Hi (x) and yi and matrices
S(yi) and C(y) have to be adjusted for that date accordingly. We
disregard any prior information and the cost function (Eq. (13) in 50

Sect. 2.3) reduces to:

J(Θ) =

Nt∑
i=1

(yi−Hi (x))T R−1
i (yi−Hi (x)) (B4)

For our second cost function we assume all data to be independent
(i.e. all off-diagonals of C(y) are zero) and Eq. (B4) can be further
simplified to a sum over all individual vector components (indexed 55

with j):

J(Θ) =

Nt∑
i=1

Ny∑
j=1

(yij −Hij (x))2

σ2
ij

(B5)

The mesocosm model environment was coded in FORTRAN and
compiled as shared library so that we could use R as free soft-
ware environment for statistical computations. For parameter op- 60

timisation (simulated anneadling) and for the analysis of the poste-
rior (Markov chain Monte Carlo method) we applied the R package
FME of Soetaert and Petzoldt (2010).
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Figure B1. Observations of nine mesocosms (red asterisks), resam-
pled data (gray markers) and optimised simulation results (blue
lines): Dissolved inorganic nitrogen and carbon (DIN and DIC),
particulate nitrogen and carbon (PON and POC), and chlorophyll
a concentration (CHLa).
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Appendix C: Development of an adjoint model (Sect.
5.3.3)

Adjoint models can be used to efficiently compute the derivative
(or gradient) of the cost function J . In a parameter identification
problem, J depends on Θ both indirectly via the state variablex and5

also directly if prior information is incorporated. The optimisation
problem can thus be written as

min
Θ
J(x(Θ),Θ), (C1)

where x= (xi)
Nt
i=0 summarize all time instances of the model vari-

ables. To evaluate the derivative of the cost w.r.t. the parameters Θ,10

we may apply the chain rule and obtain

dJ

dΘ
=

Nt∑
i=0

∂J

∂xi

dxi
dΘ

+
∂J

∂Θ
, (C2)

where we omitted the arguments x(Θ) and Θ for brevity.
The needed derivatives of the model variables xi w.r.t. the pa-

rameters Θ can be obtained by taking the total derivative w.r.t. Θ of15

the equations of the dynamical model, Eq. (1):

dxi+1

dΘ
=
∂M

∂xi

dxi
dΘ

+
∂M

∂Θ
, i= 0, . . . ,Nt− 1. (C3)

This time propagation scheme for the derivatives is often called the
tangent linear model.

The idea behind adjoint models is to avoid this direct computa-20

tion, whose effort grows linear with the number of parameters Θ.
For this purpose, we re-formulate Eq. (C1), treat both arguments of
J independently and use the model equation as a constraint in the
optimisation process. This can be expressed as

min
(x,Θ)

J(x,Θ) s. t. xi+1 =M [xi,θe,f ] , i= 0, . . . ,Nt− 1. (C4)25

A useful overview of adjoint model construction and applications
is given in Kasibhatla (2000). An established approach to construct
an adjoint model is to generate adjoint code directly from the nu-
merical code of a model, based on algorithms that implement the
chain rule for automatic differentiation (Griewank, 1989, 2003). Ac-30

cording to the description of Giering and Kaminski (1998), a numer-
ical model can be treated as a composition of differentiable func-
tions, where each function represents a statement in the numerical
code. The differentiation of such composition can be automated by
highly sophisticated tools that yield tangent linear and adjoint FOR-35

TRAN code (e.g., Faure and Papegay, 1997; Giering and Kaminski,
1998). The application of adjoint construction tools (e.g., Tangent
linear and Adjoint Model compiler, TAMC, of Giering and Kamin-
ski, 1998) have been shown to perform well for studies with large-
scale ocean general circulation models that include even compli-40

cated boundary conditions (e.g., Stammer et al., 1997; Marotzke
et al., 1999; Wunsch and Heimbach, 2007; Heimbach et al., 2011).

Another approach is based on a discretised extended Lagrange
equation. Under certain mathematical assumptions, a solution of
Eq. (C4) corresponds to a saddle-point (x,Θ,λ) of the Lagrangian45

L(x,Θ,λ) = J(x,Θ) +

Nt−1∑
i=0

λ>i (M [xi,θe,f ]−xi+1) . (C5)

The vector λ= (λi)
Nt−1
i=0 contains the Lagrange multipliers λi,

each of which corresponds to one time step in the model. A saddle-
point of L satisfies the conditions

0 =
∂L
∂xi

=
∂J

∂xi
+λ>i

∂M

∂xi
−λ>i−1, i= 1, . . . ,Nt (C6) 50

0 =
∂L
∂Θ

=
∂J

∂Θ
+

Nt−1∑
i=0

λ>i
∂M

∂Θ
(C7)

0 =
∂L
∂λ

(C8)

Here, we again omitted the arguments, and set λNt = 0 in the first
equation to keep the compact notation. Note that all derivatives are
partial ones since the idea is to decouple x and Θ and realize their 55

dependency by implying the constraint in Eq. (C4). For simplic-
ity we neglect additional parameter bounds which otherwise would
affect Eq. (C7). Taking the derivative in Eq. (C8) for each λi sep-
arately results in the model equations (Eq. 1) again. From (C6) we
deduce 60

∂J

∂xi

dxi
dΘ

= λ>i−1
dxi
dΘ
−λ>i

∂M

∂xi

dxi
dΘ

, i= 1, . . . ,Nt

and apply Eq. (C3) to obtain

∂J

∂xi

dxi
dΘ

= λ>i−1
dxi
dΘ
−λ>i

(
dxi+1

dΘ
− ∂M

∂Θ

)
, i= 1, . . . ,Nt

where λNt = 0 as above. Summing up gives

Nt∑
i=1

∂J

∂xi

dxi
dΘ

= λ>0
dx1

dΘ
+

Nt∑
i=1

λ>i
∂M

∂Θ
65

= λ>0
∂M

∂x0

dx0

dΘ
+

Nt∑
i=0

λ>i
∂M

∂Θ

where we used again Eq. (C3) for i= 1. The first term includes
the derivative of the initial values x0 w.r.t. the paraemters and in
many cases will be zero. As result, the derivative of the cost can be
computed from Eq. (C2) using the multiplier vector λ, but without 70

the tangent linear model. Note that the derivative of the model w.r.t.
Θ in the sum is a partial derivative only, thus it does not include
the derivaitive of the model variables, but only those of the model
equations w.r.t. Θ.

The multipliers λi satsify a time-stepping scheme themselves, 75

but in reverse direction. Using the transposed form of (C6), we ob-
tain

λi−1 =

(
∂M

∂xi

)>
λi +

(
∂J

∂xi

)>
, i=Nt, . . . ,1, (C9)

with λNt = 0 (see above) as starting point of the computation. Since
here the transposed (or adjoint) of the linearisation of the model op- 80

eratorM occurs, these equations are referred to as the adjoint equa-
tions or the adjoint model. Accordingly, the multipliers λ are also
referred to as adjoint variables or adjoints. Given a model trajec-
tory x and using Eq. (C9), the trajectory of the adjoints λ can be
computed. It is crucial to note that both time-stepping schemes, for 85

the variables x and the adjoints λ, have opposite directions. This
requires – except for the case of a linear model M – the complete
model trajectory to be stored or recomputed in order to compute λ.

The adjoint model construction starting from a discretised ex-
tended Lagrange equation, Eq. (C5) can easily become extensive, 90
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in particular when discretisations of advection and mixing are in-
cluded in the model dynamics. Furthermore, even small changes in
the equations can entail considerable additional efforts in updating
the adjoint model equations. The application of automatic differ-
entiation tools may therefore be better suited for cases where the5

ecosystem dynamical model is subject to regular modifications.
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