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Abstract. To describe the underlying processes involved in oceanic plankton dynamics is crucial for the determination of

energy and mass flux through an ecosystem and for the estimation of biogeochemical element cycling. Many planktonic

ecosystem models were developed to resolve major processes so that flux estimates can be derived from numerical simula-

tions. These results depend on the type and number of parameterisations incorporated as model equations. Furthermore, the

values assigned to respective parameters specify a model’s solution. Representative model results are those that can explain5

data, therefore data assimilation methods are utilised to yield optimal estimates of parameter values while fitting model re-

sults to match data. Central difficulties are 1) planktonic ecosystem models are imperfect and 2) data are often too sparse to

constrain all model parameters. In this review we explore how problems in parameter identification are approached in marine

planktonic ecosystem modelling. We provide background information about model uncertainties and estimation methods, and

how these are considered for assessing misfits between observations and model results. We explain differences in evaluating10

uncertainties in parameter estimation, thereby also addressing issues of parameter identifiability. Aspects of model complexity

will be covered and we describe how results from cross-validation studies provide much insight in this respect. Moreover, we

elucidate inferences made in studies that allowed for variations in space and time of parameter values. The usage of dynam-

ical and statistical emulator approaches will be briefly explained, discussing their advantage for parameter optimisations of

large-scale biogeochemical models. Our survey extends to studies that approached parameter identification in global biogeo-15

chemical modelling. Parameter estimation results will exemplify some of the advantages and remaining problems in optimising

global biogeochemical models. Our review discloses many facets of parameter identification, as we found many commonali-

ties between the objectives of different approaches, but scientific insight differed between studies. To learn more from results

of planktonic ecosystem models we recommend finding a good balance in the level of sophistication between mechanistic

modelling and statistical data assimilation treatment for parameter estimation.20
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1 Introduction

The growth, decay, and interaction of planktonic organisms drive the transformation and cycling of chemical elements in the

ocean. Understanding the interconnected and complex nature of these processes is critical to understanding the ecological and

biogeochemical function of the system as a whole. The development of biogeochemical models requires accurate mathemat-

ical descriptions of key physiological and ecological processes, and their sensitivity to changes in the chemical and physical5

environment. Such mathematical descriptions form the basis of integrated dynamical models, typically composed of a set of

differential equations that allow credible computations of the flux and transformation of energy (light) and mass (nutrients)

within the ecosystem (U.S. Joint Global Ocean Flux Study Planning Report Number 14, Modeling and Data Assimilation,

1992).

Generalised mechanistic descriptions of how energy is absorbed and how mass becomes distributed in an ecosystem, already10

exist, such as dynamic energy budget models (Kooijman, 1986) or the metabolic theory of ecology (Brown et al., 2004).

But these theories still have limitations, and include incompatible assumptions (van der Meer, 2006). So far no fundamental

ecophysiological principle has been further exacted beyond the conservation of mass. To achieve balanced mass budgets is

one straw that biogeochemical modelers grasp at. A consistent theme running through most ecosystem models is therefore the

determination of the mass flux of certain biologically important elements, such as nitrogen, phosphorus, iron and carbon (N,15

P, Fe and C). Nonetheless, the precise details of how mass is transformed and allocated within an ecosystem is far from being

established. For this reason, we find a large variety of plankton ecosystem models that differ in their number of state variables

as well as in their parameterisation of individual physiological and ecological processes.

1.1 Mass flux induced by plankton dynamics

Dynamical marine, as well as limnic, ecosystem models usually start from a description of the build-up of biomass by photo-20

autotrophic organisms (phytoplankton) as these take up dissolved nutrients from the water column and exploit light energy

by photosynthesis. Phytoplankton biomass, as a product of primary production, is subsequently removed by natural mortality

(cell lysis due to starvation, senescence, and viral attack), predation by zooplankton, and vertical export away from surface

ocean layers via sinking of single or aggregated cells and of fecal pellets. Parameterisations of these three loss processes can

be interlinked e.g. grazing of phytoplankton aggregates by large copepods. Depending on the trophic levels considered, the25

predation among different zooplankton types (e.g. between herbivores, carnivores or omnivores) can be explicitly parame-

terised. Mortality and aggregation of phytoplankton cells and the excretion of organic matter (fecal pellets) by zooplankton

act as primary sources of dead particulate organic matter (detritus) that can be be exported to depth via sinking. Exudation

by phytoplankton and bacteria can be a major source of labile dissolved organic matter that represents diverse substrates for

remineralisation. The transformation of particulate and dissolved organic matter back to inorganic nutrients are parameterised30

as hydrolysis and remineralisation processes. Often hydrolysis and remineralisation are assumed to be proportional to bacterial

biomass, which is considered in many models. Bacterial biomass remains unresolved in some models where microbial rem-

ineralisation is parameterised only as a function of concentration and quality of organic substrates. At some level most models
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include a parameterisation to account for the net effect of higher trophic levels that are not explicitly resolved in the model.

This is usually formulated as a closure flux back to nutrient pools and whose rates simply depend on the biomass of the highest

trophic level resolved. These closure assumptions ensure mass conservation while neglecting the actual mass loss to higher

trophic levels like fish, which would be subject to changes in biomass on multi-annual rather than seasonal time scales. Every

marine planktonic ecosystem model can thus be described as a simplification of the dynamics inherent to a system of nutrients,5

phytoplankton, zooplankton, detritus, dissolved organic matter, and bacteria.

In many cases marine ecosystem models are embedded in an existing physical model setup that simulates environmental

conditions, advection and mixing of the biological and chemical state variables. Feedbacks from the ecosystem model states

on physical variables can be relevant (e.g., Murtugudde et al., 2002; Oschlies, 2004; Löptien et al., 2009; Löptien and Meier,

2011) but are hardly considered in current marine biogeochemical studies. With such feebacks resolved, solutions of the10

plankton ecosystem model may also induce changes in physical environmental conditions. So far, results of the physical model

component remain unaffected by ecosystem states in most studies and changes in mass flux are only attributed to alterations in

the planktonic ecosystem component, e.g. as a result of varying parameter values.

1.2 Parameters of plankton ecosystem models

Amongst the most influential model approaches to study the nitrogen flux through such marine plankton ecosystem at a local15

site was proposed by Fasham et al. (1990). Their model involves 27 parameters and the simulated N cycle was shown to

already depend on the value assigned to a single parameter, namely the sinking velocity of detritus. This stresses the invidious

situation of finding a reliable ecosystem model solution by choosing parameter values that are either uncertain or even unknown.

Laboratory measurements, as well as ship-based experiments with field samples, can provide information about the range of

typical values for some parameters, for example the maximum growth rate of photo-autotrophs or the maximum ingestion rate20

of herbivorous plankton. Other model parameters are extremely difficult to measure, like exudation rates of dissolved organic

carbon by phytplankton or by bacteria. Another difficulty is that parameter values from laboratory experiments are often specific

with respect to plankton species, temperature, and light conditions. Their values may not be directly applicable for ocean

simulations where parameter values need to be representative for a mixture of different plankton species in a continuously

varying physical environment. For example, for a natural composition of diverse phytoplankton cells that all differ in their25

genotypic- and phenotypic characteristics, we may expect values of some model parameters to follow a distribution rather

than having a single fixed value. In practice, fixed parameter values are prescribed and are assumed to reflect some prevailing

behaviour or characteristic (trait) of a mixed plankton community or of a particular plankton functional type. In the end, it is

the choice of these parameter values that determines a specific model solution of any ecological- or biogeochemical model

setup.30

1.3 The vital role of data

Model solutions of interest are typically those that can simulate and explain complex data. Data assmilation (DA) methods can

be utilised to obtain a best possible model solution in association with a particular set of parameter values. The comparison
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between model results and data is substantial and parameter estimates can be retrieved by indirect means. Parameter values of a

planktonic ecosystem model are adjusted until simulation results match available observations, which is a procedure of model

calibration. Optimal parameter values are regarded as those that minimise deviations between model results and observations

(data-model misfit) but are also in accordance to the range of values known from experiments or from preceding DA studies.

To determine optimal parameter estimates we have to account for uncertainties in data and in model dynamics as well, which is5

specified by an error model. Parameter estimates are thus conditioned by a) the dynamical model equations, b) the data, c) our

prior knowledge about the range of possible parameter values, and d) the underlying error model introduced to the data-model

misfit function (Evans, 2003).

Situations can occur where model results that are compared with data are insensitive to variations of some parameters.

Values of those parameters remain unconstrained by the available data, which is a problem of parameter identifiability. The10

availability of data thus places limitations on the number of model parameters whose values become identifiable. This in

turn sets restrictions on the complexity of plankton interactions that can be unambiguously confined during ecosystem model

calibration (Matear, 1995). Choosing appropriate model complexity is ambiguous and is still subject to discussion (e.g., Franks,

2002; Denman, 2003; Fulton et al., 2003; Anderson, 2005; Le Queré, 2006; Friedrichs et al., 2007; Franks, 2009; Kriest et al.,

2012; Ward et al., 2013), a situation which sustains large differences in the level of complexity of current plankton models.15

1.4 Inferences from data assimilation

Novel DA methods are predominantly devised for improving forecasts of model states and data-model misfits are treated as

errors due to some unresolved and unspecified system noise. For example, sophisticated sequential filtering methods (e.g.,

Natvik and Evensen, 2003; Dowd, 2007; Nerger and Gregg, 2008; van Leeuwen, 2010) are applied to account for and com-

pensate model deficiencies, improving state estimates e.g. for predictions of an algal bloom. This is often achieved to the cost20

of infringing mass conservation. To identify and gradually eliminate model deficiencies it is helpful to consider model state

and flux estimates that remain dynamically and ecologically consistent in terms of mass allocation. DA approaches that assure

mass conservation in ecosystem- and biogeochemical modelling also harmonise well with those DA methods that produce

dynamically and kinematically consistent estimates of ocean circulation (e.g., Wunsch and Heimbach, 2007; Wunsch et al.,

2009).25

Here we provide an overview of major DA aspects concerning parameter identification in marine ecosystem- and biogeo-

chemical modelling. We adopt a notation more commonly used for DA studies in operational meteorology and oceanography.

At the same time we integrate aspects related to ecological and biogeochemical modelling accordingly. On the one hand we

provide background information that should facilitate intelligibility when studying DA literature. On the other hand we like to

elucidate typical objectives and common problems when simulating a marine planktonic system. In this manner we hope to30

support a mutual understanding between ecologically/biogeochemically and mathematically/statistically motivated studies.

First we will start with some theoretical background, introducing mathematical notation as well as depicting prevalent

assumptions made for parameter identification analyses and model calibration (Sect. 2). Error models will be described in order

to elucidate error assumptions made in previous ecosystem modeling studies (Sect. 3). This will be followed by a description
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of different approaches to specify uncertainties in parameter values (Sect. 4). In Sect. (5) we branch-off from DA theory in

order to accentuate some biological aspects of those parameters we typically have to deal with in plankton ecosystem models.

An example of parameter estimation with simulations of a mesocosm experiment connects aspects of Sect. (5) with theoretical

considerations of the preceding sections. Thereafter, model complexity will be jointly addressed together with cross-validation

in Sect. (6), followed by a review of space-time variations of marine ecosystem model parameters (Sect. 7). Emulator, or5

surrogate-based, approaches will be briefly explained and exemplified (Sect. 8) before we discuss parameter estimation of

large-scale and global biogeochemical ocean circulation models (Sect. 9). Finally, we will summarise major insights that

we gained on parameter identification in Sect. 10 and we will briefly address prospects of some marine ecosystem model

approaches that could improve parameter identification.

2 Theoretical background10

The term parameter identification is used broadly to describe parameter estimation problems, including the specification of

uncertainties in parameter estimates and model parameterisations. It involves the following procedures:

a) Parameter sensitivity analyses: the evaluation of how model results change with variations of parameter values.

b) Parameter estimation: the calibration of model results by adjusting parameter values until a model solution is in best

possible (optimal) agreement with observations.15

c) Parameter identifiability analyses: the specification of parameter uncertainties in order to reveal structural model defi-

ciencies and shortages in data availability/information.

All three aspects are interrelated and should not be viewed as mutually exclusive procedures. For example, before starting with

parameter estimation it is helpful to include information from a preceding sensitivity analysis, e.g. selecting only parameters

to which model results are sensitive to. Likewise, an identifiability analysis complements the sensitivity analysis by providing20

information about error margins and possible ambiguities of optimal parameter estimates.

2.1 Basic errors in model results and data

2.1.1 Model states, parameters, control variables, and dynamical model errors

The prognostic dynamical equations of a marine ecosystem model can be expressed as a set of difference equations:

xi+1 =M [xi,θe,f i,ηi(θη)] (1)25

with index i representing a particular time step (i.e. ti). The model state vector xi has dimension Nx =Ng ×Ns where Ng is

the number of spatial grid points and Ns is the number of model state variables (e.g. phytoplankton biomass). The dynamical

model operator M is typically at least a nonlinear function of the earlier state xi, a set of ecosystem parameters θe describing

rate constants and coefficients in the dynamical model, and a set of time and space dependent forcings and boundary conditions
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f i. If the ecosystem model is coupled ‘online’ with a physical ocean model, f i includes both physical model forcings (e.g.

wind stress) and ecosystem model forcings (e.g. surface short-wave irradiance). If the physics is coupled "offline", f i includes

ecosystem model forcings and physical model outputs (e.g. seawater temperature).

For stochastic dynamical models, M also depends on random noise variables or dynamical model errors ηi while for de-

terministic models we have ηi = 0. These errors are described by distributional parameters θη , e.g. location and scale param-5

eters of a probability density function. Dynamical model errors usually enter the dynamics additively, multiplicatively, or as

time/space- dependent corrections to f or θη . They may represent the individual or combined effects of errors in forcings,

boundary conditions, random variability in model parameters, and structural errors in both the physical transport model (e.g.

due to limited spatial resolution) and the biological source-minus-sink terms (e.g. due to aggregation of species into model

groups). In the geophysical community, error models that explicitly account for dynamical model errors (noise) are often10

termed weak constraint models, while those that assume a deterministic model are termed strong constraint (Sasaki, 1970;

Bennett, 2002).

2.1.2 True states and kinematic model errors

To relate the dynamical model output of Eq. (1) to observations, it is helpful to first consider how it may relate to a conceptual

and hypothetical true state xt, which is then imperfectly observed. In this respect we must also consider the averaging scales.15

In marine ecosystem modelling there is almost always a large discrepancy between the spatio-temporal averaging scales of the

model, that define the meaning of the "concentrations" in x, and the averaging scales of the observations from in-situ sampling

or remote sensing. For example, the spatial averaging scale of a model may be defined by a model grid cell of size 10 km

in the horizontal and 10 m in the vertical, while the averaging scale of the observations might be the 10 cm scale, e.g. of

a Niskin bottle sample. Even with a perfect model, data from finescale observations may diverge from model output due to20

unresolved sub-grid scale variability induced by fluid structures such as eddies and fronts, forming patches of high next to low

concentrations e.g. of nutrients or organic matter.

A general relationship between the true state and model state can be expressed as:

xt = T [x,ζ(θζ)] (2)

where T is a truth operator, and ζ is a set of random variables described by distributional parameters θζ . We will refer to the ζ25

as kinematic model errors because they are associated with the model state, while the dynamical model errors η in Eq. (1) act

to perturb the model dynamics.

How we interpret and specify Eq. (2) depends on the spatio-temporal averaging scales chosen to define the true state xt,

which in turn depends on the objectives of the modelling study. One approach is to define these averaging scales as equal

to or larger than the shortest space and time scales that are fully resolved by the model. Kinematic model errors ζ may then30

represent the integrated effects of the various dynamical sources of model error, if these are not already accounted for by

dynamical model errors η in Eq. (1). Alternatively, the true state can be defined over scales smaller than those resolved by the

model, possibly at the scales of the observations. This may lead to a simpler model for observational error (see below), but now
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the ζ must account for the unresolved scales, in addition to any error effects in the model dynamics otherwise not accounted

for. With stochastic dynamical models (η 6= 0), the true state is usually defined on the scales of the model and assumed to

coincide with the model output for some (θe, η), such that no kinematic error model is needed.

2.1.3 Data and observational errors

The observation vector y can be related to the true state via:5

y =O
[
xt,ε(θε)

]
(3)

where O is the generalized observation operator and ε is a set of random observational errors described by distributional pa-

rameters θε and accounting for uncertainties associated with the usage and interpretation of the data. These include at least the

random measurement error due to, for example, instrument noise. In addition they may include a contribution from represen-

tativeness error due to finescale variability, if xt is defined as an average over larger scales than those of the observations (see10

above). Alternatively, if the observations are preprocessed into estimates on the larger scales of xt, there may be an under-

sampling error component due to inexhaustive coverage of the raw samples. The observation operator O may also contribute

to ε, for example if the model output needs to be interpolated from the model grid to the data coordinates, or if O includes

conversion factors such as chlorophyll a-to-nitrogen (Chla:N) ratios.

The simplest possible example of an observational error model assumes additive Gaussian errors. Equation (3) then becomes:15

y = H
(
xt
)

+ ε (4)

−→ ε= y−H
(
xt
)

where H accounts for interpolation and units conversion and ε∼G(0,R) is Gaussian distributed with mean zero and covari-

ance matrix R. This may be a reasonable error model for most physical variables and chemical concentrations with ranges

well above zero (e.g. dissolved inorganic carbon or total alkalinity in the open ocean). However, many nutrients and plankton20

biomass variables may vary close to their lower bounds of zero, and display positive skew in their observational errors. For

such variables, a lognormal observational error model may be more appropriate:

y = H
(
xt
)
◦ exp(ε− σ

2

2
) (5)

−→ ε= ln(y)− ln
(
H
(
xt
))

+
σ2

2

where ◦ denotes element-wise multiplication and the bias correction term σ2

2 ensures unbiased errors, but is frequently ne-25

glected in practice. The various options and challenges of defining an appropriate error model are discussed in detail in Section

(3).

2.2 General estimation methods

We now consider how to estimate uncertain parameters Θ given the data y, where Θ includes all biological parameters θe

and possibly distributional parameters (θη ,θζ ,θε). There are basically two probabilistic approaches for doing this: Bayesian30
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estimation and maximum likelihood estimation. In the Bayesian approach, we treat the parameters as random variables, and

choose parameter values on the basis of their ‘posterior probability’ i.e. the conditional probability density of the parameter

values given the data p(Θ | y). The posterior probability is computed using Bayes’ theorem:

p(Θ | y) =
p(y |Θ) · p(Θ)

p(y)
∝ p(y |Θ) · p(Θ) (6)

where p(y |Θ) is the likelihood and p(Θ) is the unconditional or ‘prior’ distribution of the parameter values. The proportional-5

ity follows in Eq. (6) because the probability of the data p(y), otherwise known as the “evidence” for the model, is independent

of the parameter values.

In general the likelihood can be expressed as an integral over probabilities conditioned on particular values of the model

state and true state:

p(y |Θ) =
∫ ∫

p(y | xt,Θ) · p(xt | x,Θ) · p(x |Θ) dxt dx (7)10

where the conditional probabilities p(y | xt,Θ), p(xt | x,Θ), and p(x |Θ) are specified by the chosen models for observational

error (Eq. 3), kinematic model error (Eq. 2), and dynamical model error (Eq. 1) respectively. In practice we are unlikely to

require such a complex expression for numerical evaluation; aggregation of error terms and redundancy between kinematic

and dynamical model error usually allows simplifications.

The Bayesian approach encourages us to explicitly quantify our prior knowledge about the parameter values through the15

prior p(Θ). In marine ecosystem modelling, we are unlikely to ever consider cases of complete parameter ignorance, where a

parameter value could possibly switch sign or get incredibly large. Every parameter is expected to have a value that falls into a

credible range, otherwise the associated parameterisation would be difficult to defend. In some cases, when broad uniform or

“uninformative” priors are assumed, it may not be necessary to specify exact limits of these distributions as the analyses may

become insensitive to these limits once the range becomes sufficiently broad. There are inherent difficulties with the concept20

of "ignorance" priors: for example, a flat prior distribution over φ will correspond to an informative prior for some function

g(φ) (see Cox and Hinkley, 1974 for further discussion). In any case, trying to minimise the impact of prior distributions is

rather defeating the object of Bayesian estimation, which explicitly aims to synthesise information from new data with prior

information from previous analyses.

Once the likelihood is formulated and a prior distribution is prescribed, classical Bayes estimates (BEs) may be computed25

from posterior mean or posterior median values of Θ. Assuming the statistical assumptions are correct, these estimators will

minimise the mean square error or mean absolute error respectively of the parameter estimate Θ̂ (e.g., Young and Smith, 2005).

To obtain BEs can be computationally expensive, requiring sophisticated techniques to sample efficiently from the posterior

distribution (e.g. by Markov Chain Monte Carlo, MCMC, methods). An alternative Bayesian estimator, very widely used in

geosciences, is the joint posterior mode or maximum a posteriori (MAP) estimator (e.g., Kasibhatla, 2000; Bocquet, 2014),30

given by maximising the posterior probability p(Θ | y) as a function of Θ. Such estimates are more computationally feasible

in large problems where the search for the maximimum of the posterior (or the minimisation of its negative logarithm) can be

greatly accelerated by techniques such as the variational adjoint (Bennett, 2002).
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In maximum likelihood (ML) estimation we seek the parameter values Θ̂ML that maximise the probability of the data given

the parameter set, i.e. p(y |Θ). When considered as a function of Θ, this probability is called the likelihood of the parameter

values L(Θ | y) because it is strictly a probability of the data, not of the parameter values. Indeed, in ML estimation we do

not need to consider the parameter values as random variables at all; rather they are considered as fixed, unknown constants.

For this reason the ‘|’s are sometimes replaced by ‘;’s to emphasise that, in a non-Bayesian context, the likelihood is not a5

conditional probability in the sense of one set of random variables dependent on another (e.g., Cox and Hinkley, 1974). In the

ML approach, no prior information on the parameter values is used except possibly to define upper or lower plausible limits or

allowed ranges for the parameter search (Young and Smith, 2005).

Historically, Bayesian methods (Bayes, 1763; S. and Price, 1763) predate ML methods of Fisher (1922) by some margin.

Fisher introduced ML methods partly to avoid problems in defining prior ignorance (see above) but also to avoid the non-10

invariance property of Bayesian estimators (Hald, 1999). This property means that given the BE of one parameter φ̂B, the

corresponding BE of a nonlinear function of that parameter g(φ) is not simply given by plugging in the estimate (ĝB 6= g(φ̂B)),

while for ML estimates the invariance property does hold (ĝML = g(φ̂ML)). We will see an example of this below.

In marine ecosystem modelling, much recent interest has focused on combined state and parameter estimation, whereby

model parameters Θ are estimated together with a true state xt (e.g., Simon and Bertino, 2012; Fiechter et al., 2013; Parslow15

et al., 2013; Weir et al., 2013; Dowd et al., 2014). In the Bayesian approach, model parameters and system state are both

random variables. We can therefore apply Bayes’ Theorem to the composite random variable Ψ = (Θ,xt) and decompose the

prior as p(Ψ) = p(xt |Θ) · p(Θ) to obtain an expression for the joint posterior:

p(xt,Θ | y)∝ p(y | xt,Θ) · p(xt |Θ) · p(Θ) (8)

This equation has so far been applied to stochastic dynamic models with no kinematic model error (cf. Fiechter et al., 2013;20

Parslow et al., 2013). Equation (6) can be recovered from Eq. (8) by integrating (marginalising) both sides over xt.

Recent interest has also focused on "hierarchical" error models (Zhang and Arhonditsis, 2009; Parslow et al., 2013; Wikle

et al., 2013). Here, the traditional model parameters are replaced with stochastic processes over time and/or space, and parame-

ter identification focuses on the hyperparameters that describe the stochastic processes (e.g. means, variances, autocorrelation

parameters). This is essentially similar to the case of parameter estimation for a stochastic dynamical model (Eq. 1) and fits25

into the general formulation in Sect. (2.1) if we treat the stochastic parameters as additional state variables with dynamical

model errors η. The hyperparameters could in principle be estimated by ML, sometimes referred to as an "empirical Bayesian"

approach (Cox and Hinkley, 1974), but it appears that computational tractability may favour the “hierarchical Bayesian” ap-

proaches (e.g., Parslow et al., 2013). Similar concerns apply to parameter estimation for stochastic dynamical models, where

fully Bayesian approaches appear to be favoured using computational strategies based on sequential Monte Carlo methods (van30

Leeuwen, 2009; Jones et al., 2010; Dowd, 2011; Doucet and Robert, 2013; Dowd et al., 2014).

Another important initiative is the estimation of kinematic model errors and their distributional parameters along with the

ecosystem model parameters (Arhonditsis et al., 2008). Posterior distributions of kinematic model errors provide estimates of
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the model discrepancy, introduced by Kennedy and O’Hagan (2001) and originally referred to as model inadequacy, and may

thus provide useful diagnostics for assessing model bias and skill.

2.3 Likelihoods and priors as (misfit) cost functions

The choice of a suitable estimation method for marine ecosystem model parameters should be mainly based on the availability

of relevant prior information, as well as on the basic error assumptions (Eqs. 1, 2, 3). Once the error model and estimation5

method have been chosen, we can derive the probability densities and cost functions that can be used for parameter estimation.

As a simple but common example, consider a deterministic model with no model error and data with additive Gaussian

observational errors, Eq. (4), with known covariance matrix R. We wish to use a total of Ny data, summing over all data types,

to estimate NΘ parameters by Bayesian estimation. A survey of the literature might lead us to model the prior distribution of

Θ as Gaussian with a mean Θb and covariance matrix B. From Eq. (6) the posterior density is proportional to a product of the10

likelihood and the prior density:

p(Θ | y)∝ 1√
(2π)Ny detR

· exp
[
−1

2
dTR−1d

]

· 1√
(2π)NΘ detB

· exp
[
−1

2
∆T

Θ B−1∆Θ

]
(9)

where the data-model residual d is defined by d= y−H (x) (see ε in Eq. 4). The deviation from the prior is

∆Θ = Θ−Θb. A MAP or joint posterior mode estimate of Θ can then be obtained by minimising the cost function J(Θ) =

−2 logp(Θ | y) + constant, given by:15

J(Θ) = dTR−1d+ ∆T
Θ B−1∆Θ (10)

where constant terms (since independent of Θ) have been dropped.

Alternatively, nonnegativity constraints on the variables and parameters may lead us to prefer the lognormal observational

error model. Likewise, we can assume lognormal priors for the parameters. In this case the posterior density becomes:

p(Θ | y)∝ 1√
(2π)Ny detR

∏
j yj
· exp

[
−1

2
dTR−1d

]

· 1√
(2π)NΘ detB

∏
lΘl

· exp
[
−1

2
∆T

Θ B−1∆Θ

]
(11)20

where the data-model residual here defined by d= log(y)− log(H (x)) +
σ2

2
and

∆Θ = log(Θ)− log(Θb) +
(σb)2

2
. A MAP estimator of Θ is then obtained by minimising:

J(Θ) = dTR−1d+ 2
NΘ∑

l=1

log(Θl) + ∆T
Θ B−1∆Θ (12)

The MAP estimator of log(Θ) is obtained by maximising p(log(Θ) | y). It means that actually the cost function as given by

Eq. (10) can be minimised, without the second term, 2
∑NΘ
l=1 log(Θl), of Eq. (12).25
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Due to the noninvariance property of Bayesian estimates, the exponent of the MAP estimator of log(Θ) will generally differ

from the MAP estimator of Θ. By contrast, ML estimates are obtained by minimising the cost functions without any of the

prior terms (second terms in Eq. 10, second and third terms in Eq. 12). In each case the same ML estimator for Θ is obtained

whether we use Θ or log(Θ), as expected from the invariance property of ML estimates.

We close this section with some cautionary remarks about different terminology that the reader may encounter the literature.5

First, many DA papers and textbooks start by assuming a certain cost function, based on variational or optimal control theory,

rather than deriving it from a probabilistic treatment as herein (e.g., Le Dimet and Talagrand, 1986; Bennett, 2002; Fletcher,

2010). These studies tend to refer to MAP estimates obtained by minimising cost functions such as Eq. (10) as “weighted

least squares estimates”. However, any analogy with regression analysis is stretched because these estimates are fundamentally

dependent on, and potentially biased by, the assumed prior distributions. Second, many DA papers and textbooks use the term10

“likelihood” to refer to the posterior probability p(Θ | y) in Eq. (6), and the term "maximum likelihood estimators" although

modifiers such as "(Bayesian)" (Jazwinski, 2007) or "(posterior)" (Tarantola, 2005) are sometimes added. This obscures the

fact that posterior mode estimators, like all BEs, are dependent on assumed prior distributions. Maximum likelihood avoids

this dependence, but in doing so tends to be unsuitable for high-dimensional parameter estimation in the partially-observed

systems typically encountered in oceanography and geophysics.15

3 Error models

Error models define our assumptions about uncertainties and the statistical relationships between observed data, the true state,

model output, model inputs (forcings and initial/boundary conditions), and model parameters. Here we review error models

that have been applied to address the various sources of uncertainty in marine ecosystem models and consider their implications

for parameter identification. An explicit treatment of each source of uncertainty may not be necessary by all means but we do20

recommend to reflect on how these uncertainties can be accounted for when modelling plankton dynamics and biogeochemical

cycles.

3.1 Uncertainty in observations

The simplest and most common models for observational error assume that the observational errors ε are: i) additive normal, ii)

constant variance between samples, and iii) independent between samples and variable types. Such models are also commonly25

used to represent aggregated errors accounting for both observational and kinematic model error (see Sect. 2.1); we will refer

to these as residual errors.

The additive normal assumption (i) is straightforward but also restricted, as it does not capture three common characteristics

of some ecosystem data such as Chla concentrations: 1) larger values tend to have larger errors, 2) values cannot be negative,

and 3) the error distribution has positive skew. Characteristic (1) may be captured by scaling the standard error with modelled30

values (e.g., Hurtt and Armstrong, 1996) or with observed values (e.g., Harmon and Challenor, 1997), while characteristic (2)

can be resolved using truncated error distributions (e.g., Hooten et al., 2011). All three characteristics together can be captured
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by gamma distributions (Dowd, 2007) or power-normal distributions whereby normality is assumed on a power-transformed

scale (Freeman and Modarres, 2006). The power-normal family includes log-normal (e.g., Hemmings et al., 2003) as well as

square-root normal models (e.g., Fasham and Evans, 1995).

For power-normal, gamma, or proportional error assumptions we have the difficulty that the variance on the original scale

approaches zero at low values. This may be unrealistic, at least in regard to instrumental noise. Only in normal models this5

problem can be easily addressed by adding a constant term to the variance (Schartau et al., 2001; Schartau and Oschlies, 2003)

or standard deviation (Vallino, 2000). Another difficulty is that some transform-normal models become more complicated by

additional unbiasing factors, needed when assuming unbiased errors on the original scale (e.g. −σ2/2 for the log transform).

More flexible models may be obtained by e.g. fitting the power transform parameter (Box and Cox, 1964; Wallhead et al., 2014),

assuming generalised Gaussian distributions (Tarantola, 1987; Evans, 2003), or using ‘anamorphic’ transformations (Bertino10

et al., 2003; Simon and Bertino, 2012). It is yet unclear whether those distributions will yield better parameter estimates in

typical applications, but it has been demonstrated that the choice of transformation can strongly affect estimates of plankton

ecosystem fluxes (Evans, 2003).

The validity of the constant variance assumption (ii) may be improved by a scale transformation, although the transformation

that best normalizes the error distribution (see above) is not necessarily the best for homogeneity of variance. Spatiotemporal15

variations in the error variance naturally occur, for example due to seasonal modulations of the unresolved variability and hence

the representativeness error component. Accounting for this variation should improve parameter estimates and uncertainty

assessment (cf., Hemmings and Challenor, 2012), but in applications this has rarely been attempted (Hemmings et al., 2003;

Dowd, 2007).

In some contexts e.g. mesocosms, the error covariance matrix might be estimated from experimental replicates prior to fitting20

the model (Sect. 5.3.3). In many cases sampling is sparse and/or when the model error contribution is large, the error variances

may not be estimable from data alone (Evans, 2003). Here the variances could instead be parameterised and estimated jointly

with the ecosystem model by Bayesian or ML estimation, which has been done in few studies (Hurtt and Armstrong, 1996,

1999; Stock et al., 2005; Malve et al., 2007; Lignell et al., 2013).

The assumption of independent errors between samples and variable types (iii) can be invalidated in cases where contribu-25

tions from representativeness error or kinematic model error are large, or where the data have been derived by interpolation

or application of a regression model. Neglected correlation may result in less efficient (higher variance) parameter estimates,

accompanied by distinctive correlations between the parameters’ optimised values. Pre-averaging the data is somewhat helpful

to promote independence (and normality, via the Central Limit Theorem), but might also remove some of the informative vari-

ability in the data. One common intervention in the cost function is to scale the residual error variance with the sample size of30

each data type, which effectively prevents biasing of the fit in favour of better-sampled variables (e.g., Schartau and Oschlies,

2003; Friedrichs et al., 2007). It is better to elude such weighting between variances, since it might over-interpret scarce data

along with a formal neglect of correlation (Evans, 2003). More formal treatments could fit parameterisations of correlations,

either by assuming a flexible statistical model for the mean field or by fitting the parameters of covariance matrices jointly with

the ecosystem model (e.g., Stock et al., 2005).35
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Whatever the assumptions of the observational/residual error model, it is possible to test their validity using the assimilated

data, either by analysing the residuals and peforming lack-of-fit tests (Bennett, 2002; Stock et al., 2005; Wallhead et al., 2014)

or by comparing fit statistics with those obtained under alternative error models (using e.g. likelihood ratio tests, information

theoretic or Bayesian criteria, as will be recalled in Sect. 6.2).

Finally, we caution that certain interpolated or derived data may strictly invalidate the observational error model, not only5

due to error correlation (see above), but also due to the introduction of smoothing bias. Data interpolated onto a model grid

will tend to systematically underestimate true values where they are high and overestimate them where low; an effect that

will be difficult to account for in the observational error model. In this situation parameter estimates can become bias towards

values that suppress spatiotemporal variability in plankton dynamics. Similarly, if the data are derived from a regression model,

these estimates may also "trim the peaks and fill the valleys", because in a regression model (e.g. y = a0 + a1p+ ε, where p10

is some predictor data) there is always some part of the true variability that is included in the error term, and therefore subject

to smoothing bias. In principle this could be avoided by including an inverted regression relationship in the operator O and

assimilating the "raw" predictor or proxy data instead of the regression-based estimates.

3.2 Prior uncertainty in Θ

Prior uncertainty plays an important role in estimating model parameters. Typically, there is not enough information in the15

assimilated data to constrain all parameters of a biogeochemical model. The results may well be sensitive to the“error model

of prior uncertainty”. Prior uncertainty can be represented by prior probability densities in the Bayesian paradigm or plausible

ranges in non-Bayesian paradigms. To account for nonnegativity constraints, prior distributions typically include lognormal

(Parslow et al., 2013), square-root normal (Gunson et al., 1999), or beta distributions (Dowd and Meyer, 2003), although

normal distributions may yet be applicable for parameters that are well constrained above zero (Parslow et al., 2013). To our20

knowledge no application has yet incorporated prior correlations between parameters in Θ (i.e. off-diagonal terms in matrix

B introduced in Sect. 2.3). This is surprising, given the fact that posterior uncertainty assessments consistently reveal strong

correlations (e.g., Matear, 1995; Prunet et al., 1996; Fennel et al., 2001; Faugeras et al., 2003; Kreus and Schartau, 2015).

Quantifying the prior uncertainty in Θ is often difficult due to: 1) the existing diversity of model structure, functional

forms used in the various parameterisations, and definitions of model state variables, and 2) the intrinsic variability between25

assimilated data sets in terms of taxonomic composition of the plankton community vs. (usually monospecific) laboratory

cultures. As a result, it may not be advantageous to simply set the prior uncertainty in Θl as the posterior uncertainty from

one previous study. A conservative but useful approach is to first gather best estimates of Θl from a series of previous studies

that included parameterisations and state variable definitions sufficiently consistent with the present, and then treat these as

unbiased data from which a prior distribution or plausible range can be determined.30

When posterior uncertainty becomes unacceptably high, it can be reduced by reducing the prior uncertainty in Θ, and there

are several strategies for doing this. First, we should incorporate further data, perhaps of a qualitative nature, into the prior

constraints. For example, if it is known a priori that certain species or functional groups coexist in certain regions at certain

times of the year, then any Θ resulting in competitive exclusion of one of these groups might be ruled out a priori. Another
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possibility within the Bayesian paradigm is to incorporate the subjective opinion of experts (O’Hagan, 2006). A second strategy

is to model statistical structure in the prior parameter values, and thereby fill in missing prior parameter estimates for certain

species included in the modelled species or groups. Examples here include the use of allometric scaling relationships with cell

size (e.g., Edwards et al., 2012) and phylogenetic relationships derived from stochastic modelling of trait evolution (Bruggeman

et al., 2009; Bruggeman, 2011). Third, we may seek to reduce the model complexity in terms of the number of free parameters,5

thereby removing poorly-constrained parameters and parameter correlations which may act to inflate the posterior uncertainty.

This may be achieved using sensitivity analysis (e.g., Friedrichs, 2001; Garcia-Gorriz et al., 2003; Hemmings et al., 2003) or

model selection criteria (e.g., Ward et al., 2013). A risk here is that parameter estimates and uncertainty assessment may be

compromised if model selection uncertainty is not properly accounted for (Burnham and Anderson, 2002).

3.3 Uncertainty in initial conditions (ICs)10

Dynamical marine ecosystem models are usually specified by differential equations that are first-order in time, and therefore

require for solution one initial condition (IC) for each grid cell or spatial location in the model. These inputs are, in general,

uncertain, and liable to impact the model output, at least during a transient relaxation period, or indefinitely if the uncertainty

spans more than one basin of attraction of the dynamical system or if the model dynamics are chaotic (e.g., Huisman and

Weissing, 1999).15

In some cases it is possible to neglect IC error because of accurate measurements, or because a steady state (equilibrium or

seasonal cycle) that is only sensitive to Θ can be assumed. One must only be careful about neglecting IC uncertainty although

initial concentrations are known to be small (e.g. in January); small absolute errors may be large relative errors that can still

affect e.g. timing and magnitude of a spring bloom as well as predator control (Evans and Parslow, 1985).

In other cases, IC uncertainty may not be negligible, and may strongly impact the estimation of ecosystem parameters.20

If jointly estimated, ICs may show strong correlations with the other parameter estimates (collinearities). For non-spatial

(0D) models, ICs have often been estimated both as fixed parameters (e.g., Vallino, 2000) and as random variables (Bayesian

parameters) with specified prior distributions (e.g., Arhonditsis et al., 2008). In mesocosm models, ICs can play an important

role in determining the model trajectory and fit to data, and can comprise a large proportion of the fitted parameters (e.g.,

Lignell et al., 2013). In spatial models, due to the sparse and gappy nature of oceanic observations, IC uncertainty may require25

a Bayesian treatment centred on a prior estimate. For example, after a suitable transformation the true ICs might be described

as: x̃0 = x̃b0 + δ where x̃b0 is a vector prior estimate and δ is a vector of normal random errors with covariance structure (cf.

Bennett, 2002). Joint estimations of (x0, Θ) have rarely been performed for spatial models (Li et al., 2006; Smith et al., 2009;

Pelc et al., 2012) likely due to the computational difficulties of optimising a potentially high-dimensional x0 in combination

with potentially strongly-nonlinear parameters Θ. Dimensional reduction techniques such as principal component analysis30

could likely help in this regard.
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3.4 Uncertainty in forcings and boundary conditions (BCs)

Marine ecosystem models are usually modulated by time and space-dependent environmental drivers (forcings) and boundary

conditions that are not predicted by the model dynamics but are necessary inputs to determine the evolution of the model state

variables. Studies have demonstrated the sensitivity of biogeochemical variables to errors in bottom-up forcings such as wind

stress and vertical mixing (e.g Evans, 1988; Friedrichs et al., 2006; Béal et al., 2010; Sinha et al., 2010) and top-down forcings5

such as fishing (e.g., Heath, 2012). BC errors may have little impact, e.g. at sufficient distance from the boundaries, but might

become critical when they directly influence e.g. nutrient supply to the model interior (Schartau et al., 2001) or affect the spread

of low salinity water that promotes stratification (Ji et al., 2008).

In some parameter identification studies, time-averaging of forcings and assimilated data has been used as a simple way

to reduce the impact of forcing errors associated with e.g. the passage of mesoscale eddies (Schartau and Oschlies, 2003;10

Hemmings et al., 2004). Very few studies have attempted to account for forcing or BC errors explicitly. In principle, these

errors could be modelled as random variables and estimated jointly with Θ or marginalised over the likelihood. However, the

combination of strong nonlinearity and high dimensionality in the unknowns make such an approach computationally practical

only for low-dimensional models (e.g., Kavetski et al., 2006a, b; Arhonditsis et al., 2008) or through application of dimensional

reduction and emulator methods (e.g., Leeds et al., 2014, see Sect. 8).15

In larger ocean models, with multiple sources of BC/forcing error, it is more practical to treat the errors synthetically, for

example using additive or multiplicative model errors (van Leeuwen, 2009, as described in Sect. (2.1). Dynamical model

errors will arguably give a more realistic treatment, although the very simple models usually assumed for η (e.g. independent,

homogeneous, and normal increments) might not be a very realistic description of the aggregate effects of BC/forcing error.

Kinematic model errors are likely more computationally tractable, but this approach may require more complex error variance20

and correlation structure to maintain sufficient realism (Arhonditsis et al., 2008; Hemmings and Challenor, 2012).

In either case, simple additive or multiplicative models may fall short, in particular regarding potential errors in phase, like

the timing of nutrient depletion. Model solutions that predict the right sequence of events (e.g. a plankton bloom) but with

slightly wrong timing or spatial location, perhaps due to phase error in the atmospheric forcing or ocean circulation, may suffer

a double penalty due to changes where none occur in the data and no change where the data do vary. Data assimilation may25

then "smooth out" the model variability in an attempt to minimise this double penalty (Wallhead et al., 2006; Ravela et al.,

2007). The problem of phase/timing error has received substantial attention in numerical weather forecasting and geophysical

data assimilation (e.g., Hoffman et al., 1995; Lawson and Hansen, 2005; Mittermaier, 2007; Ravela et al., 2007; Ziegeler et al.,

2012) and has been highlighted as an issue for marine ecosystem models (Schartau and Oschlies, 2003; Friedrichs et al., 2006).

A simple remedy is to average the data and model over larger spatio-temporal scales in the data assimilation (e.g., Schartau30

and Oschlies, 2003), but again this may remove informative variability and result in a Θ̂ that is only suited to those larger

scales. Wallhead et al. (2006) explored a more explicit approach assuming random time lags between the true state and model

state i.e. kinematic model errors in phase, which can be expressed as ζ(θζ) in Eq. (2). Figure (1) demonstrates this approach

using data simulated by an NPZ model with a combination of time lag error and independent, additive residual error in log
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N, P, Z. Using a joint posterior mode approach to estimate time lags, ecosystem parameters, and residual / time lag variance

parameters (see Appendix A), the time lags can be distinguished from the residual errors (Fig. 1b, c). This is associated with

a general improvement in the bias and variance of ecosystem parameter estimates compared to a simpler approach assuming

only additive residual error (Wallhead et al., 2006, Table A).

For some problems, in particular for chaotic systems, the phase noise may be too intense or ill-defined to allow effective5

use of a parametric phase lag model. A better approach here might be to use a ‘synthetic likelihood’ (Wood, 2010), whereby

the raw data are replaced with a carefully chosen, informative set of phase-insensitive summary statistics (e.g. means, standard

deviations, and lag correlations; cf., Heath, 2012). This approach could incorporate the comparison of modelled vs. observed

Fourier spectra and cross-spectra/coherences (e.g., Powell et al., 2006). Whether the statistics e.g. of spectral slopes by them-

selves provide good constraint on ecological parameters should be tested since it may not be sufficient (Armi and Flament,10

1985; Martin, 2003; Franks, 2005).

3.5 Uncertainty in model formulation and structure

Even with perfectly-known parameters, forcings and initial/boundary conditions, we would still not expect the modelled fluxes

such as primary productivity and grazing to perfectly reproduce the true fluxes, or the state variables to perfectly follow the

true variability. Aggregation of species into model functional groups, effects of finite spatial and temporal resolution, and15

inherent approximations in the flux parameterisations and model structure may all contribute to “structural error” in the model

dynamics.

Structural errors are usually treated synthetically as either dynamical or kinematic model errors, and are often considered

in combination with BC/forcing errors. There are difficulties because structural errors can impose persistent and intermittent

biases in the model output that may not be amenable to a simple statistical description. For example, a succession in blooming20

phytoplankton species might extend or multiply the bloom periods in ways that cannot be accounted for by a single model

functional group, however much its parameters are adjusted. Limited spatial resolution can also impose persistent biases that

cannot be fully corrected by parameter adjustment, and may lead to poor extrapolation properties (Wallhead et al., 2013). In

such cases, rather than elaborating the error models to account for structural error, effort might be better spent improving the

explicit biological or spatial resolution of the model, or exploring implicit resolution techniques (e.g., Wirtz and Eckhardt,25

1996; Merico et al., 2009; Wallhead et al., 2013).

A alternative approach is to employ the tools of multimodel inference (Burnham and Anderson, 2002; Link and Barker,

2006). The idea here is to base inference of target parameters, states and fluxes on a family of candidate models, each differing

in structure and parameterisation, rather than on a single model. For example, we might be fairly certain about the form

of the photosynthesis-irradiance (P-I) function in phytoplankton, but much less certain about the appropriate formulation of30

zooplankton grazing. Multimodel inference would allow the P-I parameter values and their uncertainties to be inferred on the

basis of several candidate models, each assuming the same P-I function but different grazing parameterisations. The resulting

multimodel estimates and uncertainties would be less likely to be biased by a poor choice of grazing formulation than the

inference premised on a single a priori formulation.
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4 Posterior parameter uncertainties

The determination of parameter uncertainties has many facets, getting to the core of discussions between Bayesian and fre-

quentist approaches and interpretations (e.g., Efron, 1986; Cox, 2005; Lele and Dennis, 2009). In general, if we wish to

make inference about uncertainties of parameter estimates (Θ̂) we need some knowledge about the distributional shape of

the posterior in the broader neighbourhood region of its maximum p(Θ̂ | y). Likewise, we can gather information about the5

parameter-cost function manifold in the surrounding of (Θ̂,J(Θ̂)). For this we may consider some threshold offset value ∆J ,

which is an upper limit for the deviation from the minimum value J(Θ̂). Such limit embeds all cost function values that are

insignificantly larger than J(Θ̂). Large deviations from optimal estimates might be required for some parameters (components

of Θ̂) before the corresponding cost function values reach this threshold, while for other components only small variations are

enough. Such tolerance limit thus confines an uncertainty region in parameter space:10

{
Θ : J(Θ)− J(Θ̂)≤∆J

}
(13)

Typical threshold values are defined as the α quantile of a parametric or nonparametric probability distribution.

For an unbiased ML estimator the χ2-distribution with the degree of freedom (df=Ny−NΘ) has been suggested for deriving

a threshold value χ2(df, α) (e.g., Kuczera, 1990; Meeker and Escobar, 1995; Raue et al., 2009, 2011). But for nonlinear models

the χ2-distribution might be inappropriate and the α quantile of the actual distribution, J(Θ)− J(Θ̂), needs to be evaluated15

by other means (e.g., Raue et al., 2011). Furthermore, the degree of freedom (df) that specifies location and shape of the χ2-

distribution may not be representative. The effective number of independent observations can be lower than Ny , in particular

during the development of an algal bloom, for example when typical measurements like Chla and nutrient concentrations

become negatively correlated. We therefore expect the effective degree of freedom to be lower than (Ny −NΘ) and χ2(df, α)

would therefore be an optimistic threshold, i.e. likely to underestimate the true range of uncertainty, unless the correct number20

of degree of freedom is determined.

4.1 Confidence and credible regions

Depending on the estimator, uncertainties in the combination of parameter values may either disclose a credible region of a

random distribution of parameter values (Bayesian interpretation) or they mark a confidence region in which other estimates

(Θ̂∗) can be expected, e.g. when using other data from a repeated experiment (frequentist interpretation). For maximisations25

of the likelihood p(y |Θ) it is often stated that credible and confidence regions are practically identical. Such interpretation

is imprecise since the methods to confine either regions can be very different with respect to the underlying assumptions, e.g.

MCMC versus bootstrap approaches.

In case of classical BEs no credibility limit ∆J is explicitly prescribed. Instead, an efficient sampling of (Θ,J(Θ)), or of

the posterior p(Θ | y), is applied and credible regions are inferred from selective (acceptance/rejection) sampling schemes in30

a MCMC approach, e.g. Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). The prominance of MCMC

methods for data assimilation is described by Rayner et al. (submitted). MCMC methods for the derivation of credible regions
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are also used for ML estimation problems (e.g., Smith and Yamanaka, 2007a). The main point is that here the data are assumed

fixed. The credible regions can be interpreted to reflect a system-inherent random parameter distribution, which is a plausible

interpretation when thinking of a mixed plankton community.

A fundamentally different approach to the MCMC method is to repeat parameter optimisations many times but with data

subsamples or resample data sets. Large data sets can be split up into a series of subsamples that should be as independent5

as possible. Or many synthetic data sets are created by applying a random number generator to independently draw bootstrap

samples (Efron, 1985; Efron and Tibshirani, 1986). This approach accounts for variable data and it mimics a repetition of an

experiment or a repeated sampling at ocean sites. For each bootstrap data set (y∗) a corresponding optimum estimate Θ̂∗ is

obtained . A distribution of ∆Θ = Θ∗− Θ̂∗ can be derived from a series of optimisations with different boostrap data sets.

Furthermore, nonparametric density estimates of all J(Θ̂∗) can be derived and the α quantile can then be determined from the10

cumulative distribution of such probability density. For some situations a bootstrap approach with as few as ten resample data

sets may suffice to accentuate specific uncertainties in some model parameters (e.g., Schartau et al., 2007). But to ascertain

confidence regions, much larger bootstrap sample sizes are typically needed (Efron and Tibshirani, 1986).

In practice the margins of the multivariate confidence or credible regions are projected onto each component (l) of Θ so

that we obtain uncertainty limits (error margins) for every parameter (uncertainty intervals, [Θ̂l−u−l ,Θ̂l +u+
l ]), with lower15

and upper uncertainty limits possibly being different (u−l 6= u+
l ). To resolve these margins, both approaches, MCMC and

bootstrap methods, require a large number of model evaluations, typically o(102) - o(104). The benefit is that skewed and

contorted posteriors can be better resolved. However, because of the computational costs we often find studies where parameter

uncertainties of ecosystem models had been approximated point-wise in the immediate vicinity of Θ̂.

4.2 Point-wise approximations of posterior uncertainty covariance matrix20

A single point in parameter space is identified by ML and MAP estimators, i.e Θ̂ where the posterior p(Θ | y) has its maxi-

mum. A common theory for deriving variance information of a ML estimate is based on the inverse of the Fisher information

(Fisher, 1922), see also (e.g., Fisher, 1934; Efron and Hinkley, 1978; Cao and Spall, 2010). The underlying assumption is that

the posterior p(Θ̂ | y) is nearly normal shaped nearby its maximum, which is tantamount to a quadratic increase of J(Θ) as

parameter values are varied around the estimate. Series expansions, like Taylor power series, around the estimate Θ̂ can be25

applied to derive relevant properties of J(Θ) that are theoretically attributed to an uncertainty covariance matrix (UΘ). Confi-

dence regions for Θ̂ can then be expressed in terms of approximations of UΘ. For example, for some prescribed df an upper

critical confidence levels can be specified by the α quantile of a F-distribution (Marsili-Libelli et al., 2003):
{

Θ :
(

Θ− Θ̂
)T

U−1
Θ

(
Θ− Θ̂

)
≤NΘ ·F 1−α

df

}
(14)

Confidence ellipsoids are described with Eq. (14), thus yielding symmetric uncertainty limits around Θ̂, i.e. ul = u−l = u+
l .30

With an approximation of UΘ a confidence interval for every single parameter can be described as [Θ̂l±ul]. The individual

uncertainty limits can be computed as

ul = t
1−α/2
df

√
UΘll

. (15)
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where t1−α/2df is the two-tails Student’s t-distribution for prescribed α and df (Marsili-Libelli et al., 2003). Two approaches to

point-wise approximations of UΘ are found in ecological and ecosystem modelling studies. One approach uses first derivates

of the model’s observation vector with respect to the parameters (Jacobian) whereas the other requires calculations of second

derivatives of J(Θ) (Hessian).

4.2.1 Uncertainty covariances based on the Jacobian matrix5

A first approach considers a linearisation (first order power expension) of the model’s observation vector H (x) around the

point estimate Θ̂. As long as H
(
x(Θ̂)

)
is not subject to strong nonlinearities, its first derivatives (sensitivity) with respect to

Θ can be used to estimate UΘ. For an unbiased ML estimator the covariance matrix can be approximated as:

UΘ =
J(Θ)

df
·
(
HT

ΘR−1HΘ

)−1

(16)

with the Jacobian matrix HΘ(Θ̂) and with the observational error covariance matrix R (e.g., Thacker, 1989; Kuczera, 1990;10

Omlin and Reichert, 1999; Brun et al., 2001; Omlin et al., 2001). The term J(Θ)/df is added as an approximation of the residual

variance of J , which should be considered unless H(x) is in such good agreement with data so that the minimum of J(Θ)

actually matches the exact degree of freedom, df. The rows of the Jacobian HΘ are the first derivatives with respect to the

parameters∇H (x), with∇= (∂/∂Θ1,∂/∂Θ2, . . . ,∂/∂ΘNΘ) being the Napla operator of first partial derivatives.

4.2.2 Uncertainty covariances based on the Hessian matrix15

Another more common approach for a point-wise approximation of UΘ is derived from a Taylor expansion around J(Θ̂). Since

∇J(Θ̂)≈ 0 in the minimum, the first order term of the Taylor expansion is negligible. The series expansion then approximates

the distribution:

J(Θ)− J(Θ̂)≈ 1
2

(
Θ− Θ̂

)T
HΘ

(
Θ− Θ̂

)
(17)

The matrix HΘ is the Hessian whose elements are second derivatives of J(Θ) with respect to the parameters:20

HΘ = ∇T∇J(Θ)
∣∣∣
Θ=Θ̂

(18)

With the Taylor expansion in Eq. (17) we obtain an approximation of the local curvature of J(Θ) at point Θ̂, also referred

to as the observed Fisher information. Like in Eq. (16), but instead of using first derivatives of H (x), a posterior uncertainty

covariance of Θ̂ is then approximated by computing the inverse of a Hessian matrix:

UΘ =
J(Θ)

df
· 2 ·H−1

Θ (19)25

Both approximations (Eqs. 16 and 19) yield, in principle, similar results for accurate ML estimates i.e. when the actual mini-

mum of J(Θ) has been identified by the optimisation algorithm. In practice search algorithms can terminate at some distance

from the actual minimum for numerical reasons, e.g. when the minimum is located in a flat valley of J and the imposed con-

vergence criterion makes an algorithm terminate the search in the periphery of the valley. Marsili-Libelli et al. (2003) proposed
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an approach where the accuracy of parameter estimates can be improved by minimising differences between the results of Eq.

(16) and Eq. (19).

4.2.3 The Hessian: its approximation and inversion

Hessian matrices have often been approximated with a finite central differences approach for first and second derivatives

of J with respect to ecosystem model parameters at the point-estimate Θ̂ (e.g., Matear, 1995; Kidston et al., 2011; Kreus5

and Schartau, 2015). A critical issue of finite difference calculations of the Hessian’s elements is the choice of an appropriate

increment size (δ), which sets the distance of departure from the optimal parameter point estimate Θ̂. Sometimes a compromise

between resolving flat regions around (Θ̂ + δ,J(Θ̂ + δ)) and numerical precision has to be found (Kreus and Schartau, 2015).

To approach a high accuracy of the Hessian approximation it is possible to consider a set of different increment sizes for the

central differences approach, as given in Marsili-Libelli et al. (2003).10

The problem of increment size reduces if first derivatives of J with respect to the parameters (gradient, ∇J) are readily

obtained with an adjoint model, as used in a variational data assimilation approach. Adjoint versions of plankton ecosys-

tem models have been constructed primarily to compute ∇J for an efficient search with gradient descent algorithms in the

parameter-cost function manifold (e.g., Lawson et al., 1996; Fennel et al., 2001; Schartau et al., 2001; Spitz et al., 2001;

Friedrichs, 2002; Faugeras et al., 2003; Zhao et al., 2005; Friedrichs et al., 2007; Xiao and Friedrichs, 2014a). To elucidate the15

nature of adjoint model developments is beyond the scope of this paper, but a brief summary about adjoint model developments

is given in the Appendix (C). The advantage is that all elements of the Hessian can be approximated with finite differences of

adjoint model results (e.g., Fennel et al., 2001; Friedrichs, 2002; Faugeras et al., 2003; Friedrichs et al., 2007).

Computations of the Hessian, Eq. (18), provide valuable identifiability information even if this matrix is not explicitly used

to specify confidence regions of parameter estimates. For example, a decomposition of the Hessian matrix into its eigenvalues20

and the corresponding eigenvectors reveals which parameters are hardly constrained by the data or it helps to identify structural

deficiencies of a model. The eigenvectors’ components (l) represent the components of Θ. Components of those eigenvectors

that belong to small eigenvalues indicate parameter combinations that are poorly constrained or cannot be estimated. In contrast,

those eigenvectors that correspond with the largest eigenvalues show parameter combinations that are well constrained. The

studies of Fennel et al. (2001) and Faugeras et al. (2003) are informative in this respect, because they provide insight into the25

range of characteristic eigenvalues and eigenvectors of 0D and 1D marine ecosystem models.

Ideally, every eigenvector would exhibit only one single component, meaning that values of every parameter can be estimated

independently of the other parameters’ values. In practice this is only the case for few parameters of a planktonic ecosystem

model. Eigenvectors with two or more distinct components discloses those parameters whose estimated values are correlated

and for which correlation coefficients can be explicitly derived (e.g., Matear, 1995; Prunet et al., 1996). Correlations between30

parameter estimates are referred to as collinearities. A useful collinearity index was introduced by Brun et al. (2001). Their

index expresses how a change in J (or in H (x)), due to a shift in the value of one parameter can be entirely compensated by

adjusting the value of another (correlated) parameter.
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In general, results from an eigenvalue decomposition of the Hessian can expose parameters whose values cannot be con-

strained with the available data and should not enter the optimisation procedure. Doing so can improve the estimation of

the other parameters’ values. Often the ratio of a Hessian’s largest to smallest eigenvalues is calculated. This ratio is called

condition number and it indicates whether the Hessian is well-conditioned and can be inverted. High condition numbers are

indicative for an ill-posed inverse problem and a point-wise parameter posterior uncertainty covariance matrix may then not5

be determinable from an inversion of the Hessian. The topic is complex and, in spite of a high condition number, it might still

be possible to consider the generalized inverse and generalized Cholesky decomposition of HΘ (e.g., Gill and King, 2003).

Whether such numerically feasible inversions still provide valuable information about parameter covariances is difficult to

tell. For example, Kreus and Schartau (2015) used eigenvalue decomposition of the Hessian to identify parameters that have

different effects on annual carbon, nitrogen and phosphorus budget calculations. In their twin experiment they found the eigen-10

vectors of the lowest three to six eigenvalues (out of 36) to vary considerably after repeating the analysis several times with

noise added to model results. In their case a condition number was not considered for their analysis, since it did not provide

unambiguous information about the quality of the Hessian and its inverse.

4.3 Parameter screening and profile likelihoods

It is common to face ill-posed inverse problems in plankton ecosystem modelling, which sometimes can be discouraging, in15

particular if we had initially hoped to estimate all parameters. The screening for important parameters straightens what to

expect from a parameter optimisation; it can be interpreted as a preparatory and integral part of any parameter identifiability

analysis (Brun et al., 2002). Likewise, parameter sensitivity analyses in form of twin experiments (e.g., Lawson et al., 1996;

Spitz et al., 1998; Faugeras et al., 2003; Kreus and Schartau, 2015) are useful in setting up well-posed parameter optimisation

problems that also allow for the point-wise derivation of uncertainty covariances from matrix inversions in Eq. (16) or Eq. (19).20

An alternative to a point-wise determination of posterior uncertainties (confidence regions) is the construction of 1D- or 2D

profile likelihoods (Venzon and Moolgavkar, 1988). For a 2D profile likelihood an array of combinations of two parameters

(Θm,Θn) is constructed. For every combination of parameter values (elements of the 2D array) a minimisation of J(Θ) is

repeated while varying all other parameters (Θl 6=m,n). This is done for all arrays with possible combinations of two parameters,

which requires a large number of additional optimisations. Parameter identifiability analyses based on profile likelihoods have25

been applied to problems where fast evaluations of J(Θ) were possible (e.g., Brun et al., 2001; Raue et al., 2009, 2011).

Brun et al. (2001) evaluated confidence regions for three parameters (rate constants of production, respiration and water-air

gas exchange) from profile likelihoods and they showed that the error margins of the parameter estimates can be much larger

than derived with a point-wise approach. Unfortunately, the evaluation of a profile likelihood is impracticable for most marine

ecosystem model applications, because of the associated computational costs.30
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5 Typical parameterisations of plankton models and their parameters

Depending on the available data and on the error model imposed, we may end up with some parameter values that compensate

errors in the dynamical model. The methods described above can only point towards a deficiency in model structure, forcing, or

in boundary conditions. With respect to model structure, parameter estimates of different models may differ even if calibrated

with identical data and although having the same physical (environmental) setup. For a comparison of optimal parameter values5

of different models it is meaningful to compare uncertainty ranges and collinearities. But this may only partially explain why

parameter estimates could be different and it is certainly helpful to unravel and understand some of the differences between

major parameterisations that e.g. describe growth and loss of phytoplankton.

5.1 Differences between maximum carbon fixation and maximum growth rate

A crucial element of most plankton ecosystem models is the description of phytoplankton growth as a function of light and10

nutrient availability. How growth of algae is parameterised is relevant and the associated parameter values usually determine

model solutions of bloom development. The build up of phytoplankton biomass depends on how much of the available nutrients

can be utilised and how much energy can be absorbed from sun light. Under conditions of nutrient repletion and light saturation

the carbon fixation (gross primary production, GPP) reaches a maximum rate, described as a parameter (PCm ) with unit d−1.

For models that do not resolve mass flux of carbon explicitly, PCm is substituted by a maximum growth rate (µm) to express15

the phytoplankton’s maximum assimilation rate of nitrogen (N), or of phosphorus (P). The maximum GPP and the maximum

growth rate are interrelated and in principle one can be derived from the other (Smith, 1980). In reality, maximum C-fixation,

maximum N- or P-assimilation, and cell doubling rates are highly variable and it requires at least cellular C, N and Chla to

be explicitly resolved, thereby linking e.g. intracellular nutrient allocation to photoacclimation (e.g., Shuter, 1979; Laws et al.,

1983; Pahlow, 2005; Armstrong, 2006).20

In practice an analogy between PCm and µm is often assumed in N- or P- based biogeochemical models (assuming fixed

stoichiometric elemental C:N:P ratios for algal growth). The parameter PCm or µm is typically multiplied with a dimensionless

temperature function (fT ) (e.g., Arrhenius, 1889; Eppley, 1972), allowing for temperature induced changes of metabolic rates.

The actual potential maximum rate (PCm · fT or µm · fT ) is then reached at some prefixed reference or optimum temperature

accordingly. In early N-based plankton modelling studies (e.g., Evans and Parslow, 1985; Fasham et al., 1990; Doney et al.,25

1996) the maximum growth rate was mainly adopted from Eppley (1972). In subsequent DA studies this maximum rate was

either subject to optimisation (e.g., Fasham and Evans, 1995; Spitz et al., 2001) or it was kept fixed because then parameter

values of the limitation functions could be better identified (Matear, 1995; Fennel et al., 2001).

5.2 Light- and nutrient limitation

In many marine ecosystem models two separate limitation functions are combined: one that expresses the P-I curve and another30

that describes the dependence between ambient nutrient concentrations and nutrient uptake. The two functions are similar

in their characteristics, starting from zero (no light or no nutrients) and approaching saturation at some high light and at
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replete nutrient concentration. Three approaches are generally found in marine ecosystem models to limit algal growth by

photosynthesis and nutrient uptake. The first is to apply Blackman’s law (Blackman, 1905), assuming that growth is reduced

by the most limiting factor, either by light or by nutrient availability (e.g., Hurtt and Armstrong, 1996; Oschlies and Garçon,

1999; Klausmeier and Litchman, 2001). The second is to multiply both limitation functions (e.g., Evans and Parslow, 1985;

Fasham et al., 1990). The third approach leads to more complex representations of growth limitation, as they account for5

interrelations between cellular C:N (or N:C) ratio, N-uptake and the photoacclimation state of the algae (e.g., Geider et al.,

1998; Pahlow, 2005; Armstrong, 2006; Wirtz and Pahlow, 2010). Whether the first, second or third approach is considered can

be expected to affect estimates of the associated parameter values.

5.2.1 Photosynthesis as a function of light (P-I curve)

In a P-I curve the level of increase from low to high irradiance is specified by the (initial) slope parameter also referred to10

as photosynthetic efficiency (αphot) (Smith, 1936; Jassby and Platt, 1976; Cullen et al., 1992; Baumert, 1996). Photosynthetic

efficiencies were derived from P-I measurements by Platt and Jassby (1976), Peterson et al. (1987), and Platt et al. (1992) and

their mean values were used for many N-based models (e.g., Fasham et al., 1990; Sarmiento et al., 1993; Doney et al., 1996;

Oschlies and Garçon, 1999). Published measurements of αphot were typically normalised to Chla concentrations. In case of

N- or P-based models careful considerations are then needed with respect to the phytoplankton’s cellular Chla content, which15

can vary by a factor of ten and more. Values of αphot were found to vary by a factor of three (Côté and Platt, 1983) during a

three month period, which can be attributed to changes in phytoplankton community structure as well as to photoacclimation.

Platt and Jassby (1976) reported an even larger variational range over a one year period, from αphot = 0.03 to 0.63 mg C (mg

Chla)−1 h−1 W−1 m2 within the upper ten meters.

5.2.2 Nutrient uptake by algae20

Typical nutrient limitation parameterisations are either expressed with the half-saturation constant (Ks) of a classical Monod

equation (Monod, 1942, 2012) or decribed with nutrient affinity (αaff) (Aksnes and Egge, 1991). Both parameters can be

interpreted as being interrelated αaff = µm · fT / Ks. However, αaff is derived from mechanistic considerations that are fun-

damentally different from former interpretations of Ks of a Monod equation (Pahlow, 2005; Armstrong, 2008; Pahlow and

Oschlies, 2013; Fiksen et al., 2013). The description of nutrient limited growth with the Monod equation, thereby retreiving25

values for Ks from measurements, had been discussed in the past (e.g., Eppley et al., 1969; Falkowski, 1975; Droop, 1983).

This discussion regained importance and the sole application of the Monod equation is currently viewed as a considerable

drawback when simulating plankton growth (Flynn, 2003; Smith et al., 2009; Franks, 2009; Smith et al., 2014, 2015).

5.2.3 Algal growth and intracellular acclimation

More complex interdependencies between light and nutrient limitation are resolved by models that account for intracellular30

acclimation dynamics (e.g., Geider et al., 1998; Pahlow, 2005; Armstrong, 2008; Wirtz and Pahlow, 2010). In these models
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growth rates become dependent on cell quota, e.g. usually normalised to carbon biomass (N:C), and the amount of synthesized

Chla per cell. These approaches involve physiological parameters that are related but not identical to those of classical N- or

P-based growth models, which impedes a direct comparison of older estimates of growth parameters with values currently used

in models with acclimation processes resolved.

Parameter values of acclimation models have typically been tuned to explain laboratory measurements (Geider et al., 1998;5

Flynn et al., 2001; Pahlow, 2005; Armstrong, 2006; Smith and Yamanaka, 2007a; Pahlow and Oschlies, 2009; Wirtz and

Pahlow, 2010). So far, there is a limited number of experimental studies whose data were used to calibrate these acclimation

models (Laws and Bannister, 1980; Terry et al., 1983, 1985; Healey, 1985; Flynn et al., 1994; Anning et al., 2000). Model

calibrations were ususally done by adjusting parameter values so that model solutions provide a qualitative good fit to the labo-

ratory data. In many cases the parameter adjustments relied on the researchers’ experience and intuition, sometimes accounting10

for prior parameter values obtained from preceding model analyses (e.g., Flynn et al., 2001). Analyses of parameter uncertain-

ties of recent acclimation models are ususally lacking. Most laboratory modelling studies had put emphasis on the physiological

mechanistic model behaviour while error assumptions for quantitative data-model comparison were hardly considered.

Explicit error assumptions for parameter optimisations and for comparisons of acclimation model results with laboratory data

were introduced by Armstrong (2006) and by Smith and Yamanaka (2007a). In both studies additive uncorrelated Gaussian15

observational errors were assumed and optimised model output of different model versions had been compared. Armstrong

(2006) applied a "simulated annealing" algorithm (Metropolis et al., 1953) to fit his optimality-based model version to the

data of Laws and Bannister (1980). The same data were used to also fit the model of Geider et al. (1998) and he evaluated

the likelihood ratio of the two ML estimates, to discuss and underpin the improved performance of his refined acclimation

parameterisations. Smith and Yamanaka (2007a) also compared the performance of two acclimation models, of Geider et al.20

(1998) and Pahlow (2005) respectively. Optimal parameter values for the two model versions were obtained with the MCMC

method, minimising the misfit between model results and data of the Flynn et al. (1994) experiment. Apart from mechanistic

considerations, Smith and Yamanaka (2007a) concluded that the models of Pahlow (2005) and Geider et al. (1998) were

describing the assimilated data equally well, since both cost function minimum values were comparable. However, the simlated

N:C and Chla:N ratios of the model proposed by Pahlow (2005) were in much better agreement with observations during the25

exponential growth phase, which remained undifferentiated by their imposed error model.

Field data from three ocean sites in the North Atlantic were used by Pahlow et al. (2008) for calibrating their plankton

model with intracellular acclimation dynamics. They conducted a two-step approach for parameter optimisation. First they

optimised parameter values so that depths and dates of minimum and maximum observed values become well respresented

by their model at all three sites. In a second step they refined their parameter estimates by minimising weighted data-model30

residuals. Their optimised parameters of photo-acclimation and maximum C-fixation (αphot, PCm ) turned out to agree with those

values derived from model calibrations with laboratory data. Besides the acclimation aspect they also addressed the difficulty

in parameterising phytoplankton biomass losses due to grazing along with other losses like the algal release of organic matter.
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5.3 Phytoplankton losses

Parameterisations of phytoplankton losses involve cell lysis, the aggregation of cells together with all other suspended matter,

and grazing by zooplankton. Cell lysis, excretion and leakage are usually espressed as a single rate parameter and the mass loss

is assumed to be proportional to the phytoplankton biomass. The principle theory of coagulation to describe the aggregation of

phytoplankton and of detritus is well established but the representativeness of the parameterisations (simplifications) assumed5

for model simulations remains an open task (e.g., Burd and Jackson, 2009). Aggregation parameters in marine ecosystem

models are often assumed to represent the combination of a collision rate and the probability of two particles (e.g. cells)

sticking together after collision. One problem is to find constraints that allow for a clear distinction between phytoplankton

losses due to the export of aggregated cells and the loss because of grazing. Both processes can be responsible for the drawdown

of phytoplankton biomass, and data that cover the onset, peak and decline of a bloom are needed for a possible distinction.10

5.3.1 Loss rates of algae due to complex grazing dynamics

How the complex nature of predator-prey interaction is parameterised remains a critical element of plankton ecosystem models.

Compared to the approaches that describe algal growth an even larger number of different parameterisations exist for grazing

(Gentleman et al., 2003). Experimental data of grazing rates and collections of field data of zooplankton abundance are therefore

of great value.15

Elaborate analyses of meso- and microzooplankton biomass, grazing and mortality rates were done by Buitenhuis et al.

(2006, 2010). For their two studies they compiled an extensive database with laboratory and field measurements. With their

data syntheses they could derive parameter values for simulations with a global ocean biogeochemical model. Furthermore,

independent field data, not used to derive the meso- and microzooplankton parameter values, were considered for assessing the

performance of their model on global scale. Their work reflects the large effort that can be dedicated to this topic for achieving20

reliable simulation results of zooplankton grazing.

The explicit distinction between zooplankton size classes, like meso- and microzooplankton, was bypassed in Pahlow et al.

(2008). Their model allows for omnivory within a the zooplankton community, which is resolved by introducing adaptive food

preferences. These preferences are treated as trait (property) state variables that adapt to the relative availability of different

prey. This reduces the number of parameters needed to describe a variety of different behaviour in grazing responses. After25

parameter optimisation they identified distinctive complex patterns between zooplankton grazing and plankton composition for

the three simulated ocean sites.

5.3.2 Mesocosm data of onset, peak and decline of natural phytoplankton bloom

To collect diverse data that fully resolve build up and decay of an algal bloom at ocean sites is difficult to achieve. Data derived

from remote sensing, e.g. Chla concentration and primary production rates, provide limited information to explain relevant30

differences between processes described before, like N-utilisation, fixation and release of C, and synthesis and degradation of

Chla. Mesocosm experiments that enclose a large volume of a natural plankton and microbial community can be helpful in

25

Biogeosciences Discuss., doi:10.5194/bg-2016-242, 2016
Manuscript under review for journal Biogeosciences
Published: 20 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



this respect, if they provide a good temporal resolution of the exponential growth phase as well as of the post-bloom period.

Vallino (2000) highlighted the advantage of using mesocosm data to test plankton ecosystem models, as done before by Baretta-

Bekker et al. (1994, 1998). Drawbacks are uncertainties in initial conditions and also the representativeness of mesocosm data

to reflect the real dynamics in the ocean is subject to discussion (e.g., Watts and Bigg, 2001). In spite of these limitations,

simulations of mesocosms or of enclosures experiments (e.g. with large carboys deployed in the field) have helped to assess5

model performance. This is particularly true for tracing microbial dynamics (Van den Meersche et al., 2004; Lignell et al.,

2013) or for details in the composition and fate of particulate organic carbon and nitrogen (POC and PON) (Schartau et al.,

2007; Joassin et al., 2011).

5.3.3 Estimating phytoplankton loss parameters: a mesocosm example

In the following example we will illustrate typical uncertainties in the estimation of phytoplankton loss parameters in the10

absence of explicit zooplankton observations like micro- and mesozoplankton abundance or grazing rates. Three parameters

that affect the loss of phytoplankton biomass have been optimised together with other parameters. For this we assimilated

five different types of daily observations (dimension of y is Ny = 5) over a period of Nt =23 days from a mesocosm study

into a plankton ecosystem model. The model resolves fluxes of C and N through phytoplankton, zooplankton, detritus and

dissolved organic matter, with a total of twelve state variables (Nx = 12). The model includes optimal nutrient allocation and15

photo-acclimation described before, following Pahlow (2005). As an error model we assume additive Gaussian errors applying

Eq. (4) in Sect. (2.1.3). Details of the corresponding mapping from model results x to observations H (x) are given in the

Appendix (B).

In our example we consider two cost functions, with and without covariances respectively. We disregard any prior informa-

tion and we assume mesocosms to be homogeneously mixed. Equation (10) in Sect. (2.3) then reduces to:20

J(Θ) =
Nt∑

i=1

(yi−Hi (x))T R−1
i (yi−Hi (x)) (20)

The standard errors (σi) represent the observed variability between the nine mesocosms, based on daily measurements. Resid-

ual error covariance matrices can thus derived for every sampling day: Ri = Si C(y) Si . The matrices Si include diagonal

elements with σi at date ti, while off-diagonal elements are zero. The elements of matrix C(y) represent correlations between

the different types of observations, which were determined for two time intervals: exponential growth and post-bloom period25

(see Appendix B). The distinction between periods of bloom buildup and post-bloom becomes relevant if C and N (or P)

data are assimilated. Correlations can switch sign and thus the sign of the data-model residual di = yi−Hi (x) matters. For

example, PON and dissolved inorganic carbon (DIC) are strongly negatively correlated during the exponential growth phase.

During the post-bloom period DIC may still decrease at times when PON concentration declines as well, which yields a weak

but positive correlation.30
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For our second cost function we assume all data to be independent (i.e. all off-diagonals of C(y) are zero) and Eq. (20) can

be further simplified to a sum over all individual vector components (indexed with j):

J(Θ) =
Nt∑

i=1

Ny∑

j=1

(yij −Hij (x))2

σ2
ij

(21)

Figure (2) shows contours of J(Θ̂m±∆m,Θ̂n±∆n;m,n= 1,2,3) around the optimum at (Θ̂m,Θ̂n,min(J)), while all other

parameters are fixed to their optimal estimates (Θ̂l 6=m,n). Each plot is thus a combination of two loss parameters: maximum5

grazing (Θ1 = gm) and carbon loss rate (Θ2 = γC) on top; γC and aggregation parameter (Θ3 = Φagg) in the middle; Φagg and

gm on the bottom. Results from MCMC (dots and asterisks) reveal similar collinearities between parameter combinations that

involve gm for the two cost functions (right and left sides of top and bottom row in Fig. (2). It means that gm can only be

estimated in combination with Φagg and γC . If gm remains fixed, we do not find such strong collinearity expressed between γC

and Φagg and their estimates seem to be rather independent (middle row of Fig. 2), given the mesocosm data.10

Another peculiarity is that the ranges of the MCMC’s posterior indicate larger uncertainties if the cost function without

covariance information is applied (right side of Fig. 2), although model and data are identical. This behaviour is also resolved by

the 95% confidence regions that are obtained with a point-wise approximation of error ellipses (lines), based on approximated

and inverted Hessian matrices according to Eq. (19). Furthermore, collinearities according to the error ellipses are smaller for

the cost function with covariances compared to the case of independent data. Here, confidence regions of the error ellipses15

correspond well with the credible regions of the MCMC results. We stress that this may not be the general case and the good

correspondance is likely attributable to the low dimension of the example looked at.

Overall, these results exemplify the uncertainty in constraining major loss parameters in the presence of grazing, if no explicit

prior information about grazing rates or data of zooplankton biomass are available. Collinearities between grazing parameters

and other phytoplankton biomass losses may be reduced by testing model performance against independent data, e.g. as done20

for the meso- and microzooplankton grazing in Buitenhuis et al. (2010). In cross-validation studies some combinations of

parameters that produce indistinguishable solutions for one experiment or for one ocean site are compared with data of another

experiment or at another ocean site.

6 Cross-validation and model complexity

Good performance should be attributable to a model capturing the predominant plankton dynamics under varying conditions25

in different environments. Parameter values are often optimised for local ocean sites, but ideally, parameter estimates from

one site should improve model performance at other locations as well. The generality of optimised models can be tested by

cross-validating against independent data, providing a direct and effective test of predictive skill (Gregg et al., 2009).
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6.1 Cross-validation

Parameter optimisations can often improve the fit of a model by selecting unrepresentative parameter values that serve only

to compensate for misfits between data and model results. It is therefore essential to check whether the resultant ’optimised’

model is giving the right answer for the correct reasons.

Xiao and Friedrichs (2014b), for example, found that while the optimisation of a range of NPZD models to satellite data5

tended to reduce model-data misfit, this was often achieved through the adoption of extremely unrealistic parameter estimates,

sometimes being multiple orders of magnitude higher or lower than their best a priori estimates. The same authors (Xiao and

Friedrichs, 2014a) showed that adding synthetic noise to assimilated satellite data led to the introduction of similar errors,

and a significant deterioration of one model’s predictive skill. The extreme parameter estimates were not representative for the

system and the model performance turned out to be poor when the model was tested against independent data that were not10

used during the optimisation procedure.

This is the principle of cross-validation, in which an optimised model is tested in terms of its ability to reproduce data that

were not included in the calibration phase. This is often achieved by excluding a subset of the original calibration dataset, for

later use in model evaluation. For example, in a variational data assimilation exercise for the Arabian Sea, Friedrichs et al.

(2006) repeated their optimisation a number of times, each time excluding data from a particular season. The calibrated models15

were then used to predict the system behaviour during the withheld season, with the resultant model-data misfit labelled the

’predictive cost function’.

The cross-validation approach has the advantage of testing one of the key attributes of marine biogeochemical models,

namely their predictive skill. The technique is, however, not without its difficulties. The first issue is that it is important to

ensure the test data are truly independent from the training data. In this regard, Friedrichs et al. (2006) took advantage of the20

highly seasonal nature of the Arabian Sea, but it would perhaps be less appropriate in regions with a less pronounced seasonal

cycle, such as at the centre of a subtropical gyre. A potentially more serious problem occurs when researchers simply divide the

available data at random, such that highly correlated data appear in the assimilated and the test data. Under such circumstances,

the cross-validation would give no indication as to the ability of the model to predict independent data.

The potential to select unrealistic, compensatory, parameter values may not always be obvious, especially if good estimates25

of the ’true’ (or at least sensible) values of the model parameters are not well known a priori. Such errors may, nonetheless,

strongly impact the ability of a model to reproduce anything but the assimilated data. This issue appears to be a common

theme in simple marine biogeochemical models calibrated to time-series data, as a number of studies (Fennel et al., 2001;

Friedrichs et al., 2006; Ward et al., 2010) have found that parameter optimisation resulted in decreased predictive skill, relative

to ’off-the-peg’, prior parameterisations. A notable counterpoint to those studies is given by Oschlies and Schartau (2005),30

who found that simultaneous optimisation of an NPZD model at three time-series sites (Schartau and Oschlies, 2003) led to

improved performance when the model was applied within a 3D simulation of the North Atlantic. On the one hand, it seems

likely that this improvement was dependent on assimilating data from three highly dissimilar North Atlantic locations, which

prevented the inclusion of compensatory errors that were highly specific to any one site (see also Xiao and Friedrichs, 2014a).
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On the other hand, in Schartau and Oschlies (2003) and in Oschlies and Schartau (2005) it is also stressed that the apparent

improvement is associated with some ambiguous rapid nitrogen remineralisation pathway in their simple NPZD model, which

can be incorrect in either simulations (1D and 3D), but with the same positive effect on primary production rates in the central

North Atlantic.

6.2 Model performance as a function of model complexity5

Of the many factors that affect the ability of a biogeochemical model to reproduce and predict observations, the appropri-

ate degree of model complexity in any given situation is both one of the most important, and one of the least well defined.

This is because there exists a fundamental trade-off between simplicity and complexity. Simple models have the advantage of

being easier to understand, and with fewer parameters they should also be better constrained (both before and after optimisa-

tion). Nonetheless, simplification requires a degree of abstraction, and it can sometimes be difficult to draw parallels with the10

complexities of the observed system.

At the other end of the spectrum, a highly complex model can explicitly resolve more processes, allowing more detailed

comparison with observations. As models become more complex, the number of degrees of freedom increases, and the cal-

ibrated model will generally be able to match the observations better than a simpler model. If insufficient observations are

available, the extra degrees of freedom can lead to the introduction of compensatory errors at the assimilation site, which could15

then increase uncertainty at other locations. Similarly, an extra flexibility may lead to very different model solutions with only

small variations in the assimilated data, also leading to increased uncertainty in model predictions.

A range of statistical techniques are available to assess this trade off, and a useful review is given by Johnson and Omland

(2004). One of the most practical (if not the most general) techniques is cross-validation, as described in the previous section.

In their experiments looking at the effects of adding noise to assimilated remote sensing data, Xiao and Friedrichs (2014a)20

found that the most complex model they evaluated was also the most sensitive to the introduction of synthetic errors in the

assimilated data (Fig. 3). They attributed this result to the extra degrees of freedom that could be ’fit to noise’. This is consistent

with earlier findings that model predictive skill deteriorates as complex models can become “overfit” to the data (i.e. too many

parameters are fit to inadequate data) (Friedrichs et al., 2006, 2007; Ward et al., 2010).

Aside from directly assessing a model’s predictive skill using cross-validation, a number of alternative approaches are25

available to identify the minimum number of model parameters that are supported by the available data. One of the simplest

techniques (in terms of its applicability), is the Akaike Information Criterion (AIC). The AIC considers two opposing terms

corresponding to the maximum log-likelihood of the parameters given the data (ln[L(Θ̂ | y)], measuring model data misfit)

and a bias-correction factor, that increases with the number of free parameters (NΘ).

AIC =−2 ln
[
L
(

Θ̂p | y
)]

+ 2NΘ (22)30

Note that for a model fitted by least-squares, the log-likelihood can be approximated by the residual sum of squares (RSS),

following (Johnson and Omland, 2004): ln[L(Θ̂p | y)]≈−Ny/2·ln(RSS/Ny), withNy being the total number of observations.

The AIC, and alternative techniques (weighted AIC, or Bayesian Information Criterion, BIC), seek to quantify the trade-off
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between bias and variance. Of a range of competing models, the one with the lowest AIC has the greatest empirical support.

A perhaps more intuitive approach is given by the Likelihood Ratio Test (LRT) for e.g. comparing so-called nested models,

in which the simpler model is a special case of the more complex model, in the sense that Mp = f1 is a special case of

Mp+1 = f1 + f2 where f2=0. Like the AIC, the LRT aims to account for model complexity in the sense that it compares

log-likelihoods:5

LRT = J(Θ̂p)− J(Θ̂p+q) (23)

with J(Θ̂) =−2 ln[L(Θ̂ | y)] and index p+q indicating the number of free parameters of the full model. An alternative simpler

model (with p parameters) that is not significantly worse than the full model (with p+ q parameters) can be selected using this

ratio. There is a clear analogy to Eq. (13) in Sect. (4). In other words, although having removed individual parameters (going

from Θp+q to Θp) we may still have an increase in the data-model misfit that is tolerable or insignificant within some limit ∆J .10

For nested models only, a value for ∆J can be derived from a χ2(df = q,α) distribution. The respective degree of freedom (df)

is then assumed to be equal to the difference in the number of free parameters between the full and the reduced model, which

is q. For LRT with non-nested models an empirical, non-parametric distribution needs to be derived by other means instead,

for instance using synthetic (or resample) data sets (e.g., Lewis et al., 2011).

The theory mentioned above is well described by Johnson and Omland (2004), and have already been applied in few ecosys-15

tem modelling studies (e.g., Crout et al., 2009; McDonald and Urban, 2010; Ward et al., 2013). The techniques for model

selection have generally shown that more complex models are more vulnerable to over-tuning than simper models. This ap-

pears to be because the number of uniquely identifiable parameters in marine biogeochemical models is often very low. Studies

based on classic NPZD type models have typically found that the inclusion of as few as three to 15 parameters were supported

by the assimilated data (Matear, 1995; Friedrichs et al., 2007; Ward et al., 2013; Löptien and Dietze, 2015). It should however20

be noted that these studies made use of only very limited datasets, and a higher level of complexity would likely be supported

with the incorporation of more comprehensive datasets, especially those describing fluxes.

Ward et al. (2013) sequentially removed parameters from a relatively simple 2NPZD model to show that much of the model

structure was redundant, with respect to the assimilated data, Fig. (4). They applied an F-score where the relative change in

LRT is related to the relative change in parsimony (i.e. difference in the number of free parameters between the reduced and25

the full model divided by the degree of freedom of the full model, dfp+q=Ny - NΘp+q
):

F =

[
LRT

J(Θ̂p+q)

]
·
[
NΘp+q

−NΘp

dfp+q

]−1

(24)

As model complexity was reduced, model predictive skill was initially very slow to deteriorate, and J remained similarly

low. The increased parsimony of the simpler models led to improved performance in terms of the LRT, and the AIC and

Bayesian information criterion (BIC). Once all of the redundant components of the model were removed, removal of essential30

components led to a rapid increase in J , with an associated increase in the other metrics. The LRT selects the simplest model

with an F-score below a variable threshold value. The AIC and BIC select the model with the lowest overall score. Among

models with a similar score, the simplest should be favoured.
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7 Space-time variations in model parameters

With the previously described cross-validation approach we question how representative local estimates are if applied at larger

scales, e.g. in basin-wide or global models. As outlined before, the extent to which this is feasible is far from clear. Theoretical

arguments, as well as results from cross-validations, revealed problems with the portability of locally calibrated models (e.g.,

Hurtt and Armstrong, 1999; Friedrichs et al., 2007). These limitations encourage estimators that allow spatial and/or temporal5

variations of parameter values.

For spatial or temporal variation to be useful we have to make sure that the corresponding parameter adjustments reflect

changes in the actual underlying (real-world) dynamics. To assess whether this condition is met is a particularly challenging

problem that has yet to be adequately addressed. Direct comparisons are needed between optimisations that allow variation

in posterior parameter vectors and those that do not. In studies where direct comparisons are made, a common finding is a10

reduction in the model misfit to the assimilated data by allowing these kinds of variations, but this tells us little. A reduction of

the cost function is expected, as a direct consequence of an effective increase in the number of adjustable parameters. As pointed

out by Gregg et al. (2009), “skill assessment using assimilated data lacks the independence necessary for a comprehensive,

objective evaluation”. Furthermore, any ad hoc fixing of local parameter values would be difficult to justify in prognostic

simulations of changing environmental conditions. Switching between different parameter sets in time or for specific regions15

is not a solution per se but it stresses where model refinements have to be investigated (Huret et al., 2007). From analyses of

spatially- and temporally varying parameter estimates we can learn where and when particular model equations are limited in

reproducing changes in plankton dynamics with fixed parameter values, which should provide important feedback information

on revising these parameterisations.

7.1 Regional differences between parameter estimates20

Satellite ocean colour data are widely used to investigate spatial differences in parameter estimates. In many cases, a local

calibration method is applied where parameters are optimised separately to fit Chla data for a number of pre-defined sites or

regions spanning a domain of interest. For example, parameters of a 3D-NPZ model were optimised by Garcia-Gorriz et al.

(2003) for January and June for two regions, the North- and South Adriatic basin in the Mediterranean Sea. They inferred

comparable parameter vectors for the two regions during bloom conditions in January but considerable differences between25

the regionally optimised parameter sets emerged for June. Garcia-Gorriz et al. (2003) attributed this difference to unresolved

variations in plankton composition and changes in biomass concentration between the two basins. Huret et al. (2007) performed

a similar assimilation experiment for the Loire and Gironde river plumes in the Bay of Biscay. On the one hand, they found some

similarities between parameter estimates for the two distinct river plumes for particular conditions during spring, suggesting

the possibility of a common set of parameter values for both plume areas. On the other hand, the authors stressed their optimal30

parameter estimates to be based on data for a specific period, which seemed inappropriate for simulations of the entire season

of phytoplankton production. An interesting finding was that Huret et al. (2007) obtained too high Chla concentrations in the

Bay of Biscay for the entire simulation year when utilising the mean of parameter estimates of the two plume regions.
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Pronounced regional and seasonal differences are not restricted to adjacent seas and coastal areas. Large scale studies for the

North Atlantic have shown comparably strong regional differences between parameter estimates (Hemmings et al., 2003; Losa

et al., 2004; Doron et al., 2013). A set of sites representing distinct latitude bands was considered for a one year calibration

of a NPZ model in Hemmings et al. (2003). The annual cycle at locations on a five degree grid was simulated with variable

parameter estimates of a NPZD model in Losa et al. (2004) and individual parameter estimates for thirteen provinces in the5

North Atlantic, pre-defined according to Longhurst (1995), were derived for a six-compartment 3D biogeochemical model in

Doron et al. (2013). Although these studies included different models, the optimised parameters were common to all three

studies, but little consistency is seen in the spatial patterns between their estimates. Patterns of spatial variation in parameters

are not easily validated as most parameters do not have well-observed equivalents in nature. Nevertheless, Losa et al. (2004)

were able to document the plausibility of their posterior photosynthesis parameter values for the maximum growth rate µm10

and intial slope αphot by comparison with observational estimates of Platt et al. (1991). These posterior parameter fields were

cross-validated in a 3D version of their model by comparing the output with an independent SeaWiFS chlorophyll data from

1997-2003 (Losa et al., 2006). The spatially-varying parameter set of Losa et al. (2004), obtained by assimilating Coastal

Zone Color Scanner (CZCS) data for the period 1979-1985, enabled the model to simulate the seasonal patterns in SeaWiFS

data much better than with a fixed prior parameter vector. An important caveat is that the calibration and validation data15

sets are essentially two realisations of the same emerging spatio-temporal patterns. To demonstrate improved predictive skill

attributable to its dynamics the model would be expected to resolve differences between the two independent data sets, given

physical forcing data specific to each period.

7.1.1 Combining sites or regions

The presence of parameter variation between sites or regions for which a model was calibrated independently does not refute20

the existence of a common parameter vector with which the model could achieve similar results. Garcia-Gorriz et al. (2003)

and Hemmings et al. (2003) performed alternative experiments in which regions were combined under a uniform parameter

vector constraint, but did not include predictive skill tests for direct comparisons of the performance of spatially-varying

and uniform parameter solutions. In other studies, sites have been combined without considering the alternative of allowing

parameters to vary spatially. By optimising a 13-parameter model for locations of the Ocean Wheather Ship India (OWSI) and25

of the Bermuda Atlantic Time-series Study (BATS) simultaneously Hurtt and Armstrong (1999) found that it could capture

the primary observed characteristics of the annual cycle at both sites, despite being unable to reproduce the cycle at BATS

when calibrated at OWSI. As mentioned in the previous section, the approach of data assimilation over multiple sites has since

been used by Schartau and Oschlies (2003) with some success in improving predictive skill of a 3D North Atlantic simulation

(Oschlies and Schartau, 2005) based on a simultaneous three-sites calibration. A relatively complex global model with 4530

adjustable parameters was similarly demonstrated to improve the predictive skill after assimilating time series data at five

different calibration sites (Kane et al., 2011).

There is a clear advantage of combining sites or regions, in that it makes more data available to constrain parameters. It

also creates a representative sample for the domain of interest, reducing the risk of over-fitting. In contrast, when assimilating
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data at a single site in models of differing complexity, Friedrichs et al. (2007) found it necessary to limit the number of

adjustable parameters (to four or even less) to avoid portability problems. Use of a larger data set representing a wider diversity

of ecosystem behaviour should support a greater number of parameters to be constrained, which would allow a model’s true

flexibility to be more fully exploited. However, there is a potential disadvantage of combining sites or regions, particularly

over large spatial scales, in that the resultant parameter vectors may be less suitable for either region than parameter vectors5

obtained by local calibration.

Hemmings et al. (2004) introduced the idea of allowing provinces that are in a sense optimal for calibration to emerge during

the data assimilation process. A sample of sites from the domain of interest is divided into two similarly distributed sets, one

for calibration and the other for cross-validation. The objective is to find “the number and geographic scope of parameter

vectors which allow the lowest possible cost of the calibrated model, with respect to the stations in the validation set, to be10

obtained". The method involves first performing a whole-domain calibration where parameters are optimised for all calibration

sites, then recursively splitting the domain into two geographic provinces to investigate whether a better calibration can be

achieved by optimising parameters for each one separately, a procedure referred to as split-domain calibration. To define the

boundary between the two provinces, an algorithm is employed that identifies natural groups of sites that can be simulated with

one parameter vector. The relative merits of the calibration procedure are assessed by cross-validating the posterior parameter15

vector or vectors against sites from the validation set.

Application of the method to the North Atlantic data set used by Hemmings et al. (2003), with the same NPZ model and

twelve adjustable parameters, resulted in the discovery of a two-parameter vector solution having a cross-validation misfit cost

25% lower than that for the single vector solution obtained for all calibration sites. The two sub-domains are shown in Figure

(5). The validation cost was also 24% lower than that obtained when the model was calibrated locally using individual sites.20

This is consistent with subsequent findings of Xiao and Friedrichs (2014b), where combining sites tends to reduce validation

costs. Note that the validation scheme used by Hemmings et al. (2004) may not be able to discriminate well between skill

associated with the model dynamics and that associated with the ability of the model to interpolate spatio-temporal patterns.

This could be resolved by comparison with interpolated output from some purely empirical model fitted to the calibration data.

7.1.2 Spatially varying parameter estimates derived with Bayesian hierarchical modelling25

Zhang and Arhonditsis (2009) proposed a Bayesian hierarchical formulation for calibrating aquatic biogeochemical models at

multiple sites. In this framework, posterior parameter distributions can vary between sites but the sites share common prior

distributions. Fiechter et al. (2013) used this approach to estimate parameter distributions for a 1D-NPZD-iron model at two

sites in the Gulf of Alaska. Non-informative prior distributions were employed for each parameter so the influence of the

priors on the solution for each site was fairly weak. In a parallel Bayes’ hierarchical modelling study for the same model,30

Leeds et al. (2013) assimilated satellite Chla data at nine sites using a spatial Gaussian process model for the parameters

with an anisotropic correlation matrix to allow for differences between along-shelf and cross-shelf dependence. The methods

employed by Leeds et al. (2013) and Fiechter et al. (2013) seem promising because of their potential for rigorous treatment of
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uncertainty. However, in the absence of cross-validation experiments, their potential for improving the predictive skill of the

models is not well evaluated at present.

7.1.3 Time-varying parameters

The idea of representing seasonal variation in part by temporal variations in the parameters has been examined in various

studies (Losa et al., 2003; Brasseur et al., 2005; Dowd, 2006; Mattern et al., 2012, 2013a, 2014; El Jarbi et al., 2013; Melbourne-5

Thomas et al., 2013). In some cases, parameters are allowed to vary in space and in time (Tjiputra et al., 2007; Fan and Lv, 2009;

Doron et al., 2013; Li et al., 2013). Cross-validation tests comparing the merits of varying and non-varying parameter solutions

are mostly lacking, which prevents inferences being drawn about the superiority of these parameter variations for improving

predictive skill. Temporal variation is handled naturally by adapting widely used sequential state estimation techniques to

obtain parameter values along with state estimates. One such technique, the Sequential Importance Resampling (SIR) method10

(Gordon et al., 1993; van Leeuwen, 2009, 2010), has been widely used (e.g., Losa et al., 2003; Dowd, 2006; Mattern et al.,

2013a). The SIR particle filter approximates the solution of a sequential Bayesian problem in which the joint probability

distribution of state and parameters is given by a series of forecast and analysis steps. Given a state vector x augmented with

the model parameters and a set of observations Y , the forecast at time ti is described by

p(xi | Y i−1) =
∫
p(xi | xi−1)p(xi−1 | Y i−1)dxi−1 (25)15

where xτ is the augmented state vector at time τ and yτ = (y′1, ...,y
′
τ )′ is the cumulative observation data set up to and

including observations at time τ . The forecast is combined with new observations Yi in the analysis step

p(xi | Y i)∝ p(yi|xi)p(xi | Y i−1). (26)

While the state evolves between analysis times according to the model equations, the parameters remain constant. Both are

then updated in the analysis. The time-varying parameter estimates may, in principle, also be used independently of the state20

estimates in subsequent free-running simulations that preserve model dynamics and conserve mass.

Losa et al. (2003) applied a SIR particle filter to a model with 15 time-varying parameters in an assimilation of multi-

year time series at the BATS site. The model was treated as a weak constraint with an additive system noise term that was

uncorrelated between state variables. Mattern et al. (2013a) instead added noise to their two parameters in a 7-compartment 3D

biogeochemical model of the Middle Atlantic Bight, with the advantage that the state evolution over each forecast step was true25

to the model and correlated errors between state variables were represented. In both cases, the error model is highly subjective,

yet it can have a major impact on the results. For instance, Losa et al. (2003) found the level of noise to be a critical factor

affecting their solution. This motivated subsequent experiments in which additional time-varying parameters representing the

noise level for each state variable were optimised (Brasseur et al., 2005). The posterior parameter trajectories thus obtained

were not consistent with the earlier results. Despite the subjective characteristics of the system noise, the solution of Losa et al.30

(2003) improved the model prediction of unassimilated bacteria data. The necessity of time-variation in the parameters for

achieving this is unclear, since no alternative results for static parameter solutions were analysed.
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In a more recent BATS assimilation study with a simpler NPZD model, El Jarbi et al. (2013) did compare the performance of

time-varying and static parameter solutions. Rather than employing a sequential method, they opted to solve the optimal control

problem. i.e. to find parameter trajectories that minimise a cost function for the complete time period. An annual periodicity

constraint on posterior parameter trajectories was introduced to allow the calibrated model to be also applied for time periods

beyond the range of observations. Optimal periodic parameters were obtained using a two-year data set and validated against5

independent data for the following three-year period. In cross-validation tests, this solution was shown to improve predictive

skill over the static parameter solution of Rückelt et al. (2010). Their results suggest that the time-varying parameter model

may capture some aspects of the inter-annual variability, which would indicate dynamical skill.

Mattern et al. (2014) compared the predictive skill of versions of their two-parameter model with time-varying and static

parameter solutions. Here, the time-varying solution was obtained using an alternative, emulator-assisted sequential data as-10

similation scheme. Their cross-validation experiments show a modest improvement in the ability to predict the annual cycle

with time-varying parameters. A prediction of the inter-annual variability was not tested and the achievability of similar pre-

dictive skill by purely empirical representations of the annual cycle derived from the observational data is not ruled out. In

addition, the supporting evidence for using time-varying parameters is conditional on the restriction to adjust only two model

parameters, which places limits on the model’s flexibility. It’s flexibility could equally well be increased by increasing the size15

of the parameter vector, rather than allowing it to vary in time.

7.1.4 Learning from space and time variation in parameter estimates

A variety of approaches have been explored for data assimilation with parameters varying in space or time or both. A common

finding is that the posterior misfit cost with respect to the assimilated data is reduced by allowing variation, but this provides no

evidence in itself to support the case for parameter variation. Goodness-of-fit statistics that penalise model complexity in terms20

of number of parameters (e.g. the LRT based F-score employed by Ward et al., 2013) could prove more informative, but are not

used. In the few studies which do use cross-validation to compare uniform and varying parameter solutions (Hemmings et al.,

2004; Mattern et al., 2014; El Jarbi et al., 2013), the cross-validation schemes are not shown to discriminate reliably between

predictive skill associated with model dynamics and that due to interpolation of patterns in space or persistence of an annual

cycle.25

Allowing parameters to vary reduces the extent to which their values can be constrained by a given set of observations,

making an already under-determined problem worse. It could therefore be argued that parameter variation is justified only

when there is good evidence to infer that a given model cannot adequately represent the observed variability under the uniform

parameter vector constraint. The evidence should be statistically robust, taking into account all relevant sources of uncertainty.

The consideration of these additional uncertainties, motivated by its potential for improving parameter estimates (Hemmings30

and Challenor, 2012), may tend to weaken data constraints further and make the introduction of parameter variation less

practical, as well as affecting the strength of the evidence in support of it.

Heterogeneity in the parameter vector is most likely to be useful for structurally simple models. Those models may lack the

required flexiblity to capture some distinct spatial features observed within large domains or they may fail to resolve specific
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events during a complete annual cycle. Its introduction may be a sensible alternative to increasing structural complexity as it

does not increase the computational demands of 3D simulations. From an ecological point of view, the need to introduce space

and time variations in parameter values reflects limitations in resolving physical environmental changes, or deficiencies in

physiological or ecological processes, or all of these factors together. For example, variations in plankton elemental stoichiom-

etry, e.g. variable Chla:C and C:N ratios, induce variations in photosynthetic rates that may not be well described by a model’s5

parameterisation of Chla synthesis and assimilation of nutrients (as discussed in Sect. 5.2). It is helpful to consider biological

or environmental reasons why space or time variations of parameter values are expected to improve model performance.

If good reasons are found to support the use of parameter variation for model improvement, then the issue of how to benefit

from this spatio-temporal information must be addressed. Spatially varying parameters can be applied directly in 3D models

(e.g., Losa et al., 2006). This should work well for hindcasts and short-term forecasts where the application is not compromised10

by large scale ecological changes. For forecasting, climatological trajectories such as those estimated by El Jarbi et al. (2013)

are likely to be of advantage, although their direct application to long-term prediction in the context of global change would be

difficult to justify. Application of spatially varying parameters to long-term predictions of global change is possible but will be

more complicated than their use in short-term forecasting and it may be necessary to find ways of allowing spatial patterns in

biogeochemical parameters to evolve with predicted changes in the physical regimes.15

8 Emulator approaches

Systematic approaches for parameter optimisation, which were successfully applied in 0D or 1D setups, may become too costly

as resolution in space is increased and if the time period for integration is prolonged. This is the case when spatially three-

dimensional models with high resolution or steady annual cycles (i.e. periodic solutions) are considered. For the computation

of a steady annual cycle (or fixed-point) typically thousands years of model time are necessary, which may result in a number of20

time steps in the order of o(107). Since data assimilation usually involves an iterative optimisation process, typically hundreds

or more model evaluations are necessary to obtain a satisfactory parameter set. Thus the necessary time steps during procedures

of parameter identification can even reach o(1010). Recent attempts aim at replacing computationally costly models with

approximations that are less expensive; i.e. emulators have the goal to provide an approximation of the model output trajectory

x := (xi)Nt
i=0, recalling Eq. (1) of Sect. (2.1):25

xi+1 =M [xi,Θ,f i,ηi], i= 0, . . . ,Nt− 1, (27)

by substituting the original model M by a simpler one, the emulator (M̃ ). Here we disregard a stochastic model approach and

consider ηi = 0 for simplicity.

The application of emulators has emerged in many different fields of science and thus the theoretical background is relatively

well developed (e.g. Bliznyuk et al., 2008; Castelletti et al., 2012; Conti et al., 2009; Kennedy and O’Hagan, 2000, 2001; Lucia30

et al., 2004; Liu and West, 2009; Phillips, 2003; van der Merwe et al., 2007). Two distinct approaches of emulation exist: one to

emulate model dynamics, the other for the emulation of statistical properties, e.g. of M(x,Θ,f). Both approaches are outlined

in the following. Note that the terminology in literature may vary somewhat depending on the respective research field.
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8.1 Dynamic Emulators

A dynamic emulator (or reduced order or surrogate model) is a substitute for the original model M . It makes use of the

original model equations but is a simpler representation in terms of resolution or details resolved in the dynamics. The term

“simple model” refers here to the computational effort needed to evaluate a solution that is a useful approximation of the

solution obtained with the full model. A typical number of model evaluations needed for an automised optimisation process5

can easily reach the order of 1010. In this case an emulator becomes particularly valuable, because its application should be

much faster than the original model, while as much as possible main properties of the original model are retained. Only then

an emulator-based DA approach will give satisfactory results.

Dynamical or physical emulators are based on a simplified model version (M̃ ), which might be additionally aligned with

interim evaluations of the original model. The term ”dynamic” refers to the fact that the emulator is still based on dynamical10

physical or biogeochemical equations that can be similar to original model but might have some reduced complexity, either by

neglecting some processes or by simplifying e.g. the forcing f̃ . Another option is the reduction of accuracy in model output

by coarsening the spatial or temporal discretization. For instance, the Transport Matrix (TM) method (Khatiwala, 2007) can be

interpreted as an emulator approach with a kind of coarse model. The TM is an emulator that simplifies the original model M

by using an approximated and averaged forcing f̃ in Eq. (27) and a linear approximation of the spatial discretisation, compared15

to nonlinear advection schemes typically used in ocean models. For the case of a spin-up, as mentioned above, a reduction of

accuracy can be achieved by introducing a different criterion that specifies when a tolerable steady periodic solution as been

approached.

When using dynamic emulators, it is often insufficient to take the output of the faster but less accurate coarse model during

optimisation, because the accuracy of the coarse model M̃ might be too low to effectively support parameter search process.20

It can be worthwhile or even necessary to gradually enhance (or update) the emulator’s accuracy during the optimisation

procedure by introducing special alignment operators. To explain their definition, let us assume we have computed state vectors

of the original and of the coarse model with a current set of values for the parameter vector Θ` in the `-th step of the optimisation

run, i.e.

xi+1 = M [xi,Θ`,f i],25

x̃i+1 = M̃ [x̃i,Θ`, f̃ i], i= 0, . . . ,Nt− 1.

We recall that the model state vector xi consists of the values of the Nx state variables. Thus, in a spatially distributed model,

xi is a vector where every element represents the values at a certain spatial grid point. We here assume that the same numbering

is used for the coarse model state x̃i.

The alignment operator in optimisation step ` is then defined element-wise for xi and point-wise in time by30

A`iM̃ [x̃i,Θ`, f̃ i] =M [xi,Θ`,f i]. (28)

Thus, every A`i is a diagonal matrix. At the current iterate Θ`, the emulator equals the original model, and the idea of this

response correction method is that the deviation between both models remains uncritically similar in a vicinity of Θ`. The
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emulator is thus not just the coarse model M̃ , but an aligned one, A`iM̃ , that is now locally optimised. When this inner

optimisation gives some new parameter vector Θ`+1, the original model is evaluated once again, and the procedure in Eq.

(28) is repeated, defining the new emulator for the (`+ 1)-th outer optimisation step. In the inner optimisation loop no runs

of the original model are needed, and the total number of outer iterations is expected to be lower than in an classical direct

optimisation using M . This type of optimisation procedure fits in the framework of trust region methods, a class of state-of-5

the-art algorithms for which a mathematical convergence analysis is shown in Conn et al. (2000).

The method was successfully applied for parameter identification of a transient 1D configuration with a NPZD ecosystem

model and for periodic states with climatological forcing in a three-dimensional setting in a N-based model with dissolved

organic phosphorus (DOP) (Prieß et al., 2013a, b). Therein, a coarser time-stepping and a less accurate computation of the

fixed-point (i.e. a shorter spin-up), respectively, was used to construct the simple model M̃ . For this computationally very10

costly 3D model, it turns out that the most efficient way is to start the optimisation using the emulator- or surrogate-based

optimisation procedure (with a very coarse model), and then increase its accuracy during the outer optimisation (Slawig et al.,

2014).

8.2 Statistical Emulators

In contrast to a dynamical emulator, statistical emulators relate the input parameters statistically to the model output and thus to15

H(x) regardless of the dynamical model structure. Generally, statistical emulators interpolate the results of a numerical model

from a set of training runs with differing parameters. The aim is to approximate the unknown model output for other input

parameters, not included in the training parameter set. Common approaches are based on a polynomial fit (of varying degree).

Typically, such interpolations are extended by Bayesian techniques to also obtain uncertainty estimates. For this purpose it

is commonly assumed that the model outcome can be represented by a Gaussian process and also that the model output20

changes smoothly as parameter values are varied. Priori assumptions about reliable parameter ranges and their distribution

are required. Another necessary a priori choice is to determine the respective model output of interest, e.g. results needed for

H(x) to determine p(Θ | y) or L(y |Θ), Sect. (2.2). Although there are methods available to reduce the dimensionality for

multi-dimensional model output (e.g. Higdon et al., 2008; Leeds et al., 2014), it remains practically infeasible to capture the

complete output of a 3D-coupled ocean ecosystem model.25

While the theory for statistical emulation is relatively well described (e.g., Kennedy and O’Hagan, 2000; O’Hagan, 2006; Liu

and West, 2009; Conti and O’Hagan, 2010), statistical emulators are so far rarely applied in biogeochemical ocean modelling.

Here we provide an example in an idealised 0D setup (Fig. 6). All simulations are based on a NPZD model, assuming a

system that is homogenous in space, both in horizontal and in vertical direction, as described in Löptien and Dietze (2015).

Daily means of photosynthetically available radiation (PAR) averaged over the surface mixed layer are prescribed. Respective30

PAR values range from 2.5 W m−2 in winter to 50 W m−2 in summer. These PAR-conditions are representative for mixed

layer conditions typically observed in the Baltic Sea (Leppäranta and Myrberg, 2009). We define, a priori, our own “synthetic

observations” by integrating the model with an arbitrary but representative set of parameter values: HI=15 W m−2; m=0.06

38

Biogeosciences Discuss., doi:10.5194/bg-2016-242, 2016
Manuscript under review for journal Biogeosciences
Published: 20 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



d−1; µmax=0.51 d−1; Hn=0.8 mmol N m−3; mPD=0.1 d−1; mDN=0.1 d−1; HZ=0.9 mmol N m−6; mZN=0.01 d−1; mZD=0.01

d−1; gmax=0.21 d−1.

The respective model simulation is perturbed by reddish noise with a standard deviation of 0.09 mmol N m−3. The goal of

this twin experiment is to retrieve the original parameter values used to generate the unperturbed model solution. Generally,

such a simple setup would not require emulation (since it is cheap to run), but it allows for the evaluation of many model5

simulations and is thus well suited for testing an emulator.

Figure (6) depicts simulated and emulated RMS (root mean square) error with respect to all prognostic variables and nitrate

only, depending on the maximum growth rate of phytoplankton and the maximum grazing rate. All other model parameters

are chosen to match the values underlying the synthetic observations. The emulation is based on a second order polynomial,

following the approach of Kennedy and O’Hagan (2000). The training runs comprise 25 model simulations in a Latin hypercube10

design according to (Urban and Fricker, 2010).

In our example, we obtained similar optimisation results with the emulator and with the full model. For both cases, the

underlying truth (i.e. the original parameter values) could be identified well, in spite of the noise added to the original model

solution. The agreement between emulated and simulated model-data misfit is satisfactory and might be enhanced further by

considering higher order polynomials and/or more trainings data sets. Thus, for this testcase, the parameter retrieval can be suc-15

cessful if based on the emulator instead of the real model. Note that the complexity of the problem increases strongly with the

number of free parameters. Particularly, the numerous parameter collinearities in biogeochemical models (e.g. Matear, 1995;

Kreus and Schartau, 2015; Löptien and Dietze, 2015) can complicate emulation. Increasing dimensions brings in additional

difficulties. One suggestion on how to treat this problem is given by Hooten et al. (2011). The authors decomposed modelled

surface Chla concentrations for 50 training runs of a coupled ocean-ecosystem model by singular vectors and predicted these in20

dependence of a suite of biological and physical model parameters. During the subsequent parameter optimisation with respect

to satellite chlorophyll, the zooplankton grazing rate and the light response of phytoplankton were identified as the most influ-

ential parameters. In contrast to most other approaches, where variances are estimated based on Bayesian techniques, Hooten

et al. (2011) used a Bayesian approach to estimate the mean values. The study of Leeds et al. (2014) applied a similar technique

for DA.25

Another example for statistical emulation in biogeochemical modelling is presented by Mattern et al. (2012). Their emulator

approach was based on polynomial chaos expansion (e.g. Askey and Wilson, 1985; Wan and Karniadakis, 2006). Mattern

et al. (2012) emulated simulation results of Chla concentrations as a function of ”maximum zooplankton grazing rate” and

the Chla:C-ratio in the Middle Atlantic Bight in year 2006. The authors used an emulator instead of the model to minimise

the model-data misfit with respect to daily Chla concentrations observed from remote sensing. They optimised time-constant30

as well as time-varying parameter estimates. Both approaches improved the overall model performance with respect to Chla.

While the original time-varying estimates disregard the actual state of the system, the use of the polynomial chaos method

formed the basis of an updated, more reliable method in the study of Mattern et al. (2014) previously discussed in Sect. (7).

Another study of Mattern et al. (2013b) analysed the uncertainty of modelled hypoxia for the Texas-Louisiana shelf based

on statistical emulators. The authors investigated the uncertainty due to initial and boundary conditions of biological variables35
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as well as river nutrient loads and phytoplankton growth rate. Additionally, physical factors like river runoff, wind forcing

and ocean mixing coefficients were taken into account. The authors revealed considerable uncertainties as their estimates for

the hypoxic area varied by more than 40%, when considering reasonable uncertainties in freshwater runoff. Such an extensive

analysis would not have been possible without taking advantage of emulators. Furthermore, the use of emulators opens up

the possibility of new approaches to exploring the parameter space. One emulator-based technique referred to as “history5

matching” (Craig et al., 1996), now well-established in other fields and recently applied to the constraint of coupled ocean-

atmosphere model parameters (Williamson et al., 2013), seems a particularly promising approach for parameter identification

in marine ecosystem modelling. This relatively simple method uses Bayesian inference to rule out areas of parameter space

as implausible, given some set of observations. Estimated uncertainties in both the observations (with respect to the truth)

and the emulator (with respect to the model) can be taken into account. The method can be applied iteratively with different10

observation sets to reduce the size of the plausible region at each stage, either as a precursor to more formal model calibration

or as a parameter identification method in its own right.

8.3 Combining dynamical and statistical approaches

The principal advantage of statistical emulators is speed. Dynamical emulators, on the other hand, have the advantage of be-

ing inherently related to the models they are emulating. This makes them much less reliant on model output than statistical15

emulators that rely totally on that output to provide their training data. Suitable training data sets are easy to generate for 3D

models with limited domains or fairly coarse resolution. However, the increased integration times required for high resolution

3D simulations or for long spin-up periods inevitably reduce the size of ensemble simulations that can be used for generat-

ing training data. Otherwise the need to explore large high-dimensional parameter spaces for comprehensive model analyses

demands relatively large ensemble integrations to produce adequate training sets. This problem motivates the combination of20

dynamical and statistical emulators, exploiting the advantages of both.

A two stage emulation process is suggested by Hemmings et al. (2015). Their idea is to use a set of 1D models as a dynamical

emulator that describes the evolution of the 3D model at representative sites. This Stage 1 emulator allows large ensemble

simulations to be run, providing output that could be used as training data for construction of a statistical emulator (Stage 2).

The dynamical emulator of Hemmings et al. (2015) is not used in an inner optimisation loop but is used instead to predict25

3D model output for arbitrary parameter vectors. It is thus used more like a statistical emulator. In fact, a major innovation in

their study was to quantify uncertainty in the emulator outputs for inference purposes. Another innovation was the inclusion of

biogeochemical perturbations associated with lateral advection that are typically ignored in 1D calibration studies. These were

derived by averaging 3D model diagnostics over a 10-member ensemble simulation. To account for the lateral flux information

was helpful contributed strongly to the emulator accuracy. The emulator with uncertainty estimates gave robust results for the30

surface Chla concentration of an ecosystem model of intermediate complexity, considering variation in 8 parameters.
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9 Parameter estimation of large-scale biogeochemical ocean circulation models

Global biogeochemical ocean models are commonly used to investigate the mutual interactions between ocean biota and cli-

mate change, a famous example being coupled earth system models applied in the IPCC assessments and evaluated as part of

the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012). Besides separate evaluation of the biogeochemical

ocean model components (e.g., Ilyina et al., 2013; Tjiputra et al., 2013), the models are analysed with respect to their rep-5

resentation and projection of the carbon cycle (e.g., Schwinger et al., 2016), or oxygen minimum zones (Cocco et al., 2013;

Cabre et al., 2015). Assessment of model skill is usually done with respect to climatological data sets, e.g. of nutrients and

oxygen, components of the carbonate system, and/or diagnostics derived from remotely sensed data such as primary produc-

tion or chlorophyll (e.g., Watanabe et al., 2011; Tjiputra et al., 2013; Nevison et al., 2015). Considering the often high level

of structural complexity of these models, which include many components and feedbacks among these, at first sight it seems10

astonishing that there are only few model assessments against more elaborate data such as organism groups or fluxes of or-

ganic matter. Examples for this type of model assessment can be found in Gehlen et al. (2006), who compared simulated and

observed particle fluxes, or Aumont et al. (2015), who compared simulated and observed dissolved iron concentrations and

nitrogen fixation rates.

9.1 Data availability and computational time15

One reason for the usual fallback to rather basic data types such as nutrients for global model evaluation is the sparsity of

observations for more “sophisticated” data, which sometimes also suffer from methodological problems and uncertainties (e.g.

particle fluxes measured by sediment traps, or observations of nitrogen fixation). In addition, some data sets have a strong

bias towards certain areas (e.g. towards the coastal areas, summer season in the high latitudes, and the northern hemisphere,

Kriest et al., 2010; Kriest and Oschlies, 2013). Therefore, comparison against observations of dissolved inorganic tracers,20

for which large, easily accessible and quasi-synoptic data sets exist, appear to be a relatively straightforward way for global

biogeochemical model evaluation. Biogeochemical tracer distributions are also close to the heart of working group I of the

IPCC where carbon-cycle climate feedbacks are more in the focus than ecological patterns or changes.

A complication arises from the fact that dissolved inorganic tracers (as available from global climatologies) often do not

show a normal distribution, as illustrated in Fig. (7). Both phosphate and nitrate rather show a bimodal distribution, where25

the first peak of very low concentrations can probably be related to biogeochemical processes at the sea surface (in particular:

nutrient uptake by phytoplankton), and the second peak (around ≈ 2.2 and 33 µM for phosphate and nitrate, respectively)

may be associated with combined effects of circulation and deep remineralisation. This non-gaussian data distribution may

question the suitability of tools for model skill assessment that rely on Gaussian distributions, as commonly employed in

3D model evaluation (e.g. Taylor plots that display simulated and observed standard deviation). Figure (7) also shows the30

difference in data distribution between spatially interpolated and “raw” data sets, where only grid boxes containing at least

one observation are considered. For reasons mentioned above, the raw data show a bias towards low nutrient concentrations,

and lower data frequency for higher concentrations, most likely caused by the sampling bias towards shallower waters and / or
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summer seasons. It depends on the research question posed at the model, whether one opts for one or the other data set, and

remains to be investigated, whether this causes a large difference in global parameter estimation. However, we argue a more

balanced distribution, as available from interpolated data sets, should not be rejected per se.

A further difficulty for model calibration on a global scale arises from the fact that global models require many millennia un-

til the simulated tracer distributions are in equilibrium with the given circulation field and biogeochemical processes (Wunsch5

and Heimbach, 2008). Tracer equilibrium should be aimed for before evaluating simulated against observed tracer distributions.

It is usually achieved by integrating tracer fields for several thousand years in a so-called model spin-up with some seasonally

cycling climatological circulation fields. For current biogeochemical models it has been found that after several thousand years

of simulation time, the seasonally cycling steady state reached is independent of the initial conditions except for the global

ocean inventory of phosphorus (Kriest and Oschlies, 2015). Oxygen and nitrogen (and carbon) adjust via biogeochemical feed-10

backs in the models, in conjunction with physical forcing and surface boundary conditions, such as air-sea gas exchange. That

is, in this steady state simulated tracer fields are the sole product of the combined, physico-chemical framework, independent

of poorly known initial conditions. It is important to note that the convergence of the model fields towards steady state is not

necessarily a monotonous function of time, but may exhibit inflection points, which mirror the interaction of different pro-

cesses with different time scales (Kriest and Oschlies, 2015). Convergence to steady state conditions also strongly depends15

on the region, tracer type, and form of boundary condition (Wunsch and Heimbach, 2008; Primeau and Deleersnijder, 2009;

Siberlin and Wunsch, 2011). Unfortunately, simulation times of several thousand years can be computationally every expensive

for global biogeochemical circulation models. Until very recently, this has made dense scans of the models’ parameter space

for spun-up states essentially impossible.

Considering the ocean’s key role in the global carbon cycle and hence climate system, three types of data are considered20

essential for model assessment and calibration: 1) distributions of dissolved inorganic tracers, such as nutrients, oxygen, al-

kalinity and dissolved inorganic carbon, 2) plankton primary production, which turns inorganic dissolved carbon into organic

particulate form, and 3) gravitational flux of organic particles to the ocean interior, which moves carbon through the water (and

not - in contrast to the flotation of plankton or dissolved constituents - with it). Different data sets exist with respect to the latter

two types of observations: primary production simulated by global models can be compared to data sets derived from remotely25

sensed ocean colour spectra (e.g., Carr et al., 2006). It should be noted, that these are not direct measurements of primary

production, but are based on algorithms to derive production rates from ocean colour and additional parameters, including

assumptions required for vertical extrapolation and seasonal interpolation that might introduce artifacts (e.g, Karl et al., 1998).

Ship-based direct observations of production are usually sparse in space and time (for logistic reasons); in addition, also here

the methodology has to be assessed carefully for artefacts. Observations of oceanic particle flux by sediment traps or opti-30

cal methods are also subject to large uncertainties (e.g., Gardner, 2000; Buesseler, 1991). They are sparse in space and time,

therefore providing a rather patchy impression about the particle flux in the world ocean. In addition, particles produced at the

surface are subject to horizontal transport by advection, hampering the establishment of correlations between surface and deep

fluxes, particularly for slowly sinking particles (e.g. a meter per day) in energetic current fields (e.g. a meter per second, i.e.

close to 100 km per day) (e.g., Siegel et al., 2008; Frigstad et al., 2015).35
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It is possibly for these reasons, that attempts to calibrate global models against individual observations of particle flux have

not yet revealed any unique “best” model (Gehlen et al., 2006; Kriest and Oschlies, 2013), although they provide some insight

into the general ability of models to reproduce the observed magnitude of the deep particle flux (Kriest and Oschlies, 2013).

Calibration against primary production also may not provide much insight into the long-term behaviour of global models, as

this diagnostic is biased towards quite short time scales. A side effect of this is that simulated primary production can be tuned5

to (almost) any desired value, by increasing that carbon (nutrient) turnover in shallow waters, without changing the long-term

model behaviour, ocean interior tracer concentrations, and the flux of organic matter into the ocean interior (Oschlies, 2001).

In addition, simulated global primary production does not seem to be related to any other diagnostic, and thus is not indicative

of the overall, long-term biogeochemical model fit to dissolved tracers, that can be measured with rather high accuracy. In

contrast, global particle export at 2000m or below shows a clear relationship to the model fit to dissolved nutrients or oxygen10

(Kriest et al., 2012), indicating the relevance of the model fit to these tracers for its prognostic skill of particle flux and carbon

storage in the ocean.

9.2 Parameters that connect surface production with deep particle flux and long-term storage of carbon

It is attractive to use nutrients and / or oxygen data in order to inversely determine the otherwise weakly constrained model

parameters for particle flux and remineralisation. The joint effect of particle flux and remineralisation is often described by one15

or two parameters in global models. Early models referred to an exponential function of remineralisation with depth (Bacastow

and Maier-Reimer, 1991), which - in equilibrium - would correspond to constant particle sinking rate and remineralisation.

Another, very popular approach to describing particle flux (and hence subsequent remineralisation) in ocean models is a power

law of depth: F (z) z−b, where b is usually set to b= 0.858, representing the open-ocean composite value derived by Martin

et al. (1987) from sediment traps (e.g., Maier-Reimer, 1993). Empirical observations suggest that b may vary between 0.3-1.420

(Martin et al., 1987; Berelson, 2001; Van Mooy et al., 2002; Buesseler et al., 2007). This range of variation has been tested

in global biogeochemical models e.g. for its effect on dissolved tracer concentrations (Kwon and Primeau, 2006, 2008; Kriest

et al., 2010, 2012). Kwon et al. (2009) coupled a simple global biogeochemical model with a 1-box atmosphere, and found

a large effect of this parameter on atmospheric pCO2. Considering the continuing popularity of this parameterisation (e.g.,

Kwon and Primeau, 2006, 2008; Najjar et al., 2007; Parekh et al., 2005) it seems worthwhile to have a closer look at its25

implicit assumptions and at potential ways to constrain its parameters.

As shown by Kriest and Oschlies (2008), under steady state conditions b can be regarded as equivalent to the rate of vertical

increase in particle sinking speed a over constant remineralisation rate r: b= r/a. Potential mechanisms that may lead to a

vertical increase in sinking speed include selective export of large and fast particles to deeper layers, or repackaging of small

particles into larger ones by zooplankton egestion. Alternatively, one may consider sinking speed to be constant with depth,30

and remineralisation rate to decrease with depth, e.g., by particles becoming more refractory and less susceptible to bacterial

degradation, or because of a temperature-dependent decline in bacterial activity. However, other parameterisations of particle

flux profiles have been applied in global models, e.g., constant sinking and remineralisation (leading to an exponential flux

curve; e.g., Bacastow and Maier-Reimer, 1991), or models that explicitly simulate different groups of particles with different
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size and properties (e.g., Gehlen et al., 2006; Schwinger et al., 2016). Cabre et al. (2015) provide an excellent overview about

different parameterisations for models applied in CMIP5.

Even though there exists a variety of such structurally simple parameterisations of particle export and remineralisation,

so far few attempts have been made to calibrate these in global models in a systematic manner, most likely because of the

computational and observational constraints mentioned above. Kwon and Primeau (2006) used a simple biogeochemical model5

coupled to global circulation to optimise b against observations of annual mean phosphate, and found an optimal and well

constrained b of ≈ 1. This is in some contrast to recent attempts by Wilson et al. (2015), who could not diagnose flux profiles

from phosphate changes derived from simulated circulation divergence (within a model time step). They attributed this to

the errors in circulation-driven transport of phosphate dominating over the small remineralisation rates, together with errors

in observations. Given the successful calibration by Kwon and Primeau (2006), it remains to be investigated whether these10

different results are associated with the different time scales considered in both approaches. Recent optimisations of a more

complex biogeochemical model against similar data sets (and using the same circulation fields as used by Wilson et al., 2015)

could successfully recover b (Kriest et al., in preparation), resulting in optimal values of ≈ 1.3, i.e. slightly larger than the

optimal b recovered by Kwon and Primeau (2006). We note that all of these studies are likely very dependent on the applied

circulation fields, which are also uncertain. Studies comparing the effects of different circulation fields on parameter estimates15

are so far lacking, due to the high computational demands. One exception is the study by Kriest and Oschlies (2013), who found

the same sensitivity of model fit to observed dissolved tracers for a coupled global model forced by two different circulation

fields.

It should be kept in mind that parameters associated with processes acting in the sunlit surface layers of the ocean and those

responsible for deep sedimentation and long term-storage of carbon act on very different spatial and temporal scales, posing20

a challenge for simultaneous estimation on a global scale. Kriest et al. (in preparation) carried out a set of optimisations of

six biogeochemical parameters against climatologies of annual mean oxygen, nitrate and phosphate, within a global, offline

circulation model. Two parameters were associated with phytoplankton growth, and two with zooplankton grazing and mor-

tality, i.e. processes confined to the surface layer. Two addtional parameters were associated with deep processes, interacting

more closely on long (circulation) timescales, namely the stoichiometric ratio of oxygen to phosphate, R−O2:P , and particle25

sinking profile, expressed as b (see Kriest and Oschlies, 2015, , for more information on the biogeochemical model and its

coupling to the circulation fields). The optimisation used an “Estimation of Distribution Algorithm” with a population size of

10 individuals (model runs) per generation, and finished after 182 generations, resulting in a total of 1820 model simulations.

Kriest et al. (in preparation) found that particularly zooplankton mortality (but also other parameters related to phytoplankton

and zooplankton turnover) were more weakly constrained by the data than the “deep” parameters R−O2:P and b, which can30

be explained by the choice of the misfit function (annual mean dissolved tracers on a global scale). The sensitivity of two

contrasting parameters to this function is illustrated in Fig. (8), showing the parameter-cost function manifold projected onto

values quadratic zooplankton mortality κzoo (left panels) and rate of vertical increase of particle sinking speed, a, expressed as

quotient b= r/a (r is particle remineralisation rate; right panels). To examine the parameter hyperspace, in analogy to Eq. (13),

we defined two criteria for individuals sufficiently close to the optimum, via ∆J = J(Θ)/J(Θ̂)− 1, namely ∆J = 0.01 and35
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∆J = 0.001. All individuals that satisfied one of these criteria were selected from the entire population trajectory, and grouped

into 50 classes distributed evenly over the predefined parameter range. As can be seen from the plots in Fig. (8), b (or particle

sinking speed) has a very well defined minimum, resulting in a unimodal distribution for this parameter, regardless of the

∆J criterion. It is different for the zooplankton mortality that exhibits a bimodal distribution for solutions where ∆J = 0.01.

Obviously, annual mean climatologies of dissolved inorganic tracers provide little information on the - dynamic - behaviour of5

zooplankton in the upper layers, while particle sinking and decay, which integrates over large spatial and temporal scales, is well

defined by the large-scale distribution of dissolved inorganic tracers. We note that the half-saturation constant for phosphate

uptake by phytoplankton shows a pattern similar to zooplankton mortality, which indicates a collinearity with both parameters

being mutually dependent. Thus, in the presence of very diverse time and space scales, as typical for global biogeochemical

ocean models, the choice of the data set and misfit strongly affects the detectability of parameters.10

9.3 Impact of parameter uncertainties on climate model projections into the future

A typical large-scale application of marine biogeochemical models is their use in Earth system models from which projections

of future climate change can be derived for different emission and land-use scenarios. Output of such models helps to inform

scientists, but also society and policymakers about possible consequences of human action on the climate system. A key

example is the most recent assessment report of the Intergovernmental Panel on Climate Change (IPCC) that featured Earth15

system models with fully interactive carbon cycle. An appropriate treatment of the uncertainties contained in the applied

scenarios and employed models is crucial for correctly interpreting model projections, informing the societal debate about

climate policies and thus strengthening the base for developing relevant measures.

A comprehensive attempt to account for uncertainties in the models when determining likelihoods of reaching certain climate

goals like the politically widely accepted 2◦C warming goal, was presented by Steinacher et al. (2013) and Steinacher and20

Joos (2016). Employing a somewhat simplified Earth system model of intermediate complexity, they ran perturbed parameter

ensembles with some ad hoc assumptions about prior probability distributions of the model parameters. The skill of individual

ensemble members was then measured by comparison of model hindcasts with available observations of the current state of the

Earth system. A single, pragmatic skill score was used in the assessment and led to an improved posterior estimate of parameter

probability distributions. The model dynamics then mapped the parametric uncertainty onto the model projections. From the25

large ensemble of model solutions that were, in hindcast mode, not inconsistent with the observational constraints, the authors

could then successfully derive likelihoods of reaching various climate goals.

Note that reproducing the current climate state is merely a necessary condition for model skill, but may not constrain the

model’s ability to correctly simulate the sensitivity to natural or anthropogenic environmental change. Observational informa-

tion on past climate change, such as glacial-interglacial changes may help to better constrain the models’ sensitivity to changing30

environmental conditions, even though no historical analog to the current anthropogenic perturbation is known in terms of the

rapid rate of change. Still, any information about model sensitivities to applied perturbations is extremely valuable, be it de-

rived from lab or mesocosm experiments or from historical information. DA is a promising tool to combine such information
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on very different space and time scales and to develop an improved understanding of how the earth system works and may

respond to ongoing environmental change.

10 Summary and perspectives

The survey done by Arhonditsis and Brett (2004) revealed only a small fraction of all aquatic biogeochemical modelling studies

a) considered parameter optimisation (8.5%), b) provided values of data-model misfit (30 %), or c) performed quantitative5

parameter sensitivity analyses (28%). Since then there has been a vast increase in the number of those studies where the

assimilation of biological and chemical data into planktonic ecosystem models are described. Likewise, we now find a wide

field of different studies that address problems of parameter identification. Although positive, this development has also brought

up diverse approaches whose contexts and connections are sometimes difficult to understand. Furthermore, we face a variety

in terminology and notation, which makes it even more arduous to distinguish between negligible and important findings. With10

this review we aim to provide support to readers.

The theoretical backbone for studies of parameter estimation and uncertainty builds first of all on how model errors and

observational errors are treated. Specifying the error model is an essential first step in the workflow of parameter identification,

enabling the subsequent derivation of conditional probabilities and cost functions. Our review shows that there is no ultimate

standard error model or procedure but a meaningful practice is to become explicit about these errors and to reconsider the15

underlying assumptions for discussions of parameter estimates and model results. Whether the DA appoach conserves mass

and/or energy is relevant in this respect.

As in many other fields of science, the basic estimation methods considered in plankton ecosystem DA studies are Baysian

estimation and Maximum Likelihood. Their major difference is how prior information enters the DA approach and how the

posterior is evaluated. The consideration of prior parameter values from preceding studies is meaningful and likely alleviates20

parameter identification problems. A drawback then is that asymptotic (point-wise) approximations of posterior uncertainty

covariance matrices, as described herein, may not apply. But when the model parameters in question have been estimated

before in a number of comparable settings, it may seem a tragic waste of effort and information to pursue a ML approach

without prior information. A similar issue arises in specifying an “ignorance” prior and the choice of using BEs when no prior

information is available can also be questioned.25

We included a section on typical basic parameterisations of plankton models, mainly to stress that the treatment of light- and

nutrient limitation may differ between modelling studies. Furthermore, we touched on the problem of resolving phytoplankton

losses specified by e.g. grazing and aggregation parameters. Latest plankton growth models account for physiological accli-

mation effects, responsible for variations between carbon fixation, cellular allocation of nitrogen and phosphorus, and Chla

synthesis. Those variations are relevant for DA, in particular if flux estimates of carbon (e.g. CO2 utilisation and respiration)30

are of primary concern. It is thus worthwhile to discuss some of the underlying dynamics that can be resolved with the plankton

ecosystem model rather than treating it as a “black box” for simulating Chla concentrations as in some DA approaches.
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Many acclimation or optimality-based models have been qualitatively calibrated with data from laboratory experiments. DA

approaches for parameter estimation were only done in a few of these studies. Going from laboratory data to the assimilation

of data from mesocosm experiments can be a useful intermediate step for testing e.g. acclimation or adaptive models and for

assessing uncertainty ranges of parameter values. In this respect, parameter estimates of one experiment can be used for cross-

validation with data of another independent mesocosm experiment. On the one hand, a main advantage is that simulations of5

the physical environment of mesocosms are easier to implement, compared e.g. to setting up a 1D-model for an ocean site.

On the other hand, a drawback is that parameter estimates obtained from the assimilation of mesocosm data might not be

representative for ocean simulations. Although more difficult, model cross-validations between different ocean sites or regions

provide valuable insight, eventually specifying a model’s predictive skill under oceanic conditions.

Some studies have shown that an increase in model complexity may not automatically improve predictive skill. This can10

partially be attributed to over-fitting, which can yield parameter estimates that improve model-data misfits at one site but

induce unreasonable model results at other ocean sites. Such results illustrate the vital role played by well-designed cross-

validation experiments. A critical element of cross-validation is whether the assimilated data are truly independent from the

data used for testing model skill. This is, for instance, not really the case if observations from different years but of the same

characteristic region are used. Regional differences between parameter estimates are informative and they rigorously disclose15

a model’s merits and limitations.

Parameter identification becomes more difficult as we go from local and regional scale to large-scale and global model sim-

ulations. Algorithms for parameter optimisation require multiple model evaluations, which can be computationally expensive

for global biogeochemical models. The procedure for optimising parameter values can be accelerated with the application of

an emulator. We discussed the usage of dynamical and statistical emulators. Both emulator approaches have been shown to20

efficiently support the search for optimal parameter values. The development and usage of emulators of biogeochemical mod-

els will likely gain in importance along with improved computer performance. A promising approach is to use models with

coarser resolution or a series of 1D-models (distributed over ocean regions) as dynamical emulators for 3D-global biogeochem-

ical model simulations. Studies have shown that sufficient accuracy of the emulator can be achieved with repeated intermediate

alignments of the dynamical emulator. Alternatively, differences between 1D- and 3D results can be statistically evaluated as25

emulator error during the parameter search process, which is then used to update the “emulator” based cost function.

Parameter identification in global marine biogeochemical circulation models is still in its infancy, due to the high computa-

tional requirements, the huge range of spatial and temporal scales to be covered, and the comparatively sparse spatial-temporal

distribution of data in the ocean. In contrast to local optimisations, the consideration of all relevant spatial and temporal

scales has one major advantage in that it provides the opportunity to rigorously test and benchmark biogeochemical models.30

In addition to tasks and complications mentioned in our review, care must be taken in the selection of appropriate data sets,

assuring their relevancy (or potential) for answering the questions posed. Moreover a critical evaluation of the respective roles

of physics, biogeochemistry, exchanges across the model’s boundaries and, possibly, ecology is an as yet unresolved task.
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10.1 Grasping complexity of a plankton ecosystem but keeping number of free parameters low

A desirable state for modelling plankton dynamics and biogeochemical cycles is to require some minimum number of param-

eters while capturing most of the complexity involved in the transfer of energy and mass in the ocean (e.g., Denman, 2003). To

accomplish this we may not only think of new model approaches, but also of collecting respective data that can help to con-

strain solutions of these models. Analyses of plankton size measurements and the derivation of plankton size density spectra is5

one good example in this respect. A commonality of new model formulations is to focus on principles, e.g. adaptation of traits

towards optimal trade-offs (e.g., Wirtz and Pahlow, 2010; Dutkiewicz et al., 2009; Smith et al., 2015), allometric relationships

in growth and plankton interaction (e.g., Banas, 2011; Ward et al., 2012; Acevedo-Trejos et al., 2015). Perhaps one of the

most remarkable developments is the revival of thermodynamically inspired ecosystem theories for modelling biogeochemical

cycling in the oceans (e.g., Vallino, 2011). In the review of Vallino and Algar (2016) the concept and potential of the maximum10

entropy production principle is addressed. In this modelling approach life in the ocean is perceived as units of e.g. covalent

bonded chains of carbon atoms that create disequilibria of energy and mass between organisms. These disequilibria lead to

different functional pathways in biogeochemical cycling, accompanied by a flexible evolution of structural dependencies be-

tween nutrient or substrate availability, plankton and other organisms. Such novel (or revised) approaches are expedient and

help create new ideas in terms of what to measure and what kind of corresponding model would be needed, thereby reducing15

problems of parameter identification.

10.2 Harmonising research foci in marine ecosystem modelling and data assimilation

The application of DA methods has become standard for calibrating marine ecosystem- and biogeochemical models. But

scientific insight can differ between DA studies considerably. In the literature we find a growing disproportion between level

of sophistication of the ecosystem model used and DA method employed, for example when obsolete parameterisations of20

plankton growth are combined with an up-to-date, sophisticated DA approach, or vice versa. This dissonance is likely owed

to the fact that marine ecosystem-/biogeochemical modelling studies integrate knowledge from different scientific fields, of

which each has its own foci, objectives, and expertise i.e. plankton ecology, physical oceanography, marine geochemistry, and

mathematics and statistics. It is difficult to track major advancements in marine ecosystem modelling when considering the

different views from each of these research fields. Furthermore, the design of experimental studies and the collection of field25

data are often achieved without harmonising the needs of biologists with the modelers’ exigencies (Flynn, 2010).

Facets of parameter identification in biological modelling disclose major commonalities and disparities between the objec-

tives expressed in these different research fields. Discussions on parameter identification are therefore helpful to achieve a

common understanding and to promote communication between observers, modelers, and statisticians.
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Figure 1. Demonstration of the Variable Lag Fit (VLF) applied to a simulated data set. a) shows the system trajectory with the true parameter

values (solid lines), the data (dots) simulated assuming normal and independent time lag errors (στ = 10 days) and residual errors (σlogN,P,Z

= 0.1, 0.2, 0.3, see Table A), and the system trajectory with the VLF parameter estimates (dashed lines, overlapping with solid). b) compares

the true time lags (solid) with those estimated from the VLF (dashed). c) compares the true residual errors with those estimated by the VLF

(dashed, same colour code as in a)). Three years of data were assimilated but only the initial and post-bloom period of the first year is shown

for clarity.
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Figure 2. Cost function contours when varying values of a combination of two parameters J(Θ̂m±∆m,Θ̂n±∆n) around the optimum

estimate at (Θ̂m,Θ̂n,min(J)), while values of all other parameters remain fixed. Each plot resolves a pairwise combination out of three

parameters that all specify phytoplankton biomass losses: 1) carbon exudation rate (Θ1 = γC ), 2) maximum grazing rate (Θ2 = gm, and

3) aggregation parameter (Θ3 = Φagg). Markers show credible regions of parameter estimates obtained with Markov Chain Monte-Carlo

(MCMC) method (dots for J with covariances, asterisks for J with variances only). Error ellipses (lines) depict point-wise 95% confidence

regions derived from an approximated and inverted Hessian matrix, according Eq. (19). The cyan colored region embeds all cost function

values that are lower than an upper threshold4J∗(α= 0.05), derived from a distribution of J(Θ̂)−J∗(Θ̂), where J∗(Θ̂) are cost function

values at Θ̂ using resampled data (Fig. B in Appendix).
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Figure 3. Predictive skill for five ecosystem models of different complexity, after assimilation of satellite data (black) and after assimilation

of satellite data with 20% added noise (grey) (Xiao and Friedrichs, 2014a). The most complex model appear to be the most sensitive to errors

in the data, in terms of its cross-validated predictive skill.
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Figure 4. Model selection metrics at the Bermuda Atlantic Time-series Study (BATS) and the North Atlantic Bloom Experiment (NABE),

as a function of complexity across a suite of nested ocean biogeochemical models (Ward et al., 2013). The least-squares misfit, J (left-hand

axis), increases monotonically with decreasing complexity, as it does not penalise model complexity. The likelihood ratio test, F (first right-

hand axis), compares each reduced model to the full model, and selects the simplest that is not significantly worse than the full model (F<F

threshold). The AIC and BIC (second right-hand axis) both contain terms that account for model data misfit and complexity, and the optimal

model is the one with the lowest score. In each case, the optimal model is indicated by a dot.
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zero-dimensional context, forced by time series of physical fields, combined with vertical profiles of annual
mean nitrate concentration.

The method was successful in identifying a good number of potential calibration groups. The
optimal fit to the validation data is given by two regional parameter sets dividing the domain as shown in
figure 1. This calibration has an associated misfit-based cost 25% lower than that for the parameter set
obtained using the full set of calibration stations. The fact that further division does not significantly
improve the fit suggests that the observed differences between annual cycles in the Atlantic Arctic, Atlantic
Subarctic and North Atlantic Drift provinces can be accounted for by differences in the physical forcing.

Posterior parameter distributions were generated by starting the parameter optimisation procedure
from different points in parameter space. These showed that most of the model parameters are poorly
constrained by the observations, contributing to a high degree of uncertainty in model output for the
unobserved variables and suggesting that limited progress towards a definitive model calibration can be
made without including other types of observations. However, the model fails to reproduce much of the
observed variability in the annual cycle on time scales of weeks to months, possibly because of
inaccuracies in the forcing data, so conclusions based on this study must be treated as preliminary.
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FIG. 1 : Geographic extent of the two sub-domains giving the optimal calibration. Biogeochemical
provinces defined by Longhurst [1] are shown for reference. ARCT: Atlantic Arctic Province; SARC:
Atlantic Subarctic Province; NADR: North Atlantic Drift Province; GFST: Gulf Stream Province; NAST:
North Atlantic Subtropical Gyral Province.

Reference

[1] A. Longhurst. Ecological geography of the sea. Academic Press, San Diego, 1998.

Figure 5. Geographic extent of the two sub-domains giving the optimal calibration in the split- domain calibration study of Hemmings et al.

(2004). Biogeochemical provinces defined by Longhurst (1998) are shown for reference. ARCT: Atlantic Arctic Province; SARC: Atlantic

Subarctic Province; NADR: North Atlantic Drift Province; GFST: Gulf Stream Province; NAST: North Atlantic Subtropical Gyral Province.
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Figure 6. Simulated (a,c) and emulated (b,d) RMS (root mean square) error depending on the ”maximum growth rate of phytoplankton” and

the ”maximum grazing rate”. Sub panels (a,b) are based on all prognostic variables, while the RMS error in (c,d) is based on nitrate (NO−3 )

only (c,d). Red crosses mark the training data.

Figure 7. Probability densities (PDFs) of climatological data: observed annual mean phosphate (PO4, left), nitrate (NO3, middle), and oxygen

(O2, right), derived from Garcia et al. (2006a, b). Observations were gridded onto ECCO model grid (Stammer et al., 2004); 1◦×1◦ horizontal

resolution, 23 vertical levels), then grouped into 50 bins between 0-5 (phosphate), 0-50 (nitrate) and 0-500 (oxygen) mmol m−3. Light red

bars denote frequency densities of non-interpolated values, open bars interpolated (analysed) values. Lines illustrate normal distrubtion

calculated from mean and variance of the unbinned data sets, scaled to the match the y-axis of the discrete PDF (red: non-interpolated; black:

interpolated).
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Figure 8. Projections from parameter-cost function manifold (Θ̂l,J(Θ)) as obtained during the optimisation of six biogeochemical param-

eters. Parameters shown are quadratic zooplankton mortality κzoo (left panels) and rate of vertical increase of particle sinking speed, a,

expressed as quotient b= r/a, where r is particle remineralization rate (right panels). Upper panels: cost function (volume-weighted root-

mean square error, divided by global mean concentration of each tracer) expressed as its deviation from the minimum. Parameters of all

model simulations in the optimisation trajectory were grouped into 50 classes. Grey bars show minimum cost within each class. Red and

black horizontal lines indicate deviation from minimum cost of 1% and 0.1%, respectively. Squares show the cost of each individual. Note

that the y-axis only extends to 5% above minimum cost at (Θ̂,J(Θ̂). Lower panels: parameter distribution (PDF) of all model simulations,

whose cost do not exceed a threshold limit of 4J = 1.01 · J(Θ̂) (1%, red bars) or 4J = 1.001 · J(Θ̂) (0.1%, open bars) 0.1% (open bars)

of the minimum cost, see Eq. (13 and text).
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Appendix A: The Variable Lag Fit with unknown error variances (Sect. 3.4)

In a Variable Lag Fit (VLF), we assume that the truth at time ti is related to the model output by a kinematic model error (ζ) in phase or time

lag τi. Equation (2) becomes:

xt(ti) = x(ti + τi) (A1)

A notable feature of this model error representation is that it introduces unknowns τ that can be conditionally optimised by searching forwards5

and backwards in time within saved model output, i.e. without rerunning the dynamical model. For the demonstration in Fig. (1) we assumed

that the time lag errors are normal and independent: τi ∼N(0,σ2
τ ). This independence assumption may seem restrictive; for example, a

misplaced eddy might be expected to impose some correlation between the τi for a set of cruise data. Nevertheless, we find that the method

is somewhat robust to neglected lag correlation. Moreover, this formal neglect enables a large computational simplification since the lags can

then be optimised one by one, see Wallhead et al. (2006).10

For the observational error in Fig. (1) we assumed lognormal errors with no interpolation or conversion factors, and that all measured

variables were sampled simultaneously. Equation (3) becomes:

yij = xtij · exp(εij −
σ2
j

2
) (A2)

at each measurement time ti and for each measured variable j (Nutrient, Phytoplankton and Zooplankton). For simplicitly we further

assumed that the observational errors were independent between measurements and data types, hence εij ∼N(0,σ2
j ). Note that the ε may15

be considered to include a component of kinematic model error (ζ) without affecting the parameter estimation, hence we refer to them as

residual errors below. Assuming that the ecosystem parameters θe, time lags τ , time lag variance στ and observational error variances σ

are all unknown, a joint posterior mode estimate of Θ = (θe,τ ,στ ,σ) is obtained by maximising the posterior density p(Θ | y), equivalent to

minimising the following cost function:

J(Θ) =n logσ2
τ +

∑
i

τ2
i

σ2
τ

+n
∑
j

logσ2
j20

+
∑
ij

(logyij − logxj(ti + τi) + 0.5σ2
j )2

σ2
j

(A3)

To test this cost function, we simulated data from the NPZD model of Oschlies and Garçon (1999) in a 0D setting using the parameters values

and sine-squared forcing function from Wallhead et al. (2013). Three years of simultaneous weekly samples of N , P , and Z were simulated

assuming independent normal time lag errors with standard deviation στ = 10 days and independent normal residual errors σlogN = 0.1,

σlogP = 0.2, σlogZ = 0.3. The data were assimilated into the same NPZD model by one of two methods. In the ‘standard fit’, no time lag25

error was assumed and search parameters Θ = {θe,σlogN ,σlogP ,σlogZ} were estimated by minimising only the final two terms in A3 with

τi = 0 for all i. In the VLF, Θ = {θe,τ ,στ ,σlogN ,σlogP ,σlogZ} was estimated by minimising Eq. (A3). In both cases, we assume uncertainty

in only two of the 15 biological parameters, namely the phytoplankton maximum uptake rate Vm and the zooplankton maximum grazing rate

g (hence θe = (Vm,g)). For all search parameters, allowed ranges were ±50% about the true values, equivalent to unbiased uniform priors

with 29% prior uncertainty. Initial values of the search parameters were chosen at random from this prior, and optimisations were repeated30

over 10 random restarts to avoid local minima. The experiment was repeated over 20 simulated data sets to obtain the statistics in Table (A).

Caution must be exercised here regarding the estimation of στ . If the prior for στ permits very low or zero values then the MAP estimation

will push the estimate of στ towards zero irrespective of its true value. This is because, unlike the fourth term in Eq. (A3), the second term
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can be made exactly zero with τ = 0 as long as σ2
τ > 0, in which case the negative contribution of n logσ2

τ may produce a spurious, deeper

minimum of J near to στ = 0. We have found that this spurious minimum need not influence estimation as long as the sample size and the

lower limit of the allowed range or rectangular prior for στ are sufficiently large, Fig. (A). An alternative solution may be to assume a prior

that drops smoothly to zero as σ2
τ → 0, such as an inverse gamma distribution (cf., Kavetski et al., 2006a).

To investigate estimation of the time lag variance parameter στ we obtained cost function profiles by fitting the same data set using a range5

of fixed values of στ , Fig. (A). We see that with three years of weekly NPZ sampling the cost function function has a strong minimum close

to the true value of 10 days, and this minimum should be approached even if the allowed range (prior uncertainty) for στ reaches as low as

1 day. However, if we decrease the number of sampled years, or especially the number of sampled variables, the minimum becomes weaker

and a spurious minimum close to στ = 0 starts to encroach on the profile. A sufficiently low minimum allowed value σ(min)
τ may then lead

to estimates converging to this spurious minimum.10
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Figure A. Profiles of the Variable Lag Fit cost function (-2× posterior density) relative to the minimum value for a range of assumed values

of the time lag error standard deviation στ . For each στ , Eq. (A3) was minimised over (θ, τ , σlogN,P,Z ) for the same data set. Different

curves correspond to different scenarios for the number of sampled years (at weekly sampling frequency) and number of simultaneously

sampled variables (black = 3 years, blue = 2 years, solid lines with circles = Nutrient-Phytoplankton-Zooplankton sampling, dashed lines

with triangles = Nutrient-Phytoplankton sampling). The extent to which each curve has a deep minimum close to the true value στ (true) =

10 days indicates the feasibility of estimating στ for the corresponding sampling plan.
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Table A. True parameter values and means ± 1 SD of estimates over 20 simulated data sets, using a standard fit method and a variable lag

fit method (see Eq. A3). Three years of weekly NPZ data were simulated using the true values (first row) for the maximum nutrient uptake

rate Vm, zooplankton grazing rate g, residual standard deviations σlogN,P,Z , and time lag standard deviation στ (for experiments with lags

imposed). With no time lags, the standard fit accurately recovers the true parameter values (third row), but with time lags (fourth row) the

standard grazing rate estimates are biased and imprecise, while the residual variances have strong positive bias as they are forced to account

for the time lag errors. The variable lag fit avoids these biases and accurately partitions the variance between residual error and time lag error

(fifth row).

Lags? Vm (day−1) g (day−1) σlogN σlogP σlogZ στ (days)

True values — 0.66 2.00 0.10 0.20 0.30 10.0

First guesses — 0.66 ± 0.19 2.00 ± 0.58 0.10 ± 0.03 0.20 ± 0.06 0.30 ± 0.09 10.0 ± 2.9

Standard fit No 0.66 ± 0.00 2.03 ± 0.07 0.10 ± 0.01 0.20 ± 0.01 0.31 ± 0.01 —

Standard fit Yes 0.68 ± 0.03 2.61 ± 0.44 0.27 ± 0.02 0.46 ± 0.07 0.75 ± 0.14 —

Variable Lag Fit Yes 0.67 ± 0.01 2.03 ± 0.19 0.07 ± 0.01 0.18 ± 0.02 0.29 ± 0.02 9.2 ± 0.7

Appendix B: Mesocosm example (Sect. 5.3.3)

For our example we account for six types of measurements from mesocosms of the Pelagic Ecosystem CO2 Enrichment Study (PeECE I,

Engel et al., 2005; Delille et al., 2005): 1) dissolved inorganic carbon (DIC, mmol m−3), 2) nitrate (NO−3 , mmol m−3), 3) nitrite (NO−2 ,

mmol m−3), 4) Chla (mg m−3), 5) PON (mmol m−3), 6) POC (mmol m−3). Concentrations of NO−3 and NO−2 are not explicitly resolved

by the model and therefore these measurements are combined. We refer to their sum as dissolved inorganic nitrogen (DIN). Thus, the numer5

of components of the observation vector is y is Ny = 5. Observations are available on a daily basis over a period of 23 days (Nt = 23). The

vector includes daily means of nine mesocosms at ti, i = 1, ... , Nt:

yi =



DICi

(NO−3 + NO−2 )i

Chlai

PONi

POCi


(B1)

The dynamical model equations determine twelve state variables (Nx = 12). The corresponding vector of model counterparts to observations

(also daily means of nine mesocosm simulations):10

Hi (x) =



DICi

DINi

θChl:C
i · PhyCi

(PhyN + ZooN + DetN)i

(PhyC + ZooC + DetC + GelC)i


(B2)

with carbon and nitrogen biomass concentrations of phytoplankton (PhyN & PhyC), of zooplankton (ZooN & ZooC), of detritus (DetN &

DetC), and carbon concentration of (particulate) macrogels (GelC). Standard errors (σi) can be written in matrix notation with off-diagonal
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elements being zero:

Si =



σ
(DIC)
i 0 · · · 0

0 σ
(DIN)
i · · ·

...
...

...
. . . 0

0 · · · 0 σ
(POC)
i


(B3)

Correlations during exponential gowth (ti; i = 1, ... , 13):

C(y) =



DIC DIN Chla PON POC

DIC 1 0.96 −0.95 −0.97 −0.97

DIN . 1 −0.96 −0.95 −0.95

Chla . . 1 0.96 0.92

PON . . . 1 0.94

POC . . . . 1


(B4)

Correlations of post-bloom period (ti; i = 14, ... , 22) are:5

C(y) =



1 0.2 −0.22 0.20 −0.64

. 1 −0.37 −0.26 0.16

. . 1 0.63 -0.26

. . . 1 -0.55

. . . . 1


(B5)

For days with some missing observations (e.g. no PON measurements), the dimension of the vectors Hi (x) and yi and matrices S(yi) and

C(y) have to be adjusted for that date accordingly.

The mesocosm model environment was coded in FORTRAN and compiled as shared library so that we could use R as free software

environment for statistical computations. For parameter optimisation and for the analysis of the posterior (Markov chain Monte Carlo method)10

we applied the R package FME of Soetaert and Petzoldt (2010).
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Figure B. Observations of nine mesocosms (red asterisks), resampled data (gray markers) and optimised simulation results (blue lines):

Dissolved inorganic nitrogen and carbon (DIN and DIC), particulate nitrogen and carbon (PON and POC), and chlorophyll a concentration

(CHLa).
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Appendix C: Development of an adjoint model (Sect. 4.2.3)

Adjoint models can be used to efficiently compute the derivative (or gradient) of the cost function J . In a parameter identification problem,

J depends on Θ both indirectly via the state variable x and also directly if prior information is incorporated. The optimisation problem can

thus be written as

min
Θ
J(x(Θ),Θ), (C1)5

where x= (xi)
Nt
i=0 summarize all time instances of the model variables. To evaluate the derivative of the cost w.r.t. the parameters Θ, we

may apply the chain rule and obtain

dJ

dΘ
=

Nt∑
i=0

∂J

∂xi

dxi
dΘ

+
∂J

∂Θ
, (C2)

where we omitted the arguments x(Θ) and Θ for brevity.

The needed derivatives of the model variables xi w.r.t. the parameters Θ can be obtained by taking the total derivative w.r.t. Θ of the10

equations of the dynamical model, Eq. (1):

dxi+1

dΘ
=
∂M

∂xi

dxi
dΘ

+
∂M

∂Θ
, i= 0, . . . ,Nt− 1. (C3)

This time propagation scheme for the derivatives is often called the tangent linear model.

The idea behind adjoint models is to avoid this direct computation, whose effort grows linear with the number of parameters Θ. For this

purpose, we re-formulate Eq. (C1), treat both arguments of J independently and use the model equation as a constraint in the optimisation15

process. This can be expressed as

min
(x,Θ)

J(x,Θ) s. t. xi+1 =M [xi,θe,f ] , i= 0, . . . ,Nt− 1. (C4)

A useful overview of adjoint model construction and applications is given in Kasibhatla (2000). An established approach to construct an

adjoint model is to generate adjoint code directly from the numerical code of a model, based on algorithms that implement the chain rule for

automatic differentiation (Griewank, 1989, 2003). According to the description of Giering and Kaminski (1998), a numerical model can be20

treated as a composition of differentiable functions, where each function represents a statement in the numerical code. The differentiation

of such composition can be automated by highly sophisticated tools that yield tangent linear and adjoint FORTRAN code (e.g., Faure and

Papegay, 1997; Giering and Kaminski, 1998). The application of adjoint construction tools (e.g., Tangent linear and Adjoint Model compiler,

TAMC, of Giering and Kaminski, 1998) have been shown to perform well for studies with large-scale ocean general circulation models that

include even complicated boundary conditions (e.g., Stammer et al., 1997; Marotzke et al., 1999; Wunsch and Heimbach, 2007; Heimbach25

et al., 2011).

Another approach is based on a discretised extended Lagrange equation. Under certain mathematical assumptions, a solution of Eq. (C4)

corresponds to a saddle-point (x,Θ,λ) of the Lagrangian

L(x,Θ,λ) = J(x,Θ) +

Nt−1∑
i=0

λ>i (M [xi,θe,f ]−xi+1) . (C5)
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The vector λ= (λi)
Nt−1
i=0 contains the Lagrange multipliers λi, each of which corresponds to one time step in the model. A saddle-point of

L satisfies the conditions

0 =
∂L
∂xi

=
∂J

∂xi
+λ>i

∂M

∂xi
−λ>i−1, i= 1, . . . ,Nt (C6)

0 =
∂L
∂Θ

=
∂J

∂Θ
+

Nt−1∑
i=0

λ>i
∂M

∂Θ
(C7)

0 =
∂L
∂λ

(C8)5

Here, we again omitted the arguments, and set λNt = 0 in the first equation to keep the compact notation. Note that all derivatives are partial

ones since the idea is to decouple x and Θ and realize their dependency by implying the constraint in Eq. (C4). For simplicity we neglect

additional parameter bounds which otherwise would affect Eq. (C7). Taking the derivative in Eq. (C8) for each λi separately results in the

model equations (Eq. 1) again. From (C6) we deduce

∂J

∂xi

dxi
dΘ

= λ>i−1
dxi
dΘ
−λ>i

∂M

∂xi

dxi
dΘ

, i= 1, . . . ,Nt10

and apply Eq. (C3) to obtain

∂J

∂xi

dxi
dΘ

= λ>i−1
dxi
dΘ
−λ>i

(
dxi+1

dΘ
− ∂M

∂Θ

)
, i= 1, . . . ,Nt

where λNt = 0 as above. Summing up gives

Nt∑
i=1

∂J

∂xi

dxi
dΘ

= λ>0
dx1

dΘ
+

Nt∑
i=1

λ>i
∂M

∂Θ

= λ>0
∂M

∂x0

dx0

dΘ
+

Nt∑
i=0

λ>i
∂M

∂Θ
15

where we used again Eq. (C3) for i= 1. The first term includes the derivative of the initial values x0 w.r.t. the paraemters and in many cases

will be zero. As result, the derivative of the cost can be computed from Eq. (C2) using the multiplier vector λ, but without the tangent linear

model. Note that the derivative of the model w.r.t. Θ in the sum is a partial derivative only, thus it does not include the derivaitive of the

model variables, but only those of the model equations w.r.t. Θ.

The multipliers λi satsify a time-stepping scheme themselves, but in reverse direction. Using the transposed form of (C6), we obtain20

λi−1 =

(
∂M

∂xi

)>
λi +

(
∂J

∂xi

)>
, i=Nt, . . . ,1, (C9)

with λNt = 0 (see above) as starting point of the computation. Since here the transposed (or adjoint) of the linearisation of the model operator

M occurs, these equations are referred to as the adjoint equations or the adjoint model. Accordingly, the multipliers λ are also referred to as

adjoint variables or adjoints. Given a model trajectory x and using Eq. (C9), the trajectory of the adjoints λ can be computed. It is crucial to

note that both time-stepping schemes, for the variables x and the adjoints λ, have opposite directions. This requires – except for the case of25

a linear model M – the complete model trajectory to be stored or recomputed in order to compute λ.

The adjoint model construction starting from a discretised extended Lagrange equation, Eq. (C5) can easily become extensive, in particular

when discretisations of advection and mixing are included in the model dynamics. Furthermore, even small changes in the equations can

entail considerable additional efforts in updating the adjoint model equations. The application of automatic differentiation tools may therefore

be better suited for cases where the ecosystem dynamical model is subject to regular modifications.30
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