SUPPLEMENTARY INFORMATION

Multi-gas and multi-source comparison of six global land use emission databases and AFOLU estimates in the Fifth Assessment Report

Short title: AFOLU database comparisons

Authors affiliation:

Rosa Maria Roman-Cuesta^{1,2}*, Martin Herold², Mariana C. Rufino¹, Todd S. Rosenstock³, Richard A. Houghton⁴, Simone Rossi⁵, Klaus Butterbach-Bahl^{6,7}, Stephen Ogle⁸, Benjamin Poulter⁹, Louis Verchot^{10,11}, Christopher Martius¹.

¹ Center for International Forestry Research (CIFOR), P.O Box 0113 BOCBD, Bogor 16000, Indonesia.

² Laboratory of Geo-Information Science and Remote Sensing - Wageningen University.

Droevendaalsesteeg 3, 6708PB. Wageningen. The Netherlands.

³ World Agroforestry Centre (ICRAF). PO Box 30677-00100, Nairobi. Kenya.

⁴ Woods Hole Reseach Center. 149 Woods Hole Road Falmouth, MA, 02540-1644, US.

⁵ Global Environmental Monitoring Unit, Institute for Environment and Sustainability, European Commission, Joint Research Centre, TP. 440 21020 Ispra, Varese 21027, Italy,

⁶ International Livestock Research Institute (ILRI) P.O. Box 30709. Nairobi 00100, Kenya

⁷ Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany

⁸ Natural Resource Ecology Laboratory, Campus Delivery 1499, Colorado State University, Fort Collins, Colorado 80523-1499, USA.

⁹ Ecosystem Dynamics Laboratory. Montana State University. P.O. Box 172000. Bozeman, MT 59717-2000. USA.

¹⁰ International Center for Tropical Agriculture, Km17 Recta Cali-Palmira, Apartado Aéreo 6713, Cali, Colombia.

¹¹ Earth Institute Center for Environmental Sustainability, Columbia University, New York, USA.

^{*} Corresponding author. Telephone:+31317485919, Fax: Email: rosa.roman@wur.nl

INDEX

1.	Data used for the AFOLU data comparisons	4
2.	Gross tropical FOLU emissions, Figure 11.8 in Chapter 11, IPCC WGIII	11
3.	Table 11.1 in Chapter 11, IPCC WGIII Net global AFOLU emissions	12
4	Figure 11.2 in Chanter 11 IPCC WGIII	13

	Deforestation	Wood	Fire on forests	Enteric	Cropland soils	Drained	Rice
		Harvesting		Fermentation		histosols	
				and Manure			
				management			
Hotspots	Harris et al., (2012)	Poulter et al.,	Van der Werf et	Herrero et al.,	Ogle et al., (2013)	Tier 1	Li et al., (2013)
(CO2,			al., (2010) for:	(2013)		Emission	
CH4, N2O)	Gross emissions	Fuelwood			Synthetic and	Factors (20	Gross
	AGB + BGB		Peatland fires		organic	tC.ha ⁻¹)x	emissions and
		Industrial	Forest fires		fertilization,	Masked	gross removals
	Hansen et al.,	roundwood	Woodland fires		residue N.	organic soil	
	(2010) forest cover					agricultural	
	loss x Saatchi et	AGB	AGB + Soils		Mineralization and	areas for the	
	al., (2012)				asymbiotic	six crop types	
	biomass.				fixation.	considered in	
						Ogle et al.	
						(2013)	

re/ iice Cultivation
Cultivation
al

JRC	EDGAR v4.2	Emissions	Emissions	EDGAR v4.2		Emissions
(CO2,	FT2010/CO2-	EDGAR v4.2	EDGAR v4.2	FT2010/N2O/V4.		EDGAR v4.2
CH4, N2O)	excluding-short-	FT2010/CO2-	FT2010/CH4&	2 FT2010/		FT2010/CH4/
	cycle-organic-	excluding-short-	N2O/V4.2	• Direct		V4.2 FT2010/
	C/V4.2 FT2010/	cycle-organic-	FT2010/	agricultural		• Rice
		C/CH4&N2O	Enteric	emissions (4D)		Cultivation
	• Forest fire	***	Fermentation			(4C)
	decay (5F2)	• Forest fires	of cattle (4A)			
		(5A)	Manure			
		Wetland/peat	Management			
		fires and	of cattle (4B)			
		decay (5D)				
EPA			DataAnnex_Glob	DataAnnex_Global	na	DataAnnex_Gl
Non-CO2			al_NonCO2_Proj	_NonCO2_Projecti		obal_NonCO2_
only (CH4,			ections_Dec2012.	ons_Dec2012.xls		Projections_De
N2O)			xls			c2012.xls

				Agricultural	
			• Enteric	soils	• Rice
			Fermentation		emissions
			Manure		
			Management		
Houghton	Global_land-	Shifting			
(CO ₂ only)	use_flux-	cultivation in			
	1850_2005.xls	Latin America/			
		tropical Asia,			
	S+C America	and wood			
	Trop.Africa	harvest,			
	S+SE Asia				
		AGB, BGB,			
	Net C emissions	soil, CWD,			
	result from:	litter			

Gross emissions			
from deforestation,			
biomass burning,			
harvested wood			
products, woody			
debris decay, SOC			
from cultivated			
soils.			
Gross sinks from			
forests recovering			
from wood harvest,			
and forests in the			
fallow cycle of			
shifting cultivation			

Baccini	Gross emissions	Gross			
	AGB	emissions			
		AGB for:			
	Hansen et al.,				
	(2010) forest cover	• Wood			
	loss x Baccini et	harvesting			
	al., (2012) biomass	• Biomass			
		burning			
		• Shifting			
		cultivation			

^{*} Wood fuel: Coniferous Non-Coniferous Roundwood that will be used as fuel for purposes such as cooking, heating or power production. It includes wood harvested from main stems, branches and other parts of trees (where these are harvested for fuel) and wood that will be used for the production of charcoal (e.g. in pit kilns and portable ovens), wood pellets and other agglomerates. The volume of roundwood used in charcoal production is estimated by using a factor of 6.0 to convert from the weight (mt) of charcoal produced to the solid volume (m3) of roundwood used in production. It also includes wood chips to be used for fuel that are made directly (i.e. in the forest) from roundwood. It excludes wood charcoal, pellets and other agglomerates. It is reported in cubic metres solid volume underbark (i.e. excluding bark).

Industrial roundwood: Coniferous Non-Coniferous of which non-tropical of which tropical All roundwood except wood fuel. In production statistics, it is an aggregate comprising sawlogs and veneer logs; pulpwood, round and split; and other industrial roundwood. It is reported in cubic metres solid volume underbark (i.e. excluding bark). The customs classification systems used by most countries do not allow the division of Industrial Roundwood trade statistics into the different end-use categories that have long been recognized in production statistics (i.e. sawlogs and veneer logs, pulpwood and other industrial roundwood). Thus, these components do not appear in trade.

**Greenhouse Gas (GHG) emissions from burning of biomass consist of methane and nitrous oxide gases from biomass combustion of forest land cover classes 'Humid and Tropical Forest' and 'Other Forests', and of methane, nitrous oxide, and carbon dioxide gases from combustion of organic soils. Emissions are computed at Tier 1 following the 2006 IPCC Guidelines for National GHG Inventories. They are available by country, with global coverage and relative to the period 1990 to present, with annual updates.

*** "CO2-excluding-short-cycle-organic-C/" was then changed by CH4, and N2O on the selectable tabs in EDGAR-JRC's web data portal.

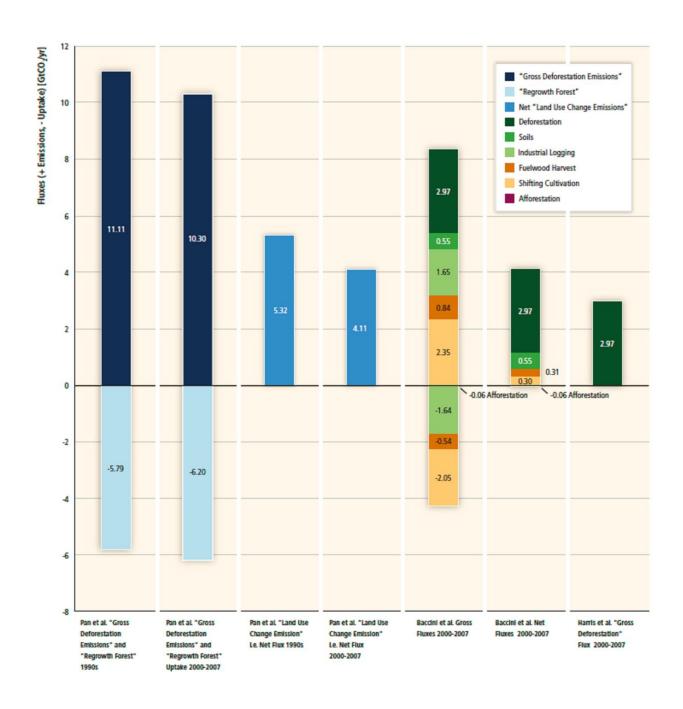


Figure S1: Gross tropical FOLU emissions as exposed in Fig. 11.8 in Chapter 11 of WGIII, IPCC AR5. Source:

https://www.ipcc.ch/pdf/assessmentreport/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf

Table 11.1 | Net global CO₂ flux from AFOLU.

	17	1750–2011 Cumulative GtCO ₂		1980–1989 GtCO ₂ /yr		1990-1999 GtCO ₂ /yr			2000-2009			
	Cumu								GtCO ₂ /yr		r	
IPCC WGI Carbon Budget, Table 6.13:										110		
Net AFOLU CO ₂ flux ^b	660	±	293	5.13	±	2.93	5.87	±	2.93	4.03	±	2.93
Residual terrestrial sink ^c	-550	±	330	-5.50	±	4.03	-9.90	±	4.40	-9.53	±	4.40
Fossil fuel combustions and cement production ^d	1338	±	110	20.17	±	1.47	23.47	±	1.83	28.60	±	2.20
Meta-analyses of net AFOLU CO ₂ flux:	7											
WGI, Table 6.2°				4.77	±	2.57	4.40	±	2.20	2.93	±	2.20
Houghton et al., 2012 ^f				4.18	±	1.83	4.14	±	1.83	4.03	±	1.83

Notes: Positive fluxes represent net emissions and negative fluxes represent net sinks.

Fig S2: Table 11.1 on net AFOLU balances in Chapter 11 of WGIII, IPCC AR5. Source:

https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf

⁽a) Selected components of the carbon budget in IPCC WGI AR5, Chapter 6, Table 6.1.

From the bookkeeping model accounting method of Houghton (2003) updated in Houghton et al., (2012), uncertainty based on expert judgement; 90 % confidence uncertainty interval.

⁽c) Calculated as residual of other terms in the carbon budget.

⁽d) Fossil fuel flux shown for comparison (Boden et al., 2011).

⁽e) Average of estimates from 12 process models, only 5 were updated to 2009 and included in the 2000–2009 mean. Uncertainty based on standard deviation across models, 90 % confidence uncertainty interval (WGI Chapter 6).

Average of 13 estimates including process models, bookkeeping model and satellite/model approaches, only four were updated to 2009 and included in the 2000–2009 mean. Uncertainty based on expert judgment.

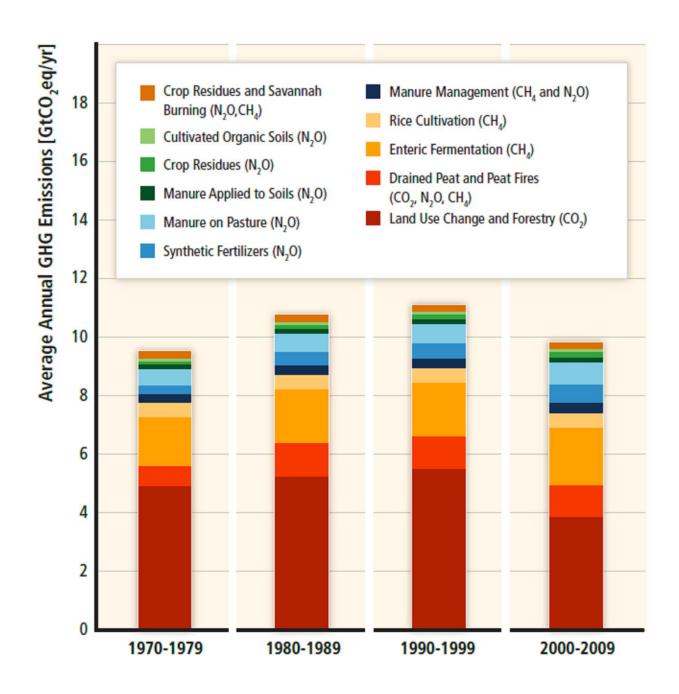


Fig S3: Net global AFOLU emissions for different decades as published in Fig. 11.2 in Chapter 11 of WGIII, IPCC AR5. Source: https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc wg3 ar5 chapter11.pdf