

1 **Substantial Stores of Sedimentary Carbon held in Mid-Latitude
2 Fjords.**

3 **C. Smeaton¹, W. E. N. Austin^{1,2}, A. L. Davies¹, A. Baltzer³, R. E. Abell² and J. A.
4 Howe².**

5 [1]{School of Geography & Geosciences, University of St-Andrews, St-Andrews, KY16
6 9AL, UK}

7 [2]{Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA,
8 UK}

9 [3]{Institut de Géographie et d'Aménagement Régional de l'Université de Nantes, BP 81 227
10 44312 Nantes cedex 3}

11 Correspondence to: C. Smeaton (cs244@st-andrews.ac.uk)

12

13 **Abstract**

14 Quantifying marine sedimentary carbon stocks is key to improving our understanding of long-
15 term storage of carbon in the coastal ocean and to further constraining the global carbon
16 cycle. Here we present a methodological approach which combines seismic geophysics and
17 geochemical measurements to quantitatively estimate the total stock of carbon held within
18 marine sediment. Through the application of this methodology to Loch Sunart a fjord on the
19 west coast of Scotland, we have generated the first full sedimentary carbon inventory for a
20 fjordic system. The sediments of Loch Sunart hold 26.9 ± 0.5 Mt of carbon split between 11.5 ± 0.2 Mt and 15.0 ± 0.4 Mt of organic and inorganic carbon respectively. These new
22 quantitative estimates of carbon stored in coastal sediments are significantly higher than
23 previous estimates. Through an area normalised comparison to adjacent Scottish peatland
24 carbon stocks we have determined that these mid-latitude fjords are significantly more
25 effective as carbon stores than their terrestrial counterparts. This initial work supports the
26 concept that fjords are important environments for the burial and long-term storage of carbon
27 and therefore should be considered and treated as unique environments within the global
28 carbon cycle.

1 **1 Introduction**

2 The rising prominence of Blue Carbon, i.e. carbon (C) which is stored in coastal ecosystems,
3 notably, mangroves, tidal marshes, seagrass meadows and sediments has forced a
4 reassessment of our knowledge of C in the coastal ocean (Nellemann et al., 2009). In recent
5 years there have been a number of reviews (Bauer et al., 2013, Cai et al., 2011, Duarte, 2016)
6 highlighting knowledge gaps and the limited understanding of both the C sources and sinks in
7 the coastal ocean (Bauer et al. 2013). Quantifying the stores of C in the coastal ocean is the
8 first step to a better understanding of coastal carbon dynamics. Global C burial in the coastal
9 zone is estimated in the region of 237.6 Tg yr^{-1} with approximately 126.2 Tg yr^{-1} of C being
10 buried in depositional areas i.e. estuaries and the shelf (Duarte et al., 2005). The lack of
11 regional and national coastal sedimentary C inventories means these global estimates cannot
12 be confirmed or further constrained.

13 One of the rare examples of a national marine C inventory was carried out by Burrows et al.
14 (2014) producing initial estimates of Blue Carbon in Scottish territorial waters; they
15 calculated that these waters stored 1757 Mt C, with coastal and offshore sediments acting as
16 the main repositories. Burrows et al. (2014) suggested that the majority of this organic carbon
17 (OC) was held in fjord sediments.

18 It has long been known that fjords are important stores of C (Syvitski et al., 1987) and that C
19 burial in sediments is the most significant mechanism of long-term (>1000 years) OC
20 sequestration in the coastal ocean setting (Hedges et al., 1995). These carbon accumulation
21 and burial processes have been investigated in the fjordic systems of New Zealand (Pickrill.
22 1993, Knudson et al., 2011, Hinojosa et al., 2014, Smith et al. 2015), Chile (Sepúlveda et al.,
23 2011), Alaska (Cui et al., 2016) and the high-latitudes of NW Europe (Winkelmann and
24 Knies. 2005, Müller. 2001, Kulinski et al., 2014), yet the mid-latitude fjords of Scotland have
25 been largely overlooked with only limited data available (Loh et al., 2008). Smith et al.
26 (2015) brought much of the available data together and showed that globally fjordic systems
27 act as a CO_2 “buffer” by efficiently capturing and burying labile terrestrially derived OC and
28 preventing it from entering the adjacent ocean system where it is prone to recycling. These
29 authors calculated that 11% of annual global marine carbon sequestration occurs within
30 fjords.

31 Despite these findings, much of the global research to assess and quantify C stocks is
32 disproportionately skewed towards the terrestrial environment (e.g. Yu et al., 2010). This

1 trend is also found at the regional scale where there have been multiple studies quantifying
2 the carbon held within Scottish soils (Aitkenhead and Coull 2016, Bradley et al., 2005,
3 Chapman et al., 2013) and peats (Aitkenhead and Coull 2016, Howard et al., 1995, Cannell et
4 al., 1999, Chapman et al., 2009).

5 In addition to the challenges of access and cost to sample these environments when compared
6 to the adjacent terrestrial environment, it might also be argued that the sparsity of marine
7 sedimentary C inventories is due to the lack of a robust methodology to quantify these C
8 stores. Syvitski et al. (1987) commented that “the development of a methodological approach
9 to quantify the C in the sediment of a fjord must be a priority”, yet in the subsequent years
10 there has been relatively little progress towards this goal.

11 The absence of a robust methodology to quantify the C held in marine sediments is illustrated
12 by Burrows et al. (2014), who estimated that there is 0.34 Mt OC stored in the sediments of
13 Scottish fjords. However, these calculations only take into account an estimate of OC in the
14 top 10 cm of sediment, despite the fact that sediment depths of >25 m are common in Scottish
15 fjords (Baltzer et al., 2010, Howe et al. 2002). Therefore, it is likely that current best estimates
16 (Burrows et al., 2014) of the quantity of OC within these systems as a whole have been
17 significantly underestimated and that the presence of significant quantities of inorganic
18 carbon (IC) held within fjord sediments (Nørgaard-Pedersen et al., 2005) has been
19 overlooked.

20 This study combines geochemical, geophysical and geochronological techniques to produce a
21 methodology capable of delivering quantitative first-order estimates of the mass of C stored
22 within the sediment of a fjord and, potentially, of achieving the goal set out by Syvitski et al.
23 (1987). This work provides the first carbon inventory for a fjord and further develops the
24 concept of these fjords as being globally important sites for the burial of C as set out by Smith
25 et al. (2015) and Cui et al. (2016b).

26 **2 Material & Methods**

27 **2.1 Study Area**

28 Loch Sunart is a fjord on the West coast of Scotland (Fig.1). The fjord is 30.7 km long and
29 covers an area of 47.3 km² with a maximum depth of 145 m. It consists of three basins
30 separated by shallower, rock sills. The inner basin is separated from the middle basin by a sill
31 at approximately 6 m depth, while the middle and outer basins are separated by a sill at

1 approximately 31 m depth (Edwards and Sharples, 1986, Gillibrand et al., 2005). The silled
2 nature of the bathymetry allows the fjord to act as a natural sediment trap for both terrestrial
3 and marine derived materials (e.g. Nørgaard-Pedersen et al., 2006).

4 Loch Sunart's catchment covers 299 km²; the main tributaries of the fjord are the Rivers
5 Carnoch and Strontian; the latter has a mean daily discharge of 1409 m³ (2009-2013). The
6 mean annual precipitation in Loch Sunart's catchment is 2632 ± 262 mm (Capell et al., 2013).
7 The combination of small catchment size and high precipitation means that the flow network
8 is sensitive to precipitation changes which can result in a flashy flow regime (Gillibrand et al.,
9 2005).

10 The catchment is largely dominated by high relief and poorly developed soils. The bedrock
11 consists primarily of igneous and metamorphic rocks, overlain by gley and podzol soils with
12 limited peat in the upper catchment (Soil Survey of Scotland, 1981). Exposed rock is common
13 on the steep slopes; much of the catchment's vegetation can be found by streams or on the
14 shore of the fjord and is dominated by both commercial forestry and natural woodlands; there
15 is only very limited agriculture within the catchment. The combination of steep, exposed
16 slopes, poorly developed soil, a reactive river network and poorly developed vegetation
17 typically results in high surface runoff and sediment transport (Hilton et al., 2011).

18 The characteristics of Loch Sunart and its catchment are representative of fjords across
19 mainland Scotland (Edwards and Sharples., 1986), with the possible exception of Loch Etive
20 which has a permanently hypoxic upper basin (Friedrich et al., 2014). The fjords of the
21 Scottish Islands (Shetland, Orkney & the Western Isles) differ from their mainland
22 counterparts in that they are generally shallower and have catchments characterised by lower
23 relief and are largely dominated by peat or peaty soil (Soil Survey of Scotland., 1981).
24 Syvitski and Shaw's (1995) table of generalised fjord characteristics allows us to compare the
25 fjords of mainland Scotland to other fjordic systems globally. The fjords of the Norwegian
26 mainland, Canada and Fiordland, New Zealand (Hinojosa et al., 2014) are characterised by
27 similar climate, geomorphology, river discharge, basin water temperature and sedimentation
28 rate as the fjords of Scotland. The fjords of mainland Scotland differ significantly from those
29 in Greenland, Alaska, Svalbard and the Canadian Arctic, many of which still have active
30 glaciers, resulting in very different sediment input regimes.

1 **2.2 Seismic Data Acquisition and Processing**

2 **2.2.1 Data Acquisition**

3 A seismic geophysical survey of Loch Sunart took place in 2002 aboard the RV *Envoy*
4 (Fig.2). A Seistec Boomer System was used to create seismic profile data throughout the
5 fjord. The data were recorded using an Elics-Delph data acquisition system coupled to the
6 Differential Global Positioning System (DGPS). The Boomer system operated on a frequency
7 of 1 to 10 kHz and had a pulse duration of 75 to 250 ms at a power of 150 J. The system has a
8 depth resolution of 25 cm and can penetrate 100 m in soft sediment (Simpkin and Davis.
9 1983). A total of 34 transects of the fjord were acquired (Fig.2). The survey achieved an
10 average penetration of 50 m; gas blanking prevented the signal from penetrating the sediment
11 in some areas (Baltzer et al., 2010).

12 **2.2.2 Defining Sedimentary Horizons**

13 Each seismic profile was combined with the DGPS data and processed with the Petrel
14 (Schlumberger) software package. Subsequent analysis was undertaken using the open source
15 SeiSee (DMNG) software package. Initial interpolation, following Baltzer et al.'s (2010)
16 methodology, defined the different seismic horizons (H) and the layers between the horizons
17 which are defined as seismic units (U) numbered 1 to 3 from the basement horizon upwards
18 (Fig 3). The compilation of the horizons and units allows the construction of an equivalent
19 seismic stratigraphy for each sediment core and the fjord as a whole.

20 Using SeiSee, points were picked along each of the four horizons creating polylines. Each
21 polyline was split into points at 0.25 m intervals and each point was assigned an x,y,z
22 coordinate that represents its geographic location and depth (relative to mean sea level).

23 **2.3 Sediment Sampling**

24 Eight sediment cores (Table.1) were collected from Loch Sunart (Fig.1) in 2001 using a
25 gravity corer (GC) as part of the HOLSMEER project. This was supplemented with further
26 sampling on a follow-up cruise on-board the *RV Calanus* in August 2013 where a short GC
27 was collected to fill a gap between the original coring sites. These cores capture the post-
28 glacial history of sediment accumulation within the fjord, as confirmed by ^{14}C basal dates.
29 Additionally, we accessed the lower sections of core MD04 2833 which was recovered using
30 the CALYPSO giant piston corer from the *RV Marion Dufresne* in July 2004 as part of the

1 IMAGES project. Sampling of Section VIII (1050-1200 cm) of MD04 2833 was undertaken
2 to obtain sediment of inferred glacial origin for geochemical analysis (Baltzer et al., 2010).

3 **2.4 Sediment Analysis**

4 **2.4.1 Physical Characteristics**

5 Detailed sediment logging was undertaken for each of the cores (Supplementary Material).
6 The gravity cores were sub-sampled at 10 cm intervals and high resolution sampling at 1 cm
7 intervals was undertaken on the short core (GC01). Section VIII of glacial sediment core
8 MD04-2833 was sub-sampled at 12 cm intervals. Each sub-sample was split for physical
9 property and geochemical analyses. The wet (WBD) and dry bulk density (DBD) of the
10 sediment was calculated following Dadey et al. (1992) while porosity was calculated using
11 the methodology of Danielson and Sutherland. (1986).

12 **2.4.2 Bulk Elemental Analysis**

13 To quantify the total carbon (TC) content, each sub-sample was freeze-dried and milled to a
14 fine powder. A 20 ± 2 mg aliquot was placed in a tin capsule and measured on a COSTECH
15 Elemental Analyser (EA) calibrated with acetanilide (Verardo et al, 1990, Nieuwenhuize et
16 al., 1994). Precision of the analysis is estimated from repeat analysis of standard reference
17 material B2178 (Medium Organic content standard, Elemental Micro analysis, UK) C =
18 0.07% N = 0.02% (n = 8).

19 To quantify OC, the process was repeated with the addition of H_2SO_3 to remove the inorganic
20 carbon (IC). After acidification vessels were placed in a vacuum desiccator to remove any
21 remaining CO_2 and the sample was then freeze-dried to remove the H_2SO_3 (Loh et al., 2008).
22 IC was calculated from the difference between TC and OC measurements. The mean standard
23 deviation of TC and OC triplicate measurements (n=10) were 0.04 %, 0.17 % respectively.

24 **2.4.3 Sediment Geochronology**

25 Basal radiocarbon dates for five of the gravity cores were obtained by accelerator mass
26 spectrometer (AMS) radiocarbon dating of marine carbonate material (mollusc). This was
27 carried out at the University of Aarhus, Denmark (AAR), Centre of Accelerator Mass
28 Spectrometry, USA (CAMS) and the NERC Radiocarbon Laboratory, Scotland (SUERC).
29 The radiocarbon dating was used to validate the Holocene chronology of the seismic

1 stratigraphy. A single MD04-2833 sample was processed at Laval University, Canada (UL) to
2 confirm that the sediment was early post-glacial in age. Dates were calibrated using OxCal
3 4.2.4 age modelling software (Bronk Ramsey., 2009 & Bronk Ramsey & Lee., 2013)
4 applying the Marine13 curve (Reimer et al., 2013) and the regional marine radiocarbon
5 reservoir age correction: ΔR value of -26 ± 14 yr (Cage et al., 2006).

6 **2.5 Sediment Quantification & Characterisation**

7 **2.5.1 Digital Terrain Models (DTM)**

8 The points collected from each seismic horizon were connected to form a DTM of that
9 horizon. This was achieved using spatial modelling techniques in ArcGIS. The compiled x,y,z
10 data were statistically tested to determine the gridding technique best suited to the
11 interpolation of the data. Eleven gridding techniques were subjected to cross validation
12 (Chiles and Delfiner 1999)(Supplementary Material). The residual Z mean value and standard
13 deviation were examined; the technique with the lowest residual Z mean and standard
14 deviation for each horizon (and the data set as a whole) was chosen as the gridding technique
15 best suited to the interpolation of the data. Kriging (with linear interpolation) (Cressie, 1990)
16 with a 100 by 1,000 node structure performed best and was chosen to create computationally
17 efficient DTMs for each seismic horizon.

18 **2.5.2 Volumetric Calculations**

19 The horizon DTM grids were used to calculate the volume of sediment in each seismic unit
20 and, by extension, within the fjord as a whole. By subtracting one DTM grid from another
21 (e.g. Surface DTM – Bedrock DTM) the volume between the grids was calculated. Three
22 different numerical integration algorithms were used for this calculation (Eq.1,2,3). The net
23 volume is reported as the mean of these three calculations. In the following formulae Δx
24 represents the grid column spacing, Δy represents the grid row spacing and $G_{i,j}$ represents the
25 grid node value in row i and column j , A_i represents the abscissa (Press et al., 1988).

26 *Trapezoidal Rule*

27 The pattern of coefficients is $\{1,2,2,2,\dots,2,2,1\}$: (1)

$$28 A_i = \frac{\Delta x}{2} [G_{i,1} + 2G_{i,2} + 2G_{i,3} \dots + 2G_{i,nCol-1} + G_{i,nCol}]$$

$$29 \text{Volume} \approx \frac{\Delta y}{2} [A_1 + 2A_2 + 2A_3 + \dots + 2A_{nCol-1} + A_{nCol}]$$

1 *Extended Simpson's Rule*

2 The pattern of coefficients is {1,4,2,4,2,4,2,...,4,2,1}: (2)

3
$$A_i = \frac{\Delta x}{3} [G_{i,1} + 4G_{i,2} + 2G_{i,3} + 4G_{i,4} + \dots + 2G_{i,nCol-1} + G_{i,nCol}]$$

4
$$Volume \approx \frac{\Delta y}{3} [A_1 + 4A_2 + 2A_3 + 4A_4 + \dots + 2A_{nCol-1} + A_{nCol}]$$

5 *Extended Simpson's 3/8 Rule*

6 The pattern of coefficients is {1,3,3,2,3,3,2,...,3,3,2,1}: (3)

7
$$A_i = \frac{3\Delta x}{8} [G_{i,1} + 3G_{i,2} + 3G_{i,3} + 2G_{i,4} + \dots + 2G_{i,nCol-1} + G_{i,nCol}]$$

8
$$Volume \approx \frac{3\Delta y}{8} [A_1 + 3A_2 + 3A_3 + 2A_4 + \dots + 2A_{nCol-1} + A_{nCol}]$$

9

10 2.5.3 Sediment Mass Quantification

11 The mean dry bulk density (DBD) for each seismic unit was calculated and assigned to the
12 equivalent seismic unit within each core. The spatial distribution of the DBD for each seismic
13 unit was modelled, again using Kriging (with linear interpolation). The resulting contour plot
14 was integrated with the volumetric model for each seismic unit to calculate the dry mass of
15 the sediment held within that seismic unit. The integration process calculates the volume of
16 sediment held within each of the DBD contours and multiplies that volume with the
17 associated DBD value to calculate the mass of sediment.

18 2.5.4 Sedimentary Carbon Quantification

19 The same methodology used to integrate the volume and density data was used to combine
20 bulk elemental data with the sediment dry mass calculations. Mean values for TC, OC and IC
21 in each seismic unit were assigned to the seismic units from the available core data. Kriging
22 (with linear interpolation) was again used to create contour maps representing the quantity of
23 TC, OC and IC in each seismic unit and the mass of sediment held between the contours was
24 multiplied by the percentage of OC and IC quantifying the mass C held within the fjord's
25 sediment. Finally, we calculated how effectively the fjord stores C (C_{eff}) as a depth-integrated
26 average value per km^2 for both the post-glacial and glacial derived sediments. This measure
27 allows the fjord's C stores to be directly compared with other C stores (peatlands, soil, etc.).

2.5.5 Carbon Accumulation and Burial

2 Sedimentation rates (SR) were calculated as an approximation for the postglacial sediment
3 burial history using basal ages and a linear interpolation to the core top, assuming a
4 contemporary surface. We recognise that the calculations will be crude and do not take into
5 consideration factors such as compaction and possible changes in sedimentation rate through
6 time, but these calculations provide initial insight into the variability of SRs within the fjord
7 and allow first-order C accumulation rates (CARs) to be estimated. The SRs were converted
8 to CARs through the use of Equation 4. The %OC, %IC, bulk density and porosity data used
9 for these calculations were based upon a mean value for the postglacial unit of each dated
10 core.

$$11 \quad \text{CAR} = \%C \times \text{SR} \times (\text{porosity} - 1) \times \text{bulk density} \quad (4)$$

12 As there is no available data on how efficiently OC is buried in the sediment of Scottish sea
13 fjords, burial efficiencies of 64% (Sepúlveda et al., 2005) and 80% (Smith et al., 2015) were
14 used to convert CAR's to CBRs (low and high). For the purposes of this study and in the
15 absence of reliable estimates of burial efficiency, we assume that the IC accumulation rates
16 equal the IC burial rates. These CBR's were, in turn, used to calculate the long-term annual
17 average burial of OC and IC; while potentially very useful, such estimates should be treated
18 with caution.

19 **3 Results**

20 3.1 Seismic Interpretation

21 3.1.1 Seismic Horizons and Units

22 Four horizons were identified throughout the fjord (Fig.3): these represent the basement (H1)
23 and the sediment water interface (H4) with two intermediate horizons (H2 & H3). Core
24 stratigraphies (Baltzer et al., 2010) indicates that H2 divides the post-glacial and glacial
25 sediment; while H3 splits the post-glacial sediment into two units. The seismic data displays a
26 fifth horizon between H1 and H2 which is only present in the inner basin and partially in the
27 middle basin. We interpret this as glacial sediment from the Younger Dryas, as confirmed by
28 radiocarbon dating (Baltzer et al., 2010, Mokeddem et al., 2010); for the purposes of this
29 paper, the horizon was amalgamated with H2.

1 A seismic stratigraphy was developed based on these horizons (Fig.3). U1 is interpreted as
2 glacial sediment based on the observation of the short, discontinuous seismic reflections
3 which are synonymous with poorly sorted material; the unit varies in thickness but never
4 drops below a minimum thickness of 10 m. U2 is found throughout the fjord with an average
5 thickness of 5 to 10 m; the unit drapes over U1. U3 is the uppermost unit and has a
6 homogenous thickness of around 1m; it is characterised by laminated acoustic reflections.
7 Both U2 and U3 are interpreted as post-glacial infill of the fjord; though clear in the seismic
8 geophysics the boundary between U2 and U3 is poorly defined in the sediment lithology
9 (Supplementary Material). Similar patterns in seismic stratigraphy have been observed
10 throughout the west coast of Scotland (Binns et al., 1974a, b, Boulton et al., 1981 and Howe
11 et al., 2002).

12 We compared our interpretation of the seismic data to the seismic interpretation of Baltzer et
13 al., (2010); this exercise was designed to test the replicability of our interpretation and allow
14 potential uncertainties in the seismic interpolation to be built into our future applications. The
15 comparison identified small differences in the depth of H1 (-0.17 m), H2 (+0.34 m) & H3 (-
16 0.22 m). These differences were integrated into the volumetric calculations as an error term.

17 **3.2 Sediment Geochronology**

18 Calibrated radiocarbon dates for the gravity cores (Table. 2) indicate that these cores are
19 comprised of sediment accumulated during the post-glacial period (Holocene). The age of the
20 deeper basal sediment of MD04-2833 (Section VIII) was confirmed through dating of a
21 mollusc (*Pecten maximus*); the calibrated age was 17041 ± 312 cal BP which, combined with
22 the characteristic glacial core lithology of poorly sorted sedimentary material, indicates that
23 this basal sediment of MD04-2833 was deposited by the retreat of the British ice sheet (BIS)
24 at the end of the last glacial period 13500 to 17000 cal BP (Clark et al., 2010, Scourse et al.,
25 2009, Wilson et al., 2002).

26 Through comparison of the chronologies to the seismic stratigraphy we can test the
27 interpolation and further constrain the age of each seismic unit. The seismic unit for the
28 equivalent depth of each of the radiocarbon samples has been compiled (Table.2), then
29 compared to the seismic unit that the sample would fall into based on age alone as per the
30 Baltzer et al. (2010) chronostratigraphy. Of the 18 samples tested, 15 have ages which match
31 the appropriate seismic units. Three samples (all from GC023) have ages which are

1 apparently too young for their corresponding seismic unit; this suggests a possible problem
2 with the dating of this particular core, rather than the interpolation of the seismic geophysics.
3 Close inspection of the seismic profile suggests sediment slumping could be the cause of this
4 dating problem at the core site. This test signifies that our interpolation of the seismic
5 geophysics is accurate and that the chronostratigraphy developed for MD04-2833 (Baltzer et
6 al., 2010) can be applied throughout Loch Sunart. The seismic interpolation and the dated
7 samples confirm that both U2 and U3 are postglacial in origin. We can further constrain the
8 age of the seismic units with U2 representing the early to mid-Holocene and U3 mid to late
9 Holocene in age.

10 **3.3 Sediment Analysis**

11 **3.3.1 Bulk Density Measurement**

12 Mean DBD was calculated for U1, U2 and U3 from each core. Figure 4 displays the DBD
13 results, which are arranged to mirror the spatial distribution of the cores, from the inner basin
14 to the outer basin. U1 sediment is characterised by the single section of MD04-2833, which
15 has a mean DBD of $2.19 \pm 0.09 \text{ g cm}^{-3}$. This is within the range of other northern hemisphere
16 fjords (Pedersen et al., 2012, Forwick et al., 2010 and Baeten et al., 2010). DBD increases
17 down each core as a result of sediment dewatering in response to compaction. GC011 is the
18 only core where U3 has a higher DBD than U2, most likely due to large quantities of shell in
19 the upper part of the core. U1 has the highest DBD; this reflects both the type of sediment
20 deposited during glacial retreat and long-term compaction over the post-glacial period.

21 **3.3.2 Bulk Elemental Analysis**

22 The mean quantity OC and IC has been calculated for U1, U2 and U3 (Fig.5). Again values
23 for U1 have been calculated using basal sediments of MD04-2833 (Section VIII). Clear
24 trends emerge from these data, with U3 always containing a greater quantity of OC than U2,
25 while the proportion of sedimentary OC generally decreases seawards away from the inner
26 basin. The opposite is true for sedimentary IC, which generally increases seawards away from
27 the inner basin.

1 3.3.3 Volumetric Modelling

2 The interpolation of the seismic profiles led to the creation of four DTMs (Supplementary
3 Material) which represent horizons H1 to H4. To determine the accuracy of the models, the
4 DTM for H4 was compared to an existing high-resolution bathymetric model of the fjord
5 (Bates et al. 2004). The coordinates (x,y,z) of key high and low points (n=12) were compared
6 between surveys; the mean divergence between surveys were calculated as x: -0.56 m , y: -
7 0.81 m , z: 0.21 m. Although the H4 DTM slightly negatively offsets the x,y and
8 overestimates the z coordinates of these points, the general location and pattern of these
9 seabed features compare favourably.

10 The DTMs and numerical integration algorithms were combined to calculate the volume of
11 sediment held within each seismic unit. A further subdivision by basin and according to post-
12 glacial (U2 & U3) and glacial (U1) sediment origin has also been undertaken (Table.3). The
13 fjord as a whole contains a greater volume of glacial ($6.00 \times 10^8 \text{ m}^3 \pm 1.89 \%$) than post-glacial
14 sediment ($5.31 \times 10^8 \text{ m}^3 \pm 7.39 \%$). Comparison of the three basins indicates that the middle
15 basin contains the greatest combined (post-glacial + glacial) volume of sediment ($3.04 \times 10^7 \text{ m}^3$
16 $\pm 5.30 \%$) followed by the outer ($1.60 \times 10^7.2 \text{ m}^3 \pm 5.74 \%$) and inner basins ($4.17 \times 10^6 \text{ m}^3 \pm$
17 4.48 %).

18 3.3.4 Sediment Mass Quantification

19 The mean DBD for U2 and U3 were modelled (Fig.6) to determine the variability in spatial
20 distribution throughout the fjord. A similar spatial pattern of DBD is found in both U2 and
21 U3; the DBD is lowest in the inner basin (U2: 0.47 g cm^{-3} , U3: 0.59 g cm^{-3}) rising through the
22 middle basin where it peaks at 1.75 g cm^{-3} and 1.67 g cm^{-3} for U2 and U3 respectively. The
23 transition between the middle and outer basins is characterised with low DBD values (U2:
24 0.72 g cm^{-3} , U3: 0.91 g cm^{-3}); from this low point the DBD rises towards the seaward end of
25 the fjord.

26 The model output was integrated with the volumetric data to calculate the mass of sediment
27 held within the post-glacial sequences (Table 4). Since we have a single mean value for DBD
28 for U1 we applied this throughout the fjord to calculate the mass of sediment held within this
29 unit. The fjord holds a total of $1928.3 \pm 7.3 \text{ Mt}$ of sediment which is split into $652.1 \pm 6.6 \text{ Mt}$
30 of post-glacial and $1276.2 \pm 8.9 \text{ Mt}$ of glacial sediment. The inner basin holds the least

1 sediment followed by the outer basin with the middle basin acting as the main store of
2 sediment in Loch Sunart.

3 **3.3.5 Sedimentary Carbon Quantification**

4 Using a similar approach, the mean OC and IC were spatially modelled throughout the fjord.
5 The output for U3 is illustrated in Figure 7. As before, the model outputs for U2 and U3 were
6 integrated with the sediment mass data in order to quantify the mass of TC, OC and IC held
7 within the post-glacial and glacial sediments (Table.4). Single mean values for TC, OC and
8 IC were again used to calculate their respective mass of C within the sediment of U1.

9 The sediment of Loch Sunart holds a significant quantity of C (26.9 ± 0.5 Mt) split between
10 OC (11.5 ± 0.2 Mt) and IC (15.0 ± 0.4 Mt). Though a greater mass of sediment is held within
11 the glacial component, it is the post-glacial sediments which hold the largest quantity of C
12 (19.9 ± 0.3 Mt). The quantity of C held within each of Loch Sunart's basins varies; the lowest
13 amount is found in the inner basin (2.1 ± 0.5 Mt), followed by the outer basin (6.7 ± 0.6 Mt).
14 The sediment of middle basin holds significantly more C than both the inner and outer basins
15 combined; with 18.1 ± 0.7 Mt C stored in these sediments, indicating that the middle basin is
16 the main repository for sedimentary C in Loch Sunart.

17 How effectively the fjord stores C is measured by the C_{eff} (Table.5) and the OC:IC ratio. Loch
18 Sunart is characterised by an OC:IC ratio of 0.74 and has an average C_{eff} of 0.560 Mt C km^{-2} ,
19 which can be further broken down to a post-glacial C_{eff} of 0.412 Mt C km^{-2} and a glacial C_{eff}
20 of 0.148 Mt C km^{-2} . The effective C storage can also be illustrated at the individual basin
21 level with the post-glacial sediments of the inner, middle and outer basins characterised by
22 OC:IC ratios of 4, 1 and 0.42, illustrating the transition from OC as the dominant component
23 of the sediment in the upper fjord to an IC-dominated sediment at the seaward end of the
24 fjord. The middle basin is the most effective at storing post-glacial OC followed by the inner
25 and outer basin; similarly the middle basin is most effective at storing IC, but in contrast to
26 the effective storage of OC, the outer basin ranks second followed by the inner basin for IC.
27 The glacial material held within the fjord as a whole is characterised by an OC:IC ratio of
28 0.42 with a mean OC_{eff} 0.044 Mt km^{-2} and IC_{eff} 0.104 Mt km^{-2} .

1 3.3.6 Carbon Accumulation and Burial

2 The SRs vary between the sedimentary basins of the fjord, with the most rapid rates in the
3 inner basin recorded in core GC013 (0.087 cm yr⁻¹). The middle and outer basins have lower
4 SRs as shown by cores GC020 (0.025 cm yr⁻¹) and GC011 (0.017 cm yr⁻¹). The calculated
5 CARs and CBRs for Loch Sunart are presented in Table. 6 alongside rates from other fjords
6 globally. Our estimates are in-line with the fjords of New Zealand (Pickrill. 1993, Knudson et
7 al., 2011, Hinojosa et al., 2014, Smith et al., 2015), Alaska (vegetated) (Cui et al., 2016) and
8 Chile (Sepúlveda et al., 2011); they are somewhat lower than the glaciated fjords of NW
9 Europe (Winkelmann and Knies 2005, Müller. 2001, Kulinski et al., 2014). Although not
10 shown in Table 6, the calculated ICARs range between 0.69 and 36.89 g IC m⁻² yr⁻¹, resulting
11 in long-term annual average estimates of IC burial of between 56 and 1.7 x 10³ tonnes for the
12 fjord as a whole.

13 **3.4 A Methodology for Estimating Sedimentary Carbon and Attributing
14 Uncertainty Estimates**

15 The joint geophysical and geochemical methodology outlined (Fig.8) provides a robust
16 approach to allow the first quantification of total sedimentary C stocks in a fjord setting. An
17 important part of estimating sedimentary C stocks should be the quantification of uncertainty
18 associated with these estimates. There are several types of uncertainty that can influence
19 sedimentary carbon estimations (Fig.8), including interpolation, algorithmic, analytical,
20 sampling and extrapolation uncertainty. Several of these types of uncertainties are easily dealt
21 with statistically, for example the analytical uncertainties have been quantified through
22 triplicate measurements. The sampling uncertainty of a stratigraphic sequence (i.e. spatial
23 variability of C content in relation to sampling density) can be overcome by calculating the
24 mean and standard deviation to create composite values that are representative of the seismic
25 unit as a whole. We integrated the quantifiable uncertainties at each calculation step (Fig.8).
26 By calculating composite standard deviations we are able to propagate the uncertainties
27 throughout the C quantification process. In the interpolation of the seismic geophysics, it is
28 difficult to fully quantify the uncertainty involved in the process. Bond et al. (2007) set out a
29 5 step framework designed to reduce uncertainty in this process. We utilised the framework of
30 Bond et al. (2007) and additionally integrated a validation step using radiocarbon dating of
31 sedimentary cores (See Section 3.2). This allows us to reduce the uncertainties associated

1 with the seismic interpretation, although we recognise that some uncertainty remains (e.g.
2 highly variable patterns of sediment thickness) which cannot be fully quantified. Within this
3 framework of uncertainty, we consider our method to give a robust estimate for the carbon
4 stocks present.

5 **4 Discussion: A new Sedimentary C Inventory for Scottish Coastal Waters**

6 The development of this methodology has allowed the estimation of the sedimentary C stocks
7 stored in a mid-latitude fjord. An estimated 26.9 ± 0.5 Mt C has been accounted for within our
8 study site (Loch Sunart).

9 The only directly comparable estimation for sedimentary C stocks is the report by Burrows et
10 al. (2014), where they calculated that 0.3 Mt OC was stored in all 110 Scottish fjords. In
11 comparison, our findings estimate that Loch Sunart alone holds 11.5 Mt OC. However,
12 Burrows et al. (2014) focused on the top 10 cm of sediment because data availability and the
13 lack of a robust methodology made it impossible to calculate the entire sedimentary C stock;
14 this has resulted in a significant underestimation of the quantity of C held within the sediment
15 of these fjords. Additionally, Burrows et al. (2014) did not consider IC to be a major
16 component in these sediments; instead the authors focused on Scottish fjords largely as OC
17 stores. In contrast, our results demonstrate that Loch Sunart stores 15.0 Mt IC in comparison
18 to 11.5 Mt OC. The general lack of IC data for the coastal environment makes it difficult to
19 assess how representative Loch Sunart is of these coastal sedimentary IC stores; however, our
20 results do highlight the potential significance of IC as a major component of sedimentary C
21 stores in these depositional environments. Our results also highlight that fjords in general
22 (Smith et al., 2015) act as an OC rich sediment transition zone between terrestrial and oceanic
23 environments.

24 Loch Sunart's sediment currently holds 11.5 Mt OC with an additional estimated range of
25 between 89 to 1.2×10^3 tonnes of OC buried annually. This highly localized OC trapping in
26 the coastal zone may further reduce reworking and remineralisation of the material which
27 would have otherwise resulted in the release of CO₂ through biotic processes (Smith et al.,
28 2015). This 11.5 Mt of sedimentary OC is equivalent to 40.9 Mt CO₂e (carbon dioxide
29 equivalent). As a whole, the sediment within Loch Sunart stores 99.6 Mt CO₂e which is
30 equivalent to over two years of Scotland's total greenhouse gas emission for 2014 which
31 reached an estimated 46.7 Mt CO₂e (Scottish Government, 2016).

1 Globally, the terrestrial C stores have received much more attention than their marine
2 counterparts; with significant focus on quantifying the forest (Köhl et al., 2015) and soil C
3 stocks (Köchy et al., 2015, Scharlemann et al., 2014). The work by Duarte et al. (2005) to
4 compile the known stocks and burial rate of C in the coastal environment highlighted that the
5 coastal ocean constitutes a large store of carbon, which remains poorly understood; from this
6 work the concept of Blue Carbon arose (Nellemann et al., 2009). The focus of Duarte et al.
7 (2005) was to highlight that the vegetated coastal zones (i.e. saltmarsh, seagrass and
8 mangroves) bury and store significant quantities of C and that these stores should be further
9 investigated and recognised in policy outputs, but these authors largely overlook the
10 importance of what they described as depositional area (estuaries and the shelf sea) as long-
11 term repositories of OC detritus from the vegetated coastal environment (Krumhansl et al.,
12 2012) and ignored the terrestrial OC inputs. These authors recognised that coastal (and shelf)
13 depositional areas are important stores of sedimentary C globally, yet almost no
14 consideration is given to how these areas vary in terms of their capacity to store C.

15 Furthermore, if we consider the range of estuarine environments (e.g. fjord, delta, coastal
16 plain, bar-built and tectonic), it is clear that the characteristics of each type of estuary will
17 impact the manner in which C is buried and stored. For example, the restricted nature of
18 fjords will be conducive to sediment capture and effective C storage when compared to the
19 more open estuarine environments which experience greater flushing. Globally, the rates at
20 which fjords accumulate and bury OC is reasonably well defined (Table. 6). This study adds
21 data for the underrepresented mid-latitude fjords which are comparable to other vegetated
22 fjordic systems around the world (Pickrill. 1993, Sepúlveda et al., 2011, Knudson et al., 2011,
23 Hinojosa et al., 2014, Smith et al., 2015). Additionally, for the first time, we cautiously report
24 IC accumulation and burial rates for a fjord. The burial of IC is another significant mechanism
25 of CO₂ sequestration that has been overlooked in fjordic systems and requires further
26 investigation to quantify its importance to the coastal C cycle as a whole.

27 Our initial work suggests that the depositional area category could be further expanded upon
28 to include fjords as a separate component and this concept is supported by Smith et al. (2015),
29 who indicated that fjords are “hot-spots for OC burial” and should be considered separately
30 from estuaries when investigating global ocean OC burial. Currently, there is insufficient
31 globally available data to advocate fjords being categorised as a separate component in global

1 coastal C stores; however, the standardised methodology outlined (Fig.8) provides a platform
2 to investigate this concept further.

3 At the national level there has been a significant focus on quantifying Scottish soil C stocks,
4 with much attention given to the peatlands (Aitkenhead and Coull. 2016, Bradley et al., 2005
5 and Chapman et al. 2009). Peat and other organic rich soils cover 66% of Scotland and
6 account for 50% of all the United Kingdom's soil C stocks (Cummins et al., 2011). The
7 Scottish peatlands store 1620 Mt C (Chapman et al., 2009) over an area of 17270 km², while
8 the other soils hold 2110.9 Mt C over 60215 km² (Aitkenhead and Coull. 2016). In
9 comparison to these figures, the quantity of C stored in Loch Sunart is small, but the fjord
10 itself only covers an area of 47.3 km². When the fjord's C_{eff} is compared to how effectively
11 Scotland's soils and peatlands store C (Table. 5), we can see that when normalised as a store
12 per unit area basis Loch Sunart stores significantly more C than the soils of Scotland. The
13 fjord has a C_{eff} of 0.568 Mt C km⁻² compared to 0.094 Mt C km⁻² and 0.035 Mt C km⁻² for the
14 peatlands and other soils of Scotland. Our results suggest that Loch Sunart is one of the most
15 effective stores of C in Scotland and highlights the potential of the sediment in these mid-
16 latitude fjords to hold a significant quantity of C. Many of these terrestrial C stores are, of
17 course, vulnerable to rapid and long-term environmental change; the Scottish terrestrial C
18 stocks are at risk from erosion (Cummins et al. 2011) and even fire (Davies et al., 2013), both
19 of which are increasing in pace and frequency by anthropogenic activities. In comparison, a
20 fjord's geomorphology combined with its depth gives sedimentary C stores a level of
21 protection not afforded to terrestrial C stores. This does not mean that the sedimentary C in
22 sea lochs is invulnerable, but rather that it is buffered from the immediate effects of chemical,
23 biological and physical environmental change during interglacial periods. Over longer
24 timeframes it is known that these sedimentary stores are scoured by glacial advances resulting
25 in the material being transported to the adjacent shelf and slope (Jaeger and Koppes., 2016).
26 Further investigation is required to better understand the processes governing the transfer of
27 material to the shelf and what impact this has on the quality of OC in coastal sediment stores
28 (Smith et al., 2015).

29 The methodology outlined in this paper provides a platform from which to calculate the
30 carbon stocks in other fjordic systems as well as environments with restricted sediment
31 exchange processes, such as estuaries and freshwater lakes, as well as artificial systems such
32 as reservoirs and irrigation pools.

1 **5 Conclusion**

2 The integration of the geochemical and geophysical techniques outlined provides a robust and
3 repeatable methodology to quantitatively calculate the volume of sediment and make first
4 order estimations of carbon stored within fjordic sediments. Using this methodology we have
5 shown that Loch Sunart, a fjord on the west coast of Scotland holds 26.9 Mt C which is
6 equivalent to double Scotland's CO₂ emissions for 2014. While these individual fjord stores
7 may be small in comparison with Scotland's peatland and soil C stocks, we show they are
8 potentially far more effective stores of both OC and IC than Scotland's terrestrial habitats
9 (area normalised comparison). The results from this study suggest that the sediment in
10 Scotland's 110 fjords (Edwards and Sharples. 1986) represent a potentially significant, yet
11 currently largely unaccounted for repository of both OC and IC. These fjords act to trap
12 sediment and reduce the remineralisation of OC into the atmosphere. Additionally, the C held
13 within these 110 fjords is likely to represent a significant portion of Scotland's blue carbon
14 capital that has not yet been considered at the marine ecosystem, global C cycle and wider
15 policy levels. Without a better understanding of these globally significant stores of marine
16 sedimentary C it remains difficult to fully quantify the coastal C cycle. However, evidence
17 suggests that these fjordic environments do play an important role in buffering the release of
18 CO₂ through the effective burial of large quantities of C in these sediments. The future
19 strategic application of the methodology outlined in this study to different fjord types and
20 locations offers the potential through appropriate upscaling to estimate the fjordic
21 sedimentary C stores both at regional, national and global scales.

22 **Author Contribution**

23 CS & WA conceived the research and wrote the manuscript, to which all co-authors
24 contributed data or provided input. CS conducted the research as part of his PhD at the
25 University of St Andrews, supervised by WA, AD and JH.

26 **Acknowledgements**

27 This work was supported by the Natural Environment Research Council [Grant Number:
28 NE/L501852/1] with additional support from the NERC Radiocarbon Facility [Allocation
29 1934.1015]. Seismic profiles and the CALYPSO long core were acquired within the frame of
30 the French ECLIPSE program with additional financial support from NERC, SAMS and the
31 University of St-Andrews. The authors would like to thank Marion Dufresne's Captain J.-M.
32 Lefevre, the Chief Operator Y. Balut (from IPEV) and Richard Bates (University of St

1 Andrews). Additionally; we would like to thank Colin Abernethy (Scottish Association of
2 Marine Science) for laboratory support. Finally, we thank Jessica Hinojosa and one
3 anonymous reviewer whose insightful comments improved this manuscript.

1 **References**

2 Aitkenhead, M. J. and Coull, M. C.: Mapping soil carbon stocks across Scotland using a
3 neural network model, *Geoderma*, 262, 187–198, doi:10.1016/j.geoderma.2015.08.034, 2016.

4 Baeten, N. J., Forwick, M., Vogt, C. and Vorren, T. O.: Late Weichselian and Holocene
5 sedimentary environments and glacial activity in Billefjorden, Svalbard, *Geol. Soc. London,*
6 *Spec. Publ.*, 344(1), 207–223, doi:10.1144/SP344.15, 2010.

7 Baltzer, A., Bates, C.R., Mokeddem, Z., Clet-Pellerin, M., Walter-Simonnet, A-V., Bonnot
8 Courtois, C. and Austin, W.E.N. Using seismic facies and pollen analyses to evaluate
9 climatically driven change in a Scottish sea loch (fjord) over the last 20 ka, *Geological*
10 *Society, London, Special Publications*, 344, (1), pp. 355–369, 2010

11 Bauer, J.E., Cai, W-J, Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., and Regnier, P.A.G.
12 2013, The changing carbon cycle of the coastal ocean., *Nature*, 504, (7478), pp. 61–70, 2013

13 Bates, C.R., Moore, C.G., Harries, D.B., Austin, W.E.N., and Lyndon, A. R. Broad scale
14 mapping of sublittoral habitats in Loch Sunart, Scotland. *Scottish Natural Heritage*
15 *Commissioned. Report No. 006 (ROAME No. F01AA401C)*, 2004.

16 Binns, P. E., Harland,R. & Hughes, M. J. 1974a. Glacial and post glacial sedimentation in the
17 sea of the Hebrides. *Nature*, 248, 751–754, 1974a.

18 Binns, P. E., Mcquillin,R.& Kenolty, N. 1974b. The geology of the sea of the Hebrides.
19 *Institute of Geological Sciences 73/14*, 1974b.

20 Boulton, G. S., Chroston,P.N.& Jarvis, J. A marine seismic study of late Quaternary
21 sedimentation and inferred glacier fluctuations along western Inverness–shire, Scotland.
22 *Boreas*, 10, 39–51, 1981.

23 Bond, C. E., Gibbs, A. D., Shipton, Z. K. and Jones, S.: What do you think this is?
24 “Conceptual uncertainty” In geoscience interpretation, *GSA Today*, 17(11), 4–10,
25 doi:10.1130/GSAT01711A.1, 2007.

26 Bradley, R.I., Milne, R., Bell, J., Lilly, A., Jordan, C. and Higgins, A.: A soil carbon and land
27 use database for the United Kingdom. *Soil Use and Management*, 21, 363–369, 2005

28 Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. *Radiocarbon*, 51(1), 337-360,
29 2009

1 Bronk Ramsey, C. and Lee, S. Recent and planned developments of the program OxCal.
2 Radiocarbon, 55(2-3), 720-730, 2013

3 Burrows M.T., Kamenos N.A., Hughes D.J., Stahl H., Howe J.A. and Tett P. Assessment of
4 carbon budgets and potential blue carbon stores in Scotland's coastal and marine
5 environment. Scottish Natural Heritage Commissioned Report No. 761, 2014

6 Cage, A.G., Heinemeier, J. and Austin, W.E.N. Marine radiocarbon reservoir ages in Scottish
7 coastal and fjordic waters, Radiocarbon, Vol 48, Nr 1, 31–43, 2006.

8 Cai, W.-J.: Estuarine and coastal ocean carbon paradox: CO₂ sinks or sites of terrestrial
9 carbon incineration?, Ann. Rev. Mar. Sci., 3, 123–45, doi:10.1146/annurev-marine-120709-
10 142723, 2011.

11 Capell, R., Tetzlaff, D. and Soulsby, C.: Will catchment characteristics moderate the
12 projected effects of climate change on flow regimes in the Scottish Highlands?, ,
13 699(December 2012), 687–699, doi:10.1002/hyp.9626, 2013.

14 Cannell, M.G.R., Milne, R., Hargreaves, K.J., Brown, T.A.W., Cruickshank, M.M., Bradley,
15 R.I., Spencer, T., Hope, D., Billett, M.F., Adger, W.N. and Subak, S. National inventories of
16 terrestrial carbon sources and sinks: The UK experience. Climatic Change, 42, 505–530, 1999

17 Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Jordan, C. and Petter, H.: Pattern and
18 timing of retreat of the last British-Irish Ice Sheet, Quat. Sci. Rev.,
19 doi:10.1016/j.quascirev.2010.07.019, 2010.

20 Chapman, S.J., Bell, J.S., Campbell, C.D., Hudson, G, Lilly, A., Nolan, A.J., Robertson,
21 A.H.J., Potts, J.M., and Towers, W, Comparison of soil carbon stocks in Scottish soils
22 between 1978 and 2009, European Journal of Soil Science, 64, (4), pp. 455–465, 2013

23 Chapman, S.J., Bell, J., Donnelly, D. and Lilly, A., Carbon stocks in Scottish peatlands, Soil
24 Use and Management, 25, (2), pp. 105–112, 2009.

25 Chiles, J.P., and Delfiner.P. Geostatistics: Modeling Spatial Uncertainty. John Wiley and
26 Sons, New York, 695, 1999.

27 Cressie, N.A.C. The Origins of Kriging, Mathematical Geology, v. 22, p. 239-252, 1990.

28 Cui, X., Bianchi, T. S., Jaeger, J. M. and Smith, R. W.: Biospheric and petrogenic organic
29 carbon flux along southeast Alaska, Earth Planet. Sci. Lett., 452, 238–246,
30 doi:10.1016/j.epsl.2016.08.002, 2016.

1 Cui, X., Bianchi, T. S., Savage, C. and Smith, R. W.: Organic carbon burial in fjords :
2 Terrestrial versus marine inputs, *Earth Planet. Sci. Lett.*, 451, 41–50,
3 doi:10.1016/j.epsl.2016.07.003, 2016b.

4 Cummins, R., Donnelly, D., Nolan, A., Towers, W., Chapman, S., Grieve, I. and Birnie, R.V.
5 Peat erosion and the management of peatland habitats. Scottish Natural Heritage
6 Commissioned Report No. 410, 2011

7 Dadey, K.A., Janecek, T. and Klaus, A Dry bulk density: its use and determination,
8 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 126, 1992.

9 Danielson, R.E., Sutherland, P.L., Porosity. In: Klute, A. (eds), *Methods of soil analysis, part 1,*
10 *Physical and mineralogical methods*, Am. Soc. Agr., Madison, Wisconsin, pp. 443–461. 1986.

11 Davies, G. M., Gray, A., Rein, G. and Legg, C. J.: Peat consumption and carbon loss due to
12 smouldering wildfire in a temperate peatland, *For. Ecol. Manage.*, 308, 169–177,
13 doi:10.1016/j.foreco.2013.07.051, 2013.

14 Duarte, C. M., Middelburg, J. J. and Caraco, N.: Major role of marine vegetation on the
15 oceanic carbon cycle, *Biogeosciences*, 2, 1–8, 2005.

16 Duarte, C. M.: Reviews and syntheses : Hidden Forests , the role of vegetated coastal habitats
17 on the ocean carbon budget, , 1981(August), 1–17, doi:10.5194/bg-2016-339, 2016.

18 Edwards,A.& Sharples, F. Scottish Sea Lochs: A Catalogue. Scottish Marine Biological
19 Association/ Nature Conservancy Council, Oban, 1986.

20 Forwick, M., Vorren, T. O., Hald, M., Korsun, S., Roh, Y., Vogt, C. and Yoo, K.-C.: Spatial
21 and temporal influence of glaciers and rivers on the sedimentary environment in
22 Sassenfjorden and Tempelfjorden, Spitsbergen, *Geol. Soc. London, Spec. Publ.*, 344(1), 163–
23 193, doi:10.1144/SP344.13, 2010.

24 Friedrich, J., Janssen, F., Aleynik, D., Bange, H. W., Boltacheva, N., Çagatay, M. N., Dale, a.
25 W., Etiope, G., Erdem, Z., Geraga, M., Gilli, a., Gomoiu, M. T., Hall, P. O. J., Hansson, D.,
26 He, Y., Holtappels, M., Kirf, M. K., Kononets, M., Konovalov, S., Lichtschlag, a.,
27 Livingstone, D. M., Marinaro, G., Mazlumyan, S., Naeher, S., North, R. P., Papatheodorou,
28 G., Pfannkuche, O., Prien, R., Rehder, G., Schubert, C. J., Soltwedel, T., Sommer, S., Stahl,
29 H., Stanev, E. V., Teaca, a., Tengberg, a., Waldmann, C., Wehrli, B. and Wenzhöfer, F.:

1 Investigating hypoxia in aquatic environments: Diverse approaches to addressing a complex
2 phenomenon, *Biogeosciences*, 11(4), 1215–1259, doi:10.5194/bg-11-1215-2014, 2014.

3 Gillibrand, P.A., Cage, A.G. and Austin, W.E.N. A preliminary investigation of basin water
4 response to climate forcing in a Scottish fjord: evaluating the influence of the NAO,
5 *Continental Shelf Research*, 25, (5-6), pp. 571–587, 2005

6 Hedges, J.I., Keil, R.G. and Benner, R. What happens to terrestrial organic matter in the
7 ocean? *Organic Geochemistry*. 27, 195–212, 1997.

8 Hilton, R.G., Galy, A., Hovius, N. & Horng, M.J. Efficient transport of fossil organic carbon
9 to the ocean by steep mountain rivers: An orogenic carbon sequestration mechanism. *Geology*
10 39, 71–74, 2011.

11 Hinojosa, J.L, Christopher M. Moy, C.M, Claudine H. Stirling, C.H, Gary S. Wilson, G.S,
12 and Eglinton, T.I : Carbon cycling and burial in New Zealand's fjords, , 4047–4063,
13 doi:10.1002/2014GC005433.Received, 2014.

14 Howard, P.J.A., Loveland, P.J., Bradley, R.I., Dry, F.T., Howard, D.M. and Howard, D.C..
15 The carbon content of soil and its geographical distribution in Great Britain. *Soil Use and*
16 *Management*, 11, 9–15, 1995.

17 Howe, J. A., Shimmield, T., Austin, W. E. N. and Longva, O.: Post-glacial depositional
18 environments in a mid-high latitude glacially-overdeepened sea loch , inner Loch Etive ,
19 western Scotland, , 185, 417–433, 2002.

20 Jaeger, J. M. and Koppes, M. N.: The role of the cryosphere in source-to-sink systems, *Earth-*
21 *Science Rev.*, 153, 43–76, doi:10.1016/j.earscirev.2015.09.011, 2016.

22 Johnston, D.H and R. Cooper, M.R., *Methods and Applications in Reservoir Geophysics*,
23 *Investigations in geophysics*, no. 15., Tulsa, OK : Society of Exploration Geophysicists, 2010.

24 Kennedy, P., Kennedy, H., and Papadimitriou, S. The effect of acidification on the
25 determination of organic carbon, total nitrogen and their stable isotopic composition in algae
26 and marine sediment, *Rapid Communications in Mass Spectrometry*, 19, (8), pp. 1063–1068,
27 2005.

28 Knudson, K. P., Hendy, I.L. and Neil, H.L.: Re-examining Southern Hemisphere westerly
29 wind behaviour: Insights from a late Holocene precipitation reconstruction using New
30 Zealand fjord sediments, *Quat. Sci. Rev.*, 30(21-22), 3124–3138, doi:10.1016/

1 j.quascirev.2011.07.017, 2011.Köchy, M., Hiederer, R. and Freibauer, A.: Global distribution
2 of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the
3 tropics, permafrost regions, wetlands, and the world, *Soil*, 1(1), 351–365, doi:10.5194/soil-1-
4 351-2015, 2015.

5 Köhl, M., Lasco, R., Cifuentes, M., Jonsson, ??rjan, Korhonen, K. T., Mundhenk, P., de Jesus
6 Navar, J. and Stinson, G.: Changes in forest production, biomass and carbon: Results from the
7 2015 UN FAO Global Forest Resource Assessment, *For. Ecol. Manage.*, 352, 21–34,
8 doi:10.1016/j.foreco.2015.05.036, 2015

9 Krumhansl, K. A. and Scheibling, R. E.: Production and fate of kelp detritus, *Mar. Ecol. Prog. Ser.*, 467, 281–302, doi:10.3354/meps09940, 2012.

11 Kuliński K, Kędra M, Legeżyńska J, Głuchowska M, Zaborska A, Particulate organic matter
12 sinks and sources in high Arctic fjord. *J Mar Syst* 139:27–37, 2014.

13 Mokeddem, Z., Baltzer, A., Goubert, E and Clet-Pellerin, M., A multiproxy
14 palaeoenvironmental reconstruction of Loch Sunart (NW Scotland) since the Last Glacial
15 Maximum, *Geological Society, London, Special Publications*, 344, (1), pp. 341–353, 2010.

16 Müller, A., Geochemical expressions of anoxic conditions in Nordåsvannet, a land-locked
17 fjord in western Norway *Appl. Geochem.*, 16, pp. 363–374, 2001.

18 Nelleman C., Corcoran E., Duarte C.M., Valdés L., DeYoung C., Fonseca L., Grimsditch G.
19 (Eds.), *Blue Carbon: A Rapid Response Assessment*, United Nations Environment
20 Programme, GRID-Arendal, (2009).

21 Nieuwenhuize, J., Maas, Y.E.M., and Middelburg, J.J. Rapid analysis of organic carbon and
22 nitrogen in particulate materials. *Mar. Chem.* 45:217-224, 1994

23 Nørgaard-Pedersen, N., Austin, W. E. N., Howe, J. a. and Shimmield, T.: The Holocene
24 record of Loch Etive, western Scotland: Influence of catchment and relative sea level changes,
25 *Mar. Geol.*, 228(1-4), 55–71, doi:10.1016/j.margeo.2006.01.001, 2006.

26 Pedersen, J. B. T., Kroon, a., Jakobsen, B. H., Mernild, S. H., Andersen, T. J. and Andresen,
27 C. S.: Fluctuations of sediment accumulation rates in front of an Arctic delta in Greenland,
28 *The Holocene*, 23(6), 860–868, doi:10.1177/0959683612474480, 2013.

29 Pergamon Press, 119–41Polson, D. and Curtis, A.: Dynamics of uncertainty in geological
30 interpretation, *J. Geol. Soc. London.*, 167(1), 5–10, doi:10.1144/0016-76492009-055, 2010.

1 Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. Numerical Recipes in C,
2 Cambridge University Press, 1988.

3 Pickrill, R. A., Sediment yields in Fiordland, *J. Hydrol. N. Z.*, 31(1), 39–55, 1993.

4 Reimer, P, IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal
5 BP, *Radiocarbon*, 55, (4), pp. 1869–1887, 2013.

6 Scottish Government. 2016. <http://www.gov.scot/Publications/2016/06/2307/>; Accessed
7 09/09/2016.

8 Scharlemann, J. P., Tanner, E. V., Hiederer, R. and Kapos, V.: Global soil carbon:
9 understanding and managing the largest terrestrial carbon pool, *Carbon Manag.*, 5(1), 81–91,
10 doi:10.4155/cmt.13.77, 2014.

11 Scourse, J. D., Haapaniemi, A. I., Colmenero-hidalgo, E., Peck, V. L., Hall, I. R., Austin, W.
12 E. N., Knutz, P. C. and Zahn, R.: Growth , dynamics and deglaciation of the last British –
13 Irish ice sheet : the deep-sea ice-rafted detritus record, *Quat. Sci. Rev.*, 28(27-28), 3066–3084,
14 doi:10.1016/j.quascirev.2009.08.009, 2009

15 Sepúlveda, J., Pantoja, S., Hughen, K., Lange, C., Gonzalez, F., Muñoz, P., Rebolledo, L.,
16 Castro, R., Contreras, S., Ávila, A., Rossel, P., Lorca, G., Salamanca, M. and Silva, N.:
17 Fluctuations in export productivity over the last century from sediments of a southern Chilean
18 fjord (44°S), *Estuar. Coast. Shelf Sci.*, 65(3), 587–600, doi:10.1016/j.ecss.2005.07.005, 2005.

19 Sepúlveda, J., Pantoja, S., Hughen. K.A.,: Sources and distribution of organic matter in
20 northern Patagonia fjords, Chile (44–47°S): A multi-tracer approach for carbon cycling
21 assessment, *Cont. Shelf Res.*, 31(3-4), 315–329, doi:10.1016/j.csr.2010.05.013, 2011.

22 Simpkin,P.G. and Davis, A, For seismic profiling in very shallow water, a novel receiver. In
23 Sea Technology, 1983.

24 Smith, R.W., Bianchi, T.S., Allison, M., Savage, C. & Galy, V, High rates of organic carbon
25 burial in fjord sediments globally, *Nature*, doi: 10.1038/NGEO2421, 2015.

26 Soil Survey of Scotland Staff. (1970-1987). Soil maps of Scotland (partial coverage) at a scale
27 of 1:25 000. Macaulay Institute for Soil Research, Aberdeen.

28 St-Onge, G., and Hillaire-Marcel, C.: Isotopic constraints of sedimentary inputs and organic
29 carbon burial rates in the Saguenay Fjord, Quebec, *Mar. Geol.*, 176(1-4), 1–22,
30 doi:10.1016/S0025-3227(01)00150-5, 2001

1 Syvitski, J.P.M, Burrell, D.C & Skei, J.M. Fjords, Processes and Products, Springer-Verlag
2 New York, 1987.

3 Syvitski, J.P.M & Shaw, J: Sedimentology and Geomorphology of Fjords, Geomorphology
4 and Sedimentology of Estuaries. Developments in Sedimentology 53, 1995.

5 Wilson, L. J., Austin, W. E. N. and Jansen, E.: The last British Ice Sheet : growth , maximum
6 extent and deglaciation, , (2001), 243–250, 2002.

7 Winkelmann, D. and Knies, J,:Recent distribution and accumulation of organic carbon on the
8 continental margin west off Spitsbergen, Geochem. Geophys. Geosyst., 6, Q09012,
9 doi:10.1029/2005GC000916. 2005

10 Verardo, D.J., P. N. Froelich, P.N. and McIntyre, A,Determination of organic carbon and
11 nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. Deep Sea Res. 37:157-
12 165, 1990

13 Yu, Z, Loisel, J., Brosseau, D.P., Beilman, D.W., & Hunt, S.J. Global peatland dynamics
14 since the Last Glacial Maximum. Geophysical Research Letters 37, L13402, 2010.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1 **Table 1.** Details of the sediment cores extracted from Loch Sunart that were used in this study.

Core ID	Basin	Position (Lat, Long)	Water Depth (m)	Recovery (m)
GC009	Middle	56.672056, -5.867083	107	1.41
GC011	Outer	56.759861, -5.969639	91	2.45
GC013	Inner	56.681306, -5.629528	58	1.67
GC016	Inner	56.680944, -5.642333	58	0.56
GC020	Middle	56.704278, -5.751333	105	2.38
GC022	Middle	56.680333, -5.804944	120	2.46
GC023	Middle	56.665917, -5.840361	87	2.89
GC081	Middle	56.668972, -5.863278	58	3.63
GC01	Middle	56.696806, -5.704972	42	0.21
MD04 2833	Middle	56.665500, -5.859667	38	12

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1 **Table. 2** Radiocarbon ages from Loch Sunart cores. Ages were calibrated using OxCal 4.2.4 (Bronk
 2 Ramsey., 2009 & Bronk Ramsey & Lee., 2013) with the Marine13 curve (Reimer et al. 2013) and
 3 regional correction of ΔR value of -26 ± 14 yr (Cage et al. 2006). All ages are calibrated at 95.4%
 4 probability and the mean age has been determined from the minimum and maximum calibrated ages.
 5 Additionally; we list the seismic unit assigned to each equivalent (eqv.) depth and compare this to the
 6 age equivalent seismic unit based on Baltzer et al. (2010).

Laboratory Code	Core ID	Depth (cm)	^{14}C Age, BP (No Correction)	Calibrated ^{14}C Age (cal BP)	Seismic Unit	
					Depth eqv.	Age eqv.
AA-48108	GC009	140	9827 ± 49	10801 ± 93	U2	U2
SUERC 65990	GC011	60	2837 ± 35	2625 ± 66	U3	U3
SUERC 65991	GC011	120	9890 ± 38	10878 ± 87	U2	U3
SUERC 65992	GC011	170	11266 ± 40	12760 ± 61	U2	U2
AA-48109	GC011	231	12181 ± 58	13658 ± 90	U1	U1
AA-48107	GC013	113	1716 ± 32	1294 ± 35	U3	U3
SUERC 65995	GC016	30	1865 ± 35	1438 ± 51	U3	U3
SUERC 65994	GC020	9	683 ± 35	357 ± 44	U3	U3
SUERC 65993	GC020	19	3067 ± 37	2864 ± 57	U3	U3
AA-48106	GC020	126	11652 ± 74	13160 ± 90	U2	U2/U1
AA-51569	GC023	30	340 ± 60	64 ± 51	U3	U3
SUERC-681	GC023	49	1215 ± 47	788 ± 58	U3	U3
SUERC-677	GC023	58	1322 ± 43	886 ± 55	U3	U3
AA-51570	GC023	73	1430 ± 55	1011 ± 66	U3	U3
SUERC-679	GC023	111.5	1695 ± 57	1274 ± 59	U2	U3
SUERC-680	GC023	250	2180 ± 61	1801 ± 80	U2	U3
CAMS-82821	GC023	286	2425 ± 40	2099 ± 70	U2	U3
UL 2853	MD04-2833	745	14420 ± 210	17041 ± 312	U1	U1

7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

1 **Table. 3** Sediment volume calculated as the mean of the three numerical integration algorithms; the
 2 error is reported as relative standard deviation (%RSD) which integrates the uncertainty in the seismic
 3 interpolation and the standard deviation of the numerical integration algorithms. The data is reported
 4 for the post-glacial (PG) and glacial (G) sediment at the basin level.

Basin	Layer	Volume	
		Mean (m ³)	%RSD
Inner	PG	2869825.90	6.48
	G	1301836.56	1.89
Middle	PG	23046267	7.26
	G	7363034.04	1.89
Outer	PG	13371884	7.90
	G	2667373.2	1.89
Loch Sunart	PG	530872293	7.39
	G	599731882	1.89
Total		1130604175.55	3.61

5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22

1 **Table. 4** Mass of sediment held within Loch Sunart and the mass of total carbon (TC), organic carbon
 2 (OC) and inorganic carbon (IC) held within Loch Sunart's postglacial (PG) and glacial (G) sediment.

Basin	Layer	Mass (Mt)	TC (Mt)	OC (Mt)	IC (Mt)
Inner	PG	27.1 ± 3.0	1.3 ± 0.2	1.1 ± 0.1	0.3 ± 0.2
	G	126.7 ± 7.2	0.8 ± 0.6	0.2 ± 0.2	0.6 ± 0.4
Middle	PG	421.5 ± 7.3	14.1 ± 0.3	7.1 ± 0.3	7.0 ± 0.2
	G	738.3 ± 9.6	4.0 ± 0.9	1.2 ± 0.3	2.8 ± 0.6
Outer	PG	203.5 ± 11.1	4.5 ± 0.3	1.3 ± 0.1	3.2 ± 0.2
	G	411.2 ± 9.8	2.2 ± 0.8	0.7 ± 0.1	1.6 ± 0.6
Loch Sunart	PG	652.1 ± 6.6	19.9 ± 0.3	9.4 ± 0.2	10.1 ± 0.2
	G	1276.2 ± 8.9	7.0 ± 0.8	2.1 ± 0.3	4.9 ± 0.6
Total		1928.3 ± 7.3	26.9 ± 0.5	11.5 ± 0.2	15.0 ± 0.4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

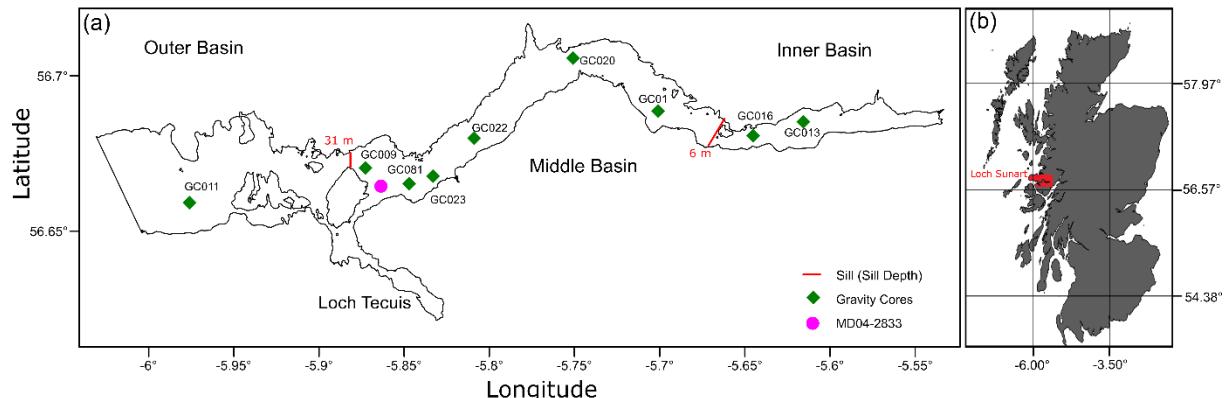
28

1 **Table. 5** The effective C storage (C_{eff}) of Loch Sunart's postglacial and glacial sediment in
 2 comparison to Scottish terrestrial C stores.

C Inventories	Area (km ²)	TC (Mt)	C_{eff} (Mt km ⁻²)	OC_{eff} (Mt km ⁻²)	IC_{eff} (Mt km ⁻²)	Reference
Postglacial						
Inner Basin	5.5	1.3	0.238	0.191	0.047	
Middle Basin	24.7	14.1	0.570	0.285	0.284	
Outer Basin	17.1	4.5	0.263	0.077	0.184	
Glacial						
Inner Basin	5.5	0.8	0.147	0.044	0.104	
Middle Basin	24.7	4.0	0.161	0.047	0.113	
Outer Basin	17.1	2.2	0.129	0.038	0.091	
Postglacial	47.3	19.9	0.412	0.199	0.213	
Glacial	47.3	7.0	0.148	0.044	0.104	
Loch Sunart	47.3	26.9	0.560	0.242	0.318	
2 m Depth						
Peatlands*	17270	1620		0.094		Chapman et al., 2009
Organo-		754				Bradley et al., 2005
Mineral Soil*						
Mineral Soil*		498				
1 m Depth						
Peat	17369	813.9		0.047		Aitkenhead and Coull ,2016
Alluvial Soil	1657	40.8		0.025		
Alpine Soil	3825	145.7		0.038		
Bare Ground	1672	50.5		0.030		
Brown Earth	15971	590.3		0.037		
Gley	15963	645.4		0.040		
Podzol	18159	536.6		0.029		
Ranker	2531	82.6		0.033		
Regosol	437	19.0		0.044		

3 *Both studies calculated the soil C stocks excluding IC data therefore the stocks only represent the OC
 4 held within these stocks.

5
 6
 7
 8
 9
 10
 11


Table 6. Sedimentation, OC accumulation and OC burial rates for Loch Sunart in comparison to global fjords.

Location	Area (km ²)	SR (cm yr ⁻¹)	OC Accumulation Rate (g m ⁻² yr ⁻¹)	OC Burial Rate (g m ⁻² yr ⁻¹)	OC Burial Rate (Tonnes yr ⁻¹)	Reference
Loch Sunart	47.3	0.017-0.089	3.0	32.1	1.89 ^a	8.9 x 10 ¹
Loch Creran	13.3	0.2-0.5		21.9	193.45	2.6 x 10 ³
Nordasvannet Fjord	4.6			2.2	1.0 x 10 ¹	Loh et al., 2008
Storfjord	1424			40.0	5.7 x 10 ⁵	Winkelmann and Knies 2005
Kongsfjorden	9					Müller, 2001
	817					Kulinski et al., 2014
Saguenay Fjord	360			9	13	Cui et al., 2016
Vegetated Alaskan Fjords				24.5	291.0	St-Onge and Hillaire-Marcel, 2001
Glaciated Alaskan Fjords				30	82	
				13	8.8 x 10 ³	
				30	1113	
				13	1.0 x 10 ⁵	
				30	7.6 x 10 ⁵	
Jacaf Fjord	236	0.28	33.4	40.8	21.0	25.7
Ventisquero Sound	7.2	0.74	69.3	82.5	43.7	52.0
Puyuhuapi Fjord	111	0.25	11.0	34.2	6.9	21.6
Aysen Fjord	340	0.24	10.5	20.7	6.6	13.1
Quitrailco Fjord	116	0.47	4.6	55.3	2.9	34.8
Cupquelan Fjord	125	0.14	1.9	8.4	1.2	5.3
					1.5 x 10 ²	
					6.6 x 10 ²	
Milford Sound	25.3	0.268		23.2	18.6	4.7 x 10 ²
George Sound	32.9	0.087		3.63	2.90	9.5 x 10 ¹
Thompson Sound	49.3	0.113		10.6	8.48	4.18 x 10 ²
Nancy Sound	13.9	0.204		32.6	26.1	3.62 x 10 ²
Doubtful Sound	83.7	0.079		23.2	18.6	1.6 x 10 ³
Breaksea Sound	61.5	0.038		9.07	7.26	4.5 x 10 ²
Dusky Sound	18.1	0.012		2.31	1.85	3.3 x 10 ²
Long Sound	93	0.094		16.0	12.8	1.2 x 10 ³
Dusky Sound	18.1	0.16	44	68	35.2 ^b	54.4 ^b
Doubtful Sound	83.7	0.38	115	169	92 ^b	135.2 ^b
George Sound	32.9	0.10		4.8	3.84 ^b	1.3 x 10 ²
Thompson Sound	49.3	0.06-0.17		15.2	12.16 ^b	6.0 x 10 ²

^aOC Burial rate calculated assuming a burial efficiency of 63% (Sepúlveda et al., 2005).

^bOC Burial rate calculated assuming a burial efficiency of 80% (Smith et al., 2015).

1

2

3 **Figure 1.** Maps of Loch Sunart illustrating (a) the three basins and the sediment core
 4 locations (b) Loch Sunart in a Scottish context.

5

6

7

8

9

10

11

12

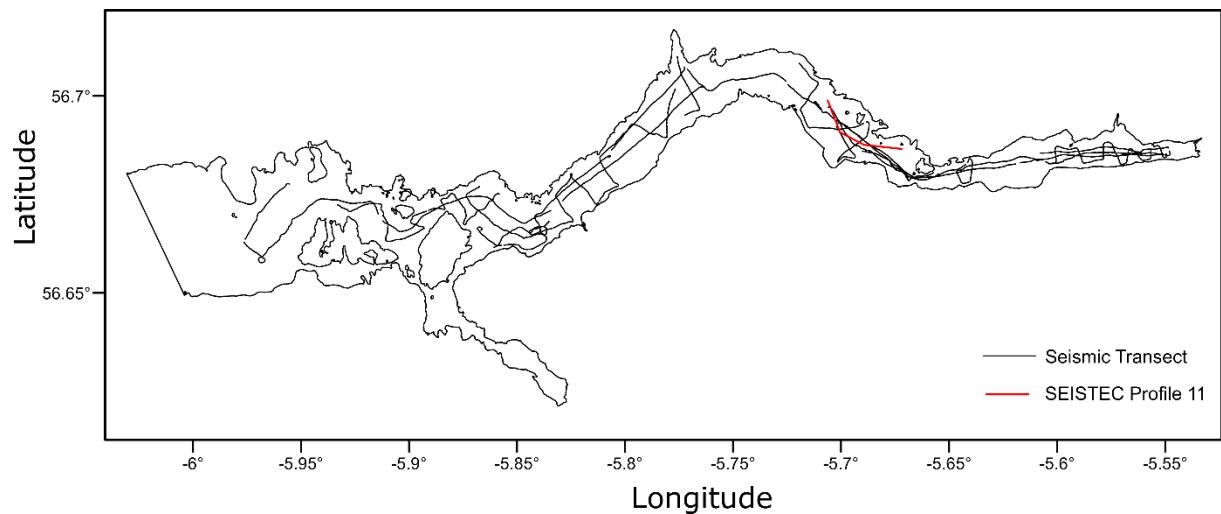
13

14

15

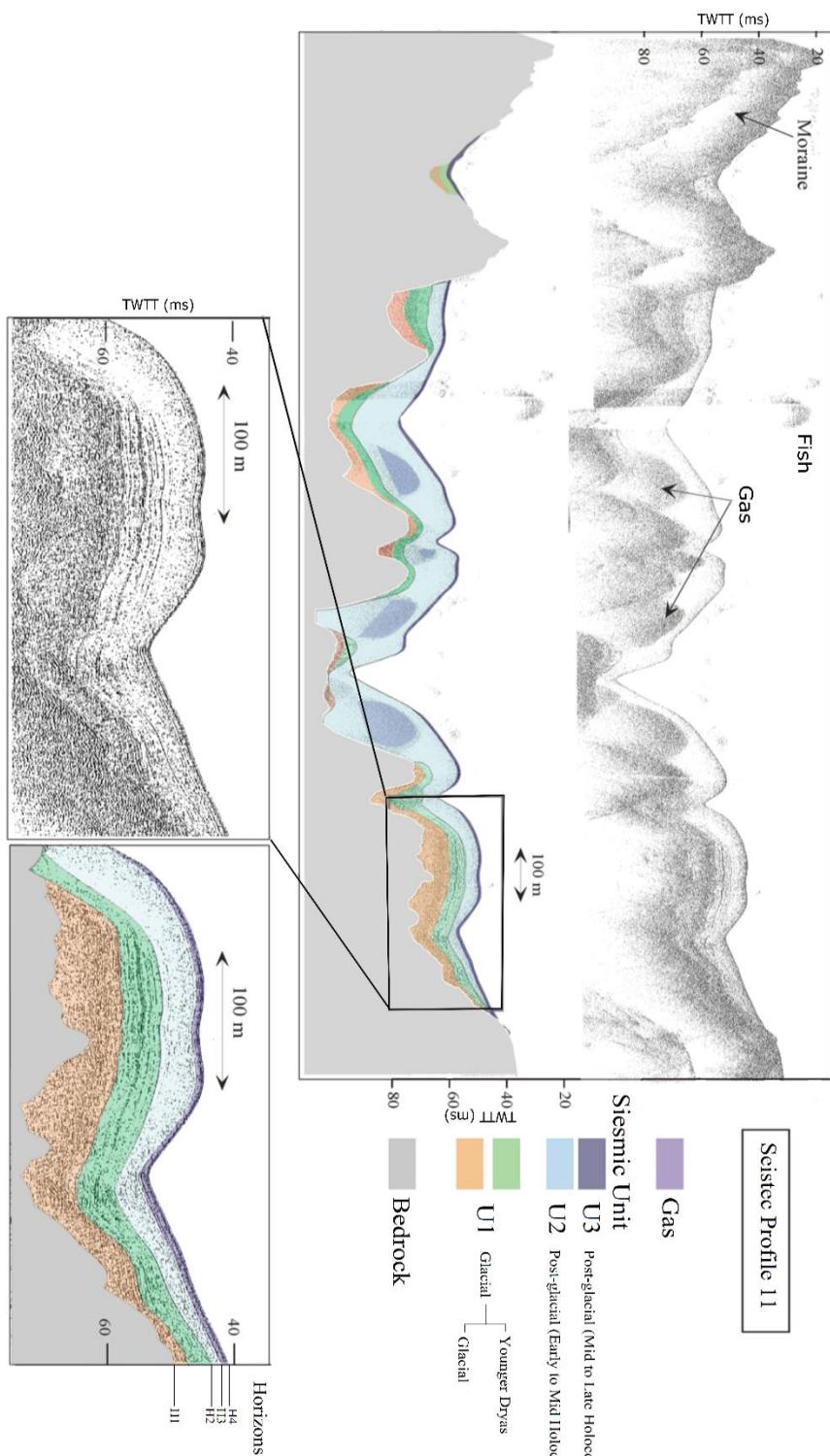
16

17

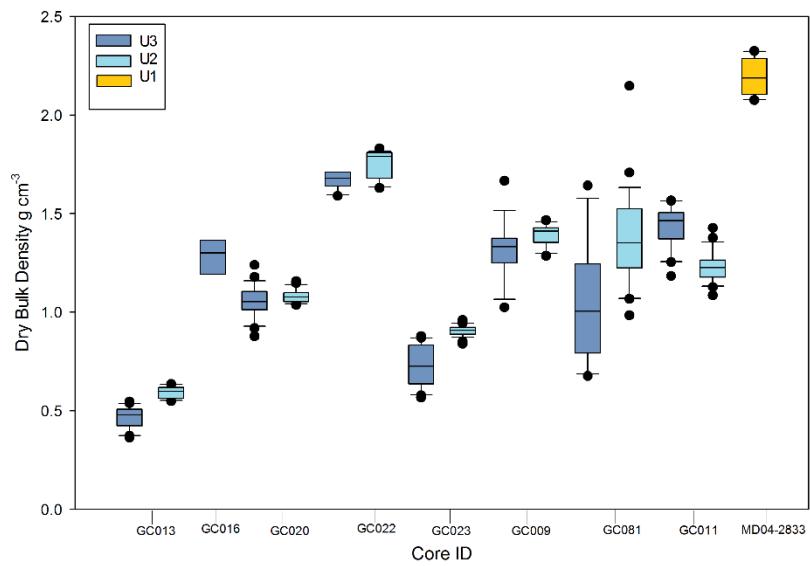

18

19

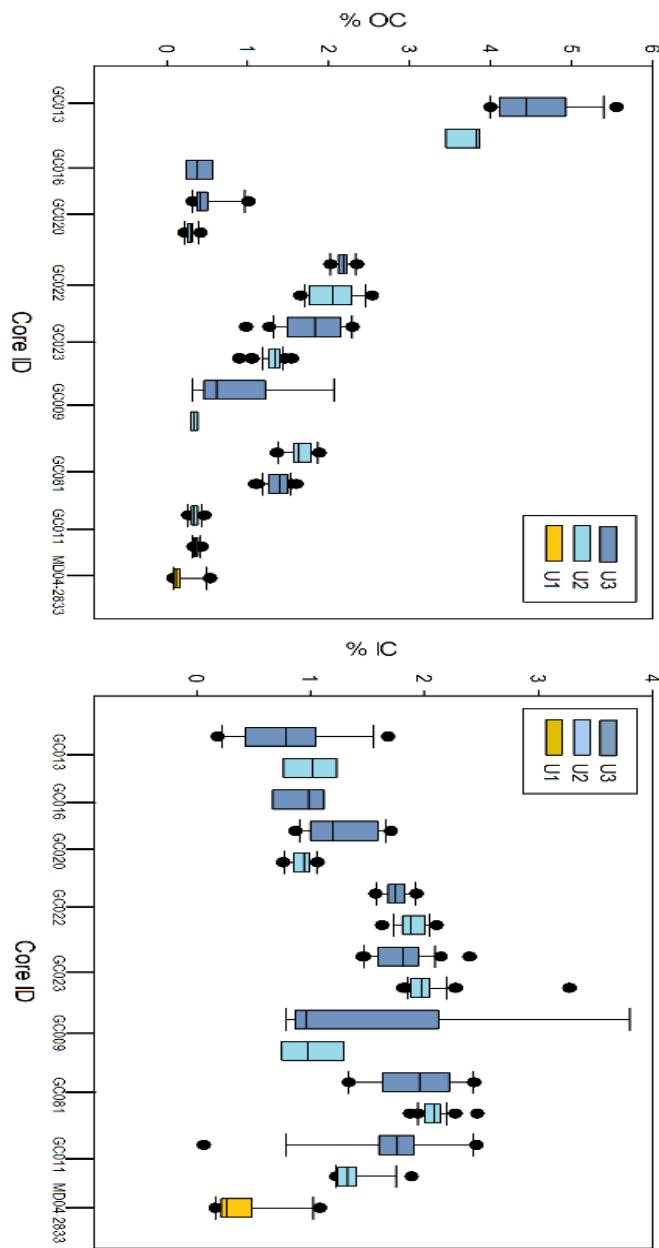
20


21

1

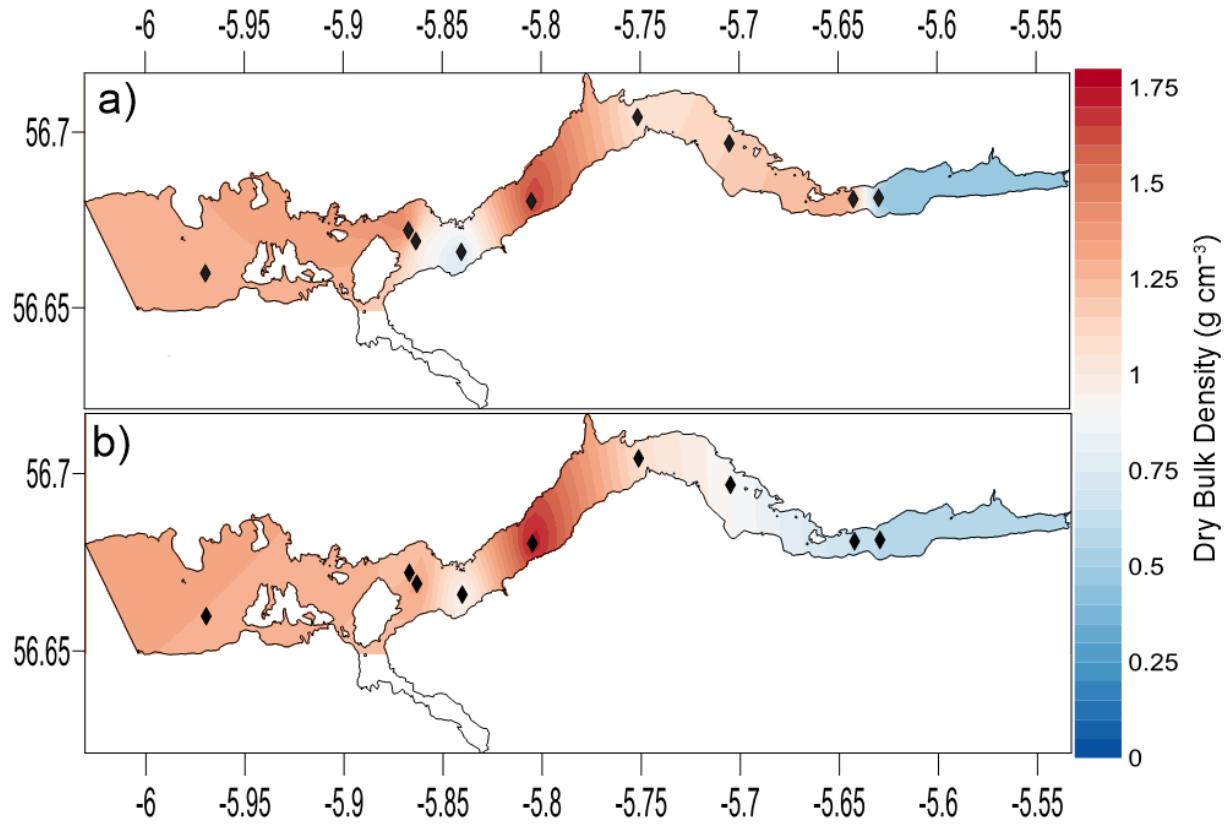

2

3 **Figure. 2.** Map of the 34 Seismic transects undertaken in Loch Sunart with Siestec Profile 11
4 highlighted.



1

Figure. 3. SIESTEC Profile 11: A characteristic seismic profile displaying the four seismic horizons (H1, H2, H3 and H4) and the three seismic units (U1, U2 and U3) adapted from Baltzer et al., 2010.


1
 2 **Figure. 4.** Dry bulk density values from each sediment cores corresponding to seismic units
 3 1, 2 and 3.
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

1

2 **Figure 5.** %OC and %IC values from each sediment cores corresponding to seismic units 1,
3 2 and 3.

1

2

3 **Figure. 6.** Contour maps showing the output of the spatial distribution model for the mean
 4 dry bulk density of **(a)** U3. **(b)** U2. Sampling locations indicated with black diamonds.

5

6

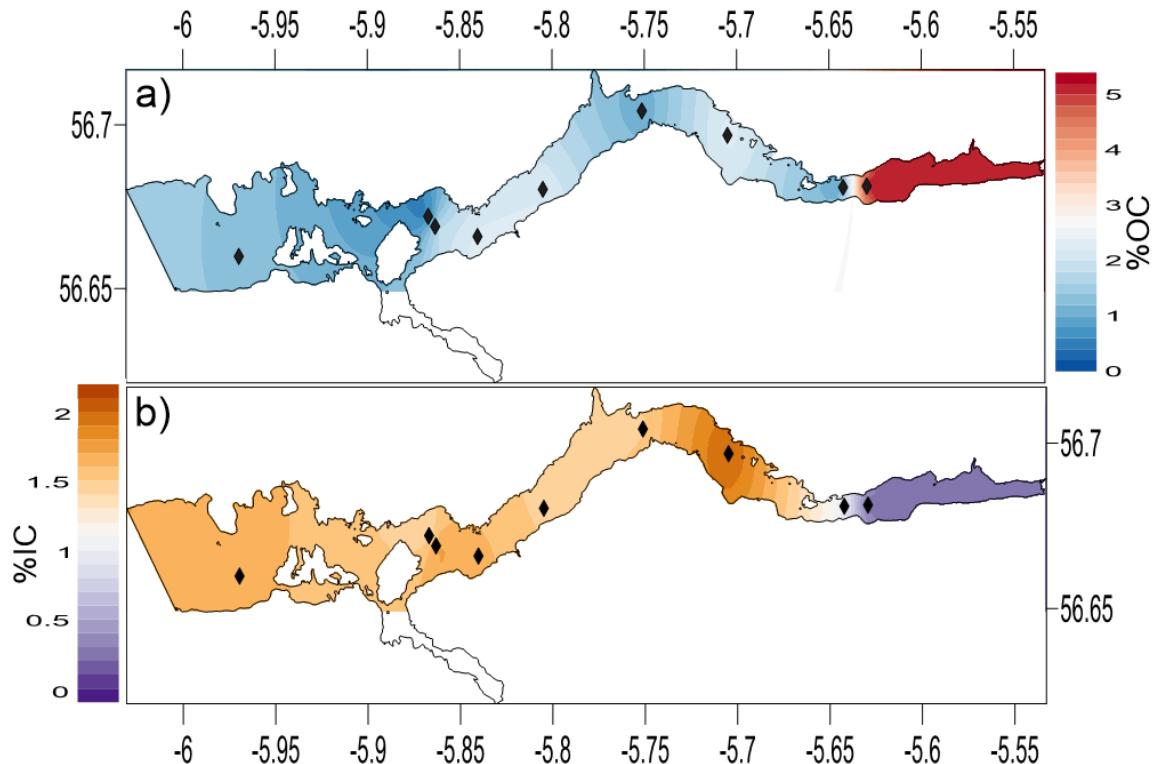
7

8

9

10

11


12

13

14

15

1

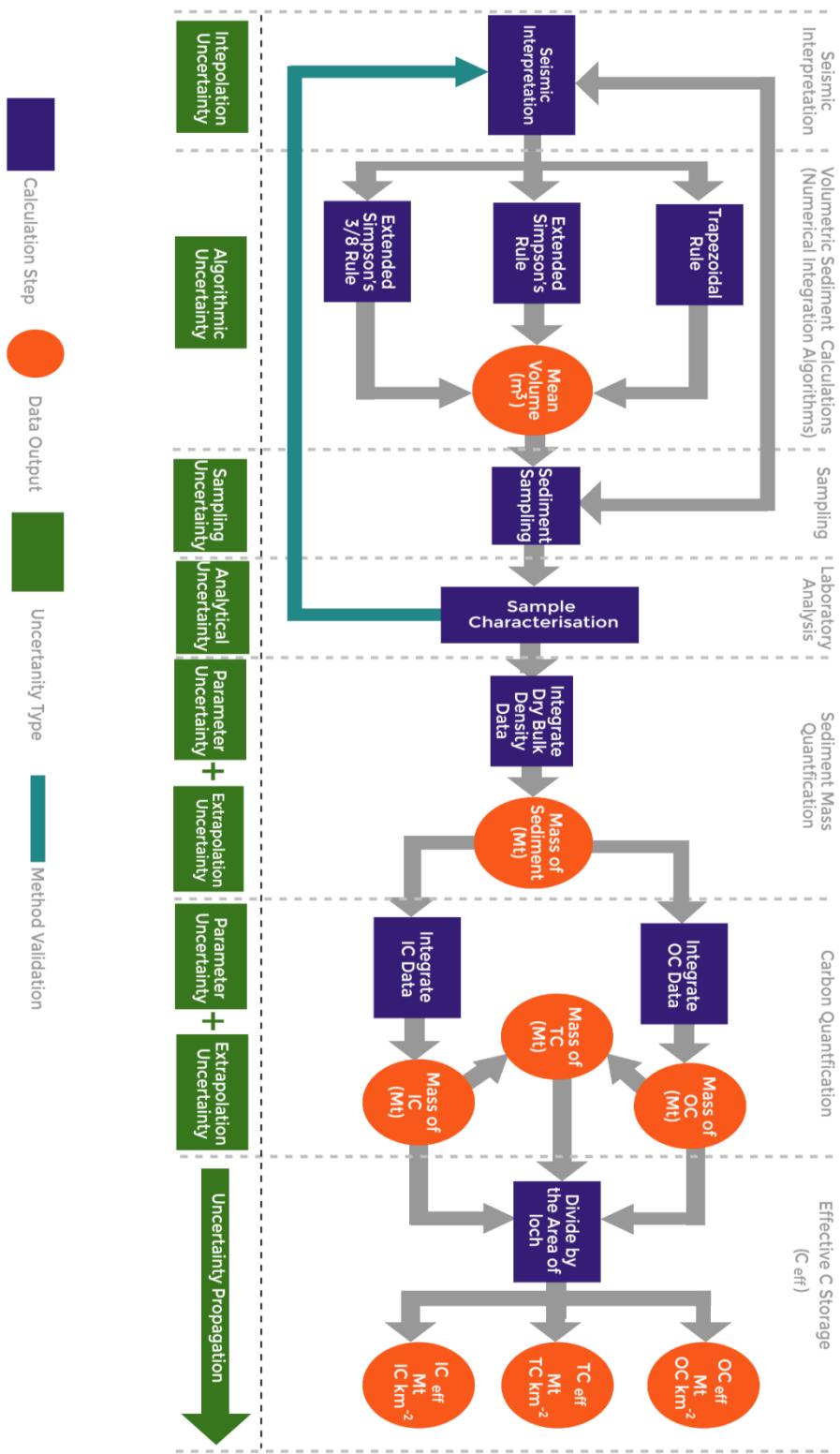
2
3 **Figure. 7.** Output of U3 spatial distribution model for **(a)** Organic carbon. **(b)** Inorganic
4 carbon. Sampling locations indicated with black diamonds.

5

6

7

8


9

10

11

12

13

1

2 **Figure. 8.** Flow diagram detailing the steps towards calculating the sedimentary C stocks
3 within a fjord with the known uncertainties specified.