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according to the comments from the reviewers. We greatly appreciate the two 

anonymous reviewers for their helpful comments that led to improvement of this 

paper.  
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Response to Reviewer #1:  

The manuscript provides a comprehensive analysis of the sources of uncertainty in the 

national inventory of methane (CH4) emissions from rice agriculture in China. Three 

approaches were used to estimate the inventory and the associated uncertainties (i.e. 

direct field measurements, two empirical regression models, and the process-based 

model, CH4MOD). Additionally, the sensitivity of the levels of uncertainty using 

each approach to various scenarios of data scarcity was assessed. The more complex, 

process-based model had the lowest total error compared to the two empirical models. 

All approaches had higher error when average values were used for input data 

compared to case-specific values, highlighting varying degrees of model instability to 

insufficiency of supporting data. Interestingly, even when no case-specific input data 

were used in the processed-based model CH4MOD, it still had lower total error than 

the least complex empirical model when all case-specific input data were used (i.e. 

organic matter input modified by water regime). This in-depth comparison of 

approaches, their associated errors, and the sensitivity of the errors to input data 

availability is a significant contribution to the scientific community. It examines very 

relevant issues and challenges that modelers are faced with when scaling up 

field-validated models to larger spatial scales. The manuscript nicely quantifies and 

discusses the trade-offs associated with using the different approaches. It also outlines 

a method for assessing various sources of uncertainty and distinguishing model 

structural uncertainty from the uncertainty in input data. 

 

Re: We greatly appreciate the reviewer’s comments on the scientific significance of 

the study. 

 

-There is no mention of total estimated national CH4 emissions using each approach 

in the abstract. I actually I think the estimation of national CH4 emissions using the 

empirical models is missing from the whole paper. It seems like this is a major 

comparison to include in the paper and highlight in the abstract. Instead, the average 

CH4 emissions and 95% confidence intervals of the mean are reported. I think a 

comparison of the national CH4 emissions and their respective 95% confidence 

intervals for each approach and data-availability scenario is a very important 

application of this analysis and should be in the abstract. Similarly, I think it is 

important to highlight which case specific data (e.g. organic matter inputs, water 

regime, or soil properties) mattered the most in terms of its effect on uncertainty when 

it was omitted. 

Re: Many thanks to the suggestion that “a comparison of the national CH4 emissions 

and their respective 95% confidence intervals for each approach and data-availability 

scenario is a very important application of this analysis and should be in the abstract”. 

In the revision, we have made the comparison of the national CH4 emissions and their 

respective 95% confidence intervals for each approach and data availability scenarios. 

The results of the comparison were showed in Table 3 and the description of the 



results was also added in the main text (P13 lines 3-12 in the ‘clean revised 

manuscript’).  

In Table 3, the estimated national CH4 emissions ranged from 6.43 (3.79‒9.77) Tg to 

13.59 (1.45‒38.98) Tg for the M-S0 scenario R1-S0 scenario, respectively. The 95% 

CIs of the national estimation differed more greatly among the approaches than those 

among the data availability scenarios of each approach. As an indicator of the 

trade-off between the complexity of the approach and data availability, the σd/σb+v 

ratio in Table 3 was 0.87 for M-S0, closer to 1 than those for the other approaches and 

scenarios, which also yielded the narrowest 95% CI in Table 3. 

The factors affecting methane emission from rice paddies (e.g. organic matter inputs, 

water regime, or soil properties) had been incorporated into CH4MOD as input 

variables. The importance of those factors on uncertainty had been discussed in a 

previous study (Zhang et al., 2014). Stating briefly, the factor of high sensitivity will 

result in larger uncertainty when omitted, from water regime down to soil properties 

and organic matter inputs. 

As suggested by the reviewer, we also add statement of the total estimated national 

CH4 emissions in the revised abstract (P1 lines 28-29). 

 

-Overall the paper is lacking in citations of current research articles. Most articles 

cited are >10 years old. 

Re: The topic of the present study, uncertainties in the modelling approaches closely 

related to methane emissions from rice paddies and the relevant, had been dedicatedly 

discussed in few previous studies (Ogle, et al., 2010; van Bodegom et al, 2002a). In 

the present study, we compared performances of CH4MOD and two empirical 

methods that had been developed and utilized in early days (Neue et al., 1990; Khalil 

et al., 1991, 1993; Bachelet et al., 1995; Kern et al., 1995, 1997), and had to reach out 

to studies 10-20 years ago. We, however, didn’t omit relevant studies in recent years, 

e.g., the study of mitigating methane emission from rice cultivation by gene 

transcription (Su et al., Nature, 2015), the study of methanogenic community structure 

involving methane production (Singh et al., SBB, 2012), and national/global 

estimation of methane emissions from rice paddies and wetlands (Chen et al., GCB, 

2013; Ren et al., Tellus B, 2011; Zhang et al., GCB, 2011). In the revision, we 

referenced major results of the recent studies concerning methane emission from rice 

paddies (Ito et al., 2012; Tian et al., 2016; Weller et al., 2016; Zhang et al., 2016; 

Dijkstra et al., 2012). 

 

Missing description of model calibration of the two empirical models and 

CH4MOD.Thus, it’s unclear whether data used for model validation (i.e. comparison 

to measurement-based estimations of fluxes) and uncertainty analyses are independent 

from data used to calibrate the internal model parameters. 

Re: The approaches in the study had been used in previous studies (Bachelet et al., 

1995; Kern et al., 1995, 1997; Zhang et al., 2011) to estimated methane emissions 



from rice paddies on regional, national and global scales. When analyzing the 

performances of the approaches in the present study, we validated them with data 

excluding those had been used for calibration to maintain the independence between 

the validation and calibration. We explicitly addressed the situation in the revised MS 

(P5 Lines 23-24). 

 

It’s unclear whether the direct measurements used in the analyses are cumulative CH4 

emissions or daily CH4 fluxes from the same experimental plots. If it’s the latter, then 

the errors are not independent, and this issue should be explicitly addressed in the 

paper. The issue of non-independence of errors was discussed, but it was unclear 

whether this was due to measurements taken in close proximity versus repeatedly 

from the same location. 

Re: All the measurements of CH4 emission in the present study are cumulative CH4 

emissions over the period from rice transplanting to harvesting. We explicitly stated it 

in the revised MS (P10 Lines 13-14). We discussed the non-independence of the 

measurements due to spatially close proximity in Section 4.1, when no temporal 

dependence of the daily measurements involved. 

 

Additional comments, questions, and technical corrections: 

P 1, Lines 26-29: Revise to account for the exception in which M-S3 performed better 

than R1-S0 (Table 2). 

Re: We revised the sentence as “Comparisons revealed that the CH4MOD model may 

perform worse than the comparatively simple regression models when no sufficient 

input data for the model were available”. 

 

P 1, Line 33: Do you mean “between-grid variations”, i.e. differences among grid 

cells? 

Re: It is the within-grid variation calculated via the Monte-Carlo method. To make it 

clearer, we revised the sentence as “the within-grid variations, σT,,i, were found to be 

81.2%–95.5% to the grid cell means (Fi).” 

 

P 2, Line 2: I think a slight rewording should be made, i.e. “Reducing the total 

uncertainty in the national methane inventory depends on a better understanding of 

both the complexity of the mechanisms of methane emission and the spatial 

correlations of the factors that influence methane emissions from rice paddies.” 

Re: Thanks for the suggestion. The sentence was revised. 

 

P3, Line 16: Reference needed. 

Re: The appropriate literature references were added. 

 

P 6, Line 12: Provide detail on the parameters and assumptions for substrates 



produced from added organic matter and root exudates. 

Re: We added sentences to briefly describe the substrate production from added 

organic matter and root exudates in the revised Supporting Information (Appendix B). 

The amount of the substrate derived from rice root exudate was simulated by a power 

function of the rice biomass, scaled by the parametric influence of the soil context and 

the rice cultivar. The substrate derived from the added organic matter was calculated 

by a first-order kinetic decomposition equation of the organic matter in soil, also 

scaled by the parametric influence of the soil context and the temperature. Details can 

be found in Huang et al (2004). 

 

P 7, Line 9: Can you provide a reference or derivation of equation 4? 

Re: We detailed the derivation of Equation 4 in the revision. 

 

P 7, Line 10: Given that the focus of the manuscript is on uncertainty in national 

inventories, it seems that the methods section should be framed under national-level 

uncertainties as opposed to regional-level. It’s my understanding that national 

inventories represent an aggregation of multiple regions. Thus, perhaps the section 

title here should state “national scales” as opposed to “regional scales”, and translate 

this distinction into the text that follows. 

Re: Thanks for the suggestion. We revised it throughout the section and other places 

in the MS. 

 

P7, Lines 28-33: Please clarify each step of the process in which SAND data were 

obtained. What method of interpolation was used (e.g. ordinary kriging, inverse 

distance weighted)? What is meant by “missing spatial variation” in your dataset – 

how was this determined and quantified? Were some grid cells missing survey data all 

together? 

Re: Soil properties have extremely high spatial variation and may vary largely from 

one place not far from another. We obtained the data from Institute of Soil Sciences, 

Chinese Academy of Sciences, as indicated in the MS. They collected more than 7000 

soil profile measurements sampled during the period from 1980s to the present and 

linked them to the a soil database of 1:1,000,000 scale (Shi et al., 2004), and produced 

the gridded data of soil properties with geostatistical methods. We compared the 

spatial variation explained in the gridded datasets of soil properties against the 

variations in the profile measurements to analyze the ‘missing spatial variation’ 

(Bodegom et al., 2002b). The ‘missing spatial variation’ is the proportion of spatial 

variation of the soil properties (the sand content of the surface soil layer in the present 

study) that were not accounted for by the gridded datasets. We used the missing 

variation to build the PDF of SAND in Monte Carlo simulation by assuming normal 

distributions of the missing variation. We added the brief description of the soil 

property datasets in Appendix B. 

 



 

 

P 9, Line 1: Please provide a reference or derivation of equation 5. 

Re: Equation 5 is derived from Equation (C9) in the Supporting Information 

(Appendix C) and Equation 4 in the main text, when used in each grid cell. We added 

the description and derivation in revision (P9 Lines 27-30 and P10 Lines 1-10). 

 

P 9, Line 9-10: You refer to the “three components of the estimation uncertainties” in 

equation 5. I assume you are referring to (1) (Fj x Br)2, (2) (Fj x CV)2, (3) _DJˆ2, 

which is analogous to the three terms in equation 6. Can you please provide a 

meaningful definition of what each of these components of uncertainty represent? 

Later in the discussion you explain that (Fj x Br)2 +(Fj x CV)2 represents model 

fallacy, while _DJˆ2 represents uncertainty due to input data. I think including this 

type of description in the methods section would be helpful to read leading into the 

results section. 

Re: Thank for your suggestion. We added explanation of the terms in the revised MS 

in the method section. In Equation 5, 
2

,id  signifies the uncertainty caused by the 

error and availability of data, (Fi×rb)
2
 represents the modelling bias, and (Fi×rv)

2
 

represents the rest parts of the model fallacy error apart from (Fi×rb)
2
. We provided 

more details of the derivation and explanation of Equation 5 in the Supporting 

Information (Appendix C) in more general terms than the main text. The three 

components in Equation 5 do correspond to those in Equation 6 and the derivation 

from Equation 5 to Equation 6 was also provided in the Supporting Information 

(Section D).  

 

P 9, Lines 30-31: Explicitly state the water regimes. 

Re: Revised. 

 

P 10, Line 27: What “estimated CH4 flux” are you referring to? Are you referring to 

an example of a single flux? If so, I would start the sentence with: “For example, in 

one case the modeled CH4 flux was . . ., while the measured flux was . . .” 

Re: Thank you. We revised the sentence (P11 Lines 28-30). 

 

P 11, Lines 16-18: Specify which model the simulated fluxes are based on. Please 

clarify this in Fig. 6 and Table 3 as well. 

Re: Thank you for the comments. We added information to specify the model used 

(P12 Lines 19-20) and the caption of Fig. 6. 

 

P 12, Lines 13-14: Didn’t the authors also apply the two regression models to the 10 x 

10 km grids? A comparison to the other two approaches (direct measurements and 

process-based model) should be discussed here. 



Re: The two regression models were not used to the 10 x 10 km grid in the BGD 

version of the MS. As suggested by the reviewer, we applied all the three models and 

data availability scenarios in the revision and list the results in the revised Table 3, 

focusing on the national CH4 emission and the relevant uncertainties. While there are 

no measurements on grids, comparison of the estimation by modelling can only be 

carried among the models (Table 3 and P13, Lines 3-12) instead of against 

measurements. 

 

P 12, Lines 26-29. Nice explanation! 

Re: Thank you. 

 

P 14, Lines 19-33. See comment above for P 7, Line 10. Reframe conclusions to 

include national estimates and uncertainties at the broadest level of discussion. 

Re: We revised the conclusion and discussion section and added information of the 

national estimates in both the abstract and the conclusion. 

 



Response to Reviewer #2:  

I agree with referee #1 that the paper ’Uncertainties in the national inventory of 

methane emissions from rice cultivation: field measurements and modeling 

approaches’ by Zhang et al. is an important and nice study regarding general 

uncertainties evolving during regional/national GHG emission inventories. I also 

agree with referee #1 that national estimates of CH4 emissions should be more 

emphasized. My main criticism relates to the presentation of the study. Material and 

Methods, Results and Discussion sections all need revisions in order to improve the 

reader’s access to the main points of this study (see specific comments). 

Re: We thank the reviewer for the comments and made revision to the MS to show 

the national estimations of CH4 emission, and also the writing of the MS emphasizing 

the formulation and nomenclatures.  

 

Specific comments: 

P1 L25: Mention that regression models are taken from literature. 

Re: Revised (P1 Line18 in the ‘clean revised manuscript’). 

 

P1 L27-28: Use clear measures and give respective values instead of using the vague 

term ’model performance’ only. 

Re: The ‘model performance’ refers to how the model representing the variation in 

the observations, evaluated by the difference between the observations and the 

corresponding model outputs. Conceptually, the model performance here covers the 

‘parameter uncertainty’ and ‘model inadequacy’ in Kennedy and O’Hagan (2001) and 

errors in observations, because we can’t distinguish them with model validation, 

which was used to evaluate the ‘model performance’ in the present study. The 

measures to quantify the model performance here are two statistical parameters of the 

modelling residuals (difference between the observations and modelling outputs): bias 

(means of the residuals) and variance (statistical variance of the residuals) as showed 

in Equation 1 and Equation 2. We revised the equation and the main text to make the 

meaning of the terms clearer. 

 

P1 L30: Absolute values of simulated methane fluxes are meaningless here since 

context (e.g., different irrigation, straw management, ...) is not clear yet. 

Re: The modelling result here is the result of CH4MOD with available information of 

irrigation, straw management and soil properties of paddies in rice cultivation of 

China. We revised the sentence as ‘As simulated by CH4MOD with data of irrigation, 

organic matter incorporation and soil properties of rice paddies, the modelling 

methane fluxes varied from 17.2 kg CH4 ha
–1 

to 708.3 kg CH4 ha
–1

’ 

 

P4 L19-21: Statement is not very intuitive. Why should ’non-key’ factors lead to 

significant errors? Factors leading to significant errors are implicitly named key. 



Re: Here we intended to say that they were not ‘non-key’ at all. To avoid 

misunderstanding, we revised the sentence by replacing ‘non-key’ with ‘other’. 

P5 L21-22: Imprecise formulation, inaccuracies of models are manifold and should be 

defined more clearly based on common nomenclatures in literature, see for example 

nomenclature and definitions by (Kennedy and O’Hagan, 2001). Nomenclatures and 

definitions should be revised and standardized in many parts of the paper. Kennedy, 

M.C., O’Hagan, A., 2001. Bayesian calibration of computer models. J. R. Stat. Soc. 

Ser. B Stat. Methodol. 63, 425–464. doi:10.1111/1467-9868.00294 

Re: We thank the reviewer for the comments and recommending the literature. Here, 

the model inaccuracy refers to the combination of ‘model inadequacy’ and ‘parameter 

uncertainty’ in Kennedy and O’Hagan (2001). In other places of the MS, ‘model 

fallacy’ means the same. We revised the MS to use the term ‘model fallacy’ 

throughout the MS and explain explicitly the mean of it. We also rewrite the 

equations of the MS. 

 

P5: L34-36: Why were these two regression models chosen? It would be very 

interesting to see how IPCC emission factors, which also account for, e.g., different 

amounts of straw and different irrigation schemes would behave. 

Re: One of the objectives of the study was to compare the performance of models 

with different complexity with different levels of data availability. We chose the two 

regression models because: 1) they had been used to estimate regional/national/global 

methane missions in many previous studies, and 2) they differed from each other and 

from CH4MOD explicitly in levels of complexity. There are many other models that 

developed and used widely in modeling methane emissions from rice paddies and 

wetlands etc. But we can’t tell which one is more complicated in structure that the 

other. We briefly explained it in the revise MS (P6 Lines 13-15). 

 

P6-7 Formulas 1-4: Unclear why these measures have been used. Give proper 

descriptions, meanings and references to ’bias’ and ’total error’ and compare both to 

each other. 

Re: ‘bias’ is the statistical mean of the modelling residuals. We admit that ‘total error’ 

is not a proper term. In the MS, it means the ‘mean of squared errors’ in model 

validation. In the revised MS, we used the term ‘mean of squared errors’ in the main 

text. 

 

P7 L12: ’ errors in the performance of the method’: unclear formulation, use 

consistent nomenclature for different error/uncertainty sources 

Re: revised as ‘model fallacy’. Because in the MS, our emphasis was on the 

quantification of the uncertainty in the national inventory by modelling approaches, 

the rationale of the uncertainty was mainly provided in the Supporting Information 

(Appendix C and D). 

 



P7 L 15: Give more information regarding your Monte Carlo simulation and PDFs 

since this is an important determinant of posterior uncertainty. 

Re: To measure the uncertainties in model outputs due to insufficient data quality and 

availability, we applied Monte Carlo simulations to the CH4MOD model. Statistical 

characteristics were derived from the available datasets to develop probability 

distribution functions (PDFs) for each model input variable. The PDF of field 

irrigation were defined by the occurrence percentage of each irrigation pattern (Table 

B2). Table B1 shows the statistical parameters of the PDF (normal distribution) of 

organic matter incorporation in each province. The PDF of the soil sand percentage 

was also built as normal distribution with parametric information from the literature 

(Shi et al., 2004). 

We performed Monte Carlo simulation in the way of randomly drawing values of the 

model input variables from their PDFs and then run the model (e.g. CH4MOD). This 

process iterated 1000 times and at the last step, the mean and 95% CI of the calculated 

methane fluxes were derived from the iterations (P8 Lines 3-6). 

 

P8 L1 On what is this assumption (amount of stubble) based? 

P8 L1-11: What is the difference between stubble and incorporated straw? 

Re: Stubble is the part of rice stem that left after rice harvesting. Traditionally, both 

the rice grain and rice straw were harvested and stubble was left in field. The 

harvested straw may be taken away or left in field, but stubble was always left. The 

amount of stubble accounts for about 10% of the aboveground biomass of rice 

according to previously published literatures (Huang et al., 2004; Zhang et al., 2011). 

We noted the literature in the revised MS (P8 Line24). 

 

P8 L15-16: Be more precise here and mention considered irrigation schemes and how 

the model handles them. 

Re: The irrigation in rice cultivation in China was summarized into five patterns: 1) 

flooding-drainage-flooding-intermittent irrigation, 2) flooding-drainage-intermittent 

irrigation, 3) flooding-intermittent irrigation, 4) continuous flooding and 5) 

continuously intermittent irrigation (Gao and Li, 1992; Huang et al., 2004). Appendix 

B in the Supporting Information provides necessary information of the irrigation in 

China. Table B2 list the percentage of each water pattern in different regions of China. 

More information of how CH4MOD handles the irrigation may refer to the literature 

of the model development (Huang et al., 2004). We also add brief description of the 

irrigation in the revised MS (P8 Lines 32-34 and P9 Line 1). 

 

P8 L28: Probably Appendix B is meant. 

Re: Revised. 

 

P8 L33: In section 2.4, the description of used formulas should be improved since the 

combination of model and model input uncertainty is a central point of this study. The 



derivations of formulas in the Appendix are unclear. Give consistent names and 

meanings to each symbol that is used. Parts in the Discussion sections refer to the 

meaning of formulas and measures and should be moved here. 

Re: We revised the relevant part of the MS and the Appendix, emphasizing the 

consistence of the names and expressions. 

 

P9 L27: Do you mean ’harvested-area-weighted’ or ’cultivated-area-weighted’? Since 

cropping intensity (number of crops per year) varies, the weighted mean should be 

derived based on harvested area. In addition to area weighted means you should also 

consider seasonal means. A given amount of data may refer to different seasons, e.g., 

winter, spring, summer and autumn with strongly varying potentials of CH4 

emissions. Most likely the seasonality distribution of observations does not 

correspond to the actual seasonality distribution of rice cultivation in China. 

Re: Yes. The ‘area-weighted’ in the MS means ‘harvested-area-weighted’ and we 

revised the expression.  

In China, the rice cultivation is different from north to south: single rice cultivation in 

north-eastern China, rice-upland crop rotation in eastern China and double rice 

cultivation in southern China. The ‘harvested-area-weighted’ analysis in the present 

study distinguished the harvested area of different water irrigation, because irrigation 

is the most important factor for methane emission. Seasonality also affects the 

methane emission but not as important as irrigation, according to both observational 

and modelling studies (Yan et al., 2005; Zhang et al., 2011). We agree with the 

reviewer that mismatch between the seasonality of the observations and the actual rice 

cultivation in China may bias the national estimation of CH4 emission via the 

statistical summation of the observations, and contributes to the uncertainty of the 

estimation. 

 

P10 L18-21: Be more precise how measurements are dependent from each other. The 

potential dependency of measurements is not discussed in the Discussion section. 

Re: The dependence of measurements here means the possible spatial correlation 

among them because of the common environmental conditions they may share. It is 

not the meaning that they were dependently obtained by sampling. The spatial 

aggregation of the measurements obtained at different places to produce national 

estimations may introduce biases if the spatial correlation among the measurements 

were not handled properly. We didn’t make in-depth discussion about the spatial 

correlation because it is beyond the topic of the present study. In the revision, we 

revised the sentence to clear that it is about the spatial correlation. We also provide 

literature reference (Legendre, 1993; Dormann et al., 2007) for those interested in 

spatial correlation. 

 

P10 L12-16: Standard Error (SE) and deviation are very common measures and do 

not need explanations/references. To my understanding, the presented SE refers to the 



variability of different observed mean fluxes from different field sites. How are 

measurement errors reflected? What do you mean with representative error? 

Re: Yes, we agree with you concerning the standard error. The measurement errors 

were not discussed separately in the present study. The reason of doing so was 

explained in Appendix C. The representative error in the present and other literatures 

(e.g., Van Bodegom et al., 2002a; Verburg et al., 2006) stands for the 

representativeness of the measurement obtained at a site to the area that enclose the 

site.  

 

P10 L25: Present average values of overestimations for both models. 

Re: Revised. 

 

P10 L35: Why is ’total error’ and not ’bias’ interpreted as model performance? In 

order to underline this statement, more measures should be used, e.g., root mean 

squared error, R2, model efficiency. 

Re: ‘bias’ is the average of the modelling residuals, accounting part of the errors. We 

use ‘mean of the squared errors’ to interpret model performance. ‘total error’ is not a 

proper expression and we replace it with ‘mean of the squared errors’ in the revision. 

There are other indexes, e.g., R
2
 and RMSE, we use bias and ‘mean of the square 

errors’ in the MS owing to they are directly comparable to the errors from data 

availability. 

 

P11 L22: I miss the discussion of these values. Are such uncertainties small or large 

compared to other studies? 

Re: The within-grid estimation error (σT,i, calculated with Equation 5) is the error in 

each grid cell due to both the model fallacy and data scarcity when making estimation 

of a grid cell (10 × 10km). They are not shown in details because we emphasized the 

uncertainty in the national inventory, which was the spatial aggregation of the 

uncertainty in each grid cells. We didn’t compare the result of the ‘within-grid 

estimation error’ in the present study with other studies because no study had make 

estimation of the uncertainty in the way of the present study. 

 

P11 L23-25: Discussion is missing. 

Re: In the revision, we discussed the difference of the national methane emissions and 

the uncertainties estimated with different approaches and the data availability 

scenarios, as showed in the revised Table 3. 

 

P11 L30 - P12 L14: This is rather introduction and representing of results than 

discussion. 

Re: Thanks for this comment. We revised the MS by moving it to the introduction. 

 



P12 L10: Temporal variations are not presented. 

Re: Here in the sentence, we noted that there are temporal variations, annual, seasonal 

and even diurnal, in the methane emissions. But in the present study, we discussed the 

spatial variation and the estimation uncertainty in the national inventory of a specific 

year. Temporal variations of the methane emission were not discussed. 

 

P12 L15-17: Unclear argumentation. 

Re: Thank you for pointing it out. We revised the sentence as ‘This was partly due to 

the discrepancy in the spatial representativeness of the methane fluxes in field 

observations and model estimations’. 

 

P12 L18-22: Unclear argumentation. Model performance was assessed with 

site-specific input and not with regional averages. The representation of experimental 

measurements for larger regions and associated uncertainties should be independent 

of models. Discussion of comparison between model and measurements at site scale 

could be moved to a separate subsection. 

Re: This is what the ‘representative error’ means, which had been discussed in 

previous studies (Verburg et al., 2006; Van Bodegom et al., 2002a) and described in 

Appendix C of the MS. Model performance was assess with site-specific input. Here 

the ‘site’ means a small scale (e.g., a hectare or smaller) instead of a ‘point’, when the 

experimental sampling was taken at several ‘points’ called ‘duplicates’ at the 

experimental site. When we use the model for regional estimation, we make 

estimations for each grid cell (10 × 10 km in the present study). The mismatch of the 

scale supports the meaning of ‘representative error’. 

 

P12 L31-33: Should be moved to the Results section. Use consistent nomenclature, 

i.e., the term ’model fallacy’ has not been used beforehand. Do not repeat formulas 

from the Material and Methods section in the Discussion. 

Re: Thanks for the suggestion, we revised accordingly (P12 Lines 24-26). 

 

P12 L35 - P13 L14: Much of this information belongs to the Material and Method 

Section and to the Discussion. Key results (e.g., ’56.6% of total uncertainty originates 

from the model’), which are also presented in the abstract should be first presented in 

the Results section and subsequently discussed. Appropriate discussion regarding the 

different uncertainty sources (model versus input) is missing. Argumentation 

regarding ’imprecision random noise and/or unknown factors’ is unclear. 

Re: Section 4.1 discussed the different error sources to the uncertainties in the 

inventory. This paragraph around Fig. 8 was about the aggregation of σv,i
2. Material 

and Method Section described how the errors were quantified and aggregated, as 

showed in Fig. 2. We thank the reviewer for the revision suggestion and revised the 

MS accordingly. 

 



P13 L27 - P14 L16: Remove this section from the Discussion. This is partly Material 

and Methods and seems to be an arbitrary example of model parameter uncertainty 

that has been neglected and thus is not much contributing to this study. 

Re: Section 4.2 discuss how model improvement (e.g., parameterizing rice cultivar 

more specifically) affect the uncertainty analysis. We agree with the reviewer that the 

model parameter uncertainty wan not separately analyzed in present study. But 

because the parameter uncertainty contributed significantly to the model fallacy, it 

should be noted briefly in the discussion. 

 

Fig. 5: Use identical axes for all plots. 

Re: We guess you meant Fig. 5. We had at first used identical axes for Fig. 5-(a), Fig. 

5-(b) and Fig. 5-(c). But it looked a little awkward, we, therefore, changed the y-axe 

of Fig. 5-(a) and kept the other axes identical. 



List of changes made in revision 

1. In response to the comments of Reviewer #1, comparison of the national CH4 

emissions and their respective 95% confidence intervals for each approach and 

data availability scenarios was made. The results of the comparison were showed 
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Abstract. Uncertainties in national inventories originate from a variety of sources, 

including methodological failures, errors and insufficiency of supporting data. In this 

study, we analyzed these sources and their contribution to uncertainty in the national 

inventory of rice paddy methane emissions in China and compared the differences in 15 

the approaches used (e.g., direct measurements, simple regressions and more 

complicated models). For the 495 field measurements we collected from the scientific 

literature, the area-weighted 95% CI ranged from 13.7 to 1115.4 kg CH4 ha
–1

, and the 

histogram distribution of the measurements agreed well with parameterized gamma 

distributions. For the models, we compared the performance of methods of different 20 

complexity (i.e., the CH4MOD model, representing a complicated method, and two 

less complex statistical regression models taken from literatures) to evaluate the 

uncertainties associated with model performance as well as the quality and 

accessibility of the regional datasets. Comparisons revealed that the CH4MOD model 

may performed better worse than the comparatively simple regression models only 25 

when no sufficient input data for the model were available, with the regression 

equations performing better otherwise. As simulated by CH4MOD with data of 

irrigation, organic matter incorporation and soil properties of rice paddies, the 

modelling methane fluxes varied from 17.2 kg CH4 ha
–1 

to 708.3 kg CH4 ha
–1

, covering 

63% of the range of the field measurements. When applying the modeling approach to 30 

the 10 km × 10 km gridded dataset of the model input variables, withinthe within-grid 

variations, made via the Monte Carlo method, were found to represent be 81.2%–95.5% 

of to the modeled grid means fluxes. Moreover, uUp-scaling the grid estimates to the 

national inventory, the total methane emission from the rice paddies was 6.43 (3.79–

9.77) Tg. resulted in the models The fallacy of CH4MOD contributeding 56.6% of the 35 



2 

 

total uncertainty, with the remaining 43.4% being attributed to errors and the scarcity 5 

of the spatial datasets of the model inputs. Our analysis reveals the dilemma between 

model performance and data availability when using a modeling approach: a model 

with better performance may help in reducing uncertainty caused by model fallacy but 

increases the uncertainty caused by data scarcity, as greater levels of input are needed 

to improve performance. Reducing the total uncertainty in the national methane 10 

inventory depends on a better understanding of both the complexity of the mechanisms 

of methane emission and the spatial correlations of the factors that influence methane 

emissions from rice paddiesReducing the total uncertainty in the national methane 

inventory depends both on a better understanding of the complexity of the mechanisms 

of methane emission and the spatial correlations of the factors that influence methane 15 

emissions from rice paddies. 

Keywords: Uncertainty, source and contribution, spatial variation, national inventory, 

methane emission 
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1 Introduction 5 

Rice cultivation is a major source of anthropogenic methane and a prime target of 

greenhouse gas mitigation efforts (Tian et al., 2016; Smith et al., 2008). Globally, the 

methane emission from rice cultivation was about 18.3Tg CH4 yr
–1

 under intermittent 

irrigation and 38.8Tg CH4 yr
–1

 under continuous flooding in the 2000s (Zhang et al., 

2016). Methane fluxes in rice paddies varied extensively with environmental and 10 

agronomic factors. Certain factors, such as rice biomass (Bachelet and Neue, 1993), 

organic matter input (Kern et al., 1995), water management (Khosa et al., 2011;Mishra 

et al., 1997), paddy soil properties (Yao et al., 1999;Gaunt et al., 1997), climate ( Sass 

et al., 1991) and rice varieties (Su et al., 2015; Ding et al., 1999), have previously been 

recognized as having significant impacts on methane emissions. Other factors, such as 15 

atmospheric CO2 and ozone contents (Dijkstra, et al., 2012; Bhatia et al., 

2011;Inubushi et al., 2011), N fertilizer application (Banger et al., 2012;Xie et al., 

2010a) and active soil organic C (Zhan et al., 2011), and even the field management of 

the previous crop that rotating with rice (Weller et al., 2016) are also receiving 

increasing attention. Because so many factors affect the production, oxidation and 20 

emission of methane from rice cultivation, the observed methane fluxes varied 

extensively both spatially and temporally. 

Numerous methods have been applied for estimating national and global inventories of 

rice paddy methane emissions, including meta-analysis of direct measurements, 

process models and empirically based statistical models. However, the range of 25 

regionalnational/global source estimates remains large (Cao et al., 1996;Sass et al., 

1999;Chen et al., 2013). The major factors that are known to regulate rice paddy 

methane emissions include agricultural management practices (Khosa et al., 

2011;Sanchis et al., 2012;Sass et al., 1992;Bodelier and Laanbroek, 2006) and 

environmental conditions, such as climate and soil properties (Conrad et al., 30 

2007;Inubushi et al., 2011;Sass et al., 1991). Currently, techniques for calculating 

methane emissions differ substantially and are far from perfectusually in the way of 

scenario simulations (Ito et al., 2012; Van Bodegom et al., 2002a, b; Verburg et al., 

2006), mainly because of issues involvingwithout integrated consideration of  

methodological fallacy and data insufficiency. 35 

By extrapolating field measurements obtained from experiments, methane emissions 

from the 30 million hectares or so of land under rice cultivation in China were 
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estimated to range from 21.6 Tg CH4 yr
–1

 to 30 Tg CH4 yr
–1

 (Matthews et al., 5 

1991;Taylor et al., 1991), much larger than the result of a recent study (Zhang et al., 

2016). The extrapolation of methane emission rates from site measurements to larger 

regions is unlikely to yield reliable results because of the tremendous spatial 

heterogeneity in environmental conditions and agronomic activities (Ogle et al., 2010). 

Other studies have described the relationships between methane emissions and rice 10 

NPP (net primary productivity) (Bachelet and Neue, 1993) and organic matter inputs 

(Bachelet et al., 1995). Ambient temperature and the use of nitrogen (N) fertilizer have 

also been identified as determinants of methane emissions (Kern et al., 1995;Bachelet 

et al., 1995). Until the significant reduction in methane emissions caused by mid-

season drainage was confirmed (Sass and Fisher, 1997;Yagi et al., 1997;Li et al., 15 

2002;Yan et al., 2005), all previous regional and national estimates (obtained using 

extrapolation or regression equations) were derived from continuously flooded rice 

fields. More recently, factors such as the rice cultivar involved (Watanabe et al., 

1995;Butterbach-Bahl et al., 1997;Ding et al., 1999;Inubushi et al., 2011), soil 

properties (Sass et al., 1994;Yao et al., 1999) and atmospheric CO2 (Dijkstra et al, 20 

2012; Xie et al., 2010b) and ozone concentrations (Bhatia et al., 2011) concentrations 

have also been incorporated into models designed to estimate methane emissions from 

rice paddies. Complex interactions among these factors have spurred model 

development (Cao et al., 1995;Li, 2000;Matthews et al., 2001;Huang et al., 1998;Van 

Bodegom et al., 2001;Huang et al., 2004). To delineate variations in methane 25 

emissions and to reduce uncertainties, the impacts of these factors on the production, 

oxidation and emission of methane were mathematically incorporated into the models. 

Models with a greater number ofmore factors involved are able to reduce uncertainties 

in estimating methane emissions, but the estimates generated by these models still 

differ significantly across multiple spatial and temporal scales (Butenhoff et al., 30 

2009;Ren et al., 2011;Chen et al., 2013). 

Reduction of the uncertainty in estimated methane emissions requires the development 

of an effective and reliable model that incorporates various paddy environments and 

agronomic activities. However, our understanding of the complex biogeochemical 

processes that occur in paddy soils is poor. When estimating methane emissions from 35 

rice agriculture, only factors that are thought to be key determinants of methane 

emissions have been incorporated into the models. Excluding other“non-key” factors 

introduces errors into the model output (Equations C2 and C3 in the Supporting 
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Information). Improving our knowledge of methane processes in the future will 5 

increase the number of factors that are integrated into models and potentially delineate 

details related to spatial/temporal variations.  

Uncertainties in regional estimates of methane emissions from rice paddies stem not 

only from deficiencies fallacy in the applied models but also from errors and 

inadequate data, which we discussed in a previous study (Zhang et al., 2014; Appendix 10 

C D in the Supporting Information). A model with more factors generally performs 

better than a model with fewer factors but requires a larger amount of data to facilitate 

model performanceapplication. A model with good performance (less fallacy) can still 

result in large uncertainties when the available input data (e.g., soil properties, rice 

irrigation, types and amount of organic matter) are insufficient (Zhang et al., 2014; Ito 15 

et al., 2012).  

In the present study, we analyzed the uncertainties in experimental measurements of 

methane fluxes in different rice paddies. We also evaluated the performance of 

different methods involving a diversity of input variables and the influence of data 

availability on the performance of these methods. Finally, the uncertainty in the 20 

national emissions inventory as a consequence of variable model performance and 

according to the quality and availability of input data were discussed. 

2 Materials and methods 

2.1 Field measurements of methane emissions from rice paddies in China 

The observational data used in this study (Table 1) consisted of field methane fluxes 25 

measured at 33 sites (Fig. 1). We obtained these measurements from the published 

literature concerning all crop rotations with rice cultivation in China (double rice, 

winter wheat and rice rotation, single rice crop cultivation, and so forth) (Wei, 2012). 

A total of 495 measurements were taken at the 33 sites, after excluding those had been 

use for the model calibration (Neue et al., 1990; Kern et al., 1997; Huang et al, 2004). 30 

The amount of organic matter added to the rice paddies ranged from 0 t C ha
–1 

to 15.3 t 

C ha
–1

 and included animal manure, green manure, crop straw, biogas residuals and 

their various components. The applied water regimes consisted of continuous flooding, 

single mid-season drainage and multi-drainage irrigations.  

Model performance was assessed by comparing the model estimates with the 35 

measurements. To drive the models, data pertaining to rice yields, soil properties and 
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crop phenologies were collected from the relevant literature (Appendix B in the 5 

Supporting Information). 

2.2 Performance of the methods used to estimate methane emissions  

The uncertainties produced by the models derive from inaccuracies in the models 

themselvesmodel fallacy (Kennedy and O’Hagan, 2001, Appendix C in the Supporting 

Information) as well as from the quality and availability of data (Fig. 2). Model 10 

performance was assessed by comparing model outputs with the direct measurements 

(left part in Fig. 2). Errors in the input data of the model can be propagated in the 

obtained estimates (right side of Fig. 2, Appendix D in the Supporting Information). 

Many techniques are available for calculating estimates of rice paddy methane 

emissions, such as extrapolation of measured emission rates (Khalil et al., 1991;Khalil 15 

et al., 1993), statistical regression equations (Bachelet et al., 1995;Kern et al., 

1995;Kern et al., 1997) and the application of models of varying complexity (Cao et al., 

1995;Matthews et al., 2001;Van Bodegom et al., 2001;Huang et al., 1998;Li, 2000). 

Here we chose two regression models (Neue et al., 1990; Kern et al., 1997) and 

CH4MOD (Huang et al., 2004) in that they differed explicitly in levels of structural 20 

complexity. We compared the performance of these methods under different levels of 

data availability (Table 1) using experimental field measurements as a point of 

reference (Fig. 1). In Table 1, R1 represents a simple regression equation in which the 

carbon (C) input is the sole predictor (Neue et al., 1990). Regression equation R2 is 

slightly more complicated in that it uses organic C and fertilizer N application as 25 

inputs (Kern et al., 1997). We assumed two data availability scenarios for R2. In R2－

S0, both the C and N inputs are available; in R2－S1, only the C input is available 

(Table 1). 

The third approach consists of a semi-empirical model, CH4MOD. This model was 

developed to simulate methane emissions from rice paddies under diverse 30 

environmental conditions and various agricultural practices (Huang et al., 1998;Huang 

et al., 2004). The input variables of the model include the climate, soil conditions, 

water management type, organic matter application and crop rotations. The model 

consists of two modules: the derivation of methanogenic substrates from added organic 

matter and rice root exudates and the production and emission of methane. Rice 35 

biomass is a key variable used to calculate the root exudates and the fraction of the 
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methane emitted by rice plants and bubbles. The daily changes in the soil redox 5 

potential (Eh) were calculated according to various water manipulations conducted in 

the rice paddies (Xie et al., 2010b). The influences of other environmental factors, 

such as soil temperature and texture, on the decomposition of organic matter and the 

production of methane were expressed as specific coefficient functions (Huang et al., 

1998). The input variables of the CH4MOD model (Appendix B in the Supporting 10 

Information) include the daily air temperature, soil sand percentage (SAND), organic 

matter amendment (OM), rice grain yield (GY), water management pattern (Wptn) and 

rice cultivar index (VI). 

Four model input scenarios (Table 1) were scheduled to evaluate the performance of 

CH4MOD under different levels of data availability. In M－S0, all of the model 15 

variables were assigned specific values. In M－S1, the application of organic matter 

was assigned the average value for all experiments, thus assuming a situation where no 

detailed information on organic matter application was available. In M－S2, detailed 

information on the water regime and soil properties was assumed to be unavailable. In 

M－S3, detailed information on all three major factors (organic matter application, soil 20 

properties and water regime) was assumed to be unavailable.  

The estimation residuals (Δy, Equation 1), relative bias (rbBR, Equation 2) and 

coefficient of variations (rvCV, Equation 3) were thus evaluated as follows: 
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where y represents the measured methane fluxes; ŷ is the estimate of y; and N n is the 30 

total number of measurements. E(·) indicates the statistical mean., and F = E(y) is the 

mean of the measured methane fluxes (yi). The total error mean of the squared errors 

(MSE) of the estimation is calculated as follows: 
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Where F = E(y) represents the mean of the measured methane fluxes (yk) 5 

2.3 Uncertainties in estimating rice paddy methane emissions on regionalnational 

scales: data error and availability 

In addition to errors in the performance of the methodmodel fallacys, the difficulties in 

estimating regionalnational rice paddy methane emissions also stem from errors in, and 

limited availability of, input data. To measure the uncertainties in model outputs due to 10 

insufficient data quality and availability, we applied Monte Carlo simulations (Penman, 

2000) to the CH4MOD model. Statistical characteristics were derived from the 

available datasets to develop probability distribution functions (PDFs) for each model 

input variable (Table B1, B2 of Appendix B in Supporting Information). We 

performed Monte Carlo simulation in the way of randomly drawing values of the 15 

model input variables from their PDFs and then run the model. This process iterated 

1000 times and at the last step, the mean and 95% CI of the calculated methane fluxes 

were derived from the iterationsAt the last step of the Monte Carlo simulation, the 

mean and the 95% CI of the methane flux were derived from the iterations of the CH4 

MOD simulation (Zhang et al., 2014). 20 

The factors involved in the uncertainty analysis included organic matter application, 

soil properties and water regimes; these variables (OM, SAND, and Wptn) were 

parameterized as input variables in the CH4MOD model (Huang et al., 2006;Zhang et 

al., 2011). The other two model input variables were the rice grain yield and daily 

ambient air temperature. These two variables were not used in the uncertainty analysis 25 

because sufficient relevant data were available, which were characterized by less error 

compared with the other variables (Zhang et al., 2014).  

The SAND data were obtained from a 10 km × 10 km grid dataset interpolated from 

soil survey data (Oberthür et al., 1999;Shi et al., 2004;Liu et al., 2006). It is possible 

that approximately half (Van Bodegom et al., 2002b) of the immense spatial variation 30 

in soil properties can be lost after spatial interpolation (Goovaerts, 2001); as a result, 

the missing spatial variation was interpolated fromattributed to the PDF of the gridded 

SAND data (Appendix B in Supporting Information).  

The organic matter inputs in the rice fields consisted of various types of farm manure 

(green manure and animal feces), crop straw, and dead roots and stubble leftover from 35 

previous harvests. Root and straw biomass were calculated using the root/shoot ratio 

and harvest indices (Huang et al., 2007;Gao et al., 2002;Xie et al., 2010c). Stubble was 
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assumed to represent one-tenth of the straw biomass (Huang et al., 2004). The 5 

proportions of incorporated straw and applied farm manure were derived from data 

obtained from two large-scale investigations, the First National Census of Pollution 

Sources conducted by China’s Ministry of Environmental Protection (CFPC, 2011) 

and censusing conducted by the Institute of Atmospheric Physics, Chinese Academy of 

Sciences. The proportion of straw and the amount of manure incorporated into the crop 10 

fields were summarized by province (Table B1 in the supporting information). Table 

B1 shows the statistical parameters of the PDF of organic matter incorporation in each 

province. 

The irrigation in rice cultivation were grouped into five general irrigation patterns: 1) 

flooding-drainage-flooding-intermittent irrigation, 2) flooding-drainage-intermittent 15 

irrigation, 3) flooding-intermittent irrigation, 4) continuous flooding and 5) 

continuously intermittent irrigation (Gao and Li, 1992; Huang et al., 2004). Data 

pertaining to Wptn were only very rarely available on a regional scale. The limited 

information provided in a few studies (Mao, 1981;Liang, 1983;Xiong et al., 1992;Cai 

et al., 2003;Ma et al., 2005;Ministry of Water Resources and Utilization of China 20 

(MWRUC), 1996) enabled us to produce could only yield rough estimates related to 

irrigation in regions of major rice cultivation. The PDF of field irrigation were defined 

by the occurrence percentage of each irrigation pattern (Table B2).  (Table B2 in the 

supporting information). 

The data pertaining to the rice grain yield and harvesting area as of 2005 were obtained 25 

from China’s Statistical Yearbook (EBCAY, 2006) and the nation’s agricultural 

database maintained by the Chinese Academy of Agricultural Sciences, respectively. 

The spatial distributions of all rice paddies in 2005 and the rice paddy area within each 

1 km × 1 km grid were obtained from the Data Center for Resources and 

Environmental Sciences of the Chinese Academy of Sciences (RESDC, CAS). Daily 30 

mean air temperature data from 678 meteorological stations throughout China for 2005 

were acquired from the National Meteorological Information Center (NMIC) of the 

China Meteorological Administration (CMA) (http://cdc.cma.gov.cn/). The 

temperatures were then spatially interpolated into 10 km × 10 km grids for each day 

according to the method described by Thornton et al. (1997). Details on the datasets 35 

used in this study can be found in Appendix CB. 

To preserve details related to spatial variations, all data input into the model were 

converted into 10 km × 10 km grids. The applied rasterization techniques and details 
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of how the model was run on raster datasets were provided in previously published 5 

papers (Huang et al., 2006). 

 2.4 Combining uncertainty and spatial aggregation 

In each 10 km × 10 km grid, the uncertainties in our estimates originated from errors in 

both the model performance fallacy (Equation 4) and error in the input data. Equation 

5 was used to merge the two components uncertainty sources (equation 4 and those in 10 

the section D of the Supporting Information)where MSE was again split into two parts 

as showed in Equation 4: 
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where σT,j  i represents the uncertainty of the methane flux in grid ji, and Fj Fi and σDd,j i 15 

represent the mean and standard deviation of the Monte Carlo simulation results in 

grid ji, respectively. BR rb and CV rv represent the same entities as in Equations 2 and 3. 

2

,id  signifies the uncertainty caused by the error and availability of data, (Fi×rb)
2
 

represents the modelling bias, and (Fi×rv)
2
 represents the rest parts of the model fallacy 

apart from (Fi×rb)
2
. To produce the uncertainty of the national inventory, the three 20 

components of the estimation uncertainties ((Fi×rb)
2
, (Fi×rv)

2
 and  

2

,id  in Equation 5) 

of the estimation uncertainties in all grids were separately aggregated (Equation D2, 

D3, D4 and  D5 in the sectionAppendix D of the Supporting Information) and summed 

(Equation 6) as follows: 

2222

dvbT            25 

  (6) 

3 Results 

3.1 Methane emissions and the uncertainties derived from field measurements 

Among the 495 methane flux measurements (the accumulative methane emission from 

transplanting to harvesting), 184 (37% of all cases) came from paddies that were 30 

continuously flooded during the entire rice growing period; 50 (10% of all cases) came 

from paddies with single mid-season drainage; and 261 (53% of all cases) came from 

paddies under multi-drainage. The average methane fluxes associated with the three 

water regimes were 531.6 ± 512.6, 251.6 ± 231.1 and 224.1 ± 207.5 kg CH4 ha
–1

, 
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respectively (Fig. 3a). The overall arithmetic average of the 495 measurements 5 

(represented hereafter by mc) was 341.2 ± 383.2 kg CH4 ha
–1

. However, the simple 

arithmetic average might be a biased representation of the “true” mean methane flux of 

rice paddies in China, as far less than 37% of the rice paddies in China are 

continuously flooded. In the literature, 10%, 20% and 70% of the rice area was 

reported to be under continuous flooding, single drainage and multi-drainage water 10 

regimes, respectively (Xiong et al., 1992;Ministry of Water Resources and Utilization 

of China (MWRUC), 1996), and the harvested-area-weighted mean (Appendix A in 

the Supporting Information) of the measured fluxes (represented hereafter by mw) was 

260.4 ± 281.6 kg CH4 ha
–1

 (Fig. 3a). 

The 95% confidence intervals (CIs) of the methane flux measurements were 61.1–15 

2,145.9 kg CH4 ha
–1

, 9.6–809.9 kg CH4 ha
–1

 and 14.0–797.7 kg CH4 ha
–1

, respectively, 

for the three water regimes (continuous flooding, single drainage, and multi-drainage 

in Fig. 3a). The 95% CI of all combined area-weighted measurements (Appendix A in 

the Supporting Information) was 13.7–1,115.4 kg CH4 ha
–1

. The measurements were 

not normally or symmetrically distributed (Fig. 3b). The P-P plots (Fig. 4) showed that 20 

the parameterized gamma distributions matched the sample distributions. The 95% CIs 

calculated with the parameterized gamma functions were 16.8–1,900.8 kg CH4 ha
–1

, 

10.4–863.4 kg CH4 ha
–1

 and 8.9–774.2 kg CH4 ha
–1

, respectively, for the three water 

regimes; these values overlapped the CIs derived directly from the measurements by 

88.2%, 99.9% and 97.0%, respectively. 25 

The national methane emissions from rice agriculture calculated by multiplying the 

rice harvesting area (yearbook data in 2005) by the area-weighted mean flux (260.4 ± 

281.6 kg CH4 ha
–1

) were 7.51 Tg CH4 (Fig. 3a). The uncertainty of the national 

emissions is usually represented by the standard error (SE). When the measurements 

are statistically independent, the standard error (SE) of the summation is n−1 (n is the 30 

sample size of the measurements) times smaller than the standard deviation (± 281.6 

kg CH4 ha
–1

), which consists of the representative and measurement errors of the 

measured fluxes (Van Bodegom et al., 2002a;Verburg et al., 2006). Assuming that the 

measurements were statistically independent, the 95% CI of the national inventory was 

7.20–8.58 Tg CH4 (Equation A3 in the Supporting Information). However, the 35 

independency assumption is questionable because of the spatial correlations between 

the spatially correlated background environmental conditions and agricultural activities 

(Legendre, 1993;Dormann et al., 2007). The equivalent sample size, n, used to 
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calculate SE may be smaller than 495, and the 95% CI of the national inventory is 5 

therefore larger than that with the independency assumption. 

3.2 Model performance under different situations of data availability 

R1 was more likely to overestimate the amount of methane emitted than R2 (Table 2), 

especially when more organic matter was incorporated (Fig. 5a). The estimated 

methane flux calculated by R1 was more than 6,000 kg CH4 ha
–1

, whereas the 10 

corresponding measured methane flux was less than 3,000 kg CH4 ha
–1

 (Fig. 5a). The 

averaged bias of the estimate obtained with R1 was 212.0 kg CH4 ha
–1

 (Table 2) or 

62.1% of the measured mean (mc = 341.2 kg CH4 ha
–1

). The average bias of R2, in 

contrast, was −1.3 kg CH4 ha
–1

; . R1 was more likely to overestimate the amount of 

methane emitted than R2 (Table 2), especially when more organic matter was 15 

incorporated (Fig. 5a). For example, in one case the modeled CH4 flux was more than 

6,000 kg CH4 ha
–1

, whereas the measured flux was less than 3,000 kg CH4 ha
–1

 (Fig. 

5a). Tthe estimates obtained using R2 did not show significant variations and appeared 

to decline when the measured methane fluxes increased (Fig. 5b). The CH4MOD 

model also produced a small averaged bias, representing 7.1% of the measured mean. 20 

The total estimation errorsMSE were was 253.0, 407.8 and 596.0 kg CH4 ha
–1

 for the 

M－S0, R2－S0 and R1－S0 scenarios, respectively (Table 2), which demonstrates 

that model performance improves when more factors are incorporated into the model.  

Although the CH4MOD model produced better simulation results than the simple 

regression equations, its performance fundamentally depends on data availability. 25 

When no case-specific data were available (as in scenario M－S3), BR rb was −32.2%, 

and ERRT MSE was 122.1% of the mean flux; the results obtained under this scenario 

were even worse than the results obtained under the R2－S0 scenario (Table 2). For 

the M－S1 scenario, where the data pertaining to the soil properties and water regime 

were case-specific, the magnitude of BR rb decreased to 9.0% of the mean flux, and the 30 

total errorMSE decreased to 101.2% of the mean flux. The M－S0 scenario produced 

much better results than the other scenarios, as more data were available for the key 

model input variables (Table 2). Even no case-specific input data used in M－S3 had 

smaller rb, rv and MSE than R1－S0. In Table 2, larger rv of R1－S0 than M－S3 

might come from the too simple explanation of the influence from  organic matter 35 

inputs on methane emission that added extra error on the estimation. 
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3.3 Inventory of rice paddy methane emissions and spatial variationsthe 5 

uncertainties with different approaches 

Because of the spatial heterogeneity in the climate, soil properties, organic matter 

incorporation and field irrigation in rice cultivation, the simulated methane fluxes 

simulated by CH4MOD varied spatially between 17.2 kg CH4 ha
–1 

and 708.3 kg CH4 

ha
–1

 from grid to grid (Fig. 6). The national means for the simulated methane fluxes 10 

were 217.9 kg CH4 ha
–1

, 204.6 kg CH4 ha
–1

 and 255.8 kg CH4 ha
–1

 for single, early and 

late rice cultivation, respectively. The within-grid estimation error (σT,i, calculated with 

Equation 5) represented 81.2%–95.5% of the mean fluxes, FjFi, in the grids. In the 

present study, model fallacy, represented by Ub,i+Uv,i, contributed 79.5%–88.9% to the 

uncertainty σT,i
2
, with σd,i

2
 accounting for the remaining 11.1%–20.5%. This implies 15 

that a model with better performance is needed to reduce the uncertainty of σT,i in each 

grid. 

As shown in Fig. 7, the highest levels of emitted methane occurred in southern China, 

with the northeast also representing a major source of methane, despite this region 

being climatically cool. The total amount of methane emitted, as calculated by  20 

 

the M-S0modeling approach, was 6.43 (3.79–9.77) Tg CH4 yr
–1

 (Table 3), which is 

close to the 7.51 Tg CH4 yr
–1

 derived from the experimental field measurements.  

In Table 3, the estimated national CH4 emissions ranged from 6.43 (3.79‒9.77) Tg 

CH4 yr
–1

 to 13.59 (1.45‒38.98) Tg CH4 yr
–1

 for the M‒S0 scenario and R1‒S0 scenario, 25 

respectively. The 95% CIs of the national estimation differed more greatly among the 

approaches than those among the data availability scenarios of each approach. With 

M‒S0, The fallacy of CH4MOD contributed 56.6% of the total uncertainty, with the 

remaining 43.4% being attributed to errors and the scarcity of the spatial datasets of 

the model inputs (Table 4). As an indicator of the trade-off between the complexity of 30 

the approach and data availability, the σd/σb+v ratio in Table 3 was 0.87 for M‒S0, 

closer to 1 than those for the other approaches and scenarios, which also yielded the 

narrowest 95% CI in Table 3. 
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4 Discussion 5 

4.1 Contributions of different error sources to the uncertainties in the inventory 

Methane fluxes in rice paddies varied extensively with environmental and agronomic 

factors. Certain factors, such as rice biomass (Bachelet and Neue, 1993), organic 

matter input (Kern et al., 1995), water management (Khosa et al., 2011;Mishra et al., 

1997), paddy soil properties (Yao et al., 1999;Gaunt et al., 1997), climate (Sass et al., 10 

1991) and rice varieties (Ding et al., 1999), have previously been recognized as having 

significant impacts on methane emissions. Other factors, such as atmospheric CO2 and 

ozone contents (Bhatia et al., 2011;Inubushi et al., 2011), N fertilizer application 

(Banger et al., 2012;Xie et al., 2010a) and active soil organic C (Zhan et al., 2011), are 

also receiving increasing attention. Because so many factors affect the production, 15 

oxidation and emission of methane from rice cultivation, the observed methane fluxes 

varied extensively both spatially and temporally. In the experimental field 

measurements (Fig. 1), the variations in rice paddy methane fluxes ranged from 3.2 kg 

CH4 ha
–1

 to 2,451.7 kg CH4 ha
–1

, averaging 341.2 ± 383.2 kg CH4 ha
–1

. The average 

simulated methane fluxes in the 10 x 10 km grids varied from 17.2 to 708.3 kg CH4 20 

ha
–1

 (Fig. 6). The extremely high methane fluxes obtained from experimental 

measurements were not reproduced by the model estimations. This discrepancy was 

partly due to the discrepancy variations in the spatial representativeness of the methane 

fluxes in field observations and model estimations (Verburg et al., 2006). The 

experimental measurements represented methane fluxes from an area of less than one 25 

hectare, while the modeled fluxes were the averages from 10 x 10 km grids. This 

mismatch in spatial representativeness might also be due to errors in the model input 

data as well as to the impacts of other unknown factors (Singh and Dubey, 2012;Bhatia 

et al., 2011;Zheng et al., 2010;Gauci et al., 2008). Methane emissions could be 

estimated using a limited number of factors and simplified equations to express the 30 

complex relationships between methane emissions and influential factors, but such 

simplification resulted in poor performance of the methods (Table 2). In Equation 5, 

σDd,j i is the uncertainty due to errors in the input data. With an increasing number of 

explanatory factors, BR rb and CV rv might decrease (which means better performance 

of the method), but σDd,i might increase because of the cumulative errors resulting from 35 

the increasing number of factors incorporated in the models. To reduce uncertainties in 

the estimates and improve the performance of the model, the input data need to be 
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available and of good quality. In the present study, model fallacy, represented by the 5 

equation (Fj×BR)
2
+ (Fj×CV)

2
, contributed 79.5%–88.9% to the uncertainty of σT,j

2
, with 

σD,j
2
 accounting for the remaining 11.1%–20.5%. This implies that a model with better 

performance is needed to reduce the uncertainty of σT,j in each grid. 

The aggregated uncertainty of the national inventory depended not only on the 

magnitude of σCVv,j i and σDd,j i in each grid (ji) but also on the spatial correlation 10 

between these variables (Equation C2 in the Supporting Information). The spatial 

correlation of σDd,j, i depends on the availability of input data for the model and on 

spatial aggregation (Table C1 in the Supporting Information). However, the spatial 

correlation of σCVv,ij could not be assessed analytically because it was a result of model 

imprecisionfallacy and, random noiseerrors in measurements and/or unknown factors. 15 

In the case of a strong correlation of σCVv,j i values, the aggregated σCVv
2
 will account 

for a large proportion of σT
2
 (right side in Fig. 8). However, if the spatial correlation is 

confined to a short distance, such as less than four grids (Dormann et al., 2007;Dray et 

al., 2006), the contribution of σCVv
2
 to σT

2
 will be negligible (left side in Fig. 8). At the 

mid-point of DC (Equation C2, 30 grids, equal to 300 kilometers), as shown in Fig. 8, 20 

the model uncertainty (σBRr
2
 + σCVv

2
) accounted for 56.6% of the uncertainty in σT

2
 

(Table 4). 

4.2 Consistency of errors between model validation and model up-scaling 

Up-scaling a site-scale model (e.g., CH4MOD in this study) to a regionalnational scale 

poses enormous challenges when data are scarce. Enhancing the spatial abundance of 25 

the input data minimizes the propagation of data error into the aggregated uncertainties. 

Many environmental and agricultural factors impact methane emissions from rice 

paddies. In the CH4MOD model, the key factors were parameterized as model inputs 

(Huang et al., 2004). However, when assessing the uncertainty of a model, the 

explanatory variables are arbitrarily included (Verburg et al., 2006). Li et al. (2004) 30 

found that soil properties were the “most sensitive factor” and therefore used this 

parameter in the uncertainty analysis. The inclusion of as many of the highly sensitive 

key factors as possible in the uncertainty analysis should generate more accurate and 

reliable results (right part in Fig. 2).  

Experimental field studies have shown that the rice variety has substantial impacts on 35 

methane emissions (Aulakh et al., 2008;Inubushi et al., 2011;Jia et al., 2002). A study 

of field observations (Su et al., 2015) showed that transfer of the barley gene SUSIBA2 
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to rice favors the allocation of photosynthates to the aboveground biomass over 5 

allocation to the roots and, moreover, that less biomass allocation to root exudates 

results in reduced methane emissions. The impact that the rice variety has on methane 

emissions was parameterized as the variety index (VI) in CH4MOD. According to 

Huang et al. (1998), VI ranges from 0.5 to 1.5 and averages 1.0 for most rice varieties. 

To validate the CH4MOD model (left portion of Fig. 2) using the 495 methane 10 

emission measurements included in the present study, VI was assigned a default value 

of 1.0 regardless of the rice variety because, until now, no dedicated attempts have 

been made to quantify the VI of different rice varieties. Therefore, the BR rb and CV rv 

values presented in Table 2 incorporate the uncertainty in model performance that can 

be attributed to different rice varieties (Mf(x) in Equation C2 of the Supporting 15 

Information). To maintain consistency, VI was assigned the same default value (1.0) 

when the model was scaled-up to the national scale (right side of Fig. 2), and no PDF 

was built for the uncertainty calculation conducted with the Monte Carlo simulation. If 

a PDF had been incorporated into the uncertainty calculation when the model was 

scaled-up, the overall uncertainties (Table 4) would have been overestimated. However, 20 

if different VI values were assigned to rice varieties during model validation, the error 

caused by the inaccuracy of VI would also need to be considered during the scaling-up 

of the model to prevent underestimation of the overall uncertainty. 

5 Conclusion 

Due to the remarkable spatial variation in rice paddy methane emissions, the 25 

uncertainties in regionalnational estimates obtained either through field measurements 

or modeling remain considerably large. For field measurements, the reduction in 

uncertainty achieved by increasing the number of observations was shown to be 

inversely related to the spatial correlation between the measurements. To reduce the 

estimation bias, the number of measured emission fluxes should be proportional to the 30 

paddy area where the corresponding agronomic activities and environmental 

conditions occur homogenously. 

Model performance depends not only on the effectiveness of the models themselves 

but also on the availability of the data needed to drive the model. We found that 

without a sufficient quantity of high-quality data, a well-developed model will may 35 

perform even more poorly than simple regression approaches. When modeling 
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methane emissions, uncertainties in the performance of the model remain the major 5 

obstacle to reliably estimating methane emissions. Estimate uncertainty could be 

reduced at the regionalnational scale by increasing the availability of input data and 

decreasing spatial correlations among the residues of the model output. 

Modelling by CH4MOD with all the available data, the national methane emission 

from rice paddies was 6.43 (3.79–9.77) Tg CH4 yr
–1

 in China. Comparing to other 10 

options, balancing between the uncertainties caused by the model fallacy and data 

scarcity produced national estimations of least total uncertainty. 
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Figure Legends 5 

Figure 1 Locations of the experimental sites (red stars). The background map 

represents the spatial distribution of rice paddies in China. The size of the 

red stars is proportional to the number of measured methane fluxes at the 

site. The polygons show zones of different crop rotation systems involving 

rice: I—Double rice rotation; II—Mixed zone of rice/rice rotation and 10 

rice/upland crop rotation; III & IV—Rice/upland crop rotation or 

rice/fallow rotation; V & VI—Rice/fallow rotation; and VII—No rice. 

Figure 2 Flowchart for estimating regional/national methane emissions and the 

uncertainties associated with field measurements and modeling 

Figure 3 Statistical representations of the measured methane fluxes. (a) Statistical 15 

parameters and (b) histogram of the measurements. The solid circles 

represent the sample mean, and the vertical bars are the 95% confidence 

intervals of the samples, from the 2.5% percentile to the 97.5% percentile. 

The dashed line indicates the arithmetic average of all measured fluxes (mc). 

The solid line is the area-weighted mean of the methane fluxes (mw), in 20 

reference to the areal proportion of each water regime in the national total 

rice harvesting area: 10% continuous flooding (Flooded), 20% single 

drainage (Single-D) and 70% multi-drainage (Multi-D) (Xiong et al., 1992; 

MWRUC, 1996;Li et al., 2001;Zou et al., 2009). 

Figure 4 P-P plots of the cumulative probability of the measured methane fluxes 25 

versus the gamma distribution. (a) Single drainage irrigation cases, (b) 

multi-drainage irrigation cases, (c) continuous flooding irrigation cases, and 

(d) all cases after being area weighted (Appendix A). n, avg. and std. 

represent the sample size, statistical mean and standard deviation of the 

sample methane fluxes, respectively. α and β represent the shape and scale 30 

parameters of the gamma distribution, which were calculated with the 

statistical mean and variance of the measured methane fluxes; β= 

(std.)
2
/(avg.), and α = (avg.)/β. The diagonal line is the 1:1 straight line for a 

perfect gamma distribution match. 

Figure 5 Methane fluxes in the experiments plotted against the respective simulation 35 

results through different methods. (a) R1－S0, (b) R2－S0 and (c) M－S0, 

which are described in Table 1. 

Figure 6 Histograms and their fitting gamma probability lines for the calculated 

methane fluxes (via CH4MOD) of the 10 km × 10 km rice paddy grids in 

China. (a) Single rice rotations, including rice-fallow rotations, and 40 

rotations of rice with upland crops; (b) early and (c) late rice in double rice 

rotations. The vertical bars are the histograms of the calculated Fj (Equation 

5), and the solid line is the theoretic gamma PDF line, the parameters for 

which were derived from the statistics for Fj via momentum methods. 

Figure 7 Spatial distributions of rice paddy methane emissions (×10
6
 g CH4 per 10 km 45 

× 10 km grid). 

Figure 8 Composition of the aggregated uncertainty of the national inventory along 

with the spatial autocorrelation of the variances of the model residues in 
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grids. Distance criteria (Dc) are used to define the step functions of spatial 5 

autocorrelation: if two grids diverge by a distance beyond Dc, the 

autocorrelation is 0; otherwise, it is 1. The step function is a simplified 

version and represents the upper limit of the true spatial autocorrelation. 

With the step function, a larger Dc indicates stronger autocorrelation. 

 10 
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 5 

Tables 

Table 1 Methods and their input scenarios 

Methods Input scenario Reference 

R1:  CCH4 = 0.3×Cinput R1－S0: Case-specific C input, adjusted with the water regime†. Neue et al., (1990) 

R2:  CH4 = –0.006×Cinput + 0.078×Ninput + 0.885×RC/N 

+ 21.15 
R2－S0: Case-specific C and N input. Kern et al., (1997) 

R2－S1: Case-specific C input, averaged N input in all cases. 

M: CH4MOD model M－S0: Case-specific inputs of all model variables: e.g., organic matter 

amendments, soil properties and water regimes‡ 

Huang et al., (1998, 2004); 

Xie et al., (2010) 

 

M－S1: Case-specific inputs of soil properties and water regimes; other model 

variables use averaged values for all 495 cases 

 
M－S2: Case-specific inputs of organic matter amendments; all other model 

variables use averaged values for all 495 cases, the water regime was assumed to 

be multi-drainage irrigation. 

M－S3: No case-specific inputs used for soil properties or organic matter 

amendments, the water regime was assumed to be multi-drainage irrigation.  

† Regression equation R1 was developed according to measurements conducted in continuously flooded fields, and the calculated flux was therefore adjusted by a scaling factor of 

1.00, 0.65 or 0.56 for continuous flooding, single drainage or multi-drainage irrigation, respectively (IPCC, 2006).  

‡ The water regimes in the CH4MOD model (Huang et al., 2004) are more specifically defined and differ from that of the IPCC (2006). 10 
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Table 2 Performance of the methods under different scenarios of data availability 5 

Method 
Bias of  

the estimation (BRrb) 

Std. of the estimation 

residues (CVrv) 

Total error‡root of MSE 

(RMSE) 

R1－S0 212.0 (62.1%)† 577.1 (163.3%) 596.0 (174.7%) 

R2－S0 −1.3 (−0.4%) 407.8 (119.5%) 407.8 (119.5%) 

R2－S1 −4.9 (−1.4%) 415.7 (121.8%) 415.7 (121.9%) 

M－S0 −24.2 (−7.1%) 251.8 (73.8%) 253.0 (74.1%) 

M－S1 −30.8 (−9.0%) 343.9 (100.8%) 345.2 (101.2%) 

M－S2 −120.7 (−35.4%) 341.3 (100.0%) 362.9 (106.1%) 

M－S3 −109.8 (−32.2%) 401.8 (117.8%) 416.6 (122.1%) 

† Percentages in parentheses indicate the magnitude of the error relative to the overall average methane flux (341.2 kg CH4 ha−1Fc) 

for all cases, and Fc = 341.2 kg CH4 ha−1 (Fig. 2a). 

‡ cR FCVBTotal  22
 error  , same as Equation 4 
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Table 3 Methane emissions inventory and the uncertainties caused by model imperfection and errors in model input data  5 

Rice 
Harvesting area 

(×106 ha) 

CH4 emission 

(Tg) 
σT(Tg)‡ 95% CI§ (Tg) 

Early rice 5.96  1.22  0.39 0.58 － 2.08 

Late rice 5.96  1.52  0.40 0.85 － 2.39 

Single rice 16.93  3.69  0.75 2.37 － 5.30 

All rice 28.85  6.43  1.53 3.79 － 9.77 

Scenario 
CH4 emission 

(Tg) 
σb+v

§ σd 

 

σd    

σb+v 

 

σT(Tg) 95% CI (Tg) 

R1－S0 13.59 9.89 1.11 0.11 9.99 1.45－38.98 

R2－S0 10.37 2.74 0.14 0.05 2.74 5.71－16.39 

R2－S1 10.24 2.91 0.07 0.02 2.91 5.83－17.16 

M－S0 6.43 1.15 1.00 0.87 1.53 3.79 － 9.77 

M－S1 7.94 1.89 0.97 0.51 2.13 4.33 －12.62 

M－S2 7.40 3.16 0.56 0.18 3.12 2.56 －14.75 

M－S3 9.23 3.79 0.00 0.00 3.79 3.37 －18.01 

‡ Calculated with Equation 6;  

§ 95% CIs were calculated by assuming the gamma probability distributions, for which the shape 

and scale parameters were estimated via momentum methods. 

§ Root of Ub+Uv, uncertainty owing to model fallacy in the national inventory. 

 10 

  



30 

 

Table 4 Components of the uncertainty in the national inventory 5 

Rice 
Due to model performance Due to data quality and 

availability,  

UDUd 

Total 

UBUb UVUv UT σT 

Early rice 0.01 0.06(0.00－0.81) ‡ 0.08 0.15  0.39  

Late rice 0.01 0.10(0.00－1.28) 0.05 0.16  0.40  

Single rice 0.07 0.25(0.00－5.15) 0.24 0.56 0.75 

All rice 0.21 1.12(0.00－22.56) 1.00 2.35  1.53  

‡ Numbers in parentheses represent the range of UV Uv depending on the spatial correlation of the 

model simulation residuals. Long-distance correlation results in a large aggregated UVUv, 

whereas short-distance correlation results in a small aggregated UVUv. 
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