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Abstract  

Uncertainties in national inventories originate from a variety of sources, 15 

including methodological failures, errors and insufficiency of supporting data. In this 

study, we analyzed these sources and their contribution to uncertainty in the national 

inventory of rice paddy methane emissions in China and compared the differences in 

the approaches used (e.g., direct measurements, simple regressions and more 

complicated models). For the 495 field measurements we collected from the scientific 20 

literature, the area-weighted 95% CI ranged from 13.7 to 1115.4 kg CH4 ha
–1

, and the 

histogram distribution of the measurements agreed well with parameterized gamma 

distributions. For the models, we compared the performance of methods of different 

complexity (i.e., the CH4MOD model, representing a complicated method, and two 

less complex statistical regression models) to evaluate the uncertainties associated 25 

with model performance as well as the quality and accessibility of the regional 

datasets. Comparisons revealed that the CH4MOD model performed better than the 

comparatively simple regression models only when sufficient input data for the model 

were available, with the regression equations performing better otherwise. As 

simulated by CH4MOD, methane fluxes varied from 17.2 kg CH4 ha
–1 

to 708.3 kg 30 

CH4 ha
–1

, covering 63% of the range of the field measurements. When applying the 

modeling approach to the 10 km × 10 km gridded dataset of the model input variables, 

within-grid variations were found to represent 81.2%–95.5% of the modeled mean 

fluxes. Moreover, up-scaling the grid estimates to the national inventory resulted in 

the models contributing 56.6% of the total uncertainty, with the remaining 43.4% 35 

being attributed to errors and the scarcity of the spatial datasets of the model inputs. 

Our analysis reveals the dilemma between model performance and data availability 
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when using a modeling approach: a model with better performance may help in 5 

reducing uncertainty caused by model fallacy but increases the uncertainty caused by 

data scarcity, as greater levels of input are needed to improve performance. Reducing 

the total uncertainty in the national methane inventory depends both on a better 

understanding of the complexity of the mechanisms of methane emission and the 

spatial correlations of the factors that influence methane emissions from rice paddies. 10 

Keywords: Uncertainty, source and contribution, spatial variation, national inventory, 

methane emission  
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1 Introduction 5 

Rice cultivation is a major source of anthropogenic methane and a prime target 

of greenhouse gas mitigation efforts (Smith et al., 2008). Numerous methods have 

been applied for estimating national and global inventories of rice paddy methane 

emissions, including meta-analysis of direct measurements, process models and 

empirically based statistical models. However, the range of regional/global source 10 

estimates remains large (Cao et al., 1996; Sass et al., 1999; Chen et al., 2013). The 

major factors that are known to regulate rice paddy methane emissions include 

agricultural management practices (Khosa et al., 2011; Sanchis et al., 2012; Sass et al., 

1992; Bodelier and Laanbroek, 2006) and environmental conditions, such as climate 

and soil properties (Conrad et al., 2007; Inubushi et al., 2011; Sass et al., 1991). 15 

Currently, techniques for calculating methane emissions differ substantially and are 

far from perfect, mainly because of issues involving methodological fallacy and data 

insufficiency. 

By extrapolating field measurements obtained from experiments, methane 

emissions from the 30 million hectares or so of land under rice cultivation in China 20 

were estimated to range from 21.6 Tg CH4 yr
–1

 to 30 Tg CH4 yr
–1

 (Matthews et al., 

1991; Taylor et al., 1991). The extrapolation of methane emission rates from site 

measurements to larger regions is unlikely to yield reliable results because of the 

tremendous spatial heterogeneity in environmental conditions and agronomic 

activities (Ogle et al., 2010). Other studies have described the relationships between 25 

methane emissions and rice NPP (net primary productivity) (Bachelet and Neue, 1993) 

and organic matter inputs (Bachelet et al., 1995). Ambient temperature and the use of 

nitrogen (N) fertilizer have also been identified as determinants of methane emissions 

(Kern et al., 1995; Bachelet et al., 1995). Until the significant reduction in methane 

emissions caused by mid-season drainage was confirmed (Sass and Fisher, 1997;Yagi 30 

et al., 1997;Li et al., 2002;Yan et al., 2005), all previous regional and national 

estimates (obtained using extrapolation or regression equations) were derived from 

continuously flooded rice fields. More recently, factors such as the rice cultivar 

involved (Watanabe et al., 1995; Butterbach-Bahl et al., 1997; Ding et al., 1999; 

Inubushi et al., 2011), soil properties (Sass et al., 1994; Yao et al., 1999) and 35 

atmospheric ozone concentrations (Bhatia et al., 2011) have been incorporated into 

models designed to estimate methane emissions from rice paddies. Complex 

Biogeosciences Discuss., doi:10.5194/bg-2016-250, 2016
Manuscript under review for journal Biogeosciences
Published: 27 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



4 

 

interactions among these factors have spurred model development (Cao et al., 1995; 5 

Li, 2000; Matthews et al., 2001; Huang et al., 1998; Van Bodegom et al., 2001; 

Huang et al., 2004). To delineate variations in methane emissions and to reduce 

uncertainties, the impacts of these factors on the production, oxidation and emission 

of methane were mathematically incorporated into the models. Models with a greater 

number of factors involved are able to reduce uncertainties in estimating methane 10 

emissions, but the estimates generated by these models still differ significantly across 

multiple spatial and temporal scales (Butenhoff et al., 2009; Ren et al., 2011; Chen et 

al., 2013). 

Reduction of the uncertainty in estimated methane emissions requires the 

development of an effective and reliable model that incorporates various paddy 15 

environments and agronomic activities. However, our understanding of the complex 

biogeochemical processes that occur in paddy soils is poor. When estimating methane 

emissions from rice agriculture, only factors that are thought to be key determinants 

of methane emissions have been incorporated into the models. Excluding “non-key” 

factors introduces errors into the model output (Equations C2 and C3 in the 20 

Supporting Information). Improving our knowledge of methane processes in the 

future will increase the number of factors that are integrated into models and 

potentially delineate details related to spatial/temporal variations.  

Uncertainties in regional estimates of methane emissions from rice paddies stem not 

only from deficiencies in the applied models but also from errors and inadequate data, 25 

which we discussed in a previous study (Zhang et al., 2014; Appendix C in the 

Supporting Information). A model with more factors generally performs better than a 

model with fewer factors but requires a larger amount of data to facilitate model 

performance. A model with good performance can still result in large uncertainties 

when the available input data (e.g., soil properties, rice irrigation, types and amount of 30 

organic matter) are insufficient (Zhang et al., 2014).  

In the present study, we analyzed the uncertainties in experimental 

measurements of methane fluxes in different rice paddies. We also evaluated the 

performance of different methods involving a diversity of input variables and the 

influence of data availability on the performance of these methods. Finally, the 35 

uncertainty in the national emissions inventory as a consequence of variable model 

performance and according to the quality and availability of input data were discussed. 
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2 Materials and methods 5 

2.1 Field measurements of methane emissions from rice paddies in China 

The observational data used in this study (Table 1) consisted of field methane 

fluxes measured at 33 sites (Fig. 1). We obtained these measurements from the 

published literature concerning all crop rotations with rice cultivation in China 

(double rice, winter wheat and rice rotation, single rice crop cultivation, and so forth) 10 

(Wei, 2012). A total of 495 measurements were taken at the 33 sites. The amount of 

organic matter added to the rice paddies ranged from 0 t C ha
–1 

to 15.3 t C ha
–1

 and 

included animal manure, green manure, crop straw, biogas residuals and their various 

components. The applied water regimes consisted of continuous flooding, single mid-

season drainage and multi-drainage irrigations.  15 

Model performance was assessed by comparing the model estimates with the 

measurements. To drive the models, data pertaining to rice yields, soil properties and 

crop phenologies were collected from the relevant literature (Appendix B in the 

Supporting Information). 

2.2 Performance of the methods used to estimate methane emissions  20 

The uncertainties produced by the models derive from inaccuracies in the models 

themselves (Appendix C in the Supporting Information) as well as from the quality 

and availability of data (Fig. 2). Model performance was assessed by comparing 

model outputs with the direct measurements (left part in Fig. 2). Errors in the input 

data of the model can be propagated in the obtained estimates (right side of Fig. 2, 25 

Appendix D in the Supporting Information). 

Many techniques are available for calculating estimates of rice paddy methane 

emissions, such as extrapolation of measured emission rates (Khalil et al., 1991; 

Khalil et al., 1993), statistical regression equations (Bachelet et al., 1995; Kern et al., 

1995; Kern et al., 1997) and the application of models of varying complexity (Cao et 30 

al., 1995; Matthews et al., 2001; Van Bodegom et al., 2001; Huang et al., 1998; Li, 

2000). We compared the performance of these methods under different levels of data 

availability (Table 1) using experimental field measurements as a point of reference 

(Fig. 1). In Table 1, R1 represents a simple regression equation in which the carbon 

(C) input is the sole predictor (Neue et al., 1990). Regression equation R2 is slightly 35 

more complicated in that it uses organic C and fertilizer N application as inputs (Kern 
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et al., 1997). We assumed two data availability scenarios for R2. In R2－S0, both the 5 

C and N inputs are available; in R2－S1, only the C input is available (Table 1). 

The third approach consists of a semi-empirical model, CH4MOD. This model 

was developed to simulate methane emissions from rice paddies under diverse 

environmental conditions and various agricultural practices (Huang et al., 1998; 

Huang et al., 2004). The input variables of the model include the climate, soil 10 

conditions, water management type, organic matter application and crop rotations. 

The model consists of two modules: the derivation of methanogenic substrates from 

added organic matter and rice root exudates and the production and emission of 

methane. Rice biomass is a key variable used to calculate the root exudates and the 

fraction of the methane emitted by rice plants and bubbles. The daily changes in the 15 

soil redox potential (Eh) were calculated according to various water manipulations 

conducted in the rice paddies (Xie et al., 2010b). The influences of other 

environmental factors, such as soil temperature and texture, on the decomposition of 

organic matter and the production of methane were expressed as specific coefficient 

functions (Huang et al., 1998). The input variables of the CH4MOD model (Appendix 20 

B in the Supporting Information) include the daily air temperature, soil sand 

percentage (SAND), organic matter amendment (OM), rice grain yield (GY), water 

management pattern (Wptn) and rice cultivar index (VI). 

Four model input scenarios (Table 1) were scheduled to evaluate the 

performance of CH4MOD under different levels of data availability. In M－S0, all of 25 

the model variables were assigned specific values. In M－S1, the application of 

organic matter was assigned the average value for all experiments, thus assuming a 

situation where no detailed information on organic matter application was available. 

In M－S2, detailed information on the water regime and soil properties was assumed 

to be unavailable. In M－S3, detailed information on all three major factors (organic 30 

matter application, soil properties and water regime) was assumed to be unavailable.  

The estimation residuals (Δy, Equation 1), bias (BR, Equation 2) and coefficient 

of variations (CV, Equation 3) were thus evaluated as follows: 
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where y represents the measured methane fluxes; ŷ is the estimate of y; and N is the 5 

total number of measurements. E(·) indicates the statistical mean, and m = E(y) is the 

mean of the measured methane fluxes (yi). The total error of the estimation is 

calculated as follows: 

22
CVBmERR RT          (4) 

2.3 Uncertainties in estimating rice paddy methane emissions on regional scales: 10 

data error and availability 

In addition to errors in the performance of the methods, the difficulties in 

estimating regional rice paddy methane emissions also stem from errors in, and 

limited availability of, input data. To measure the uncertainties in model outputs due 

to insufficient data quality and availability, we applied Monte Carlo simulations 15 

(Penman, 2000) to the CH4MOD model. Statistical characteristics were derived from 

the available datasets to develop probability distribution functions (PDFs) for each 

model input variable. At the last step of the Monte Carlo simulation, the mean and the 

95% CI of the methane flux were derived from the iterations of the CH4 MOD 

simulation (Zhang et al., 2014). 20 

The factors involved in the uncertainty analysis included organic matter 

application, soil properties and water regimes; these variables (OM, SAND, and Wptn) 

were parameterized as input variables in the CH4MOD model (Huang et al., 2006; 

Zhang et al., 2011). The other two model input variables were the rice grain yield and 

daily ambient air temperature. These two variables were not used in the uncertainty 25 

analysis because sufficient relevant data were available, which were characterized by 

less error compared with the other variables (Zhang et al., 2014).  

The SAND data were obtained from a 10 km × 10 km grid dataset interpolated 

from soil survey data (Oberthür et al., 1999;Shi et al., 2004;Liu et al., 2006). It is 

possible that approximately half (Van Bodegom et al., 2002b) of the immense spatial 30 

variation in soil properties can be lost after spatial interpolation (Goovaerts, 2001); as 

a result, the missing spatial variation was interpolated from the PDF of the gridded 

SAND data.  

The organic matter inputs in the rice fields consisted of various types of farm 

manure (green manure and animal feces), crop straw, and dead roots and stubble 35 

leftover from previous harvests. Root and straw biomass were calculated using the 

root/shoot ratio and harvest indices (Huang et al., 2007; Gao et al., 2002; Xie et al., 
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2010). Stubble was assumed to represent one-tenth of the straw biomass. The 5 

proportions of incorporated straw and applied farm manure were derived from data 

obtained from two large-scale investigations, the First National Census of Pollution 

Sources conducted by China’s Ministry of Environmental Protection (CFPC, 2011) 

and censusing conducted by the Institute of Atmospheric Physics, Chinese Academy 

of Sciences. The proportion of straw and the amount of manure incorporated into the 10 

crop fields were summarized by province (Table B1 in the Supporting Information).  

Data pertaining to Wptn were only very rarely available on a regional scale. The 

limited information provided in a few studies (Mao, 1981; Liang, 1983; Xiong et al., 

1992; Cai et al., 2003; Ma et al., 2005; Ministry of Water Resources and Utilization of 

China (MWRUC), 1996) enabled us to produce rough estimates related to irrigation in 15 

regions of major rice cultivation (Table B2 in the Supporting Information). 

The data pertaining to the rice grain yield and harvesting area as of 2005 were 

obtained from China’s Statistical Yearbook (EBCAY, 2006) and the nation’s 

agricultural database maintained by the Chinese Academy of Agricultural Sciences, 

respectively. The spatial distributions of all rice paddies in 2005 and the rice paddy 20 

area within each 1 km × 1 km grid were obtained from the Data Center for Resources 

and Environmental Sciences of the Chinese Academy of Sciences (RESDC, CAS). 

Daily mean air temperature data from 678 meteorological stations throughout China 

for 2005 were acquired from the National Meteorological Information Center (NMIC) 

of the China Meteorological Administration (CMA) (http://cdc.cma.gov.cn/). The 25 

temperatures were then spatially interpolated into 10 km × 10 km grids for each day 

according to the method described by Thornton et al. (1997). Details on the datasets 

used in this study can be found in Appendix C. 

To preserve details related to spatial variations, all data input into the model were 

converted into 10 km × 10 km grids. The applied rasterization techniques and details 30 

of how the model was run on raster datasets were provided in previously published 

papers (Huang et al., 2006).  

2.4 Combining uncertainty and spatial aggregation 

In each 10 km × 10 km grid, the uncertainties in our estimates originated from 

errors in both model performance and the input data. Equation 5 was used to merge 35 

the two components (Appendix D in the Supporting Information): 
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2

,

222

, ))()(( jDjRjjT CVFBF         (5) 5 

where σT,j represents the uncertainty of the methane flux in grid j, and Fj and σD,j 

represent the mean and standard deviation of the Monte Carlo simulation results in 

grid j, respectively. BR and CV represent the same entities as in Equations 2 and 3. 

To produce the uncertainty of the national inventory, the three components of the 

estimation uncertainties (Equation 5) in all grids were separately aggregated 10 

(Equation D2) and summed (Equation 6) as follows: 

2222

DCVBRT           (6) 

3 Results 

3.1 Methane emissions and the uncertainties derived from field measurements 

Among the 495 methane flux measurements, 184 (37% of all cases) came from 15 

paddies that were continuously flooded during the entire rice growing period; 50 (10% 

of all cases) came from paddies with single mid-season drainage; and 261 (53% of all 

cases) came from paddies under multi-drainage. The average methane fluxes 

associated with the three water regimes were 531.6 ± 512.6, 251.6 ± 231.1 and 224.1 

± 207.5 kg CH4 ha
–1

, respectively (Fig. 3a). The overall arithmetic average of the 495 20 

measurements (represented hereafter by mc) was 341.2 ± 383.2 kg CH4 ha
–1

. However, 

the simple arithmetic average might be a biased representation of the “true” mean 

methane flux of rice paddies in China, as far less than 37% of the rice paddies in 

China are continuously flooded. In the literature, 10%, 20% and 70% of the rice area 

was reported to be under continuous flooding, single drainage and multi-drainage 25 

water regimes, respectively (Xiong et al., 1992;Ministry of Water Resources and 

Utilization of China (MWRUC), 1996), and the area-weighted mean (Appendix A in 

the Supporting Information) of the measured fluxes (represented hereafter by mw) was 

260.4 ± 281.6 kg CH4 ha
–1

 (Fig. 3a). 

The 95% confidence intervals (CIs) of the methane flux measurements were 30 

61.1–2,145.9 kg CH4 ha
–1

, 9.6–809.9 kg CH4 ha
–1

 and 14.0–797.7 kg CH4 ha
–1

, 

respectively, for the three water regimes (Fig. 3a). The 95% CI of all combined area-

weighted measurements (Appendix A in the Supporting Information) was 13.7–

1,115.4 kg CH4 ha
–1

. The measurements were not normally or symmetrically 

distributed (Fig. 3b). The P-P plots (Fig. 4) showed that the parameterized gamma 35 

distributions matched the sample distributions. The 95% CIs calculated with the 
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parameterized gamma functions were 16.8–1,900.8 kg CH4 ha
–1

, 10.4–863.4 kg CH4 5 

ha
–1

 and 8.9–774.2 kg CH4 ha
–1

, respectively, for the three water regimes; these 

values overlapped the CIs derived directly from the measurements by 88.2%, 99.9% 

and 97.0%, respectively. 

The national methane emissions from rice agriculture calculated by multiplying 

the rice harvesting area (yearbook data in 2005) by the area-weighted mean flux 10 

(260.4 ± 281.6 kg CH4 ha
–1

) were 7.51 Tg CH4 (Fig. 3a). The uncertainty of the 

national emissions is usually represented by the standard error (SE). When the 

measurements are statistically independent, SE is n−1 (n is the sample size of the 

measurements) times smaller than the standard deviation (± 281.6 kg CH4 ha
–1

), 

which consists of the representative and measurement errors of the measured fluxes 15 

(Van Bodegom et al., 2002a; Verburg et al., 2006). Assuming that the measurements 

were statistically independent, the 95% CI of the national inventory was 7.20–8.58 Tg 

CH4 (Equation A3 in the Supporting Information). However, the independency 

assumption is questionable because of the correlations between the spatially 

correlated background environmental conditions and agricultural activities (Legendre, 20 

1993; Dormann et al., 2007). The equivalent sample size, n, used to calculate SE may 

be smaller than 495, and the 95% CI of the national inventory is therefore larger than 

that with the independency assumption. 

3.2 Model performance under different situations of data availability 

R1 was more likely to overestimate the amount of methane emitted than R2 25 

(Table 2), especially when more organic matter was incorporated (Fig. 5a). The 

estimated methane flux calculated by R1 was more than 6,000 kg CH4 ha
–1

, whereas 

the corresponding measured methane flux was less than 3,000 kg CH4 ha
–1

 (Fig. 5a). 

The averaged bias of the estimate obtained with R1 was 212.0 kg CH4 ha
–1

 (Table 2) 

or 62.1% of the measured mean (mc = 341.2 kg CH4 ha
–1

). The average bias of R2, in 30 

contrast, was −1.3 kg CH4 ha
–1

; the estimates obtained using R2 did not show 

significant variations and appeared to decline when the measured methane fluxes 

increased (Fig. 5b). The CH4MOD model also produced a small averaged bias, 

representing 7.1% of the measured mean. The total estimation errors were 253.0, 

407.8 and 596.0 kg CH4 ha
–1

 for the M－S0, R2－S0 and R1－S0 scenarios, 35 

respectively (Table 2), which demonstrates that model performance improves when 

more factors are incorporated into the model.  
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Although the CH4MOD model produced better simulation results than the 5 

simple regression equations, its performance fundamentally depends on data 

availability. When no case-specific data were available (as in scenario M－S3), BR 

was −32.2%, and ERRT was 122.1% of the mean flux; the results obtained under this 

scenario were even worse than the results obtained under the R2－S0 scenario (Table 

2). For the M－S1 scenario, where the data pertaining to the soil properties and water 10 

regime were case-specific, the magnitude of BR decreased to 9.0% of the mean flux, 

and the total error decreased to 101.2% of the mean flux. The M－S0 scenario 

produced much better results than the other scenarios, as more data were available for 

the key model input variables (Table 2). 

3.3 Inventory of rice paddy methane emissions and spatial variations 15 

Because of the spatial heterogeneity in the climate, soil properties, organic 

matter incorporation and field irrigation in rice cultivation, the simulated methane 

fluxes varied spatially between 17.2 kg CH4 ha
–1 

and 708.3 kg CH4 ha
–1

 from grid to 

grid (Fig. 6). The national means for the simulated methane fluxes were 217.9 kg CH4 

ha
–1

, 204.6 kg CH4 ha
–1

 and 255.8 kg CH4 ha
–1

 for single, early and late rice 20 

cultivation, respectively. The within-grid estimation error (σT,j, calculated with 

Equation 5) represented 81.2%–95.5% of the mean fluxes, Fj, in the grids.  

As shown in Fig. 7, the highest levels of emitted methane occurred in southern 

China, with the northeast also representing a major source of methane, despite this 

region being climatically cool. The total amount of methane emitted, as calculated by 25 

the modeling approach, was 6.43 (3.79–9.77) Tg (Table 3), which is close to the 7.51 

Tg derived from the experimental field measurements.  

4 Discussion 

4.1 Contributions of different error sources to the uncertainties in the inventory 

Methane fluxes in rice paddies varied extensively with environmental and 30 

agronomic factors. Certain factors, such as rice biomass (Bachelet and Neue, 1993), 

organic matter input (Kern et al., 1995), water management (Khosa et al., 2011; 

Mishra et al., 1997), paddy soil properties (Yao et al., 1999; Gaunt et al., 1997), 

climate (Sass et al., 1991) and rice varieties (Ding et al., 1999), have previously been 
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recognized as having significant impacts on methane emissions. Other factors, such as 5 

atmospheric CO2 and ozone contents (Bhatia et al., 2011; Inubushi et al., 2011), N 

fertilizer application (Banger et al., 2012; Xie et al., 2010a) and active soil organic C 

(Zhan et al., 2011), are also receiving increasing attention. Because so many factors 

affect the production, oxidation and emission of methane from rice cultivation, the 

observed methane fluxes varied extensively both spatially and temporally. In the 10 

experimental field measurements (Fig. 1), the variations in rice paddy methane fluxes 

ranged from 3.2 kg CH4 ha
–1

 to 2,451.7 kg CH4 ha
–1

, averaging 341.2 ± 383.2 kg CH4 

ha
–1

. The average simulated methane fluxes in the 10 x 10 km grids varied from 17.2 

to 708.3 kg CH4 ha
–1

 (Fig. 6). The extremely high methane fluxes obtained from 

experimental measurements were not reproduced by the model estimations. This 15 

discrepancy was partly due to the variations in the spatial representativeness of the 

methane fluxes in field observations and model estimations (Verburg et al., 2006).  

The experimental measurements represented methane fluxes from an area of less 

than one hectare, while the modeled fluxes were the averages from 10 x 10 km grids. 

This mismatch in spatial representativeness might also be due to errors in the model 20 

input data as well as to the impacts of other unknown factors (Singh and Dubey, 2012; 

Bhatia et al., 2011; Zheng et al., 2010; Gauci et al., 2008). Methane emissions could 

be estimated using a limited number of factors and simplified equations to express the 

complex relationships between methane emissions and influential factors, but such 

simplification resulted in poor performance of the methods (Table 2). In Equation 5, 25 

σD,j is the uncertainty due to errors in the input data. With an increasing number of 

explanatory factors, BR and CV might decrease (which means better performance of 

the method), but σD,j might increase because of the cumulative errors resulting from 

the increasing number of factors incorporated in the models. To reduce uncertainties 

in the estimates and improve the performance of the model, the input data need to be 30 

available and of good quality. In the present study, model fallacy, represented by the 

equation (Fj×BR)
2
+ (Fj×CV)

2
, contributed 79.5%–88.9% to the uncertainty of σT,j

2
, 

with σD,j
2
 accounting for the remaining 11.1%–20.5%. This implies that a model 

with better performance is needed to reduce the uncertainty of σT,j in each grid. 

The aggregated uncertainty of the national inventory depended not only on the 35 

magnitude of σCV,j and σD,j in each grid (j) but also on the spatial correlation between 

these variables (Equation C2 in the Supporting Information). The spatial correlation 
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of σD,j depends on the availability of input data for the model and on spatial 5 

aggregation (Table C1 in the Supporting Information). However, the spatial 

correlation of σCV,j could not be assessed analytically because it was a result of model 

imprecision, random noise and/or unknown factors. In the case of a strong correlation 

of σCV,j values, the aggregated σCV
2
 will account for a large proportion of σT

2
 (right 

side in Fig. 8). However, if the spatial correlation is confined to a short distance, such 10 

as less than four grids (Dormann et al., 2007; Dray et al., 2006), the contribution of 

σCV
2
 to σT

2
 will be negligible (left side in Fig. 8). At the mid-point of DC (Equation C2, 

30 grids, equal to 300 kilometers), as shown in Fig. 8, the model uncertainty (σBR
2
 + 

σCV
2
) accounted for 56.6% of the uncertainty in σT

2
 (Table 4). 

4.2 Consistency of errors between model validation and model up-scaling 15 

Up-scaling a site-scale model (e.g., CH4MOD in this study) to a regional scale 

poses enormous challenges when data are scarce. Enhancing the spatial abundance of 

the input data minimizes the propagation of data error into the aggregated 

uncertainties. Many environmental and agricultural factors impact methane emissions 

from rice paddies. In the CH4MOD model, the key factors were parameterized as 20 

model inputs (Huang et al., 2004). However, when assessing the uncertainty of a 

model, the explanatory variables are arbitrarily included (Verburg et al., 2006). Li et 

al. (2004) found that soil properties were the “most sensitive factor” and therefore 

used this parameter in the uncertainty analysis. The inclusion of as many of the highly 

sensitive key factors as possible in the uncertainty analysis should generate more 25 

accurate and reliable results (right part in Fig. 2).  

Experimental field studies have shown that the rice variety has substantial 

impacts on methane emissions (Aulakh et al., 2008; Inubushi et al., 2011; Jia et al., 

2002). A study of field observations (Su et al., 2015) showed that transfer of the 

barley gene SUSIBA2 to rice favors the allocation of photosynthesis to the 30 

aboveground biomass over allocation to the roots and, moreover, that less biomass 

allocation to root exudates results in reduced methane emissions. The impact that the 

rice variety has on methane emissions was parameterized as the variety index (VI) in 

CH4MOD. According to Huang et al. (1998), VI ranges from 0.5 to 1.5 and averages 

1.0 for most rice varieties. To validate the CH4MOD model (left portion of Fig. 2) 35 

using the 495 methane emission measurements included in the present study, VI was 

assigned a default value of 1.0 regardless of the rice variety because, until now, no 

Biogeosciences Discuss., doi:10.5194/bg-2016-250, 2016
Manuscript under review for journal Biogeosciences
Published: 27 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



14 

 

dedicated attempts have been made to quantify the VI of different rice varieties. 5 

Therefore, the BR and CV values presented in Table 2 incorporate the uncertainty in 

model performance that can be attributed to different rice varieties (Mf(x) in Equation 

C2 of the Supporting Information). To maintain consistency, VI was assigned the 

same default value (1.0) when the model was scaled-up to the national scale (right 

side of Fig. 2), and no PDF was built for the uncertainty calculation conducted with 10 

the Monte Carlo simulation. If a PDF had been incorporated into the uncertainty 

calculation when the model was scaled-up, the overall uncertainties (Table 4) would 

have been overestimated. However, if different VI values were assigned to rice 

varieties during model validation, the error caused by the inaccuracy of VI would also 

need to be considered during the scaling-up of the model to prevent underestimation 15 

of the overall uncertainty. 

5 Conclusions 

Due to the remarkable spatial variation in rice paddy methane emissions, the 

uncertainties in regional estimates obtained either through field measurements or 

modeling remain considerably large. For field measurements, the reduction in 20 

uncertainty achieved by increasing the number of observations was shown to be 

inversely related to the spatial correlation between the measurements. To reduce the 

estimation bias, the number of measured emission fluxes should be proportional to the 

paddy area where the corresponding agronomic activities and environmental 

conditions occur homogenously. 25 

Model performance depends not only on the effectiveness of the models 

themselves but also on the availability of the data needed to drive the model. We 

found that without a sufficient quantity of high-quality data, a well-developed model 

will perform even more poorly than simple regression approaches. When modeling 

methane emissions, uncertainties in the performance of the model remain the major 30 

obstacle to reliably estimating methane emissions. Estimate uncertainty could be 

reduced at the regional scale by increasing the availability of input data and 

decreasing spatial correlations among the residues of the model output. 
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Appendix A  Area-weighted methane flux measurements 5 

For the area-weighted analysis, the mean (mw) and variances (Vw) of the methane 

flux measurements (Oi) were calculated as: 

       (A1) 

       (A2) 

constrained by , where N is the total number of all methane flux 10 

measurements. Ordinarily, . However, here, we scaled wi by the area 

proportional to that of each water regime applied in rice cultivation in China: 

,  (A3) 

where Nwr is the number of measurements belonging to water regime wr, and Rwr is 

the proportion of the area of rice paddies irrigated with each of the three water 15 

regimes. Rwr assumes values of 0.1, 0.2 and 0.7, respectively, for the three water 

regimes according to previous research (Mao, 1981; Xiong et al., 1992;Li, 2002;Zou 

et al., 2009). If a methane flux measurement (i) in Equations A1 and A2 belongs to 

water regime wr, then wi = wwr. 

The standard error (SE) of the area-weighted mean (mw) is calculated as follows:  20 

SE =
Vw

N -1          (A4) 

It should be noted that Equation A4 only holds when the measurements are 

statistically independent; if this is not the case, mostly due to spatial correlations of 

the environmental conditions that support the measurements, then the value for N 

should be smaller, depending on the strength of the correlation (Bence, 1995). 25 

 

Appendix B  CH4MOD model and the datasets used for simulating national rice 

paddy methane emissions 

CH4MOD is an empirical model that simulates methane production and emissions 

from rice paddies under various environmental conditions and agricultural practices 30 

(Huang et al., 1998, 2004; Xie et al., 2010a). It calculates methanogenic substrate 

production from rice plant root exudates and added organic matter (OM) 

decomposition. Both OM decomposition and rice plant-induced substrate production 

are significantly influenced by environmental factors, including the soil texture and 

temperature, with the soil moisture content controlling the fraction of transformation 35 
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of the substrates into methane. There are two major routes by which methane 5 

produced in rice paddy soils escapes into the atmosphere: via the arenchyma system 

of the rice plants and via methane bubbles. Both of these pathways are incorporated 

into the model.  

CH4MOD runs in a daily step, driven by the daily air temperature. Its input 

parameters include the soil sand percentage (SAND), organic matter amendment (OM), 10 

rice grain yield (GY), water management pattern (Wptn) and rice cultivar index (VI). 

 

Rice harvest area and grain production 

Data on rice production and the harvest area for each province in 2005 were 

obtained from China’s Statistical Yearbook (EBCAY, 2006) for early, late and middle 15 

rice. County-level rice production data were obtained from censusing conducted by 

the Chinese Academy of Agricultural Sciences. Although the fractions of early, late 

and single rice cultivation are not included in the county-level data, the rotation type 

for each county was formulated using the approach of Frolking et al. (2002) by 

referring to the climatic zones of each cropping system in China (Han et al., 1987). 20 

Several studies have shown that methane emissions differ significantly among rice 

varieties (Singh et al., 1997; Wang et al., 1999). In CH4MOD, the impact of the 

methane variety on methane emissions was parameterized as the variety index (VI) 

(Huang et al., 1998, 2004). VI ranges from 0.5 to 1.5 but is typically approximately 

1.0 for most rice varieties (Huang et al., 1997, 2004).  25 

 

Climate data and rice phenologies 

The daily mean air temperature is the only meteorological data required to drive 

the CH4MOD model. Air temperature data were obtained for 2005 from 678 

meteorological stations included in the National Meteorological Information Center 30 

(NMIC), China Meteorological Administration (CMA) (http://cdc.cma.gov.cn/) 

database. For counties that lack a meteorological station, air temperature data from the 

nearest neighbouring station were substituted.  

Rice phenologies (specifically transplanting and harvesting dates) control the start 

and end of the CH4MOD run for simulating methane emissions. Data regarding rice 35 

phenologies were originally derived from iso-line maps edited by Zhang et al.
 
(1987) 

in the Agricultural Climate Atlas of China. The transplanting and harvesting dates 

within each grid were spatially interpolated from the iso-lines via the TIN (triangular 

irregular network) technique (Aumann et al., 1991) and assigned to each county. 

 40 

Soil properties 

The spatial database for the soil sand content (SAND) is part of the databases 

developed by the Institute of Soil Sciences, Chinese Academy of Sciences, from the 

samples of soil profiles obtained during the Program of the Second Soil Survey of 
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China and subsequent surveys. The database comprises of 10 km × 10 km raster 5 

datasets of soil properties at 10-cm intervals from the surface down through the 

profile, making the spatial resolution of soil the finest of the CH4MOD input 

parameters. 

 

Organic matter amendment and water regimes in rice paddies 10 

The organic matter inputs into rice fields include various types of farm manure 

(e.g., green manure, animal feces) and crop straw as well as dead roots and stubble 

from previous crops. Root biomass remaining in the soil can be calculated using the 

root/shoot ratio (Huang et al., 2007). Stubble biomass was assumed to be one-tenth 

the aboveground straw biomass. However, the fractions of straw incorporation and 15 

farm manure application are not well known, and the data are therefore limited. In the 

First National Census of Pollution Sources conducted by the Ministry of 

Environmental Protection of China (CFPC, 2011), straw application in croplands was 

summarized at the provincial level in the census data (Table B1); thus, the value for 

straw application given in Table B1 is not rice specific but accounts for all crops in 20 

each province. This bias may not be significant in provinces where crop cultivation is 

dominated by rice. In addition to crop straw, the incorporated crop residues include 

dead crop roots and stubble; according to Zhao and Li (2001), stubble accounts for 

approximately 13% of the total dry weight of straw. 

No regular statistical data or comprehensive census data were available for manure 25 

application in rice cultivation. In this study, we estimated OM application in rice 

cultivation by examining more than 1000 research papers; estimates of farmyard 

manure application in each province are shown in Table B1. 

Since the mid-1960s, a diverse array of irrigation regimes have been adopted that 

diverge from the traditional approach of continuous flooding, representing an 30 

important development for rice cultivation in China (Xiong et al., 1992; Li, 2002; 

Peng et al., 2007). As such, different compositions of flooding, drainage and moisture 

irrigation have been applied according to the climate, soil and topographic conditions 

of the rice fields and factors such as the rice variety being grown, its developmental 

stage and hydrological construction. To simplify CH4MOD, the forms of irrigation 35 

used for rice cultivation were grouped into five general irrigation patterns: 1) 

flooding-drainage-flooding-intermittent irrigation, 2) flooding-drainage-intermittent 

irrigation, 3) flooding-intermittent irrigation, 4) continuous flooding and 5) 

continuously intermittent irrigation (Gao and Li, 1992; Huang et al., 2004). Despite 

being the agronomic factor that is most sensitive to methane emissions (Table B2), the 40 

available data on irrigation are the scarcest among all of the inputs needed for 

CH4MOD up-scaling. Except for a few brief mentions in the literature (Mao, 1981; 

Xiong et al., 1992; MWRUC, 1996; Cai, 2000; Ma et al., 2005), almost no detailed 

data addressing spatial variations in rice irrigation are available. Given this limitation, 
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we made rough assumptions about irrigation for each grand region of rice cultivation 5 

(Fig. 1, Table B2). 

 

Appendix C  Uncertainties in regional estimates obtained via the modeling approach 

F(x) is a spatial process that has a determinative component, D(x), and a random 

component, R0 (x): 10 

F(x) = D(x) + R0(x)        (C1) 

where x is the location of two dimensions in the spatial domain, S. 

When D(x) is implemented in a model M(x) that simulates the spatial variation of 

D(x), there is unavoidably an error component, Mf (x) (the model fallacy), due to the 

imperfection of the model, and therefore 15 

D(x) = M(x) + Mf (x)        (C2) 

Combining Mf (x) and R0 (x) into one component, Rm(x), F(x) this expression can be 

rewritten as 

F(x) = M(x) + Rm(x)        (C3) 

where Rm(x) is typically used to evaluate model performance. To explicitly address 20 

the model input variables, e.g., environmental factors and anthropogenic activities of 

the model mechanism, M(x) can be expressed as 

F(x) = M(v1,v2,v3,…) + Rm(x)       (C4) 

where v1, v2, v3, … are the model input variables. Averaging over the S domain, 

Equation C4 yields: 25 

      (C5) 

To implement the averaging of the model simulation over the spatial domain, the 

theoretical approach is 

     (C6) 

However, because it is impossible to obtain data for the model input variables at 30 

every location, x, of domain S,  has to be represented by the model 

simulation 
 
at a specific location, p, and there emerges the 

representative error, Rs, which conforms to 

      (C7) 

The representative error, Rs, comes from both the imprecision and poor spatial 35 

availability of the model inputs. The magnitude of Rs therefore depends on the model 

input errors and how sensitive the model simulation is in response to the variation of 

the model inputs. Combining Equations C5 and C7 gives us 

     (C8) 
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The right side of Equation C8 is therefore the error of the model simulation over 5 

the spatial domain. From its definition in Equation C7, the statistical expectation of Rs 

is 0, and the uncertainty of Rs (the sum of the squared Rs occurrence) is equivalent to 

its statistical variance. By referring to the structural analysis of the model residue 

error, , given in Allen and Raktoe (1981), we itemized the total uncertainty (UT) 

of the model simulation over the spatial domain as  10 

UT = UD + UBR + UCV        (C9)  

where UD signifies the spatially representative error corresponding to Rs in 

Equation C8, and UBR+UCV is the uncertainty attributed to the model fallacy, Rm(x). 

UBR represents the model performance bias at the site scale, whereas UCV represents 

the model fallacy error apart from UBR, which is the combination of the regression 15 

error and the random error, as described in Allen & Raktoe (1981). The assumed 

independence between Rs and Rm(x) originates from the fact that they are due to 

separate causes. For a specific model, the model fallacy is independent of the 

accuracy and availability of the model inputs that facilitate modeling in a spatial 

domain. However, changes in the model mechanism may regulate the relationship 20 

between UD and UBR+UCV; for example, improving model performance by 

incorporating more factors as input variables may reduce the model’s fallacy but 

increase the representative error due to the additional input data requirements 

necessary to run the model . 

Due to substantial heterogeneities in spatial processes, such as fluxes in methane 25 

emissions from rice cultivation, the large area under study is usually split into several 

smaller regions. These regions may consist of grids of the same size or irregular 

patches of different sizes. Each division is a spatial domain with less heterogeneity to 

which modeling can be applied. To summarize the modeling results for each division, 

the spatial aggregation of UD was discussed by Zhang et al. (2014) and is briefly 30 

addressed in Appendix D. Appendix D also provides the rationale for the spatial 

aggregation of UBR and UCV. 

Appendix D  Spatial aggregation of the estimation uncertainties in grids 

D.1 Correlation coefficients of the model estimates between two grids due to data 

sharing of the model inputs 35 

In each grid, i, the model estimates obtained via Monte Carlo iteration produce a 

numeric depiction of a random variable Vi(mi, σi), where mi and σi are the statistical 

mean and standard deviation, respectively, of the random variable Vi. Thereafter, 

model up-scaling involves summation of the random variables V0=V1+V2+...+VN. The 

aggregation of uncertainty, represented by the statistical variance or standard 40 

deviation, is generalized as  (Ross, 2006), and it can 
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be transformed into a quadratic summation of the elementary variances via the 5 

standardized variance–covariance matrix: 

, (i=1...N, j=1...N)     (D1) 

where  is the aggregated variance of the regional estimation, and σi and σj are 

the standard deviations of the within-cell variations in cells i and j, respectively. 

Matrix C is composed of Cij coefficients, which represent “correlations” between the 10 

spatially representative errors (Rs in Equation C8) of the individual cells. “Correlation” 

here is a measure of how the model outputs in two cells vary concurrently when they 

share common data for the model inputs. If the estimate in cell i is over-

/underestimated, then the estimate in cell j will most likely be over-/underestimated as 

well, and vice versa, because they share common data. It is noteworthy that the 15 

correlation represented by Cij is different from that between the “real” processes 

represented by F(x) in Equation C8. The aggregation of the model outputs can be 

quite simple if the model estimate is generated with independent data in each cell. In 

this case, matrix C will be an identity matrix in which the diagonal elements will be 1, 

and all of the off-diagonal elements will be 0. The aggregation in Equation D1 will 20 

thereafter indicate the arithmetic sum of the within-cell variances, as addressed by the 

Law of Large Numbers. However, when there are not sufficient data to support 

independent calculation among cells, the off-diagonal elements, Cij, of matrix C will 

no longer be zero.  

In the present study, Cij was empirically calculated through numerical experiments. 25 

For a different level of data sharing between two cells (Table D1), the model 

estimates in the two cells were iteratively calculated with CH4MOD. The model 

inputs were randomly selected from the range of values for the variables. When data 

sharing occurred between the two cells for a variable in Table D1, the value of the 

variable was selected once for the two cells; for the variables for which there was no 30 

data sharing, the value of the variable was selected separately for the two cells. The 

correlation coefficients (Cij) of the model estimates in the two cells were statistically 

calculated with 1000 iterations of the paired model estimates in the two cells in the 

present study. 

 35 

D.2 Spatial aggregation of estimation uncertainties 

Equation D2, an alternative form of Equation C9 in Appendix C, is used to 

aggregate the uncertainties in all grids to calculate the uncertainty in the national 

inventory:  
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   (D2) 5 

In Equation D2, Aj and Ak represent the rice harvesting area in grids j and k, 

respectively. No errors in the rice harvesting area were considered in Equation D2. Fj 

and Fk represent the average methane fluxes from the Monte Carlo simulation in grid j 

and k, and σD,j and σD,k are the standard deviations associated with Fj and Fk, 

respectively. No cross-correlation between the three components was considered here. 10 

Because of limited data availability, the neighboring grids were assigned probabilities 

of sharing data for the model input variables. The aggregation of σD,j in the grids was 

therefore kernelled using data-sharing matrix D (Dj, k represents its element, Table 

D1). Ej, k = 1 is the element of a constant matrix, E, which refers to the bias of the 

model estimates in all grids and is statistically under/overestimated concurrently in all 15 

grids. Uj, k is the element of matrix U. Uj, k is not specifically known. The two 

extremes of matrix U correspond to matrix E and the identity matrix, I. The 

estimation error, Fj × CV, is related to the factors that are not explicitly accounted for 

in the model, for instance, mineral fertilizer application (Xie et al., 2010a) and soil 

organic carbon content (Zhan et al., 2011). Because the inter-grid relationships of 20 

these “unknown” factors could not be explicitly accounted for, we assigned U the 

values for the mid-point of the two extremes E and I.  
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Tables 5 

Table 1 Methods and their input scenarios 

Methods Input scenario Reference 

R1:  CCH4 = 0.3×Cinput R1－S0: Case-specific C input, adjusted with the water 

regime. 

Neue et al., (1990) 

R2:  CH4 = –0.006×Cinput + 0.078 

×Ninput + 0.885×RC/N  

+ 21.15 

R2－S0: Case-specific C and N input. Kern et al., (1997) 

R2－S1: Case-specific C input, averaged N input in all 

cases. 

M: CH4MOD model M－S0: Case-specific inputs of all model variables: e.g., 

organic matter amendments, soil properties 

and water regimes 

Huang et al., 

(1998, 2004);  

Xie et al., (2010a) 

 

M－S1: Case-specific inputs of soil properties and water 

regimes; other model variables use 

averaged values for all 495 cases 

 

M－S2: Case-specific inputs of organic matter 

amendments; all other model variables use 

averaged values for all 495 cases, the water 

regime was assumed to be multi-drainage 

irrigation. 

M－S3: No case-specific inputs used for soil properties or 

organic matter amendments, the water 

regime was assumed to be multi-drainage 

irrigation.  

† Regression equation R1 was developed according to measurements conducted in continuously flooded fields, 

and the calculated flux was therefore adjusted by a scaling factor of 1.00, 0.65 or 0.56 for continuous flooding, 

single drainage or multi-drainage irrigation, respectively (IPCC, 2006).  

‡ The water regimes in the CH4MOD model (Huang et al., 2004) are more specifically defined and differ from that 10 

of the IPCC (2006). 
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Table 2 Performance of the methods under different scenarios of data availability 

Method 
Bias of  

the estimation (BR) 

Std. of the estimation 

residues (CV) 
Total error

‡
 

R1－S0 212.0 (62.1%)
†
 577.1 (163.3%) 596.0 (174.7%) 

R2－S0 −1.3 (−0.4%) 407.8 (119.5%) 407.8 (119.5%) 

R2－S1 −4.9 (−1.4%) 415.7 (121.8%) 415.7 (121.9%) 

M－S0 −24.2 (−7.1%) 251.8 (73.8%) 253.0 (74.1%) 

M－S1 −30.8 (−9.0%) 343.9 (100.8%) 345.2 (101.2%) 

M－S2 −120.7 (−35.4%) 341.3 (100.0%) 362.9 (106.1%) 

M－S3 −109.8 (−32.2%) 401.8 (117.8%) 416.6 (122.1%) 

† Percentages in parentheses indicate the magnitude of the error relative to the overall 

average methane flux (mc) for all cases, and mc = 341.2 kg CH4 ha
−1

 (Fig. 2a). 

‡ 
cR mCVB  error Total 

22
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Table 3 Methane emissions inventory and the uncertainties caused by model imperfection 

and errors in model input data  

Rice 
Harvesting 

area (×10
6
 ha) 

CH4 emission 

(Tg) 
σT(Tg)

‡
 95% CI

§
 (Tg) 

Early rice 5.96  1.22  0.39 0.58 － 2.08 

Late rice 5.96  1.52  0.40 0.85 － 2.39 

Single rice 16.93  3.69  0.75 2.37 － 5.30 

All rice 28.85  6.43  1.53 3.79 － 9.77 

‡ Calculated with Equation 6;  

§ 95% CIs were calculated by assuming the gamma probability distributions, for which 

the shape and scale parameters were estimated via momentum methods. 

 

  

Biogeosciences Discuss., doi:10.5194/bg-2016-250, 2016
Manuscript under review for journal Biogeosciences
Published: 27 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



32 

 

Table 4 Components of the uncertainty in the national inventory 

Rice 
Due to model performance Due to data 

quality and 

availability, σD
2
 

Total 

σBR
2
 σCV

2
 σT

2
 σT 

Early rice 0.01 0.06(0.00－0.81)
 ‡

 0.08 0.15  0.39  

Late rice 0.01 0.10(0.00－1.28) 0.05 0.16  0.40  

Single rice 0.07 0.25(0.00－5.15) 0.24 0.56 0.75 

All rice 0.21 1.12(0.00－22.56) 1.00 2.35  1.53  

‡ Numbers in parentheses represent the range of σCV
2
 depending on the spatial correlation 

of the model simulation residuals. Long-distance correlation results in a large 

aggregated σCV
2
 value, whereas short-distance correlation results in a small aggregated 

σCV
2
 value. 
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Table B1 Fraction of straw incorporation and farm manure application in rice cultivation
£
 

Province 

Fraction of 

straw 

incorporation† 

Farm manure  

(kg OM ha-1) ‡ 
 

Province 

Fraction of 

straw 

incorporation 

Farm manure  

(kg OM ha-1) 

Mean Range  Mean Range 

Beijing 0.41  821.6  321.6－1321.6  Henan 0.56  1539.2  776.2－2302.1 

Tianjin 0.29  927.4  123.1－1731.6  Hubei 0.20  2101.3  981.1－3221.6 

Hebei 0.62  1519.3  959.5－2079.1  Hunan 0.34  1836.9  846.7－2827.2 

Shanxi 0.44  1824.8  1195.5－2454.2  Guangdong 0.23  1243.2  634.5－1851.8 

Inner Mon. 0.12  1837.5  1042.4－2632.7  Guangxi 0.27  1384.7  645.4－2124.1 

Liaoning 0.03  1108.5  657.8－1559.3  Hainan 0.22  1408.5  964.8－1852.1 

Jilin 0.03  1308.4  421.5－2195.4  Chongqing 0.17  1608.7  801.5－2415.8 

Heilongjiang 0.23  1800.8  836.0－2765.6  Sichuan 0.18  1922.7  940.7－2904.7 

Jiangsu 0.23  1263.5  605.6－1921.4  Guizhou 0.09  1793.2  740.2－2546.1 

Zhejiang 0.35  1276.2  734.1－1818.3  Yunnan 0.10  1802.3  853.1－2751.5 

Anhui 0.19  1507.5  424.3－2590.7  Shaanxi 0.34  1769.6  555.3－2983.9 

Fujian 0.32  1123.1  852.6－1393.6  Gansu 0.03  1923.0  375.9－3470.1 

Jiangxi 0.38  1612.2  842.3－2382.1  Ningxia 0.15  1448.6  515.5－2381.7 

Shandong 0.55  1032.8  530.8－1534.7  Xinjiang 0.45  1612.0  407.7－2816.3 

£ No data on farm manure application were available for Shanghai and Tibet; as such, data for Jiangsu and Guizhou, 

respectively, were used as substitutes. 

† Statistics derived from the First National Pollution Source Census conducted by the Ministry of Environmental 

Protection of China (CFPC, 2011); however, the range of variation was not provided in the publication. 

‡ Statistics derived from an investigation of organic application in crop cultivation performed by the Institute of 

Atmospheric Physics, Chinese Academy of Sciences. Green manure was not included because it accounts for a 

minor proportion of the total organic matter application in rice cultivation. 
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Table B2 Proportions of different water irrigation patterns
†
 in each grand region

 
5 

   Grand region‡ Baseline fraction Uncertainty fraction 

I 3: 0.92; 4: 0.08£ 1: 0.31; 2: 0.31; 3: 0.30; 4: 0.08 

II 2: 0.95; 4: 0.05 1: 0.32; 2: 0.32; 3: 0.31; 4: 0.05 

III 2: 0.82; 4: 0.18 1: 0.27; 2: 0.28; 3: 0.27; 4: 0.18 

IV 1: 1.0 1: 0.34; 2: 0.33; 3: 0.33 

V 1: 1.0 1: 0.34; 2: 0.33; 3: 0.33 

† Refer to Huang et al. (2004) for the definition of water irrigation patterns  

‡ Grand region I: Guangdong, Guangxi, Hainan, Hunan and Jiangxi; Grand region II: Fujian, Hubei, 

Zhejiang, Jiangsu, Shanghai and Anhui; Grand region III: Chongqing, Sichuan, Yunnan and Guizhou; 

Grand region IV: Heilongjiang, Liaoning and Jilin; Grand region V: other provinces. 

£ Indicates that water irrigation pattern 3 was applied in 92% of the rice cultivation area in Grand 10 

region I (Fig. 2a), and the remaining 8% of the rice area was under continuous flooding (water 

irrigation pattern 4). 
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Table D1 Look-up table of correlation coefficients of the model outputs in two cells due to 5 

data sharing 

Data sharing between cell i and j 
Cij 

 Data sharing between cell i and j 
Cij 

Yield OM Sand WPtn VI  Yield OM Sand WPtn VI 

0† 0 0 0 1 0.069  1 0 0 0 1 0.136 

0 0 0 1 0 0.347  1 0 0 1 0 0.430 

0 0 0 1 1 0.413  1 0 0 1 1 0.520 

0 0 1 0 0 0.295  1 0 1 0 0 0.343 

0 0 1 0 1 0.375  1 0 1 0 1 0.478 

0 0 1 1 0 0.674  1 0 1 1 0 0.776  

0 0 1 1 1 0.796  1 0 1 1 1 0.900 

0 1 0 0 0 0.082  1 1 0 0 0 0.170 

0 1 0 0 1 0.167  1 1 0 0 1 0.225 

0 1 0 1 0 0.436  1 1 0 1 0 0.481 

0 1 0 1 1 0.519  1 1 0 1 1 0.616 

0 1 1 0 0 0.396  1 1 1 0 0 0.458 

0 1 1 0 1 0.499  1 1 1 0 1 0.575 

0 1 1 1 0 0.760  1 1 1 1 0 0.849 

0 1 1 1 1 0.878  1 1 1 1 1 1.000 

1 0 0 0 0 0.066        

†1 means that the two cells share data for the variable, and 0 means that they do 

not share data for the variable 
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Figure Legends 5 

 

Figure 1 Locations of the experimental sites (red stars). The background map is the spatial 

distribution of rice paddy in China. The size of the red star is proportional to the number 

of the measured methane fluxes at the site. The polygons show zones of different crop 

rotation systems involving rice: I—Double rice rotation, II—Mixing zone of rice/rice 10 

rotation and rice/upland crop rotation, III & IV—Rice/upland crop rotation or rice/fallow 

rotation, V & VI—Rice/fallow rotation, and VII—No rice area. 

 

Figure 2 Overall flowchart in estimating regional/national methane emissions and the uncertainties 

by field measurements and modeling 15 

 

Figure 3 Statistical description of the measured methane fluxes. (a) Statistical parameters, and (b) 

Histogram of the measurements. The solid circles represent the sample mean and the 

vertical bars are 95% confidence intervals of the samples, from the 2.5% percentile to the 

97.5% percentile. The dashed line indicates the arithmetic average of all measured fluxes 20 

(mc). The solid line is the area-weighted mean of the methane fluxes (mw), by referencing 

to the areal proportion of each water regime in the national total rice harvesting area, 10% 

continuously flooding, 20% single-drainage and 70% multi-drainage (Zou et al., 2009; 

MWRUC, 1996; Li et al., 2001; Xiong et al., 1992). 

 25 

Figure 4 P-P plots of the Cumulative probability of the measured methane fluxes vs. the Gamma 

distribution. (a) Single drainage irrigation cases, (b) multi-drainage irrigation cases, (c) 

continuously flooding irrigation cases, and (d) all cases after being area-weighted 

(Appendix A). The n, avg. and std. is the sample size, statistical mean and standard 

deviation of the sample methane fluxes, respectively. The α and β is the shape and scale 30 

parameters of the Gamma distribution that were calculated with the statistical mean and 

variance of the measured methane fluxes, β= (std.)
2
/(avg.) and α = (avg.)/β. The diagonal 

line is the 1:1 straight line for a perfect Gamma distribution match. 
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Figure 5 The measured methane fluxes in the experiments against their simulation results by 5 

different methods. (a) R1－S0, (b) R2－S0 and (c) M－S0 which are described in Table 1. 

 

Figure 6 Histograms and their fitting Gamma probability lines of the calculated methane fluxes of 

the 10 km by 10 km rice paddy grids of China. (a) single rice, including rice-fallow and 

rotations of rice with upland crops; (b) and (c) are early and late rice in double rice 10 

rotations. The vertical bars are the histograms of the calculated Fj (Equation 5), and the 

solid line is the theoretic Gamma PDF line with parameters derived from statistics of Fj 

via momentum methods. 

Figure 7 Spatial distributions of rice paddy methane emissions (×10
6
 g CH4 per 10km×10km grid). 

 15 

Figure 8 Composition of the aggregated uncertainty of the national inventory along with the 

spatial autocorrelation in variances of the modeling residues in grids. The distance criteria 

(Dc) is used to define a step function of spatial autocorrelation: if two grids depart by a 

distance beyond Dc, the autocorrelation is 0, otherwise, it is 1. The step function is a 

simplified and the upper limit of the true spatial autocorrelation. With the step function, 20 

larger Dc indicates stronger autocorrelation.  
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Figure 3 5 
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