

Dear Steven,

We agree that both reviewers provided constructive suggestions, we are therefore happy to submit a revised version of our manuscript complying to their suggestions and based on the replies we previously posted.

We notably revised the manuscript by making a more careful use of the term “preference”, providing a more detailed methods section, adding or rephrasing all ambiguous lines of discussion and fixed all the minor edits that were suggested to improve wording clarity.

We hope that you will now find our manuscript suitable for publication in your journal.

Sincerely,

Estelle Couradeau

1 **Diversity and mineral substrate preference in endolithic microbial communities**
2 **from marine intertidal outcrops (Isla de Mona, Puerto Rico).**

3

4 Estelle Couradeau^{1, 2}, Daniel Roush¹, Brandon Scott Guida¹, Ferran Garcia-Pichel¹

5

6 ¹School of Life Sciences, Arizona State University, 85282 Tempe, Arizona, USA

7 ²Laboratoire Biogéosciences, UMR6282, Université de Bourgogne, 21000 Dijon, France

8

9 **Corresponding author:** Ferran Garcia-Pichel ferran@asu.edu

10

11 **Running title:** endolithic cyanobacteria substrate preference

12

13 **Abstract**

14

15 Endolithic microbial communities are prominent features of intertidal marine habitats, where they
16 colonize a variety of substrates, contributing to their erosion. Almost two centuries worth of naturalistic
17 studies focused on a few true-boring (euendolithic) phototrophs, but substrate preference has received
18 little attention. The Isla de Mona (Puerto Rico) intertidal zone offers a unique setting to investigate
19 substrate specificity of endolithic communities since various phosphate rock, limestone, and dolostone
20 outcrops occur there. High-throughput 16S rDNA genetic sampling, enhanced by targeted cultivation,
21 revealed that, while euendolithic cyanobacteria were dominant OTUs, the communities were invariably
22 of high diversity, well beyond that reported in traditional studies, and implying an unexpected
23 metabolic complexity, potentially contributed by secondary colonizers. While the overall community
24 composition did not show differences traceable to the nature of the mineral substrate, we detected

25 specialization among particular euendolithic cyanobacterial clades towards the type of substrate they
26 excavate, but only at the OTU phylogenetic level, implying that close relatives have specialized
27 recurrently into particular substrates. The cationic mineral component was determinant in this
28 preference, ~~calling for suggesting~~ the existence in nature of alternatives to the boring mechanism
29 described in culture that is based exclusively on transcellular calcium transport.

30

31

32 **Introduction**

33

34 In shallow and intertidal marine habitats, endolithic microbes colonize a variety of carbonaceous and
35 phosphatic substrates, such as bone, shell, coraline carbonate, ooliths, as well as limestones, dolostone
36 and phosphorite outcrops (Campbell, 1983). Some of these microbes take advantage of the natural
37 pores or crevices in the solids, but some have the ability to actively bore their way into the substrate.
38 Such microborers, also known as euendoliths (Golubic et al., 1981), build communities that can cover
39 as much as 50% of the exposed solid surface (Golubic et al., 2000) with full colonization times of
40 virgin substrate on the order of months (Gektidis, 1999; Grange et al., 2015). Several long-term
41 geological phenomena are driven by microborers, from the erosive morphogenesis of coastal
42 limestones (Purdy and Kornicker, 1958; Schneider, 1983; Torunski, 1979; Trudgill, 1987) and the
43 destruction of coral reefs and other biological carbonates (Le Campion-Alsumard et al., 1995;
44 Ghirardelli, 2002) to ~~the cementation of loosely bound~~ the formation of lithified laminae of welded
45 carbonate grains in coastal stromatolites (MacIntyre et al., 2000; Reid et al., 2000). Additionally,
46 phototrophic euendoliths can cause significant damage and shell weakening to bivalve populations
47 (Kaehler and McQuaid, 1999). Long-term rates of microborer-driven carbonate dissolution, the
48 “bioerosion” process, range between 20 and 930 g CaCO₃ m⁻² d⁻¹, ~~and~~ are of clear geologic
49 significance (Grange et al., 2015; Peyrot-Clausade et al., 1995; Tudhope and Risk, 1985; Vogel et al.,
50 2000), and may increase under future scenarios of increased atmospheric CO₂ and ocean acidification
51 (Tribollet et al., 2009).

52

53 There exists a very large body of descriptive literature spanning 18 decades, largely based on
54 microscopic observations, documenting the biodiversity of microborers, with contributions in the
55 microbiological, ecological, sedimentological and paleontological fields (Acton, 1916; Al-Thukair et
56 al., 1994; Bachmann, 1915; Batters, 1892; Bonar, 1942; Bornet and Flahault, 1888; Budd and Perkins,

57 1980; Le Campion-Alsumard et al., 1995; Chodat, 1898; Duerden, 1902; Duncan, 1876; Ercegovic,
58 1925, 1927, 1930, Frémy, 1936, 1941; Ghirardelli, 2002; Golubic, 1969; Kölliker, 1859; Lehmann,
59 1903; May and Perkins, 1979; Nadson, 1927; Pantazidou et al., 2006; Perkins and Tsentas, 1976;
60 Wissak et al., 2011). Euendoliths have been reported among eukaryotes (fungi, green and red algae)
61 and prokaryotes (cyanobacteria), taxa where it may have been selected -as a strategy to -escape
62 predation from grazers, protect from UV radiation or acquire nutrients as a tradeoff for the boring
63 energetic cost (Cockell and Herrera, 2008). The most common genera of phototrophic eukaryotic
64 euendoliths are *Ostreobium* and *Phaeophila* in the green algae, as well as the red algal genus *Porphyra*
65 (in its filamentous diploid generation, known also as *Conchocelis* stage). In the cyanobacteria, the
66 pseudofilamentous genera *Hyella* and *Solentia* are quite common (Al-Thukair, 2011; Al-Thukair et al.,
67 1994; Al-Thukair and Golubic, 1991; Brito et al., 2012; Campion-Alsumard et al., 1996; Foster et al.,
68 2009; Golubic et al., 1996), as are some forms in the simple filamentous genus *Plectronema* (Chacón et
69 al., 2006; Pantazidou et al., 2006; Tribollet and Payri, 2001; Vogel et al., 2000). Morphologically
70 complex cyanobacteria such as *Mastigocoleus testarum* (Golubic and Campion-Alsumard, 1973;
71 Nadson, 1932; Ramírez-Reinat and Garcia-Pichel, 2012a) complete the list of common euendoliths.
72 Less common genera of euendolithic cyanobacteria include: *Cyanosaccus* (Pantazidou et al., 2006),
73 *Kyrtuthrix* (Golubic and Campion-Alsumard, 1973) and *Matteia* (Friedmann et al., 1993). To date,
74 tThese genera were all assigned based upon morphological criteria and could represent morphological
75 variations of the same types (Le Campion-Alsumard and Golubic, 1985), highlighting the need to re-
76 assess the diversity of euendolithic cyanobacteria using a combination of characters including genetic
77 markers, a task yet to be undertaken with any breadth.

78
79 Modern genomic methods for community fingerprinting have, more recently, been applied to provide
80 an alternative complementary and more comprehensive, comprehensive description of endolithic
81 communities. Some studies, focused on phototrophs from marine carbonates, revealed that, while some

82 biodiversity had been missed by deploying ~~merely~~ morphological studies, there was also congruency
83 between DNA-based surveys, and the traditional literature (Chacón et al., 2006; Ramírez-Reinat and
84 Garcia-Pichel, 2012b). DNA-based studies ~~brought to our attention~~have revealed that the endolithic
85 habitat at large can harbor complex communities of microbes, ~~not just composed~~in addition to ~~of~~
86 euendoliths, particularly when the substrate rocks are naturally porous, or when they have been
87 rendered porous by the action of euendoliths themselves. Horath and Bachofen 2006, for example,
88 investigating terrestrial endolithic communities in dolomite outcrops in the Alps, found a large diversity
89 of presumably chemotrophic bacteria and archaea, in addition to expected green algae and
90 cyanobacteria. Similar conclusions could be drawn from the work of de la Torre et al. (De la Torre et
91 al., 2003) on Antarctic sandstone cryptoendoliths, those of Walker and colleagues (Walker et al., 2005;
92 Walker and Pace, 2007) on terrestrial limestones, sandstones and granites or the recent contribution of
93 (Crits-Christoph et al., 2016) who used a metagenomic approach to investigate the chasmoendolithic
94 communities of the hyper-arid Atacama desert. However, no high throughput sequencing studies are
95 available on the globally significant intertidal endolithic communities. ~~no studies are yet available on~~
96 ~~the globally significant intertidal endolithic communities that have used the power of high throughput~~
97 ~~sequencing techniques.~~

98

99 Tribollet (2008) provided an account of the dynamic changes in microborer community composition
100 taking place after coral death, which obviously constitute a true succession in the ecological sense, with
101 pioneer euendoliths (such as *Mastigocoleus testarum*) and secondary colonizers such as *Ostreobium*
102 *quekettii* and *Plectonema terebrans*, as well as fungi (Grange et al., 2015; Tribollet, 2008). During
103 laboratory studies with the cultivated strain of *Mastigocoleus testarum* strain BC008, used as a model
104 to understand the physiology of cyanobacterial boring (Garcia-Pichel et al., 2010; Guida and Garcia-
105 Pichel, 2016; Ramírez-Reinat and Garcia-Pichel, 2012b), we ~~could show~~found that, among the
106 carbonates, this strain excavated ~~fastest~~most rapidly into various types of calcite and aragonite

107 minerals (CaCO_3). It could bore slowly into strontianite (SrCO_3), but was unable to penetrate into
108 magnesite (MgCO_3), dolomite (CaMgCO_3), witherite (BaCO_3), rhodochrosite (MnCO_3), siderite
109 (FeCO_3) or ankerite ($\text{CaFe}(\text{CO}_3)_2$) (Ramírez-Reinat and Garcia-Pichel, 2012a). However, literature
110 reports do exist detailing microborings in modern and fossil dolomitic substrates (see e.g. (Campbell,
111 1983; Golubic and Lee, 1999). Similar ~~arguments substrate preferences have also been observed can be~~
112 ~~made~~ for phosphates: *M. testarum* strain BC008 did not bore into calcophosphatic substrates, including
113 hydroxyapatite, vivianite or dentine; yet, the literature is replete with reports of cyanobacterial
114 microborings on biotic and abiotic phosphatic rocks (Soudry and Nathan, 2000; Underwood et al.,
115 1999; Zhang and Pratt, 2008)). The expression of such a mineral substrate preference among the
116 pioneer euendolithic cyanobacteria could principally drive the whole community towards a different
117 successional sequence with distinct mature community assemblages and metabolic potentialities. We
118 wanted to ask the question if evolutionary specialization has resulted in a highly adapted endolithic
119 flora for each type of mineral substrate, and if there exist specialized apatite-borers, dolomite-borers, or
120 carbonate-borers in nature. ~~Surprisingly, this aspect of endolithic microbiology had not been directly~~
121 ~~addressed yet.~~
122

123 In order to answer these questions, we investigated in depth the marine endolithic communities of Isla
124 de Mona (PR), a small, uninhabited Caribbean island offering a variety of coastal cliffs composed of
125 dolomite and limestone, as well as raised aragonitic and phosphatic reefs, with the dual purpose to (i)
126 describe the microbial diversity of intertidal endolithic community at high resolution and (ii) to test the
127 effects of substrate composition on community structure in a single geographic location with common
128 bathymetry (the intertidal notch), controlling for other known major determinants of community
129 composition.

130

131 Materials and Methods

132

133 *Sampling site and procedure*

134

135 Samples were obtained from Isla Mona (18.0867° N, 67.8894° W), a small (11 km by 7 km) carbonate
136 island 66 km W of Puerto Rico. Isla Mona is a protected habitat and all necessary permits were ac-
137 quired from the Departamento de Recursos Naturales y Ambientales prior to arrival. The present study
138 did not involve endangered or protected species. Endolithic communities were obtained by sampling
139 different locations from nine separate island localities. Rock samples containing endolithic biomass,
140 verified using a digital field microscope, were chipped off from large boulders and rock walls using a
141 standard geological hammer. The hammer was thoroughly washed with surrounding sea water at each
142 sampling point. Material was predominantly collected within the boring notch of the intertidal zone.
143 Bathymetric samples were collected via SCUBA diving at sample site K at depths of 3.5, 4.6, 7, and
144 9.1 meters. ~~Three replicates were~~ Each sample was broken into three pieces-, each biological replicate
145 was stored in a ~~taken per sample which consisted of~~ sterile 50 mL falcon tubes ~~filled with material~~, one
146 replicate was air dried for mineralogical analysis, one was kept viable in seawater for strain isolation
147 and another was preserved *in situ* in 70% ethanol for DNA extraction. Air drying and alcohol preserva-
148 tion were done in the field. Samples were shipped at room temperature, in the dark for 5 days, and,
149 upon arrival in the lab, the preserved samples were immediately stored at -20°C until extractions were
150 performed. Aliquots of local seawater were collected at sample site K and filtered through 0.22 µm
151 syringe filters into sterile 50 mL falcon tubes. After 5 days of transit at room temperature in the dark,
152 the seawater sample was stored at 4 °C in the dark for an additional week before being processed for
153 physico-chemical analysis.

154

155 *Bulk powder X ray diffraction and elementary analyses*

156

157 A fragment of each sample was ground down to powder in 100% ethanol. XRD patterns were collected
158 using Panalytical X’Pert Pro diffractometer mounted in the Debye-Scherrer configuration with a CuK α
159 monochromatic X-Ray source. Data were recorded in continuous scan mode within a 10–90° 2 θ range.
160 X’Pert High Score plus software was used to identify mineral phases and ~~retrieved~~ their relative
161 concentration using the automatic Rietveld refinement method implemented in the software under
162 default parameters. The elementary composition of the rocks and water sample analyses were
163 performed by the Goldwater Center at Arizona State University using a Inductively Coupled Plasma
164 Optical Emission Spectrometer (ICP-OES) - Thermo iCAP6300.

165

166 *Total genomic DNA purification*

167

168 The surface of the ethanol fixed samples was brushed vigorously with a sterile toothbrush and sterile
169 MilliQ water to remove epilithic material. A chip of 8 cm³ was further ground~~ed~~ in a sterile mortar as
170 recommended by (Wade and Garcia-Pichel, 2003). 0.5 g of the obtained coarse powder was then
171 transferred into the bead tube of the MoBio PowerPlant Pro kit (Mo Bio Laboratories, Inc., Carlsbad,
172 CA, USA). The first lysis step of the kit was modified ~~as follow~~ by homogenizing bead tubes ~~were~~
173 ~~homogenized~~ horizontally at 2,200 rev/min for 10 minutes and 7 freeze-thaw cycles ~~were applied~~
174 (Wade and Garcia-Pichel, 2003). The next steps of the extraction were conducted following the MoBio
175 PowerPlant Pro kit following manufacturer’s guidelines.

176

177 *16s rRNA gene library preparation and sequencing*

178

179 The 16S rRNA gene V3 - V4 variable region was targeted using PCR primers 341F
180 (CCTACGGNGGCWGCAG) and 806R (GGACTACVSGGTATCTAAT) with a barcoded forward
181 primer. The PCR amplification was performed using the HotStartTaq Plus Master Mix Kit (Qiagen,

182 USA) under the following conditions: 94°C for 3 minutes, followed by 28 cycles of 94°C for 30
183 seconds, 53°C for 40 seconds and 72°C for 1 minute, followed by a final 5min elongation step at 72°C.
184 PCR product were further purified and pooled into a single DNA library using the Illumina TruSeq
185 DNA library preparation protocol. This library was further sequenced on a MiSeq following the
186 manufacturer's guidelines. The library preparation, sequencing paired ends assembly and first quality
187 trimming (with phred score of Q25 cutoff) ~~was~~were performed by MR DNA (www.mrdnalab.com,
188 Shallowater, TX, USA).

189 16S rDNA sequences from the newly cultured euendolithic strains were retrieved using the PCR
190 condition and primers described by (Nübel et al., 1997) followed by sanger sequencing. Briefly, the
191 primers used were the forward Cya106F (CGG ACG GGTGAGTAACGCGTGA) and an equimolar
192 mixture of the Cya781R(a) (GACTACTGGGTATCTAATCCCATT) and Cya781R(b) (GACTAC
193 AGGGGTATCTAATCCCTTT) as reverse. The PCR amplification was performed using the GoTaq
194 enzyme and master mix (Promega, Madison, USA) at 1X concentration. The amplification conditions
195 were as follow: after an initial denaturation step 94°C for 5 min, 35 PCR amplification cycles were
196 performed, each consisting of 1 min denaturation step at 94°C, 1 min annealing step at 60°C, and 1 min
197 elongation step at 72°C.

198

199 *OTU table building and analysis*

200

201 Sequences were further processed using the Qiime version 1.9 (Caporaso et al., 2010). The sequences
202 were first run through the *split_libraries.py* script under the default parameter that includes barcodes
203 removal, quality filtering (sequences of less than 200bp or with homopolymer runs exceeding 6bp were
204 removed) and split of the dataset per sample. The output file was further processed through the
205 *pick_open_reference_otsu.py* script using the default parameters except for the taxonomic assignment
206 that was done by the RDP classifier (see parameter file in supplementary information for more details).

207 This step clustered the sequences at a similarity threshold of 97% (Edgar, 2010) to build Operational
208 Taxonomic Units (OTUs), assign their taxonomy and further reported ~~their~~ specific abundance in-for
209 each sample into an OTU table. Because in this case we were not interested into the rare biosphere but
210 focused on the most abundant OTUs and how they vary, we filtered the OTU table to remove the rare
211 OTUs. The OTUs retained were those that occurred in at least 5 samples among the 34 analyzed, or
212 that represent more than 0.1% of the total sequences found in a particular sample. By doing this, we
213 eventually analyzed 90% of all the single sequences but only 11% of the initial OTUs. The Qiime
214 script *summarize_taxonomy_through_plots.py* was run on the final OTU table for all the prokaryotes
215 and for the Cyanobacteria only (filtering out the chloroplasts) in order to build the summarized
216 microbial community composition bar graphs displayed on the figure 2.

217

218 *Accession numbers*

219 One representative sequence per OTU was deposited to genebank under the accession numbers
220 KT972744-KT981874. The 16S rDNA sequences of the new euendolithic strains described in this
221 article received the following accession numbers: *Ca. Pleuronema*Pleurinema perforans IdMA4
222 [KX388631], *Ca. Mastigocoleus* perforans IdM [KX388632], *Ca. Pleuronema*Pleurinema testarum
223 RPB [KX388633].

224

225 *Meta-analysis of microbial communities*

226

227 For comparison, rRaw sequences from datasets ID 662/678/809/627/713/925 were retrieved from the
228 Qiita repository along with their mapping table. All these studies used comparable sequencing depth,
229 technology and targeted the same region of the 16 rRNA gene compared to the present study. Two
230 samples from Alchichica cyanobacteria dominated microbialites communities (Couradeau et al., 2011)
231 were processed in parallel to the Isla de Mona samples (same extraction methodology, sequenced in the

232 same MiSeq run), and also they were included in this analysis ~~as well~~. The sequences were all
233 aggregated into a masterfile that was processed in Qiime version 1.9 (Caporaso et al., 2010). The same
234 exact procedure than the one described above was used to pick OTUs. Again we retained the OTUs that
235 occurred at least in 5 samples. We ran the *jackknifed_beta_diversity.py* pipeline using the Bray Curtis
236 metrics under default parameters. The obtained distances were used to cluster samples under a
237 UPGMA hierarchical clustering method and 5000 sequences were included in each jackknifed subset in
238 order to generate nodes support.

239

240 *Differential abundance of OTUs analyses*

241

242 To determine if some OTUs were more associated to certain type of substrates we ~~run~~ran the
243 *differential_abundance.py* of the Qiime 1.9 package (Caporaso et al., 2010) using the DESeq2 method
244 (Love et al., 2014), under a negative binomial generalized linear model. This method was initially
245 developed to assess the differential gene expression from RNA seq data but can be applied to any count
246 matrix data such as OTU tables (Love et al., 2014). It was recently implemented for the treatment of
247 16S rDNA OTU table and has been widely used since (e.g. (Debenport et al., 2015; Pitombo et al.,
248 2015)) because it (i) is a sensitive and precise method, (ii) controls the false positive rate (Love et al.,
249 2014) and (iii) it uses all the power of the dataset without the need to rarefy the OTU table (McMurdie
250 and Holmes, 2014). After checking the good agreement between the fit line and the shrinked data on
251 the dispersion plot, a Wald test was applied to each OTU to reject the null hypothesis ($p < 0.05$) being
252 that the logarithmic fold change between treatments (i.e. in our case type of mineral substrate) for a
253 given OTU is null.

254

255 *Phylogeny reconstruction*

256

257 In order to determine which of the cyanobacterial OTUs of the dataset were possible euendolithic
258 organisms, we built a phylogeny to assess their proximity to proven boring cultured strains. The
259 maximum-likelihood phylogenetic reconstruction was performed using TREEFINDER (Jobb et al.,
260 2004) under a general time reversible (GTR) and a four-category discrete approximation of a Γ
261 distribution. Bootstrap values were inferred from 1000 replicates. The sequence dataset used for the
262 reconstruction was first aligned with MAFFT (Katoh et al., 2005) and then manually checked and
263 trimmed using the MUST package (Philippe, 1993).

264

265 **Results & Discussion**

266

267 *Geological setting of Isla de Mona outcrops.*

268

269 The island is an 11 by 7 km emerged platform of Miocene Isla de Mona Dolomite (up to 80 m thick)
270 topped by a thinner (up to 40 m) layer of Miocene Lirio limestone (Briggs and Seiders, 1972; Frank et
271 al., 1998). It is partially surrounded in its Southern and Southwestern shores by a Pleistocene raised
272 reef flat, mostly composed of biogenic carbonates (Fig. 1). The island also harbors secondary
273 phosphorite deposits formed by the diagenetic alteration of guano, most typically associated with an
274 extensive system of karstic caves at the interface of limestone and dolostone (Briggs, 1959). Isla de
275 Mona was never continuously inhabited, – The island was mostly used as a guard post over the Mona
276 Passage throughout the 20th century, and declared a Nature Preserve in 1993 (National Parks Register,
277 USA). The coastal area has been protected from disturbance ever since. We took advantage of this
278 unique and pristine geological setting to sample dolostones, limestones and phosphorites exposed to
279 similar environmental conditions. We analyzed a set of 34 samples consisting of pieces of exposed
280 rock, in most cases taken directly at the intertidal notch. Location of sampling sites are in the simplified
281 geological map in Figure 1a. The mineralogical composition of each sample (Fig. 2), determined using

282 bulk powder X-Ray diffraction, confirmed the presence of apatite ($\text{Ca}_5(\text{PO}_4)_3(\text{OH},\text{Cl},\text{F})$), dolomite
283 ($\text{CaMg}(\text{CO}_3)_2$), calcite (CaCO_3) and aragonite(CaCO_3) in various proportions depending of the
284 sampling site (Fig. 2a).

285

286 *The endolithic microbial communities*

287

288 We studied the endolithic community composition by analyzing the 16S rDNA diversity present in total
289 genomic DNA extracted from the rock after aggressively brushing away epilithic growth from the
290 external sample surface. The 16S rDNA sequences were obtained after specific PCR amplification and
291 Illumina-based high-throughput sequencing, with one library per sample (Table S2). We clustered
292 sequences into OTUs (Operational Taxonomic Units) based on a 97% similarity criterion, and further
293 filtered the dataset to remove the rare OTUs, focusing our study on OTUs that occurred in at least five
294 separate samples, or those that made up more than 0.1% of all sequences in any one sample. Bacterial
295 OTU richness in these samples was 4058 ± 1252 , as given by the chao1 metric (Figure 2c). Thus,
296 comparatively our endolithic communities are of rather low diversity, an order of magnitude lower than
297 current estimates assigned to bulk soil bacterial communities (Roesch et al., 2007), but similar to other
298 microbial communities such as biological soil crusts (Couradeau et al., 2016), microbial mats
299 (Hoffmann et al., 2015) or stromatolites (Mobberley et al., 2011), that are dominated by cyanobacterial
300 primary producers. This suggests that endolithic habitat nurtured by the presence of cyanobacterial
301 primary producers can support the development of a high diversity of microorganisms even if this type
302 of habitat is expected to be nutrient limited due to its low connectivity with sea water (Cockell and
303 Herrera, 2008). Taxonomic assignment of the OTUs on the basis of the Greengene database (McDonald
304 et al., 2012), allowed us to reconstruct the endolithic prokaryotic communities from Isla de Mona at
305 various level of taxonomic resolution. At the phylum level (Figure 2b), the analysis revealed complex
306 microbial communities with numerically very significant populations of bacteria other than

307 Cyanobacteria: *Proteobacteria*, *Chloroflexi*, *Actinobacteria* and *Bacteroidetes*. In fact, the contribution
308 of cyanobacteria to the total sequence richness was only $12 \pm 3\%$. These communities clearly host not
309 only a large number of bacterial types, but also a wide diversity of phylogenetic and metabolic
310 potential beyond oxygenic photosynthesis. Clearly, mature endolithic cyanobacterial communities in
311 this study are much more complex than the ~~overwhelming~~ majority of the ~~traditional~~ literature ~~would~~
312 ~~suggest to date~~ (for example, the exhaustive descriptive literature review in the introduction does not
313 report beyond cyanobacteria and eukaryotic algae). While it is proven ~~by the use of model~~
314 ~~organisms that some axenic in-culture that~~ cyanobacteria ~~alone~~ are able to initiate excavation on virgin
315 substrate (Ramírez-Reinat and Garcia-Pichel, 2012a), it is interesting to entertain that in such complex
316 communities, other metabolic activities (of co-occurring microorganisms), particularly those that result
317 in pH changes might play a significant role on the determination of the local saturation index of the
318 carbonate mineral (Baumgartner et al., 2006; Dupraz et al., 2009; Dupraz and Visscher, 2005), and in
319 this way influence the overall mineral excavation yield or rates. At this level of taxonomic resolution,
320 we did not detect any significant association of substrate mineralogy and community composition (as
321 judged by non significant Spearman's ρ when comparing each phylum's relative abundance to
322 mineralogical composition, not shown).

323

324 Because endolithic communities have not received much attention, we integrated our dataset into a
325 meta-analysis of various cognate microbial communities, for which technically comparable datasets
326 were publicly available (<http://qiita.microbio.me>). To do so, we aggregated all the sequences from the
327 selected Qiita datasets into a single file that was used to pick and cluster 16S rDNA OTUs anew, and
328 conducted similarity analyses. The meta-community analysis revealed that endolithic communities
329 clustered together, and apart from other types of phototrophic microbial communities in terms of
330 composition (beta-diversity). The fact that they clustered together indicates that their microbial
331 assemblages are recognizable and distinct beyond just their belonging to the marine habitat itself, in a

332 microbiological and presumably adaptive way. However at this stage A cautionary alternative
333 reading, we cannot exclude that the observed pattern however, could be that this pattern represents a
334 biogeographical island effect. Further studies involving a larger dataset of endolithic communities will
335 be necessary to disentangle the local signature controlled by environmental parameters from the
336 endolithic signature presumably universal to all endolithic communities. , in that all of our samples
337 come from a relatively small geographical area. This alternative explanation is unlikely given the
338 eosmopolitan nature of marine cyanobacteria (Garcia-Pichel et al., 1996; Lodders et al., 2005)
339 Interestingly, our endolithic community samples could be separated into 2 self-similar clades (A and B
340 Figure 3) but so far we cannot ascertain a factor that would drive the observed separation beyond the
341 fact that it is not substrate type. While it would be of interest to compare our communities to other
342 endolithic communities, such as those studied by (Chacón et al., 2006; Crits-Christoph et al., 2016;
343 Horath and Bachofen, 2009; De la Torre et al., 2003) this is not technically possible, given that all of
344 those studies used alternative methods for community analyses (Clone libraries, DGGE, metagenomes)
345 that do not allow direct comparisons.

346

347 *A diverse cyanobacterial community dominated by likely euendoliths*

348

349 Because they comprise the pioneer microborers and primary producers within many endolithic
350 communities, cyanobacteria are of particular interest in this study. We therefore analyzed cyanobacteria
351 at a higher resolution. The cyanobacterial community appeared quite diverse with a specific chao1
352 richness of 484 ± 184 , certainly much more genetic diversity among this group than could be surmised
353 from the wealth of microscopically based accounts in the botanical literature (Chazottes et al., 1995;
354 Pantazidou et al., 2006; Sartoretto, 1998; Tribollet et al., 2006). In these studies typically one finds
355 reports of anywhere from 1 to 5 morphotypes. Even accounting for the fact that morphotypes typically
356 underestimate genetic diversity by a significant fraction (Nübel et al., 1999) this is a very large

357 underestimation of oxygenic phototroph diversity. Phylotypes assignable to the orders
358 *Pseudanabaenales*, *Chroococcales*, *Nostocales* and *Stigonematales* were most common and
359 widespread. Again no pattern linking mineralogy to microbial community composition arose at this
360 taxonomic level, as judged by the non-significant Spearman's ρ when comparing the relative
361 abundance of each cyanobacterial to mineralogical composition (not shown). A combination of
362 literature search and additional efforts of cultivation and genetic characterization of isolates, allowed us
363 to attempt the assignment of a true-boring (euendolithic) role to some of our cyanobacterial OTUs
364 (Table 1 and Figures S2-S3). Interestingly, out of the five most abundant OTUs in our combined
365 dataset, four (NR_OTU741, OTU 842393, NR_OTU193 and OTU 351529) could be deemed as likely
366 euendoliths, given their close phylogenetic affiliation to cultivated isolates proven in the laboratory to
367 be able to bore. The fifth most abundant OTU (OTU 186537) fell between *Mastigocoleus testarum*
368 BC008 (a proven euendolith) and *Rivularia atra* (not described as boring in the literature), so its
369 capacities remain unclear. Notably, the most abundant OTU, NR_OTU741 in our set is virtually
370 indistinguishable from one of our isolates obtained from the same samples, the boring strain *Ca.*
371 *Pleuronema**Pleurinema* *perforans* IdMA4 (similarity > 99%), which is not only the most abundant
372 cyanobacterial OTU but also the second most abundant bacterial OTU overall in our dataset. Overall
373 the 7 OTUs that could be assigned as possible euendolith based on their phylogenetic proximity to
374 known microborers account for 0.8% to 73% (average value 29%) of the total number of sequences
375 depending on the sample considered. These results suggest that eudendoliths compose a major fraction
376 of the community, one that ~~does~~ not only represents an initial set of pioneers, but one that maintains
377 relevance even after bioerosive degradation and reworking of the mineral substrates allow the
378 colonization of newly made pore spaces by non-boring endoliths.

379

380 On analyzing the diversity of the possible euendoliths detected in this dataset, we realized that while
381 many of the most common known genera of cyanobacterial microborers are represented and abundant,

382 the thin, filamentous *Plectonema terebrans* is not. This was surprising because *Plectonema terebrans*
383 has always been described as an important member of the euendolithic community ~~who can account~~
384 ~~for accounting for~~ up to 80% of the total of microborer biomass (Tribollet, 2008) and is found
385 associated to *Mastigocoleus testarum*. This apparent paradox is likely not due to the absence of the
386 organism, but to failure to properly identify it molecularly, due to the lack of reference sequences in the
387 databases. Indeed morphotypes resembling *Plectonema terebrans* ~~was were~~ visually recognized, but
388 not detected molecularly in the extensive study of euendolithic cyanobacteria from various locations by
389 (Ramírez-Reinat and Garcia-Pichel, 2012b). In the present dataset *Plectonema* could have been
390 assigned to another member of the Oscillarioles, such as *Phormidium* or *Halomicronema*, which
391 represent 10 and 4.6% , respectively, of the cyanobacterial sequences. A *bona fide* isolate proven to
392 bore in the lab will be needed before we can advance regarding the presence and abundance of simple
393 filamentous euendolithic cyanobacteria anywhere. Among the cyanobacterial taxa detected, the
394 following have never been reported to be true borers: Gloeobacterales, Nostocaceae, Acaryochlorales,
395 Cyanobacteriaceae, Spirulinaceae, Pseudanabaenales. In all, these cyanobacteria contribute at least to
396 some 43 ±20 % indicating that a significant proportion of the community is likely made up of
397 adventitious endoliths. A study of the temporal dynamics of colonization could help understand the true
398 role of each taxon.

399

400 *Substrate preference among cyanobacteria*

401

402 We knew from the experimental study of the model euendolith *Mastigocoleus testarum* strain BC008,
403 that this particular organism exhibits a clear boring substrate preference. It bores into Ca-carbonates
404 (like aragonite and calcite) and to a lesser extent Sr-carbonate (strontianite), but not into CaMg-
405 carbonate like dolomite (Ramírez-Reinat and Garcia-Pichel, 2012a). This strain remains the single case
406 where the boring preference has been directly tested, but it is unknown if this preferential behavior is

407 representative of euendoliths at large. Only a few studies examined endolithic communities colonizing
408 dolostone, (Jones, 1989) provided the first comparison of endolithic communities from dolostones and
409 limestones from Grand Cayman Ironshore. He observed that dolostones were less colonized by
410 endoliths than limestones and concluded that the bioerosion of limestones was faster due to the more
411 abundant endolithic flora while the erosion pattern of the dolostone was slower and allowed the
412 development of more epiliths. When looking at the endolithic microbial diversity of terrestrial
413 dolostones (Horath et al., 2006) found the same cyanobacterial genera than the ones typically described
414 on freshwater limestones substrates (Norris and Castenholz, 2006) while (Sigler et al., 2003) concluded
415 that the endolithic dolostone phototrophic community resembled other desiccation-tolerant endolithic
416 communities. The question of whether there really exists a specialized community associated to
417 dolostone *vs.* limestone remained clearly open.

418

419 Our own data showed no specificity for substrate at family level, highlighting the need to analyze this
420 at a phylogenetically deeper resolution. To do so, we analyzed how cyanobacterial OTUs were
421 differentially represented in sample subsets from contrasted mineralogical substrates using the DESeq2
422 method (Love et al., 2014). This method was developed to analyze RNA-seq datasets but can be used
423 on any count matrix such as an OTU table. This statistical framework is sensitive and precise and does
424 not involve rarefying the dataset to an even sampling depth, so that the entire statistical power of the
425 data is accounted for (McMurdie and Holmes, 2014). We used it to determine whether any given OTU
426 is significantly differentially represented in a particular subset of samples sharing a common
427 mineralogical substrate compared to another set. In comparing OTU detected in samples were
428 mineralogically dominated by Ca-carbonates (calcite or aragonite, n=13) with those that were dolomitic
429 in nature (CaMg-carbonate, n=14), we found 31 OTUs to be significantly enriched in Ca-
430 carbonate substrates ($p<0.05$; corresponding to \log_2 fold difference $> |2.83|$), while 22 preferred
431 dolomite with $p<0.05$, out of 1039 cyanobacterial OTUs considered. It becomes clearResults suggest

432 that substrate preferences are ~~indeed~~ found when one looks at fine taxonomic resolution, and that some
433 likely euendoliths show such preference: *Mastigocoleus testarum* close relative NR_OTU193 prefers
434 the Ca-carbonate pole (\log_2 fold difference = |3.4|) while another possible euendolith NR_OTU741
435 belonging to the *Pleurocapsales* clearly prefers dolomite (\log_2 fold difference = |1.7|). It is also clear
436 that for most of the OTUs, either there is not sufficient resolution at the 16S rDNA level to detect it, or,
437 more parsimoniously, these OTUs represent taxa that can colonize various substrates. Many in this
438 group of OTUs ~~showing noare not preference differentially represented on a particular substrate type,~~
439 ~~suggesting that they~~ may be adventitious endoliths that do not bear the burden of boring into the
440 substrate and can potentially colonize any substrate~~—~~. ~~However, but~~ at least some ~~of these~~ represent
441 most likely euendoliths (NR_OTU4, OTU 351529 and OTU 842393), and still ~~they do not seem to~~
442 ~~show preference at this level of genetic resolutionare not differentially represented with respect to the~~
443 ~~mineral phase they colonize.~~

444

445 Using the same method, we then compared Ca-carbonate dominated samples (n=14) to Ca-Phosphate
446 dominated samples (n=3). ~~Although t~~The paucity of phosphate samples ~~certainly~~ restricted our
447 statistical power, ~~but even then~~ we were ~~still~~ able to identify 81 OTUs that were statistically
448 significantly enriched on the phosphatic substrate ($p<0.05$) side, while only 21 were enriched in
449 carbonates ($p<0.05$) (Figure 5). This suggests an asymmetrical effect of carbonate *vs.* phosphate
450 substrate types, the latter being a more powerful driver of differential abundance among cyanobacteria.
451 But again, in this case, the majority of OTUs, including some of the most abundant, were
452 ~~promiscuouswidespread across different substrate types~~. *Mastigocoleus* sp. (NR_OTU193) appeared
453 clearly enriched in the carbonates (\log_2 fold difference = |3.8|), while the other potential borers
454 including the *Pleurocapsales* OTUs did not exhibit statistically significant ~~differential abundance with~~
455 substrate ~~preference~~.

456

457 In all, these results suggest that some cyanobacteria do have a substrate preference, and that these
458 preferences sometimes occur among closely related clades (like NR_OTU193 and NR_OTU4), which
459 do exhibit differential occurrence. These comparisons highlight the differential role of the cationic *vs.*
460 the anionic mineral component. NR_OTU193 for instance showed a higher rate of occurrence
461 preference for when testing for both components, suggesting that it prefers calcium over magnesium in
462 terms of cation and carbonate over phosphate as an anion. On the other hand, NR_OTU741 only
463 appeared differentially represented when the cationic part of the mineral varied. Finally, it is important
464 to note that only a small fraction of the cyanobacterial community seems to be influenced by the
465 substrate, 3.5% of the total number of species on average accounting for 16 ±4% of the total number of
466 cyanobacterial sequences analyzed. These results are consistent with the idea that borers may be
467 specialized, but ancillary endoliths are not. The substrate specialization of euendoliths may be due to
468 the physiological requirements of excavation into specific mineral types. Future endolithic community
469 metagenomic reconstructions and comparisons could aid in the identification of alternative pumps that
470 may be specific to mineral types.

471

472 *Implications for the diversity of the boring mechanism and substrate-driven evolution of euendoliths*

473

474 A question that follows naturally from the previous findings is how such a substrate preference may
475 relate to the physiological mechanism of boring. The model strain *Mastigocoleus testarum* BC008 is
476 clearly specialized in the excavation of calcium carbonate through the uptake of calcium anions at the
477 boring front and their active transport along the filament toward the surface (Garcia-Pichel et al., 2010;
478 Guida and Garcia-Pichel, 2016). In culture, *M. testarum* strain BC008 could not bore into dolomite or
479 magnesite. In agreement with this, the closest phylogenetic allies to this strain in our communities,
480 (NR_OTU193) did also show a preference-higher rate of occurrence for in calcium carbonates over as
481 compared to magnesium carbonate. Experiments with natural endolithic communities using calcium

482 pump inhibitors have shown that the calcium-based mechanism is commonly at work in many localities
483 but, at least in one case, boring was impervious to inhibition, pointing to the potential existence of
484 mechanistic diversity (Ramírez-Reinat and Garcia-Pichel, 2012b). Because we could not detect
485 preferential enrichment of *bona fide* euendoliths in the phosphate compared to the carbonate substrates,
486 we must assume that the mineral anion is not a strong determinant of substrate choice in these
487 communities. The boring mechanism described for *M. testarum* BC008 is in fact only dependent on the
488 nature of the cation, and could work in principle on calcium phosphates as well, and yet *M. testarum*
489 strain BC008 did not bore into pure hydroxyapatite in the laboratory. These contrasted findings
490 highlight that there must be factors other than the cationic part of the mineral determining the
491 excavation ability of a particular strain and that the boring mechanism proposed for *M. testarum* strain
492 BC008 might be only incompletely described. Other mechanisms have been suggested to explain
493 boring mechanism which have been invalidated for the model organism *M. testarum* strain but may
494 prove themselves valuable for other taxa. The dissolution of carbonate mineral by acid excretion was
495 proposed by (Haigler, 1969) and (Golubic et al., 1984). This mechanism could involve spatial and
496 temporal separation of photosynthesis vs. respiration by Cyanobacteria or acid production as a
497 byproduct of other heterotrophic bacteria activity (Garcia-Pichel, 2006). These hypotheses will need to
498 be re-evaluated for other euendoliths as well as in natural communities.

499

500 Conclusion

501

502 An in depth survey of endolithic microbial communities associated to Isla de Mona intertidal outcrops
503 revealed a high diversity of organisms, comparable to those ~~one~~ found in other benthic marine
504 microbial communities such as the intertidal sediments and rock surfaces. These complex communities
505 likely host various microbial metabolic guilds beyond oxygenic phototrophs described during more
506 than a century of naturalist's descriptions. The analysis of the cyanobacterial community revealed the

507 prominence of possible euendolithic species belonging to all the known microborers genera except
508 perhaps *Plectonema*. Contrasting with results obtained at higher taxonomical level, evidence of
509 substrate preference could only be detected among cyanobacteria at the OTU level and close relatives
510 have different distribution patterns, arguing for the existence of boring mechanisms somewhat different
511 to the one described in the model strain *Mastigocoleus testarum*.

512

513 **Acknowledgment**

514 The authors would like to thank the Goldwater Materials Science Facility for their support in sample
515 preparation and analysis. The authors would like to acknowledge Christophe Thomazo for his
516 contribution to the “Euendolight” project and Purificación López-García for providing the Alchichica
517 samples.

518

519 **Authors contribution:** F. G.-P. and E.C. designed the experiment. F. G.-P., D.R., B.S.G. performed the
520 field work. The experimental work was done by D.R. and E.C. E.C. analyzed the results. and E.C. and
521 F. G.-P. prepared the manuscript with contribution from all co-authors.

522 **References**

523 Acton, E.: On A New Penetrating Alga, *New Phytol.*, 15(5-6), 97–103, 1916.

524 Al-Thukair, A. A.: Calculating boring rate of endolithic cyanobacteria *Hyella immanis* under laboratory
525 conditions, *Int. Biodeterior. Biodegradation*, 65(4), 664–667, 2011.

526 Al-Thukair, A. A. and Golubic, S.: Five new *Hyella* species from the Arabian Gulf, *Algol. Stud. für*
527 *Hydrobiol. Hydrobiol. Suppl.* Vol., 64, 167–197, 1991.

528 Al-Thukair, A. A., Golubić, S. and Rosen, G.: New endolithic cyanobacteria from the Bahama bank and
529 the Arabian gulf: *Hyella racemus* sp. nov., *J. Phycol.*, (30), 764–769, 1994.

530 Bachmann, E.: Kalklösende Algen, *Ber. Dtsch. Bot. Ges.*, (33), 45–57, 1915.

531 Batters, E. A. L.: On Conchocelis, a new genus of perforating algae, *Phycol. Mem.*, 1, 25–29, 1892.

532 Baumgartner, L. K. K., Reid, R. P. P., Dupraz, C., Decho, a. W. W., Buckley, D. H. H., Spear, J. R. R.,
533 Przekop, K. M. M. and Visscher, P. T. T.: Sulfate reducing bacteria in microbial mats: Changing
534 paradigms, new discoveries, *Sediment. Geol.*, 185(3–4), 131–145, 2006.

535 Bonar, L.: *An Unusual Ascomycete In The Shells Of Marine Animals*, University of California Press,
536 University of California Publ. Botany., 1942.

537 Bornet, E. and Flahault, C.: Note sur deux nouveaux genres d’algues perforantes, *J. Bot.*, 10, 161–165,
538 1888.

539 Briggs, R. P.: *Economic Geology of the Isla de Mona quadrangle, Puerto Rico*, 1959.

540 Briggs, R. P. and Seiders, V. M.: *Geologic map of the Isla De Mona quadrangle, Puerto Rico*, 1972.

541 Brito, Â., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., Ferreira, S., Martins, A., Mota,
542 R., Frazão, B., Martins, R., Vasconcelos, V. and Tamagnini, P.: Culture-dependent characterization of
543 cyanobacterial diversity in the intertidal zones of the Portuguese coast: A polyphasic study, *Syst. Appl.*
544 *Microbiol.*, 35(2), 110–119, 2012.

545 Budd, D. A. and Perkins, R. D.: Bathymetric zonation and paleoecological significance of microborings
546 in Puerto Rican shelf and slope sediments, *J. Sediment. Petrol.*, 50(3), 881–984, 1980.

547 Campbell, S. E.: The modern distribution and geological history of calcium carbonate boring
548 microorganisms, *Biominer. Biol. Met. Accumul.*, 1983.

549 Le Campion-Alsumard, T. and Golubic, S.: Ecological and taxonomic relationships between
550 euendolithic cyanophytes *Hormathonema* and *Solentia*, *Algol. Stud. für Hydrobiol. Hydrobiol. Suppl.*
551 Vol., 38–39, 115–118, 1985.

552 Le Campion-Alsumard, T., Golubic, S. and Hutchings, P.: Microbial endoliths in skeletons of live and
553 dead corals: *Porites lobata* (Moorea, French Polynesia), *Oceanogr. Lit. Rev.*, 9(42), 781, 1995.

554 Campion-Alsumard, T. Le, Golubic, S. and Pantazidou, A.: On the euendolithic genus *Solentia*
555 Ercegovic (Cyanophyta/Cyanobacteria), *Algol. Stud. für Hydrobiol. Hydrobiol. Suppl.* Vol., 83, 107–
556 127, 1996.

557 Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N.,
558 Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley,
559 R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R.,
560 Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J. and Knight, R.: QIIME
561 allows analysis of high- throughput community sequencing data, *Nat. Methods*, 7(5), 335–336, 2010.

562 Chacón, E., Berrendero, E., García Pichel, F., Chacon, E., Berrendero, E., Pichel, F. G., Chacón, E.,
563 García Pichel, F., Berrendero, E. and Pichel, F. G.: Biogeological signatures of microboring
564 cyanobacterial communities in marine carbonates from Cabo Rojo, Puerto Rico, *Sediment. Geol.*,
565 185(3–4), 215–228, 2006.

566 Chazottes, V., Le Campion-Alsumard, T. and Peyrot-Clausade, M.: Bioerosion rates on coral reefs:
567 Interactions between macroborers, microborers and grazers (Moorea, French Polynesia), *Palaeogeogr.*
568 *Palaeoclimatol. Palaeoecol.*, 113(2–4), 189–198, 1995.

569 Chodat, R.: Sur les algues perforantes d'eau douce. Etudes de biologie lacustre, *Bull. l'Herbier*
570 Boissier

571 Cockell, C. S. and Herrera, A.: Why are some microorganisms boring?, *Trends Microbiol.*, 16(3), 101–
572 106, 2008.

573 Couradeau, E., Benzerara, K., Moreira, D., Gérard, E., Kaźmierczak, J., Tavera, R., López-García, P.,
574 Gerard, E., Kazmierczak, J., Tavera, R. and Lopez-Garcia, P.: Prokaryotic and Eukaryotic Community
575 Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico), edited by J.
576 A. Gilbert, *PLoS One*, 6(12), e28767, 2011.

577 Couradeau, E., Karaoz, U., Lim, H. C., Nunes da Rocha, U., Northen, T., Brodie, E. and Garcia-Pichel,
578 F.: Bacteria increase arid-land soil surface temperature through the production of sunscreens, *Nat.*
579 *Commun.*, 7, 10373, 2016.

580 Crits-Christoph, A., Robinson, C. K., Ma, B., Ravel, J., Wierzchos, J., Ascaso, C., Artieda, O., Souza-
581 Egipsy, V., Casero, M. C. and DiRuggiero, J.: Phylogenetic and Functional Substrate Specificity for
582 Endolithic Microbial Communities in Hyper-Arid Environments, *Front. Microbiol.*, 7(March), 1–15,
583 2016.

584 Debenport, S. J., Assigbetse, K., Bayala, R., Chapuis-Lardy, L., Dick, R. P. and McSpadden Gardener,
585 B. B.: Association of shifting populations in the root zone microbiome of millet with enhanced crop
586 productivity in the Sahel Region (Africa), *Appl. Environ. Microbiol.*, 81(8), 2841–2851, 2015.

587 Duerden, J. E.: Boring algae as agents in the disintegration of corals, *Bull. Am. Museum Nat. Hist.*, 16,
588 1902.

589 Duncan, P. M.: On Some Thallophytes Parasitic within Recent Madreporaria, *Proc. R. Soc. London*, 25,
590 238–257, 1876.

591 Dupraz, C. and Visscher, P. T.: Microbial lithification in marine stromatolites and hypersaline mats.,
592 *Trends Microbiol.*, 13(9), 429–438, 2005.

593 Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S. and Visscher, P. T.: Processes of
594 carbonate precipitation in modern microbial mats, *Earth-Science Rev.*, 96(3), 141–162, 2009.

595 Edgar, R. C.: Search and clustering orders of magnitude faster than BLAST., *Bioinformatics*, 26(19),
596 2460–1, 2010.

597 Ercegovic, A.: La végétation des lithophytes sur les calcaires et les dolomites en Croatie, *Acta Bot.*, 1,
598 64–114, 1925.

599 Ercegovic, A.: Tri nova roda litofiskih cijanoiceja sa jadranske obale, *Acta Bot.*, 2, 78–84, 1927.

600 Ercegovic, A.: Sur quelques types peu connus des Cyanophycées lithophytes, Arch Protistenkd, 71,
601 361–376, 1930.

602 Foster, J. S., Green, S. J., Ahrendt, S. R., Golubic, S., Reid, R. P., Hetherington, K. L. and Bebout, L.:
603 Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of
604 Highborne Cay, Bahamas, Isme J., 3(5), 573–587, 2009.

605 Frank, E. F., Mylroie, J., Troester, J., Calvin Alexander, E. J. and Carew, J. L.: Karst development and
606 speleogenesis, Isla de Mona, Puerto Rico, J. Cave Karst Stud., 60(August), 73–83, 1998.

607 Frémy, P.: Les algues perforantes, Mémoire la Société Natl. des Sci. Nat. Mathématiques Cherbg., (42),
608 275–300, 1936.

609 Frémy, P.: Cyanophycées et Chlorophycées perforantes (de la mer Rouge), Bull. la Société linnéenne
610 Normandie, Mém. N.S., (1), 16–33, 1941.

611 Friedmann, E. I., Hua, M. and Ocampo-Friedmann, R.: Terraforming mars : dissolution of carbonate
612 rocks by Cyanobacteria, J. Br. Interplanet. Soc., 43, 291–292, 1993.

613 Garcia-Pichel, F.: Plausible mechanisms for the boring on carbonates by microbial phototrophs,
614 Sediment. Geol., 185(3–4), 205–213, 2006.

615 Garcia-Pichel, F., Ramirez-Reinat, E., Gao, Q. J., Ramírez-Reinat, E. and Gao, Q. J.: Microbial
616 excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca(2+) transport,
617 Proc. Natl. Acad. Sci. U. S. A., 107(50), 21749–21754, 2010.

618 Gektidis, M.: Development of microbial euendolithic communities: The influence of light and time,
619 Bull. Geol. Soc. Denmark, 45, 147–150, 1999.

620 Ghirardelli, L. A.: Endolithic Microorganisms in Live and Dead Thalli of Coralline Red Algae
621 (Corallinales , Rhodophyta) in the Northern Adriatic Sea, , 37, 53–60, 2002.

622 Golubic, S.: Distribution, Taxonomy, and Boring Patterns of Marine Endolithic Algae, Integr. Comp.

623 Biol., 9(3), 747–751, 1969.

624 Golubic, S. and Campion-Alsumard, T.: Boring behavior of marine blue-green algae *Mastigocoleus*
625 *testarum* Lagerheim and *Kyrtuthrix dalmatica* Ercegović, as a taxonomic character, Schweizerische
626 Zeitschrift für Hydrol., 35(1), 157–161, 1973.

627 Golubic, S. and Lee, S. J.: Early cyanobacterial fossil record: preservation, palaeoenvironments and
628 identification, Eur. J. Phycol., 34(4), 339–348, 1999.

629 Golubic, S., Friedmann, E. I. and Schneider, J.: The lithobiontic ecological niche, with special
630 reference to microorganisms, J. Sediment. Res., 51(2), 475–478, 1981.

631 Golubic, S., Campbell, S. E., Drobne, K., Cameron, B., Balsam, W. L., Cimerman, F. and Dubois, L.:
632 Microbial endoliths: a benthic overprint in the sedimentary record, and a paleobathymetric cross-
633 reference with Foraminifera, J. Paleontol., 58(2), 351–361, 1984.

634 Golubic, S., Al-Thukair, A. A. and Gektidis, M.: New euendolithic cyanobacteria from the Arabian
635 Gulf and the Bahama Bank: *Solentia sanguinea* sp. nova, Algol. Stud. für Hydrobiol. Hydrobiol. Suppl.
636 Vol., 83, 291–301, 1996.

637 Golubic, S., Seong-Joo, L. and Browne, K. M.: Cyanobacteria: Architects of Sedimentary Structures
638 BT - Microbial Sediments, pp. 57–67, Springer Berlin Heidelberg, Berlin, Heidelberg., 2000.

639 Grange, J. S., Rybarczyk, H. and Tribollet, A.: The three steps of the carbonate biogenic dissolution
640 process by microborers in coral reefs (New Caledonia), Environ. Sci. Pollut. Res., 22(18), 13625–
641 13637, 2015.

642 Guida, B. S. and Garcia-Pichel, F.: Extreme cellular adaptations and cell differentiation required by a
643 cyanobacterium for carbonate excavation, Proc. Natl. Acad. Sci., in press, 2016.

644 Haigler, S. A.: Boring mechanism of *Polydora websteri* inhabiting *Crassostrea virginica*, Am. Zool.,
645 9(3), 821–828, 1969.

646 Hoffmann, D., Maldonado, J., Wojciechowski, M. F. and Garcia-Pichel, F.: Hydrogen export from
647 intertidal cyanobacterial mats: Sources, fluxes and the influence of community composition, *Environ.*
648 *Microbiol.*, 17, 3738–3753, 2015.

649 Horath, T. and Bachofen, R.: Molecular characterization of an endolithic microbial community in
650 dolomite rock in the central Alps (Switzerland)., *Microb. Ecol.*, 58(2), 290–306, 2009.

651 Horath, T., Neu, T. R. and Bachofen, R.: An endolithic microbial community in dolomite rock in central
652 Switzerland: characterization by reflection spectroscopy, pigment analyses, scanning electron
653 microscopy, and laser scanning microscopy., *Microb. Ecol.*, 51(3), 353–64, 2006.

654 Jobb, G., von Haeseler, A. and Strimmer, K.: TREEFINDER: a powerful graphical analysis
655 environment for molecular phylogenetics, *BMC Evol. Biol.*, 4:18, 2004.

656 Jones, B.: The role of microorganisms in phytokarst development on dolostones and limestones, Grand
657 Cayman, British West Indies, *Can. J. Earth Sci.*, 26(11), 2204–2213, 1989.

658 Kaehler, S. and McQuaid, C. D.: Lethal and sub-lethal effects of phototrophic endoliths attacking the
659 shell of the intertidal mussel *Perna perna*, *Mar. Biol.*, 135(3), 497–503, 1999.

660 Katoh, K., Kuma, K., Toh, H. and Miyata, T.: MAFFT version 5: improvement in accuracy of multiple
661 sequence alignment, *Nucleic Acids Res.*, 33(2), 511–518, 2005.

662 Kölliker, A.: On the frequent occurrence of vegetable parasites in the hard structures of animals, *Proc.*
663 *R. Soc. London*, 10, 95–99, 1859.

664 De la Torre, J. R., Goebel, B. M., Friedmann, E. I. and Pace, N. R.: Microbial Diversity of
665 Cryptoendolithic Communities from the McMurdo Dry Valleys, Antarctica, *Appl. Environ. Microbiol.*,
666 69(7), 3858–3867, 2003.

667 Lehmann, E.: Über *Hyella balani* nov. spec, *Nyt Mag. Naturvidenskap*, (41), 77–87, 1903.

668 Love, M. I., Huber, W. and Anders, S.: Moderated estimation of fold change and dispersion for RNA-

669 seq data with DESeq2, *Genome Biol.*, 15(12), 1–34, 2014.

670 MacIntyre, I. G., Prufert-Bebout, L. and Reid, R. P.: The role of endolithic cyanobacteria in the
671 formation of lithified laminae in Bahamian stromatolites, *Sedimentology*, 47(5), 915–921, 2000.

672 May, J. A. and Perkins, R. D.: Endolithic infestation of carbonate substrates below the sediment-water
673 interface, *J. Sediment. Res.*, 49(2), 1979.

674 McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., Andersen, G. L.,
675 Knight, R. and Hugenholz, P.: An improved Greengenes taxonomy with explicit ranks for ecological
676 and evolutionary analyses of bacteria and archaea., *ISME J.*, 6(3), 610–8, 2012.

677 McMurdie, P. J. and Holmes, S.: Waste Not, Want Not: Why Rarefying Microbiome Data Is
678 Inadmissible, edited by A. C. McHardy, *PLoS Comput. Biol.*, 10(4), e1003531, 2014.

679 Mobberley, J. M., Ortega, M. C. and Foster, J. S.: Comparative microbial diversity analyses of modern
680 marine thrombolitic mats by barcoded pyrosequencing, *Environ. Microbiol.*, 14(1), 82–100, 2011.

681 Nadson, G. A.: Les algues perforantes de la Mer Noire, *Comptes rendus l'Académie des Sci.*, 184, 896,
682 1927.

683 Nadson, G. A.: Contribution à l'étude des algues perforantes. I: La dissociation du thalle et la
684 polymorphisme chez les algues perforantes “*Hyella*” et “*Mastigocoleus*”, *Bull. USSR Acad. Sci.*,
685 7(833–845), 1932.

686 Norris, T. B. and Castenholz, R. W.: Endolithic photosynthetic communities within ancient and recent
687 travertine deposits in Yellowstone National Park, *FEMS Microbiol. Ecol.*, 57(3), 470–483, 2006.

688 Nübel, U., GarciaPichel, F., Muyzer, G. and Garcia-pichel, F.: PCR Primers To Amplify 16S rRNA
689 Genes from Cyanobacteria, *Appl. Environ. Microbiol.*, 63(8), 3327–3332, 1997.

690 Nübel, U., Garcia-Pichel, F., Kuhl, M. and Muyzer, G.: Quantifying microbial diversity: Morphotypes,
691 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats, *Appl. Environ.*

692 Microbiol., 65(2), 422–430, 1999.

693 Pantazidou, A., Louvrou, I. and Economou-Amilli, A.: Euendolithic shell-boring cyanobacteria and
694 chlorophytes from the saline lagoon Ahivadolimni on Milos Island, Greece, Eur. J. Phycol., 41(2), 189–
695 200, 2006.

696 Perkins, R. D. and Tsentas, C. I.: Microbial infestation of carbonate substrates planted on the St. Croix
697 shelf, West Indies, Geol. Soc. Am. Bull., 87(11), 1615, 1976.

698 Peyrot-Clausade, M., Le Campion-Alsumard, T., Hutchings, P., Le Campion, J., Payri, C. and Fontaine,
699 M. C.: Initial bioerosion and bioaccretion on experimental substrates in high island and atoll lagoons
700 (French Polynesia), Oceanol. Acta, 18(5), 531–541, 1995.

701 Philippe, H.: MUST, a computer package of management utilities for sequences and trees, Nucleic
702 Acids Res., 21(22), 5264–5272, 1993.

703 Pitombo, L. M., do Carmo, J. B., de Hollander, M., Rossetto, R., López, M. V., Cantarella, H. and
704 Kuramae, E. E.: Exploring soil microbial 16S rRNA sequence data to increase carbon yield and
705 nitrogen efficiency of a bioenergy crop, GCB Bioenergy, n/a-n/a, 2015.

706 Purdy, E. G. and Kornicker, L. S.: Algal disintegration of Bahamian limestone coasts, J. Geol., 97–99,
707 1958.

708 Ramírez-Reinat, E. L. and Garcia-Pichel, F.: Characterization of a Marine Cyanobacterium That Bores
709 Into Carbonates and the Redescription of the Genus *Mastigocoleus*, J. Phycol., 48(3), 740–749, 2012a.

710 Ramírez-Reinat, E. L. and Garcia-Pichel, F.: Prevalence of Ca^{2+} -ATPase-mediated carbonate
711 dissolution among cyanobacterial euendoliths., Appl. Environ. Microbiol., 78(1), 7–13, 2012b.

712 Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C., Macintyre, L. G.,
713 Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F., DesMarais, D. J., MacIntyre, I. G.,
714 Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F. and DesMarais, D. J.: The role of

715 microbes in accretion , lamination and early lithification of modern marine stromatolites, *Nature*,
716 406(6799), 989–992, 2000.

717 Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Km, A., Kent, A. D., Daroub, S. H., Camargo,
718 F. A. O., Farmerie, W. G. and Triplett, E. W.: Pyrosequencing Enumerates and Contracts Soil Microbial
719 Diversity, *ISME J.*, 1(4), 283–290, 2007.

720 Sartoretto, S.: Bioerosion of Mediterranean “coralligene” concretions by boring organisms: assay of
721 quantificaiton of processes, *C. R. Acad. Sci. Paris*, 327, 839–844, 1998.

722 Schneider, J.: Biokarst on limestone coasts, morphogenesis and sediment production, *Deep Sea Res.*
723 Part B. *Oceanogr. Lit. Rev.*, 30(1), 919, 1983.

724 Sigler, W. V, Bachofen, R. and Zeyer, J.: Molecular characterization of endolithic cyanobacteria
725 inhabiting exposed dolomite in central Switzerland., *Environ. Microbiol.*, 5(7), 618–627, 2003.

726 Soudry, D. and Nathan, Y.: Microbial infestation: A pathway of fluorine enrichment in bone apatite
727 fragments (Negev phosphorites, Israel), *Sediment. Geol.*, 132(3–4), 171–176, 2000.

728 Torunski, H.: Biological erosion and its significance for the morphogenesis of limestone coasts and for
729 nearshore sedimentation (Northern Adriatic), *Senckenbergiana maritima*, 11(3/6), 193–265, 1979.

730 Tribollet, A.: Dissolution of dead corals by euendolithic microorganisms across the northern Great
731 Barrier Reef (Australia)., *Microb. Ecol.*, 55(4), 569–80, 2008.

732 Tribollet, A. and Payri, C.: Bioerosion of the coralline alga *Hydrolithon onkodes* by microborers in the
733 coral reefs of Moorea , French Polynesia, *Oceanol. Acta*, 24(4), 329–342, 2001.

734 Tribollet, A., Langdon, C., Golubic, S. and Atkinson, M.: Endolithic microflora are major primary
735 producers in dead carbonate substrates of Hawaiian coral reefs, *J. Phycol.*, 42(2), 292–303, 2006.

736 Tribollet, A., Godinot, C., Atkinson, M. and Langdon, C.: Effects of elevated pCO₂ on dissolution of
737 coral carbonates by microbial euendoliths, *Global Biogeochem. Cycles*, 23(3), 1–7, 2009.

738 Trudgill, S. T. T.: Bioerosion of intertidal limestone, Co. Clare, Eire — 3: Zonation, process and form,
739 *Mar. Geol.*, 74(1–2), 111–121, 1987.

740 Tudhope, A. W. and Risk, M. J.: Rate of dissolution of carbonate sediments by microboring organisms,
741 Davies Reef, Australia, *J. Sediment. Petrol.*, 55(3), 440–447, 1985.

742 Underwood, C. J., Mitchell, S. F. and Veltkamp, C. J.: Microborings in mid-Cretaceous fish teeth, *Proc.*
743 *Yorksh. Geol. Soc.*, 52, 269–274, 1999.

744 Vogel, K., Gektidis, M., Golubic, S., Kiene, W. E. and Radtke, G.: Experimental studies on microbial
745 bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia:
746 implications for paleoecological reconstructions, *Lethaia*, 33(3), 190–204, 2000.

747 Wade, B. D. and Garcia-Pichel, F.: Evaluation of DNA extraction methods for molecular analyses of
748 microbial communities in modern calcareous microbialites, *Geomicrobiol. J.*, 20(6), 549–561, 2003.

749 Walker, J. J. and Pace, N. R.: Phylogenetic Composition of Rocky Mountain Endolithic Microbial
750 Ecosystems, *Appl. Environ. Microbiol.*, 73(11), 3497–3504, 2007.

751 Walker, J. J., Spear, J. R. and Pace, N. R.: Geobiology of a microbial endolithic community in the
752 Yellowstone geothermal environment, *Nature*, 434(7036), 1011–1014, 2005.

753 Wissak, M., Tribollet, A., Golubic, S., Jakobsen, J. and Freiwald, A.: Temperate bioerosion:
754 ichnodiversity and biodiversity from intertidal to bathyal depths (Azores), *Geobiology*, 9(6), 492–520,
755 2011.

756 Zhang, X. and Pratt, B. R.: Microborings in Early Cambrian phosphatic and phosphatized fossils,
757 *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 267(3–4), 185–195, 2008.

758

759

760 **Figures Captions**

761

762 **Figure 1: Isla de Mona setting** (a) Simplified geological map modified from that of (Briggs and
763 Seiders, 1972) showing the locations of the sampling sites. (b) Sky view of Isla de Mona, the cliff is
764 composed of the Isla de Mona Dolomite topped by the Lirio limestone, the Isla de Mona lighthouse is
765 visible (c-d) Views of Isla de Mona coastal area, samples were taken from isolated boulders (c),
766 directly from the cliff (d) at the notch (white arrows c-d) or on the raised reef flat (c-d).

767

768

769 **Figure 2: Mineral composition and microbial community structure of Isla de Mona intertidal**
770 **outcrops** Each line corresponds to one sample. (a) Mineralogical composition as retrieved by bulk
771 powder XRD (b) Distribution of 16 rDNA OTUs taxonomically assigned at the phylum level and
772 associated chao1 richness metric (c). This reflect the total microbial community structure (d)
773 Distribution of the cyanobacterial 16 rDNA OTUs assigned at the phylum level, excluding chloroplasts
774 and associated chao1 richness metric for Cyanobacteria (e).

775

776

777 **Figure 3: Hierarchical clustering analysis (UPGMA) of bacterial community composition in**
778 **various settings based on pairwise Bray Curtis distance metrics.** The robustness of the topology
779 was assessed through jackknife repeated resampling of 5000 sequences. The number of samples in a
780 given collapsed tree branch are in parentheses, while the numbers in brackets are the Qiita dataset ID
781 number.

782

783

784 **Figure 4: Differential abundance of cyanobacterial OTUs in Ca-carbonates (calcite-aragonite)**

785 **n=14 vs. CaMg-carbonate (dolomite) n=13 samples.** This plot was constructed using the DESeq2
786 method. It displays the average normalized counts per OTU as a measure of abundance against the log2
787 fold difference. The OTUs that were significantly differentially abundant in the two conditions
788 (p<0.05) are represented as open circles, the other ones are displayed as close symbols. Positive values
789 indicate enrichment towards CaMg-carbonate and negative values indicate enrichment towards Ca-
790 Carbonate. The OTU ID and taxonomical assignment of the most abundant OTUs is displayed on the
791 right. The stars tag the possible euendolithic OTUs as determined by phylogenetic proximity to known
792 microborers (Figure S3).

793

794

795 **Figure 5: Differential abundance of cyanobacterial OTUs in Ca-carbonate (calcite-aragonite)**
796 **n=14 vs. Ca-phosphate (apatite) n=3 samples** This plot was constructed using the DESeq2 method. It
797 displays the average normalized counts per OTU as a measure of abundance against the log2 fold
798 difference. The OTUs that were significantly differentially abundant in the two conditions (p<0.05) are
799 represented as open circles, the other ones are displayed as close symbols. Positive values indicate
800 enrichment towards Ca-phosphate and negative values indicate enrichment towards Ca-Carbonate. The
801 OTU ID and taxonomical assignment of the most abundant OTUs is displayed on the right. The stars
802 tag the possible euendolithic OTUs as determined by phylogenetic proximity to known microborers
803 (Figure S3).

804

805

806

807 **Figure 1**

808

812

813 **Figure 3**

814

815

816 **Figure 4**

817

818

819 **Figure 5**

820

821
822**Table 1: Euendolithic cyanobacterial strains used to assign potential roles to OTUs**

Strain name	order	reference sequence	presence in this dataset	Isolation source	bores in culture	reference
<i>Mastigocoleus testarum</i>	Stigonematales	DQ380405	yes	Cabo Rojo carbonate, Puerto Rico	yes	(Chacón et al., 2006)
<i>Solentia sp. HBC10</i>	Pleurocapsales	EU249126	no	Stromatolite bahamas	yes	(Foster et al., 2009)
<i>Hyella sp. LEGE 07179</i>	Pleurocapsales	HQ832901	yes	Rocky Moledo do Minho beach (Portugal)	not tested*	(Brito et al., 2012)
<i>Ca. Pleuronema</i> <i>Pleurinema</i> <i>perforans</i> IdMA4	Pleurocapsales	KX388631	yes	Isla de Mona outcrop	yes	<i>this study</i>
<i>Ca. Mastigocoleus</i> <i>perforans</i> IdM	Stigonematales	KX388632	yes	Isla de Mona outcrop	yes	<i>this study</i>
<i>Ca. Pleuronema</i> <i>Pleurinema</i> <i>testarum</i> RPB	Pleurocapsales	KX388633	Yes	Puerto Peñasco Coquina reef	yes	<i>this study</i>

823
824
825
826
827

**Hyella sp. LEGE 07179* was isolated from inside a patella shell where it was identified as a true borer by the authors but its boring ability was never tested again in the lab