1	Supporting Information for
2	Sources and Transformations of Anthropogenic Nitrogen along an Urban River-Estuarine
3	Continuum
4	Michael J. Pennino* ¹ , Sujay S. Kaushal ² , Sudhir Murthy ³ , Joel Blomquist ⁴ , Jeff
5	Cornwell ⁵ , and Lora Harris ⁶
6	
7	¹ Department of Civil and Environmental Engineering, Princeton University, Princeton,
8	NJ, USA.
9	² Department of Geology and Earth Systems Science Interdisciplinary Center, University
10	of Maryland, College Park, MD, USA.
11	³ DC Water, Washington, DC, USA.
12	⁴ U.S. Geological Survey, Baltimore MD, USA.
13	⁵ Center for Environmental Science, University of Maryland Horn Point Laboratory,
14	Cambridge, MD, USA.
15	⁶ Center for Environmental Science, University of Maryland Chesapeake Biological
16	Laboratory, Solomons MD, USA.
17	*Corresponding author email: michael.pennino@gmail.com
18	
19	
20	
21	

22	Contents of this file
23	
24	Introduction
25	Text S1. Methods
26	Text S1.1 Site Description
27	Text S1.2 Water Sampling and Analysis
28	
29	Figure S1. Comparison of nitrate isotope box model results when using bottom $\delta^{15}N$ -
30	NO_3^{-1} isotope value from (Horrigan et al. (1990), which reported the bottom water $\delta^{15}N$ -
31	NO_3^- value to be ~ 10‰.
32	Table S1. Potomac River Estuary sampling locations and coordinates.
33	Table S2. Comparison between box model (this study) and Chesapeake Bay Model
34	results.
35	
36	
50	
37	
20	
38	Introduction
39	The supporting information contains additional details on the methods used for this
40	study and additional description of specific results and analysis of the data used in this
41	study. This supporting information also contains data to validate the box model analysis
42	used in the study and additional results that support the findings of the paper.
43	

44 Text S1. Methods

45 Text S1.1 Site Description

46	The Potomac River drains water from both Maryland and Virginia and forms the
47	border between these two states. The entire Potomac River basin has a total drainage of
48	approximately 38,000 km^2 and is comprised of 16% cropland, 12% Pasture, 55% forest,
49	5% water and wetlands, 10% urban, and 3% other (Boynton et al. 1995). The upper
50	Potomac is freshwater and drains rural and agricultural areas above Washington D.C.,
51	while the Potomac River Estuary begins as tidal freshwater and salinity starts to increases
52	30 to 50 km downriver (Jaworski et al. 1992). The upper Potomac River Basin is
53	classified as 48% forested, 38% agricultural, and 14% urban (Karrh et al. 2007).
54	Sources of both nitrogen to the Potomac River include wastewater treatment
55	effluent (e.g. the Blue Plains Wastewater Treatment Plant), urban and agricultural runoff,
56	and atmospheric deposition. For the entire Potomac, the sources above the fall-line are
57	11.3% point, 84.6% diffuse, while the sources below the fall-line are 76.7% point, 15.4%
58	diffuse, and 5.4% atmospheric (Boynton et al. 1995). The study by Jaworski et al. (1992)
59	indicates that for the upper Potomac River, total nitrogen (TN) inputs are 27.5%
60	atmospheric deposition, 42.65% animal waste, 11.6% fixation and adsorption, 16%
61	fertilization, and 2.16% wastewater. The N outputs include 17.2% from river export,
62	17.1% from crop harvest, and 65.6% from other sinks and storage. Boynton et al. (1995)
63	also estimates that internal losses of TN for denitrification rates above the fall-line are
64	5.5% point, 16.3% diffuse of total inputs and losses, while the sources below fall-line are
65	19.9% point, 19.6% diffuse of inputs and losses.

66

Text S1.2 Water Sampling and Analysis

Three sets of routine sampling along the Lower Potomac were carried out (See 69 70 Figure 1). First, surface water was collected by small boat during seven separate months 71 between September 2009 through January 2011 above and below the Blue Plains 72 Wastewater Treatment Plant outfall (within 12 km). On each small boat cruise, 3-5 73 samples were collected longitudinally within 6 km above the wastewater outfall, one 74 sample was collected in the estuary at the Blue Plains effluent outfall, and 4-6 samples 75 were collected longitudinally within 12 km below the outfall. Monthly effluent samples 76 were also taken from the wastewater treatment plant before emptying into the estuary. 77 Second, monthly surface water samples were collected from nine Maryland Department 78 of Natural Resources sampling stations, located longitudinally down the Potomac River 79 Estuary, all the way to the Chesapeake Bay (from April 2010 to March 2011). Thirdly, 80 there were two larger multi-depth sampling cruises from 24 sampling stations along the 81 entire Lower Potomac River Estuary (August 2010 and May 2011). Samples were taken 82 at surface, middle and bottom depths during theses two larger intensive sampling cruises. 83 See Table S1 for site coordinates for the sampling stations. 84 At each sampling location, a 1-liter plastic amber HPDE bottle (cleaned in 10%

HCl and distilled water) was used to take estuarine water samples. The surface water
samples were collected using a pump and hose on the boat at 0.5-meter depth. The 1-liter
bottle was then stored in a cooler, on icepacks until returning to the lab, where water was
stored in the refrigerator, until filtered within 24 hours.

Water was filtered through 47 mm/0.45 μm glass fiber filter. The filtered water
was then partitioned into two bottles: one 30 ml Nalgene bottle, one 60 mL glass amber

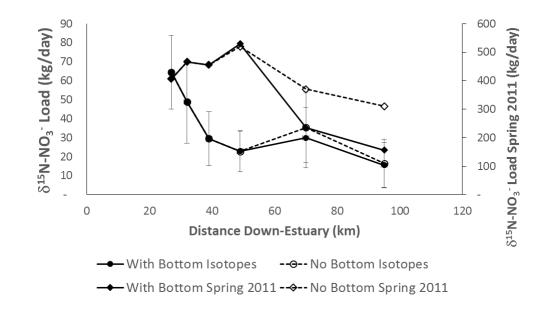
91	Quorpak bottle. The 30 mL Nalgene bottle was frozen and saved fo	or nitrate isotope
92	analysis. The 60 mL amber bottle was stored in a refrigerator (at 4°	C), to be analyzed for
93	fluorescence within 3-weeks. For quality assurance, blank samples	and replicates were
94	taken. The concentration of all total and dissolved forms of N, P, C	were measured by
95	Nutrient Analytical Services Laboratory (NASL) at Chesapeake Bio	ological Laboratory
96	(CBL).	
97		
98	Text S1.3 Salinity vs. Nitrate Concentration and Isotope Mixing Plo	ots
99	The following equations from (Middelburg and Nieuwenhui	ze 2001) were used
100	for calculating the mixing lines. End member values for these equation	tions were based on
101	the salinity, nitrate concentration, and nitrate isotope values found a	t the furthest up-
102	estuary sampling station and furthest down-estuary sampling station	n (Table S2).
103		
104	$S = f \times Sm + (1 - f) \times Sr$	(1)
105		
106	$f = \frac{S - Sr}{Sm - Sr}$	(2)
107		
108	$N = f \times Nm + (1 - f) \times Nr$	(4)
109		
110	$\delta^{15}N = \frac{(\delta^{15}Nm \times f \times Nm + \delta^{15}Nr \times (1-f) \times Nr)}{N}$	(5)
111		
112	Where,	
113	S = salinity of sample	

- 114 Sr = salinity of freshwater endmember
- 115 Sm = Salinity of marine endmember
- f = seawater fraction
- 117 N = Nitrate concentration of sample
- 15N = 15N nitrate of the sample
- 15Nr = 15N nitrate of freshwater endmember
- 120 15Nm = 15N nitrate of marine endmember

- -

	Shorter	intensive synoptic survey	Seasonal extensive synoptic surveys				
					Distance		
Site	Distance (km)	Latitude	Longitude	Site	(km)	Latitude	Longitude
TF2.1	12.1	38°42'23.91"N	77°02'55.54"W	POTN28	-5.6	38°54'36.00"N	77°05'60.00"W
TF2.2	17.8	38°41'26.43"N	77°06'40.00''W	POTN27	-5.9	38°52'48.00"N	76°58'12.00"W
TF2.3	29.6	38°36'29.52"N	77°10'26.04"W	POTN26	-3.5	38°51'00.00"'N	77°01'12.00"W
TF2.4	41.4	38°31'48.36"N	77°15'55.44"W	POTN25	1.2	38°49'48.00"N	77°01'48.00"W
RET2.1	55.6	38°24'12.60"N	77°16'08.76"W	POTN24	0.7	38°48'37.62"N	77°02'02.16"W
RET2.2	64.0	38°21'09.00"N	77°12'18.36"W	POTN23	11.8	38°42'30.96"N	77°02'40.32"W
RET2.4	87.9	38°21'45.36"N	76°59'26.27"W	POTN22	20.6	38°40'03.90"N	77°07'52.68"W
LE2.2	130.1	38°09'27.36"N	76°35'52.80"W	POTN21	20.6	38°40'16.86"N	77°08'01.86"W
LE2.3	156.6	38°01'17.40"N	76°20'51.72"W	POTN20	37.3	38°34'16.50"N	77°14'29.76"W
				POTN19	48.7	38°28'32.04"N	77°16'50.94"W
	Monthly	v extensive synoptic surve	ys	POTN18	52.3	38°26'48.60"N	77°18'09.66''W
PR1	-6.6	38°52'22.65"N	77°02'12.28"W	POTN17	59.0	38°23'33.78"N	77°16'09.54"W
PR2	-5.4	38°51'44.88"N	77°01'57.52"W	POTN16	63.5	38°21'35.88"N	77°14'16.26''W
PR3	-6.1	38°51'52.86"N	77°00'32.14"W	POTN15	76.8	38°24'22.26"N	77°06'46.44"W
PR4	-4.2	38°51'04.71"N	77°01'19.83"W	POTN14	74.6	38°23'23.28"N	77°07'11.52"W
PR5	-2.7	38°50'18.55"N	77°01'35.62"W	POTN13	85.0	38°26'49.02"N	77°01'50.58"W
PR6	-1.8	38°49'48.63"N	77°01'45.26"W	POTN12	82.0	38°24'33.72"N	77°02'26.64"W
PR7	-0.8	38°49'15.85"N	77°01'50.84"W	POTN11	93.8	38°19'38.34"N	76°58'41.52"V
PR8	-0.4	38°48'49.46"N	77°01'54.32"W	POTN10	95.8	38°17'56.16"N	77°00'21.60"V
PR9	0	38°48'51.32"N	77°01'39.79"W	POTN09	110.1	38°20'52.02"N	76°51'12.48"W
PR10	0.26	38°48'43.10"N	77°01'39.62"W	POTN08	111.8	38°18'35.64"N	76°50'24.96"W
PR11	0.58	38°48'33.04"N	77°01'39.61"W	POTN07	112.8	38°14'25.02"N	76°49'04.32"W
PR12	1.1	38°48'19.45"N	77°01'55.69"W	POTN06	115.8	38°11'24.90"N	76°49'16.86"W
PR13	2.0	38°47'17.81"N	77°02'10.81"W	POTN05	136.8	38°11'45.78"N	76°34'46.32"W
PR14	3.5	38°46'57.39"N	77°01'50.51"W	POTN04	135.8	38°09'38.10"N	76°36'01.86"W
PR15	5.2	38°46'04.78"N	77°02'04.56''W	POTN03	153.5	38°05'00.36"N	76°25'16.56"W
PR16	8.0	38°44'33.36"N	77°02'10.33"W	POTN02	156.7	38°02'24.60"N	76°25'11.94"V
PR17	11.6	38°42'38.33"N	77°02'27.29"W	POTN01	158.4	38°00'41.58"N	76°25'45.00"W

136137 Table S1. Potomac River Estuary sampling locations and coordinates.


138 *Distances are along the Potomac River, relative to the location of the Blue Plains wastewater treatment plant, at location 0 km.

	Winter	Spring	Summer	Fall	
Sr =	0.11	0	0	0	
Sm =	15.8	11.0	14.2	16.7	
Nr	1.44	1.09	0.3	0.83	
Nm	0.0507	0.35	0.008	0.01	
15Nr =	9.85	11.0	15.1	16.8	
15Nm =	11.5	7.19	10.3	8.2	
18Or	7.15	7.51	7.5	7.5	
18Om	14.17	8.23	-5.4	-6.1	

140 Table S2. Endmember values for salinity vs. nitrate concentration and isotope mixing lines

		Box Model				
	Distance	Flux	Bay Model	Factor	%	Correlation
Season	(km)	(kg/day)	Flux (kg/d)	Difference	Difference	Coefficient
Winter	30	49,752	66,708	1	25	0.97
Winter	49	34,410	56,333	2	39	
Winter	95	19,844	26,926	1	26	
Spring	30	116,848	97,924	1	19	0.99
Spring	49	120,809	94,732	1	28	
Spring	95	68,431	55,274	1	24	
Summer	30	9,411	21,919	2	57	0.73
Summer	49	5,971	8,851	1	33	
Summer	95	4,853	15,496	3	69	
Fall	30	11,347	19,855	2	43	0.85
Fall	49	5,867	9,707	2	40	
Fall	95	(1,613)	9,790	(6)	116	

168 <u>Table S3. Comparison between box model (this study) and Chesapeake Bay Model results.</u>

171 Figure S1. Comparison of nitrate isotope box model results when using bottom δ^{15} N-

 NO_3^- isotope value from (Horrigan et al. (1990), which reported the bottom water $\delta^{15}N$ -

- 173 NO₃ value to be ~ 10‰.

-

187 **References**

- Boynton, W. R., J. H. Garber, R. Summers, and W. M. Kemp. 1995. Inputs,
 transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and
 selected tributaries. Estuaries 18:285-314.
- Jaworski, N. A., P. M. Groffman, A. A. Keller, and J. C. Prager. 1992. A watershed
 nitrogen and phosphorus balance the upper Potomac River basin. Estuaries
 15:83-95.
- Karrh, R., W. Romano, S. Garrison, B. Michael, M. Hall, K. Coyne, D. Reynolds, and B.
 Ebersole. 2007. Maryland Tributary Strategy Upper Potomac River Basin
 Summary Report for 1985-2005 Data. Maryland Department of Natural
 Resources.
- Middelburg, J. J., and J. Nieuwenhuize. 2001. Nitrogen isotope tracing of dissolved
 inorganic nitrogen behaviour in tidal estuaries. Estuarine Coastal and Shelf
 Science 53:385-391.