Answer to Reviewer #1

After reviewing this manuscript, I do not know that weather I should believe the estimated results for the mean annual net ecosystem metabolism (NEM), FCO2, and CFilt or not, because it is a big issue for air-sea interaction. I am confusing that the authors tried to use a simple 1D model coupled with Global News model in current study. How did they do? Many assumptions should be made to compromise the estimated results for air-sea CO2 evasion. The authors should clarify many assumptions in their study. In the model, many parameters should be set up to simulate the state variables shown in Table 2. How did the authors select those parameters? The parameters and values should be listed clearly.

We agree with the reviewer that a better representation of carbon dynamics through the quantification of the Net Ecosystem Metabolism, CO₂ outgassing and carbon filtration in estuarine systems is a critical issue for air-sea interaction. This topic is a particularly pressing matter at the regional scale due to the difficulty of deriving consistent regional budgets from the upscaling of rare local measurements performed in morphologically complex and profoundly heterogeneous systems (Borges and Abril, 2011; Laruelle et al., 2013; Regnier et al., 2013). On the modeling side, the set-up of a reliable reactive transport model able to realistically capture the estuarine carbon dynamics generally proves a very costly endeavor in terms of data requirement to constrain the model (i.e. bathymetric data, boundary conditions, climatic forcing...) and in terms of time necessary to develop such model and run it (see e.g. Garnier et al., 2001; Huret et al., 2005; Arndt et al., 2011; Mateus et al., 2012). The model presented here is thus developed as a compromise, as it is currently the only one capable of running regional scale simulations with limited data and computation needs without sacrificing too much to oversimplification (as done when using box models to represent estuarine systems, Gordon et al., 1996). It follows from several studies published over the past few years (Regnier et al., 2013; Volta et al., 2014, 2016a, 2016b) that led to the development of a 1 dimensional generic estuarine model for tidal systems (Volta et al., 2014) forced by a set of generic parameters compiled from an unprecedented literature review (Volta et al., 2016a). This model was successfully applied and validated on several European estuaries (the Scheldt and Elbe, in particular, see Volta et al., 2016a&b) as well as at the regional scale of the North Sea, using a strategy similar to that presented here (Volta et al., 2016b). This strategy involved the use of the same boundary conditions as those used here for the east coast of the US. That is, the outputs of the global river model GLOBALNEWS and the global river carbon database GloRiCH to constrain upstream boundary conditions and the use of the World Ocean Atlas to specify the downstream boundary conditions. In other words, the model described in our manuscript has precisely been designed to produce regional estuarine carbon budgets using the outputs of GlobalNEWS as boundary conditions and was already successfully used for similar purpose in another region.

As a consequence of the reviewer's skepticism and following numerous precise suggestions form the other reviewer, we have substantially modified the manuscript to better describe and justify our methodology, its underlying assumptions and potential limitations. We have also made the set-up of our simulations more transparent to secure reproducibility of our model results. In particular, the updated version of the manuscript now contains:

- A substantially modified introduction that puts our study into a more precise context and provides an improved description of the structure of the manuscript.

- Numerous additions to the model description section in order to clarify and substantiate all the assumptions on which our model relies on (i.e. calculation of boundary conditions, period of simulation, choice of databases, etc...), and which together, describe in much more detail the setup of our simulations.

- 6 comprehensive tables (presented in the supplementary information) and which contain all physical forcings (i.e. estuarine geometry, wind speed, temperature...) and boundary conditions (nutrients and carbon concentrations, pH, alkalinity...).

- A new section (3.3. Scope of applicability and model limitations) which reflects on the strength and weaknesses of our modeling strategy in light of the current state of knowledge available to constrain a model such as ours. In particular, the adequacy of our approach to tackle regional scale modeling, the set-up of boundary condition with available databases and the quantification of the model's uncertainty are addressed in this section.

In 2.6 Model-data comparison, the description of this subsection is very poor. The authors described the model validation for other estuaries in the Europe. How did the authors validate the model for the study areas (U.S. east coast estuaries)? I would like to see the model validation in the study areas to convince me the model is capable and suitable to be used in U.S. east coast estuaries.

We understand the reviewer's concern about the limited validation of our model within the study area. This issue was also pointed out by reviewer #2. We thus expanded extensively section 2.6 to confront the annual CO₂ outgassing predicted by our model with 13 published estimates derived from direct measurements performed in estuaries located along the East coast of the US (Table 1). In addition, we provide a validation of our hydrodynamic model using several seasonal longitudinal salinity profiles in the Delaware Bay as well a validation of our biogeochemical model for two estuaries (the Delaware Bay and the Altamaha estuary). These additional simulations

reveal that C-GEM is able to properly represent a pCO₂ (Delaware Bay) and both pH and pCO₂ longitudinal profiles along the estuarine gradient (Altamaha). Also, in the new section 3.3 (Scope of applicability and model limitations), a paragraph discusses the issue of representativeness of the model's performance through local punctual validations in the case of regional simulations including numerous small systems for which the data that would be required to perform a local validation are simply inexistent.

We hope that all these modifications will convince the reviewer of the usefulness and relevance of our study and modelling strategy.

References:

Arndt, S., Lacroix, G., Gypens, N., Regnier, P., and Lancelot, C.: Nutrient dynamics and phytoplankton development along an estuary-coastal zone continuum: A model study. Journal of Marine Systems, 84(3-4), 49-66, 2011.

Borges, A.V., and Abril, G.: Carbon Dioxide and Methane Dynamics in Estuaries. In: E. Wolanski and D.S. McLusky (Editors), Treatise on Estuarine and Coastal Science. Academic Press, Waltham, pp. 119–161, 2012.

Garnier, J., Servais, P., Billen, G., Akopian, M., and Brion, N.: Lower Seine River and Estuary (France) Carbon and Oxygen Budgets During Low Flow, Estuaries, 24, 964–976, 2001.

Gordon, J. D. C., Boudreau, P. R., Mann, K. H., Ong, J. E., Silvert, W. L., Smith, S. V., Wattayakorn, G., Wulff, F., and Yanagi, T.: LOICZ biogeochemical modelling guidelines. LOICZ reports & studies, 5. Texel: LOICZ, 1996.

Huret, M., Dadou, I., Dumas, F., Lazure, P., and Garcon, V.: Coupling physical and biogeochemical processes in the Rio de la Plata plume, Cont. Shelf Res., 25, 629–653, 2005.

Laruelle, G.G., Dürr, H.H., Lauerwald, R., Hartmann, J., Slomp, C.P., Goossens, N., and Regnier, P.A.G.: Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci., 17(5), 2029-2051, 2013.

Mateus, M., Vaz, N., and Neves, R.: A process-oriented model of pelagic biogeochemistry for marine systems. Part II: Application to a mesotidal estuary, J. Mar. Syst., 94, 90–101, 2012.

Regnier, P., Arndt, S., Goossens, N., Volta, C., Laruelle, G.G., Lauerwald, R., and Hartmann, J.: Modelling Estuarine Biogeochemical Dynamics: From the Local to the Global Scale. Aquatic Geochemistry, 19(5-6), 591-626, 2013. Volta, C., Arndt, S., Savenije, H.H.G., Laruelle, G.G., and Regnier, P.: C-GEM (v 1.0): a new, costefficient biogeochemical model for estuaries and its application to a funnel-shaped system. Geosci. Model Dev., 6(4), 5645-5709, 2014.

Volta, C., Laruelle, G. G., and Regnier, P.: Regional carbon and CO2 budgets of North Sea tidal estuaries, Estuarine, Coastal and Shelf Science, 176, 76-90, 2016a.

Volta, C., Laruelle, G. G., Arndt, S., and Regnier, P.: Linking biogeochemistry to hydro-geometrical variability in tidal estuaries: a generic modeling approach, Hydrol. Earth Syst. Sci., 20, 991-1025, doi:10.5194/hess-20-991-2016, 2016b.

Answer to Reviewer #2

Overall statements

The manuscript "Air-water CO2 evasion from U.S. East Coast estuaries" by Goossens, N., Gildas, L.G., Arndt, S., Regnier, P. gives valuable estimates on the main biogeochemical fluxes of the estuaries along the US east coast. The authors model 43 tidal estuaries and subdivide the results into 3 different latitudinal zones showing distinct differences which appear reasonable. The problem is that the reader has to accept these "black box results" even though all the details of the different estuaries should be available. I will pinpoint the problems and possible ways to resolve them:

We are grateful for the reviewer's evaluation and the constructive suggestions provided. We understand that the reviewer is mainly concerned about an apparent 'lack of transparency', as well as a seemingly weak validation of the model within the study area. Following the reviewer's recommendations, we thus substantially modified the manuscript to respond to these concerns. More specifically, we added a comparison between model-predicted annual CO_2 outgassing fluxes and 13 published flux estimates, derived from direct measurements in local estuaries to section 2.6 (Model-data comparison). In addition, we also provide new validations of the hydrodynamic and biogeochemical model (section 2.6). Furthermore, we introduced a new section (section 3.4), which critically discusses the scope of applicability and model limitations.

Please find bellow a detailed answer to each comment. All our answers are written in blue and the modifications within the text are highlighted in bold and italic. In the revised manuscript, changes are tracked via Word's track changes tool.

On behalf of all co-authors,

Goulven Laruelle

* The data preparation for the 43 estuaries is not transparent and reproducible. Please prepare a table in which all details for each estuary are inserted (like Volta et al., 2016a, Tab. 1). If this table appears too large, put it into the Appendix (supplemental data).

In the revised manuscript, we now provide 5 additional, extensive tables as supplementary information, which summarize all key parameters and boundary conditions required to perform the simulations. In addition to table SI1, which already provided the estuarine surface areas, as well as fresh water discharge fluxes for all systems and seasons, these new tables provide:

Table SI2: Geometric properties of the estuary (i.e. length, width at both boundaries, depth and convergence length)

Table SI3: Upstream boundary conditions for nutrients and chlorophyll concentrations

Table SI4: Downstream boundary conditions for nutrients and chlorophyll concentrations

Table SI5: Upstream boundary conditions for the organic carbon and carbonate system (i.e. TOC, DIC, pH...)

Table SI6: Downstream boundary conditions for the organic carbon and carbonate system (i.e. TOC, DIC, pH...)

Please use lat/lon positions of the mouth and estuary names if possible.

As requested, latitudes and longitudes, as well as the names of the largest rivers are provided for each estuary in all aforementioned tables. In addition, within the main text, we now make reference, whenever possible, to the name and coordinates of the estuaries that are being discussed.

* The validation chapter only refers to applications elsewhere. Please validate the model for at least one estuary in each latitudinal zone like Volta et al., 2016a did it for some North Sea estuaries.

The general performance of C-GEM in reproducing and predicting estuarine hydrodynamics and biogeochemical cycling has been extensively tested across a large range of different estuarine systems (e.g. Volta et al., 2014, 2016, see also Savenije 2001 for the estuarine physics). Here, we extended these tests by a number of local model-data comparisons. We added a new comparison between model-predicted annual CO₂ outgassing fluxes and 13 published flux estimates, derived from direct local measurements to section 2.6 (Table 1). In addition, we also evaluated the performance of the hydrodynamic model by comparing simulation results with seasonal, longitudinal salinity profiles in the Delaware Bay. Furthermore, the performance of the biogeochemical model is critically evaluated by comparing simulation results with longitudinal profiles of pCO₂ and pH, in the Delaware Bay and the Altamaha River estuary. These additional model-data comparisons reveal that C-GEM is able to reproduce local measurements of pCO₂ (Delaware Bay), as well as longitudinal pH and pCO_2 profiles (Altamaha). Following what was done in Volta et al. (2016) with the Scheldt and the Elbe in Europe, the choice of using the Delaware Bay and the Altamaha river estuary was motivated by their contrasting geometries: The Delaware Bay is a marine dominated system characterized by a pronounced funnel shape while the Altamaha River ends with a very prismatic estuary characteristic of river dominated systems (Jiang et al., 2008). Thus, selecting these two end-members estuaries reveals the ability of C-GEM to simulate widely differing estuarine dynamics. Although we agree that performing a simulation on a system located in the Northern region would be a valuable addition, we could not find suitable a suitable set of observed nutrient and carbon boundary conditions and their corresponding longitudinal profiles. Note, however, that several flux values reported in Table 1 refer to estuaries located in this region. Finally, within the new section 3.4 (Scope of applicability and model limitations), we critically discuss the difficulties associated with 'validating' regional/global model simulations with a limited set of local, instantaneous observations, as well as the uncertainties that arise from the proposed model approach.

See updated manuscript at the end of this document

* You used some arguable boundary conditions and forcing functions: The Alkalinity near the mouth, DIC and Alkalinity from GLORICH positions closest to the river boundary or older discharge estimates. I know that it is difficult to put this all together in a reasonable way. But the reader should get knowledge about the sensitivities of the model in relation to estimates of boundary or forcing data. Please show how the model reacts on changes in these data. In the detailed statements I will show in which context such studies should be done.

As pointed out by the reviewer, designing realistic and consistent boundary conditions is a critical step in model set-up. In the present study, this task is further complicated by the necessity to find complete sets of boundary conditions for 43 tidal systems located along the eastern coast of the US. C-GEM was specifically designed with this difficulty in mind. Some of the strengths of the model are its comparatively modest data requirement and its transferability from one estuarine system to another, which has already been demonstrated on the estuaries surrounding the North Sea (Volta et al., 2016). C-GEM is also well suited to be operated in conjunction with global databases such as GlobalNEWS (Mayorga et al., 2010) because they share in common the watershed as their fundamental unit , which is essentially what was done in this study. We agree with the reviewer that some of the assumptions and choices of data sources could be better justified and critically discussed in the manuscript. We thus carefully addressed all concerns raised in the answers to the detailed statements of the reviewer. In addition, we also added an entire new section to the manuscript ('Scope of applicability and model limitations') that summarizes the strengths and weaknesses of our regional model approach.

As different input parameters are means over several years, the time span of validity of the results should be defined.

In the present study, simulations are representative for the year 2000 because some the largest datasets we rely on to constrain boundary conditions or forcings (e.g. GlobalNEWS) are derived from models calibrated for that year. As a consequence, additional data used to constrain boundary conditions and forcing parameters was selected from the same time span. In the revised manuscript, we added a few sentences justifying our data choice and specifying the time period for which simulation results are representative. In addition, we also specify if boundary conditions/forcings are constrained on the basis of punctual measurements or averages of several years.

The introduction reads rather as an advertising text. Give, for example, details about the structure of the ms. A question, which could be tackled, is whether global models miss estuarine processes (Line 39).

In the previous version of our introduction, we tried to emphasize the originality and the potential of our modelling approach. We felt that it was important to stress the novelty of the approach developed here: an explicit simulation of seasonal carbon transformations and fluxes along the land-ocean continuum at a regional scale. This work builds on the study of Volta et al. (2016) which provided the first annually average estimates of estuarine carbon transformations and fluxes focusing on the estuaries surrounding the North Sea. However, we agree with the reviewer that the proportion of the introduction dedicated to the presentation of C-GEM was too long and sometime superfluous. Following the reviewer's advice, we shortened the introduction and emphasized the research questions that can be tackled with the presented model approach. We also provided a better overview of the structure of the manuscript and the studied area. Furthermore, we followed the reviewer's suggestion and shortly discuss the ability of global carbon cycle models to account for the influence of the estuarine modulator.

See updated manuscript at the end of this document

Detailed statements

L14/15 Write 697.000 km2

Done

L19 For which time period?

The sentence has been re-written to state that model simulations are representative of the year 2000.

"*Our simulations, performed using conditions representative of the year 2000, suggest that,* together, US East coast estuaries emit 1.9 TgC yr⁻¹ *in the form of CO*₂, which correspond to about 40 % of the carbon inputs from rivers, marshes and mangrove"

L19 Only CO2, or also other gases including carbon?

Model simulations only account for CO_2 exchange at the air-water interface and the sentence has been modified to clarify this point.

"..., together, US East coast estuaries emit 1.9 TgC yr⁻¹ <u>in the form of CO</u>₂, which correspond to about 40 % of the carbon inputs from rivers, marshes and mangroves."

L25 the results

Done

"Finally, the results reveal that the ratio of estuarine surface area to the river discharge, S/Q..."

L100 Make a full sentence: For a review see Laruelle et al. (2013)

We added a sentence.

"These comprehensive data sets are complemented by local observations of carbon cycling and CO₂ fluxes in selected, individual estuarine systems, making the East coast of the United States an ideal region for a first, fully explicit regional evaluation of CO₂ evasion resolving every major tidal estuary along the selected coastal segment. <u>An extensive review of published local estimates of CO₂ fluxes</u> *in estuarine systems worldwide can be found in Laruelle et al. (2013)."*

L107/109/124 unify "Fig. x" -> all over the text

On the website of Biogeosciences, the guidelines for authors states: 'The abbreviation "Fig." should be used when it appears in running text and should be followed by a number unless it comes at the beginning of a sentence, e.g.: "The results are depicted in Fig. 5. Figure 9 reveals that...".'

In the updated manuscript, we paid attention to strictly follow these rules.

L125 give lat/lon for these stations or enlarge Fig. 1 and indicate individual stations.

In the paragraph summarizing the published annual mean FCO_2 estimates based on measurements for Atlantic US estuaries, we replaced the reference to Figure 1 by a reference to Table 3, which

provides a list of all the estuaries, as well as their respective coordinates mentioned in that section. Table 3 thus becomes Table 2 in the manuscript.

"A total of thirteen local, annual mean estuarine CO_2 flux estimates across the air-water interface based on measurements are also reported in the literature and are grouped along a latitudinal gradient (*Tab. 2*). "

L146ff 47 stationed were simulated. This contradicts the number of 43 (abstract).

Some watersheds flow into the same estuarine system and were merged to calculate boundary conditions for some of the systems (see section 2.4). The sentence the reviewer refers to mistakenly refers to the number of watersheds represented in our simulations rather than the number of estuaries actually represented. Only 43 tidal estuarine systems were simulated and the text was updated in sections 2.2, 2.3 and 3.4. The abstract, which refers to 43 estuaries, is thus still correct. We made the following corrections in the manuscript:

Line 147:

"The National Estuarine Eutrophication Assessment (NEAA) survey (Bricker et al., 2007), which uses geospatial data from the National Oceanic and Atmospheric Administration (NOAA) Coastal Assessment Framework (CAF) (NOAA, 1985), was used to identify and characterize **58** estuarine systems discharging along the Atlantic coast of the United States. From this set, **43** 'tidal' estuaries, defined as a river stretch of water that is tidally influenced (Dürr et al., 2011), were retained (fig.1) to be simulated by the C-GEM model, which is designed to represent such systems."

Line 171:

"The generic 1D Reactive-Transport Model (RTM) C-GEM (Volta et al., 2014) is used to quantify the estuarine carbon cycling in the <u>43</u> systems considered in this study."

Line 278:

"First, <u>43</u> coastal cells corresponding to tidal estuaries are identified in the studied area (Fig. 1)."

Line 568:

"The overall carbon filtering capacity of the region thus equals 41% of the total carbon entering the **43** estuarine systems (river + saltmarshes)."

15+47 is not 64 as I would expect from this sentence.

This is indeed a mistake, only 58 estuarine systems are presented (15+43, see comment above).

L151 Do you have a reference for this?

This figure was calculated using the GLOBALNEWS data (Mayorga et al., 2010) for POC and DOC combined with data from Hartmann et al. (2009) for DIC. We modified the sentence in a way that reflects the fact that we performed this calculation ourselves.

"<u>Using outputs from terrestrial models (Hartmann et al., 2009; Mayorga et al., 2010), the</u> <u>cumulated riverine carbon loads for all the</u> non-tidal estuaries that are excluded from the present study <u>amount to 0.9 Tg C yr⁻¹</u>, <u>which represents less than 15% of the total riverine carbon loads of</u> <u>the region. These 15 systems</u> are located in the SAR (10) and in the MAR (5)."

L152 Tab. x not table x (all over the text)

We update the entire manuscript.

L169 2.9 m (use space)

Done

L207 "These parameters were determined through.."?

The geometric parameters we are referring to can be extracted using Geographic Information Systems (GIS). This widely used type of software allows the determination of, for example, a distance such as the width of an estuary at its mouth from a digitalized map. The manuscript has been modified to spell out GIS on its first occurrence and make clear that GIS is the tool that can be used to extract the data from local maps.

"These parameters can be easily determined <u>from local maps or Google Earth using Geographic</u> <u>Information Systems (GIS)</u> or obtained from databases (NASA/NGA, 2003)".

L210 are described

Corrected

L226 Use C only for concentration

C is the commonly used symbol for Chézy's coefficient but, to avoid any confusion with concentration, we followed the reviewer's advice and use Cz to denote the Chézy's coefficient. We updated equations (6) and the text.

L227 You mean eqs (5) and (6)?

Correct. The text was modified accordingly

L233 You mean eqs (5) and (6)?

Correct. The text was modified accordingly

L239 Use only English peer reviewed references

The original Dutch reference (Van der Burgh, 1972) was replaced by Savenije (1986), which is the oldest English peer reviewed publication using Van der Burgh's equations to calculate the dispersion coefficient in estuarine systems.

"The effective dispersion at the estuarine mouth can be quantified by the following relation *(Savenije, 1986)*:"

L241 Define N by an equation

As stated in the text, the Canter Cremers' estuary number N corresponds to the ratio of the freshwater entering the estuary during a tidal cycle to the volume of salt water entering the estuary over a tidal cycle. We introduced a new equation (new equation 9) to define this parameter.

"...where h0 (m) is the tidally-averaged water depth at the estuarine mouth and N is the dimensionless Canter Cremers' estuary number defined as the ratio of the freshwater entering the estuary during a tidal cycle to the volume of salt water entering the estuary over a tidal cycle (*Simmons, 1955*):

$$N = \frac{Q_b \cdot T}{P}$$

In this equation, Q_b is the bankfull discharge ($m^3 s^{-1}$), T is the tidal period (s) and P is the tidal prism (m^3). For each estuary, N can thus be calculated directly from the hydrodynamic model. "

Reference

<u>Simmons, H. B.: Some effects of inland discharge on estuarine hydraulics, Proc. Am. Soc. Civ. Eng.-</u> ASCE, 81, 792, 1955.

L260 Omit brackets

Done

L262 2000 m (use space)

Done

L272 273 please give a more detailed description here

The calculation of the gross primary production in the water column relies on a depth integration of the Platt equation (Platt et al., 1980), which assumes an exponential decrease of the light availability with depth. The article we are referring to (Vanderborght et al., 2007) described a cost efficient algebraic method to perform this integration using a gamma function. A sentence has been added to the text to provide more information about this procedure.

"The primary production dynamics, which requires vertical resolution of the photic depth, is calculated according to the method described in Vanderborght et al. (2007). <u>This method assumes</u> <u>an exponential decrease of the light in the water column (Platt et al., 1980), which is solved using a</u> <u>Gamma function.</u>"

L276 For which year? Or are climatological or mean values used?

Boundary conditions for regional simulations that cover a large number of individual and sometimes underexplored systems are notoriously difficult to constrain. Comprehensive, temporally resolved observational data sets that would allow informing boundary conditions are rarely available. Global databases, such as GlobalNEWS, which provide model derived river loads of carbon and nutrients (Seitzinger et al., 2005; Mayorga et al., 2010) are a suitable alternative when direct observations are

not available. Here, we used the GlobalNews database, the GloRich database and the World Ocean Atlas to constrain boundary conditions. GlobalNews model simulations have been calibrated for the year 2000. Boundary conditions for Alkalinity and pH are constrained on the basis of data extracted from the GloRiCh database. Most of the data compiled in this data base has been collected between 1990 and 2010. Finally, marine boundary conditions and water temperatures are derived the World Ocean Atlas. These values also correspond to climatological means centred on the year 2000. We explicitly paid attention to extracting coherent data sets from the respective databases that are representative of the same time period (around year 2000). We now clearly state in the main text which time period our boundary conditions are representative of:

"Boundary and forcing conditions are extracted from global databases and global model outputs that are available at 0.5° resolution. Therefore, C-GEM simulations are performed at the same resolution according to the following procedure. First, <u>43</u> coastal cells corresponding to tidal estuaries are identified in the studied area (<u>Fig.</u> 1). If the mouth of an estuary is spread over several 0.5° grid cells, those cells are regrouped in order to represent a single estuary (e.g. Delaware estuary), and subsequently, a single idealized geometry is defined as described above. <u>The model</u> <u>outputs (Hartmann et al. , 2009; Mayorga et al., 2010) and databases (Antonov et al., 2010; Garcia et al., 2010a; Garcia et al., 2010b) used to constrain our boundary conditions are representative of the year 2000."</u>

L289 cloud coverage: Which is the origin of this data?

The data comes from ISCCP Cloud Data Products (Rossow and Schiffer, 1999) and the text was updated in order to include this reference:

"Mean daily solar radiation and photoperiods (corrected for cloud coverage <u>using the ISCCP Cloud</u> <u>Data Products, Rossow and Schiffer, 1999</u>) are calculated depending on latitude and day of the year using a simple model (Brock, 1981).

Reference:

Rossow, W.B., and Schiffer, R.A., 1999: Advances in Understanding Clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261-2288."

L293 Are there no recent data available?

The UNH/GRDC runoff dataset of Fekete et al. (2002) is the dataset used in the GlobalNEWS simulations (Mayorga et al., 2010). Although these values are derived from long term averages over the 1960-1990 period, they have been adjusted to represent the year 2000 in the GlobalNEWS simulations. Here, we use the adjusted values to ensure that boundary conditions are representative of the same time period. In addition, while more recent databases exists such as the National Water Information System (NWIS), they do not provide water discharge for all US rivers and, thus, do not provide values for the totality of the systems used in our simulations.

L320 You mean 50 g C (g Chla)-1 ?

Correct. We meant 50 grams of carbon per gram of chlorophyll a and we updated the text with the notation suggested by the reviewer.

"The same source is used for phytoplankton concentrations, using a chlorophyll-a to phytoplankton carbon ratio of <u>50 gC (gChla)⁻¹</u> (Riemann et al., 1989) to convert the EPA values to carbon units used in the present study."

L332 339 W is not consistently defined. Is it percentage or surface area?

W corresponds to the fraction of the estuarine surface area represented by wetlands. The sentence introducing equation (11) has been updated to clarify this point:

"The DOC input of estuarine wetlands (Fig. 5b) scales to <u>their fraction, W, of the total estuarine</u> surface area and is calculated using the GlobalNEWS parameterization"

L341 give definition of "a"

The parameter 'a' is a calibration parameter used in the GlobalNEWS models and was first defined in Harrison et al. (2005) as: "unitless coefficient defining how non-point DOC export responds to runoff; for NEWS-DOC 'a' was set equal to 0.95."

In our calculations, we kept the same parametrization and rephrased the sentence as follows:

"W is the percentage of the land area within a watershed that is covered by wetlands, R is the runoff (m y-1) and a is a unit-less <u>calibration</u> coefficient defining how non-point source DOC export responds to runoff. <u>The value of a is set to 0.95, consistent with the original GlobalNEWS -DOC</u> <u>model of Harrison et al. (2005)</u>."

L355 358 It seem that you use this argument twice. Here a sensitivity analysis would help.

The sentences pointed out by reviewer states that our models ignores DIC fluxes from tidal marshes because all the carbon exports from those systems come under the form of organic carbon and then justifies this assumption with the fact that very little degradation of organic matter takes place in the tidal marshes before it reaches the estuary. Considering the relatively small amounts of carbon that can be degraded within tidal marshes (and the lack of data to constrain such process) because of the short time scale of mixing processes, our assumption implicitly means that some biogeochemical processing taking place within tidal marshes may be accounted for by our estuarine model.

L364 I doubt that zero concentration for org C is appropriate at open sea boundary. Often org C is transported from the open sea into the estuaries were it is degradated.

Please substantiate this assumption.

We agree that the assumption that the open ocean is devoid of organic carbon is simplistic and that some organic carbon can enter the estuarine system from the seaward boundary. However, the focus of our study is to investigate and quantify the fate of the carbon delivered to estuaries by the riverine network. We introduced a sentence to section 2.4.4 to reflect on this limitation.

"This approach also reduces the influence of marine boundary conditions on the simulated estuarine dynamics, especially for all the organic carbon species whose concentrations are fixed at zero at the marine boundary. <u>This assumption ignores the intrusion of marine organic carbon into the estuary</u> <u>during the tidal cycle but allows focusing on the fate of terrigenous material and its transit</u> <u>through the estuarine filter.</u>"

In addition, the implications of this assumption are also discussed in a paragraph of the new section 3.4:

"C-GEM places the lower boundary condition 20 km from the estuarine mouth into the coastal ocean and the influence of this boundary condition on simulated biogeochemical dynamics is thus limited. At the lower boundary condition, direct observations for nutrients and oxygen are extracted from databases such as the World Ocean Atlas (Antonov et al., 2014). However, lower boundary conditions for OC and pCO_2 (zero concentration for OC and assumption of pCO_2 equilibrium at the sea side) are simplified. This approach does not allow addressing the additional complexity introduced by biogeochemical dynamics in the estuarine plume (see Arndt et al., 2011). Yet, these dynamics only play a secondary role in the presented study that focuses on the role of the estuarine transition zone in processing terrestrial-derived carbon."

L374 domain -> boundary

Done

L377 Why longitudinal profiles? You mean at right angles with the river flow?

The term longitudinal profile is commonly used and refers to a concentration profile along the longitudinal (length) axis of the estuary, i.e. from the estuarine mouth to the river. Concentrations are thus representative of the cross-sectional average at the respective longitudinal position.

L383 How large do you estimate the error when neglecting degradation or burial in bottom sediments? A sensitivity test could help.

We agree that neglecting benthic processes is a potential limitation of our model. As the reviewer points out, organic matter degradation and burial may influence the biogeochemical of carbon in some estuaries and affect carbon retention within the system. However, because of the dynamic nature of estuarine sediments and the logistic challenges involved to sample them, direct observations and measurements of benthic processes are even more limited than those available for pelagic processes. Very little is known on the long term fate of organic carbon in estuarine sediments and its burial. Because of this lack of knowledge, benthic processes are not explicitly represented in the model. However, to a certain degree model parameters (such as organic matter degradation, denitrification rate constant) implicitly account for benthic dynamics. We acknowledge that, by ignoring benthic processes and burial in particular, our estimates for the estuarine carbon filtering

may be underestimated. These considerations have been incorporated into a paragraph of the new section 3.4:

"Although the reaction network of C-GEM accounts for all processes that control estuarine FCO₂ (Borges and Abril, 2012; Cai, 2011), several, potentially important processes, such as benthicpelagic exchange processes, phosphorous sorption/desorption and mineral precipitation, a more complex representation of the local phytoplankton community, grazing by higher trophic levels, or multiple reactive organic carbon pools are not included. Although these processes are difficult to constrain and their importance for FCO₂ is uncertain, the lack of their explicit representations induces uncertainties in Cfilt. In particular, the exclusion of benthic processes such as organic matter degradation and burial in estuarine sediments could result in an underestimation of Cfilt. However, because very little is known on the long term fate of organic carbon in estuarine sediments, setting up and calibrating a benthic module proves a difficult task. Furthermore, to a certain degree model parameters (such as organic matter degradation and denitrification rate constant) implicitly account for benthic dynamics. We nonetheless acknowledge that, by ignoring benthic processes and burial in particular, our estimates for the estuarine carbon filtering may be underestimated, particularly in the shallow systems of the SAR."

In addition, although, the discussion is not centred around the role of benthic processes, a paragraph of the new section 3.4 is also dedicated the difficulty of quantifying the uncertainties of model simulations and an attempt is made using the sensitivity analysis performed by Volta et al. (2014, 2016b).

"Biogeochemical model parameters for regional and global applications are notoriously difficult to constrain (Volta et al., 2016b). Model parameters implicitly account for processes that are not explicitly resolved and their transferability between systems is thus limited. In addition, published parameter values are generally biased towards temperate regions in industrialized countries (Volta et al., 2016b). A first order estimation of the parameter uncertainty associated to the estuarine carbon removal efficiency (CFilt) can be extrapolated from the extensive parameter sensitivity analyses carried out by Volta et al. (2014, 2016b). These comprehensive sensitivity studies on end-member systems have shown that the relative variation in Cfilt when a number of key biogeochemical parameters are varied by two orders of magnitude varies by is ±15 % in prismatic (short residence time on order of days) to ±25 % in funnel-shaped (long residence time) systems. Thus, assuming that uncertainty increases linearly between those bounds as a function of residence time, an uncertainty estimate can be obtained for each of our modelled estuary. With this simple method, the simulated regional Cfilt of 1.9 Tg C yr⁻¹ would be associated with an uncertainty range comprised between 1.5 and 2.2 Tg C yr⁻¹. Our regional estuarine CO_2 evasion estimate is thus reported with moderate confidence. Furthermore, in the future, this uncertainty range could be further constrained using statistical methods such as Monte Carlo simulations (e.g. Lauerwald et al., 2015)."

L408 Fluxes

Done

L430 Boundary conditions and forcings differ from European settings. Show validations for American estuaries.

We added validations for the American estuaries. Section 2.6 (Model-data comparison) now includes a comparison between model-predicted annual CO_2 outgassing fluxes and 13 published flux estimates, derived from direct measurements in local estuaries to section 2.6 (Model-data comparison). In addition, we provide a validation of our hydrodynamic model using several seasonal longitudinal salinity profiles in the Delaware Bay as well a validation of our biogeochemical model on the basis of pH and pCO₂ profiles from two estuaries (the Delaware Bay and the Altamaha estuary). These additional simulations reveal that C-GEM is able to reproduce observed pCO₂ (Delaware Bay) and both pH and pCO₂ longitudinal profiles along the estuarine gradient (Altamaha).

"Although C-GEM has been specifically designed and tested for the type of regional application presented here, its transferability from North Sea to US East Coast estuaries was further evaluated by assessing its performance in two East Coast estuaries. First, the hydrodynamic and transport model was tested for the Delaware Bay (MAR). The model was forced with the monthly, minimal and maximal observed discharge at Trenton over the period between 1912 and 1985 (UNH/GRDC Database). Simulated salinity profiles are compared with salinity observations from January, February, May and June (the months with the highest number of data entries), which were extracted from the UNH/GRDC Database. Fig. 6 shows that the model captures both the salinity intrusion length and the overall shape of the salinity profile well. In addition, the performance of the biogeochemical model and specifically its ability to reproduce pH and pCO₂ profiles was evaluated by a model-data comparison for both the Delaware Bay (MAR) in July 2003 and the Altamaha river estuary (SAR) in October 1995. Similar to Volta et al., 2016a, the test systems were chosen due to their contrasting geometries. The Delaware Bay is a marine dominated system characterized by a pronounced funnel shape, while the Altamaha River has a prismatic estuary characteristic of river dominated systems (Jiang et al., 2008). Monthly upstream boundary conditions for nutrients, as well as observed pH data and calculated pCO_2 are extracted from datasets described in (Sharp, 2010) and (Sharp et al., 2009) for the Delaware and in (Cai and Wang, 1998; Jiang et al., 2008) and (Cai et al., 1998) for the Altamaha river estuary. The additional forcings and boundary conditions are set similarly to the simulation for 2000 (see table 2, 3, 4, 5, 6 in SI). Fig. 7 shows that measured and simulated pH values are in good agreement with observed pH and observation-derived calculations of pCO_2 . In the Delaware Bay, a pH minimum is located around km 140 and is mainly caused by intense nitrification sustained by large inputs of NH₄ from the Philadelphia urban area, coupled to an intense heterotrophic activity. Both processes lead to a well-developed pCO₂ increase in this area (Fig. 7b). Although no pCO₂ data were available for validation for the period from which boundary conditions were extracted, the simulated profile agree with pCO_2 measurement from July 2013 presented by Joesoef et al. (2015) with pCO_2 values close to equilibrium with the atmosphere in the widest section of the Delaware Bay (close to the estuarine mouth) and values above 1200 µatm at salinities below 5. For the Altamaha river estuary, pH steadily increases from typical river to typical coastal ocean values (Fig. 7b). In addition, both observations and model results reveal that outgassing is very intense in the lowsalinity region with more than a 5 fold decrease in pCO₂ between salinity 0 and 5 (Fig 7d)."

In addition, the new section 3.4 (Scope of applicability and model limitations) critically discusses the difficulties of validating regional/global simulations with local data:

"The generic nature of the applied model approach and, in particular the application of seasonally/annually averaged or model-deduced boundary conditions renders a direct validation of model results on the basis of local and instantaneous observational data (e.g. longitudinal profiles), which is likely not representative of these long-term average conditions, difficult. Therefore, model performance is evaluated on the basis of spatially aggregated estimates (e.g. regional FCO₂ estimates based on local measurements) rather than system-to-system comparisons with longitudinal profile from specific days. However, note that the performance of C-GEM has been intensively tested by specific model-data comparisons for a number of different systems (e.g. Volta et al., 2014, 2016a) and we are thus confident of its predictive capabilities."

L443 a regional minimum

Done

L440-456 Give these numbers in a table and discuss the most relevant ones.

These results were compiled for all estuaries and seasons in supplementary table SI1 and discussed within the text of section 3.1.

L457-462 The percentages should sum up to 100%

When taking all decimals into account, the percentage values do sum up to 100%. We now provide the exact value in the new manuscript.

"In contrast, the 18 MAR estuaries, with their large relative contribution to the total regional estuarine surface area, account for *as much as 70.1%* of the total outgassing."

L466 What do you mean with "aspect ratio"?

Aspect ratio refers to the geometry of the estuary (which subsequently affect its biogeochemical behaviour) and more explicitly refers to the ratio between the estuarine width b0 and convergence length b. A wider, funnel shaped estuary whose dynamics are controlled by a strong marine influence while the dynamics in a narrower prismatic estuary is dominated by the river influence (Savenije, 2001).

In the text, the sentence has been modified and the meaning of the term aspect ratio has been clarified:

"The comparatively larger relative contribution of the NAR to the total NEM as compared to the total FCO₂ can be explained by the importance of the specific aspect ratio for NEM. <u>A larger ratio of</u> <u>estuarine width b0 and convergence length b corresponds to a more funnel shaped estuary while a</u> <u>low ratio corresponds to a more prismatic geometry (Savenije, 2001; Volta et al., 2014)</u>"

L479ff Why do the small estuaries show higher mean values?

In large systems, the total outgassing of CO_2 extends over a much larger surface area. In small estuaries, the surface area acts as a limiting factor for the gas exchange with the atmosphere.

L485 Give more details about the assumptions made to calculate the partitioning for

In addition to the reference to Regnier et al. (2013), more details regarding the method used to calculate the respective contributions to the estuarine CO_2 outgasing (NEM, nitrification and riverine oversaturated CO_2) is now provided.

"Following the approach used in Regnier et al. (2013), the contribution of biogeochemical process to FCO_2 is assessed by evaluating their individual contribution to DIC and ALK changes <u>taking into</u> account the local buffering capacity of an ionic solution when TA and DIC are changing due to internal processes, but ignoring advection and mixing (Zeebe and Wolf-Gladrow 2001). In the present study, we quantify the effect of the NEM on the CO_2 balance, which is almost exclusively controlled by aerobic degradation rates because the contributions of denitrification and NPP to the net ecosystem balance are small. Nitrification, a process triggered by the transport and/or production of NH_4 in oxygenated waters, favors outgassing through its effect on pH, which shifts the acid-base equilibrium of carbonate species and increases the CO_2 dynamics is calculated as difference between all the other processes creating or consuming CO_2 ."

Fig. 8a. Were seasonal partitioning combined to overall partitioning?

Indeed, the partitioning presented in figure 8a (and figure 8b) are calculated on the basis of the 4 seasonal fluxes for each estuary. The manuscript was edited to clarify this point:

"Fig. 8a presents the contribution of the annually integrated NEM, nitrification and evasion of supersaturated, DIC enriched riverine waters to the total outgassing for each system, as well as for individual regions of the domain. <u>The calculation of these annual values is based on the sum of the seasonal fluxes.</u>"

L489 Give more details about the different partitioning in the different zones here

An entire paragraph following L489 fully describes the partitioning of the 3 drivers of FCO₂ (NEM, nitrification and riverine CO₂) in the 3 different zones (i.e. NAR, MAR, SAR). This paragraph used to begin on L496 of the previous version of the manuscript. We now explain and discuss the regional breakdown earlier in the text and moved the description of the influence of nitrification and NEM on CO₂ outgassing to L 485. Now the discussion of the contributions of NEM, nitrification and riverine CO₂ to FCO2 in each of the 3 sub regions directly follows the sentence in L.489, pointed out by the reviewer.

"Model results reveal that, regionally, the NEM supports about 50% of the estuarine CO_2 outgassing, while nitrification and riverine DIC inputs sustain about 17% and 33% of the CO_2 emissions, respectively. *Nitrification, a process triggered by the transport and/or production of NH₄ in oxygenated waters, favors outgassing through its effect on pH, which shifts the acid base equilibrium of carbonate species and increases the CO₂ concentration. In addition, the NEM is almost exclusively controlled by aerobic degradation rates because the contribution of denitrification and NPP to the net ecosystem balance is small.* The relative significance of the three processes described above shows important spatial variability..."

L508 Where is Table S1?

Table S1 was uploaded as a supplementary table and a link to download it was included on the page from which the manuscript could be downloaded (below the PDF symbol). Attached to this reply, we provide an archive containing the updated manuscript as well as all the supplementary information

L577 budgets

Done

L630 The normalization of NEM by a Q10 value appears reasonable. The normalization of FCO2 by a Q10 value must be justified. I'm not convinced of the latter normalization.

The rationale for the normalization of FCO₂ by a Q10 value, using the same approach as the one used for NEM, is the fact that, in many systems, NEM and FCO₂ are intimately linked. For instance, Mayer and Eyre (2012) proposed a linear relationship between NEM and FCO₂. Applying the same normalization to both NEM and FCO₂ thus allows testing if a similar relationship can be observed along the entire climatic gradient of the US East Coast.

"In this section, we explore the relationships between such simple physical parameters and indicators of the estuarine carbon processing \overline{NEM} , $\overline{FCO_2}$ and CFilt. In order to account for the effect of temperature on C dynamics, $-\overline{NEM}$ and $\overline{FCO_2}$ are also normalized to the same temperature (arbitrarily chosen to be 0 degree). These normalized values are obtained by dividing $-\overline{NEM}$ and $\overline{FCO_2}$ by a Q₁₀ function f(T) (see Volta et al., 2014). This procedure allows accounting for the exponential increase in the rate of several temperature dependent processes contributing to the NEM (i.e. photosynthesis, organic carbon degradation...). Applying the same normalization to $-\overline{NEM}$ and $\overline{FCO_2}$ is a way of testing how intimately linked NEM and FCO_2 are in estuarine systems. Indeed linear relationships relating one to the other have been reported (Mayer and Eyre, 2012)."

L660 ff Here it becomes obvious that f(t) cannot be applied to FCO2.

Indeed, we agree with the reviewer that no clear relationship between Q10-normalized FCO₂ and S/Q can be observed over the entire spectrum of values of S/Q that can be found along the east coast of the US. In fact, our results clearly illustrate that a linear regression between FCO₂ / f(T) and S/Q only provides a good fit using estuaries located in the MAR and SAR regions. The small estuaries from the NAR region, characterized by values of S/Q < 3 d m⁻¹ display a significantly different behaviour. We think that it is important to point out that small estuaries show a different biogeochemical response and establishing a range of values of S/Q within which Mayer and Eyre's relationship can be reproduced justifies the use of this normalization of FCO₂ by a Q10. We modified the text to clarify our approach.

"Thus, the well-documented correlation between \overline{NEM} and $\overline{FCO_2}$ (Maher and Eyre, 2012) does not seem to hold for systems with very short residence times. For systems with S/Q > 3 days m⁻¹, we obtain a regression $FCO_2 = -0.64 \times NEM + 5.96$ with a r² of 0.46, which compares well with the relation $FCO_2 = -0.42 \times NEM + 12$ proposed by Maher and Eyre (2012) who used 24 seasonal estimates from small Australian estuaries. <u>However, our results suggest that this relationship</u> *cannot be extrapolated to small systems such as those located in the NAR.*" "As a consequence of the distinct behavior of short residence time systems, the coefficient of determination of the best-fitted power law function relating $\overline{FCO_2}$ and S/Q is only significant if NAR systems are excluded (y = 31.64 x^{-0.58} with a r² = 0.70). <u>This thus suggest that such relationships (as</u> well as that proposed by Maher and Eyre, 2012) cannot be applied to any system but only those for which S/Q>3 day m⁻¹."

L668 whom -> who

Done

L677 In this case the assumption of pCO2 in equilibrium with the atmosphere at the lower boundary contradicts the case "still oversaturated waters .."

In our simulations, the seaward boundary is located 20km away from the estuarine mouth and estuarine waters close to the mouths can thus be still oversaturated.

At the beginning of section 2.4.4, we state that 'For each estuary, the downstream boundary is located 20 km beyond the mouth to minimize the bias introduced by the choice of a fixed concentration boundary condition to characterize the ocean water masses (e.g. Regnier et al., 1998).'

This assumption is also discussed in a paragraph of the new section 3.4:

"<u>C-GEM places the lower boundary condition 20 km from the estuarine mouth into the coastal</u> ocean and the influence of this boundary condition on simulated biogeochemical dynamics is thus limited. At the lower boundary condition, direct observations for nutrients and oxygen are extracted from databases such as the World Ocean Atlas (Antonov et al., 2014). However, lower boundary conditions for OC and pCO_2 (zero concentration for OC and assumption of pCO_2 equilibrium at the sea side) are simplified. This approach does not allow addressing the additional complexity introduced by biogeochemical dynamics in the estuarine plume (see Arndt et al., 2011). Yet, these dynamics only play a secondary role in the presented study that focuses on the role of the estuarine transition zone in processing terrestrial-derived carbon."

L682 No link to Fig. 10d?

We added a reference to Fig. 10d (now Fig.12d), as well as a brief discussion of the non-normalized results to the text.

"Figure 12d, which reports non-normalized FCO₂ reveals a monotonous increase of FCO₂ with S/Q. This suggests that, unlike the NEM for which the normalization by a temperature function allowed explaining most of the variability; FCO₂ is mostly controlled by the water residence time within the system. Discharge is the main FCO₂ driver in riverine dominated systems, while interactions with marshes are driving the outgassing in marine dominated systems surrounded by marshes."

L739 You really mean "prediction"? Not "projection"?

We agree that term projection is better suited and the text was updated accordingly.

"In regions with better data coverage, such as the one investigated here, our study highlights that the regional-scale quantification, attribution, and *projection* of estuarine biogeochemical cycling are now at reach."

L740 As your model is rather based on empirical relations than on first principles, I expect that changed systems due to climate shifts and consequences can change your basic relationship. Please include this aspect in a more careful outlook.

We agree with the remark of the reviewer stating that the domain of applicability of the relationship we found between NEM, temperature and the depth normalized estuarine residence is bound within the range of values observed within our study area. Some of these aspects are tackled in the new section 'Scope of applicability and model limitations'.

Additionally, following the reviewer's recommendation, a sentence was added in the outlook section to account for the limitations of the applicability of the relationships we designed. We would like however, to draw the attention of the reviewer on the mechanistic nature of our model. Thus, while the relationships presented in section 3.5 are indeed empirical, they stem from results produced by a model that is actually largely based on first principles.

"In the future, such simple relationships, relying on readily available geometric and hydraulic parameters could be used to quantify carbon processing in areas of the world devoid of direct measurements. *However, it is important to note that such simple relationships are only valid over the range of boundary conditions and forcings explored and may not be applicable to conditions that fall outside of this range.* In regions with better data coverage, such as the one investigated here, our study highlights that the regional-scale quantification, attribution, and *projection* of estuarine biogeochemical cycling are now at reach."

L1021 7(4), 1271-1295

The reference was updated:

"Volta, C., Arndt, S., Savenije, H. H. G., Laruelle, G. G., and Regnier, P.: C-GEM (v 1.0): a new, costefficient biogeochemical model for estuaries and its application to a funnel-shaped system, Geosci. Model Dev., *7*, *1271-1295*, *doi:10.5194/gmd-7-1271-2014*, 2014."

L1045 give units and if possible your own values.

Following the reviewer's advice, table 3 (now table 2) has been updated to include the unit of the values in the caption and the values calculated by our simulations for the selected estuaries.

Name	Lon	Lat	FCO ₂		Reference
			Observed.	Modeled	
Altamaha Sound	-81.3	31.3	32.4	72.7	Jiang et al. (2008)
Bellamy	-70.9	43.2	3.6	3.9	Hunt et al. (2010)
Cocheco	-70.9	43.2	3.1	3.9	Hunt et al. (2010)
Doboy Sound	-81.3	31.4	13.9	25.7	Jiang et al. (2008)
Great Bay	-70.9	43.1	3.6	3.9	Hunt et al. (2011)
Little Bay	-70.9	43.1	2.4	3.9	Hunt et al. (2011)
Oyster Bay	-70.9	43.1	4	3.9	Hunt et al. (2011)
Parker River estuary	-70.8	42.8	1.1	3.9	Raymond and Hopkinson (2003)
Sapelo Sound	-81.3	31.6	13.5	20.6	Jiang et al. (2008)
Satilla River	-81.5	31	42.5	25.7	Cai and Wang (1998)
York River	-76.4	37.2	6.2	8.1	Raymond et al. (2000)
Hudson River	-74	40.6	13.5	15.5	Raymond et al. (1997)
Florida Bay	-80.68	24.96	1.4	n.a.	Dufore (2012)

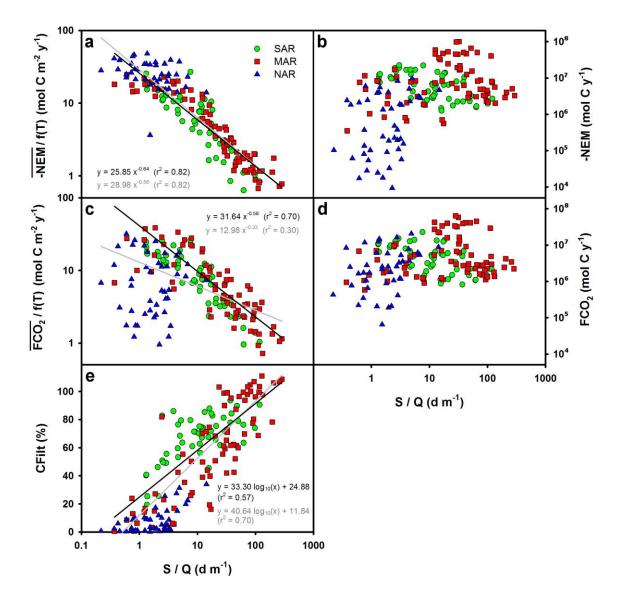
"Table 2: Published local annually averaged estimates of $\overline{FCO_2}$ <u>in mol C m⁻² yr⁻¹</u> for estuaries along the East coast of the US."

In addition, the text of the section 2.6 (Model-data comparison) has also been updated to compare observed and simulated FCO_2 in these 13 systems.

"While such local validations allow assessing the performance of the model for a specific set of conditions, the purpose of this study is to capture the average biogeochemical behaviour of the estuaries of the eastern coast of the US. Therefore, in addition to the system-specific validation, published annually averaged FCO_2 estimates for 13 tidal systems located within the study area collected over the 1994-2006 period are compared to simulated FCO_2 for conditions representative of the year 2000. Overall, simulated FCO_2 are comparable to values reported in the literature (Tab. 2). Although discrepancies, which sometimes can significant, are observed at the level of individual systems, the model captures remarkably well the overall trend in CO_2 evasion rate across estuaries. The model simulates low CO_2 efflux (< 5 mol C m⁻² yr⁻¹) for the 7 systems were such conditions have been observed, while the 6 systems for which the CO_2 evasion exceeds 10 mol C m⁻² yr⁻¹ are the same in the observations and in the model runs. The discrepancy at the individual system level likely result from a combination of factors, including the choice of model processes and there parametrization, the uncertainties in constraining boundary conditions and the limited representability of instantaneous and local observed."

L1052 definition of winter (DJF)?

We define winter in section 2.4 as January, February and March. The definitions of the seasons are now reiterated in the table caption of table 5 to avoid any confusion:


"Table 5: Seasonal contribution to FCO₂ and NEM in each the sub-region. The seasons displaying the highest percentages are indicated in bold. <u>Winter is defined as January, February and March, Spring</u> <u>as April, May and June and so on...</u>"

L1103 The caption must be understandable alone. & L1105 Separate: "black lines .. using all points" " grey lines are best fit only for .."

The caption was rewritten taking into account the suggestion of the reviewer:

"Figure 10: <u>System scale integrated biogeochemical indicators expressed</u> as a function of the depth normalized residence time expressed as the ratio of the estuarine surface S and the river discharge Q for all seasons. Panels b, d and e represent NEM, -FCO₂ and CFilt, respectively. Panels a and c represent NEM, -FCO₂ normalized by a temperature Q₁₀ function. Black lines are the best fitted <u>linear</u> regressions obtained using all the point. <u>Grey lines are best fit using only</u> the estuaries from the MAR and SAR regions."

In addition, the y axis of panels b and d were updated.

References:

- Antonov, J.I., Seidov, D., Boyer, T.P., Locarnini, R.A., Mishonov, A.V., Garcia, H.E., Baranova, O.K., Zweng, M.M., and Johnson, D.R.: World Ocean Atlas 2009, Volume 2: Salinity. S., 2010.
- Arndt, S., Regnier, P., and Vanderborght, J.P.: Seasonally-resolved nutrient export fluxes and filtering capacities in a macrotidal estuary. Journal of Marine Systems, 78(1), 42-58, 2009.
- Arndt, S., Lacroix, G., Gypens, N., Regnier, P., and Lancelot, C.: Nutrient dynamics and phytoplankton development along an estuary-coastal zone continuum: A model study. Journal of Marine Systems, 84(3-4), 49-66, 2011.
- Bauer, J.E., Cai, W.J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., and Regnier, P.A.G.: The changing carbon cycle of the coastal ocean. Nature, 504(7478), 61-70, 2013.
- Billen, G., Thieu, V., Garnier, J., and Silvestre, M.: Modelling the N cascade in regional waters: The case study of the Seine, Somme and Scheldt rivers, Agr. Ecosyst. Environ., 133, 234–246, 2009.
- Borges, A.V., and Abril, G.: Carbon Dioxide and Methane Dynamics in Estuaries. In: E. Wolanski and D.S. McLusky (Editors), Treatise on Estuarine and Coastal Science. Academic Press, Waltham, pp. 119–161, 2012.
- Bricker, S., Longstaff, B., Dennison, W., Jones, A., Boicourt, K., Wicks, C., and Woerner, J.: Effects of Nutrient Enrichment In the Nation's Estuaries: A Decade of Change, NOAA, MD, 2007.
- Brock, T.D.: Calculating solar radiation for ecological studies. Ecological Modelling, 14(1-2), 1-19, 1981.
- Cai, W.J., and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 43(4), 657-668, 1998.
- Cai, W.J., Wang, Y., and Hodson, R. E.: Acid-base properties of dissolved organic matter in the estuarine waters of Georgia, USA. Geochimica et Cosmochimica Acta, 62(3), 473-483, 1998.
- Cai, W.J.: Estuarine and coastal ocean carbon paradox: CO₂ sinks or sites of terrestrial carbon incineration? Ann. Rev. Mar. Sci., 3, 123-145, 2011.
- Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y.: Air-sea exchanges of CO2 in the world's coastal seas, Biogeosciences, 10, 6509–6544, doi:10.5194/bg-10-6509-2013, 2013.
- Dufore, C. M.: Spatial and Temporal Variations in the Air-Sea Carbon Dioxide Fluxes of Florida Bay, Gratuate School Thesis, University of South Florida, 2012.
- Dürr, H.H., Laruelle, G.G., van Kempen, C.M., Slomp, C.P., Meybeck, M., and Middelkoop, H.: Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River Inputs to the Oceans. Estuaries and Coasts, 34(3), 441-458, 2011.
- Fekete, B.M., Vörösmarty, C.J., and Grabs, W.: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochemical Cycles, 16(3), 15-1, 2002.
- Garcia, H.E., Locarnini, R.A., Boyer, E.W., Antonov, A., Baranova, O.K., Zweng, M.M., and Johnson, D.R.: World Ocean Atlas 2009, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, 2010a.
- Garcia, H.E., Locarnini, R.A., Boyer, E.W., Antonov, J.I., Baranova, O.K., Zweng, M.M., and Johnson, D.R.: World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate), 2010b.
- Garnier, J., Servais, P., Billen, G., Akopian, M., and Brion, N.: Lower Seine River and Estuary (France) Carbon and Oxygen Budgets During Low Flow, Estuaries, 24, 964–976, 2001.
- Harrison, J.A., Caraco, N., and Seitzinger, S.P.: Global patterns and sources of dissolved organic matter export to the coastal zone: Results from a spatially explicit, global model. Global Biogeochemical Cycles, 19(4), GB4S03, doi:10.1029/2004GB002357, 2005.
- Hartmann, J., Jansen, N., Dürr, H.H., Kempe, S., and Köhler, P.: Global CO₂ consumption by chemical weathering: What is the contribution of highly active weathering regions? Global Planet. Change, 69(4), 185-194, 2009.

- Hofmann, A.F., Soetaert, K., and Middelburg, J.J.: Present nitrogen and carbon dynamics in the Scheldt estuary using a novel 1-D model. Biogeosciences, 5(4), 981-1006, 2008.
- Hofmann, E.E., Cahill, B., Fennel, K., Friedrichs, M.A.M., Hyde, K., Lee, C., Mannino, A., Najjar, R.G., O'Reilly, J.E., Wilkin, J., and Xue, J.: Modeling the dynamics of continental shelf carbon. Ann Rev Mar Sci. 3, 93-122, 2011.
- Hunt, C. W., Salisbury, J. E., Vandemark, D., and McGillis, W.: Contrasting Carbon Dioxide Inputs and Exchange in Three Adjacent New England Estuaries. Estuar. Coast., 34, 68–77, doi:10.1007/s12237-010-9299-9, 2010.
- Hunt, C.W., Salisbury, J.E., Vandemark, D., and McGillis, W.: Contrasting Carbon Dioxide Inputs and Exchange in Three Adjacent New England Estuaries. Estuaries and Coasts, 34(1), 68-77, 2011.
- Jiang, L.Q., Cai, W.J., and Wang, Y.: A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnology and Oceanography, 53(6), 2603-2615, 2008.
- Joesoef, A., Huang, W.-J., Gao, Y., and Cai, W.-J.: Air–water fluxes and sources of carbon dioxide in the Delaware Estuary: spatial and seasonal variability, Biogeosciences, 12, 6085-6101, doi:10.5194/bg-12-6085-2015, 2015.
- Laruelle, G. G., Regnier, P., Ragueneau, O., Kempa, M., Moriceau, B., Ni Longphuirt, S., Leynaert, A., Thouzeau, G., and Chauvaud, L.: Benthic-pelagic coupling and the seasonal silica cycle in the Bay of Brest (France): new insights from a coupled physical-biological model, Mar. Ecol.-Prog. Ser., 385, 15–32, 2009.
- Laruelle, G.G., Dürr, H.H., Slomp, C.P., and Borges, A.V.: Evaluation of sinks and sources of CO₂ in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys. Res. Lett., 37(15), L15607, doi:10.1029/2010GL043691, 2010.
- Laruelle, G.G., Dürr, H.H., Lauerwald, R., Hartmann, J., Slomp, C.P., Goossens, N., and Regnier, P.A.G.: Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci., 17(5), 2029-2051, 2013.
- Laruelle, G.G., Lauerwald, R., Rotschi, J. Raymond, P.A., and Regnier, P.: Seasonal response of airwater CO2 exchange along the land-ocean aquatic continuum of the northeast North American coast. Biogeosci. 12, 1447-1458, 2015.
- Lauerwald, R., Hartmann, J., Moosdorf, N., Kempe, S., and Raymond, P.A.: What controls the spatial patterns of the riverine carbonate system? — A case study for North America. Chemical Geology, 337–338, 114-127, 2013.
- Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., and Regnier, P. A. G.: Spatial patterns in CO2 evasion from the global river network, Global Biogeochem. Cy., 29, 534–554, doi:10.1002/2014GB004941, 2015.
- Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G.-H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and Zaehle, S.: Global carbon budget 2013, Earth Syst. Sci. Data, 6, 235-263, doi:10.5194/essd-6-235-2014, 2014.
- Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B.

D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global Carbon Budget 2015, Earth Syst. Sci. Data, 7, 349-396, doi:10.5194/essd-7-349-2015, 2015.

- Maher, D.T., and Eyre, B.D.: Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air-water CO2 flux. Global Biogeochem. Cycles, 26(1), GB1032, 2012.
- Mayorga, E., Seitzinger, S.P., Harrison, J.A., Dumont, E., Beusen, A.H.W., Bouwman, A.F., Fekete, B.M., Kroeze, C., and Van Drecht, G.: Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation. Environmental Modelling and Software, 25(7), 837-853, 2010.
- NASA/NGA: SRTM Water Body Data Product Specific Guidance, Version 2.0, 2003.
- NOAA: National Estuarine Inventory Data Atlas, Volume 1: Physical and Hydrologic Characteristics, National Oceanic and Atmospheric Administration, MD, 1985.
- Paerl, H.W., Valdes, L.M., Peierls, B.L., Adolf, J.E., and Harding Jr, L.W.: Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems. Limnology and Oceanography, 51(1 II), 448-462, 2006.
- Platt, T., Gallegos, C. L., and Harrison, W. G.: Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38, 687-701, 1980.
- Raymond, P.A., Caraco, N.F., and Cole, J.J.: Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries, 20(2), 381-390, 1997.
- Raymond, P.A., Bauer, J.E., and Cole, J.J.: Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnology and Oceanography, 45(8), 1707-1717, 2000.
- Raymond, P.A., and Hopkinson, C.S.: Ecosystem Modulation of Dissolved Carbon Age in a Temperate Marsh-Dominated Estuary. Ecosystems, 6(7), 694-705, 2003.
- Rossow, W.B., and Schiffer, R.A.: Advances in understanding clouds from ISCCP. Bull. Amer. Meteorol. Soc., 80, 2261-2288, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999.
- Regnier, P., Mouchet, A., Wollast, R., and Ronday, F.: A discussion of methods for estimating residual fluxes in strong tidal estuaries, Cont. Shelf Res., 18, 1543–1571, 1998.
- Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A.V., Dale, A.W., Gallego-Sala, A., Godderis, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D.E., Leifeld, J., Meysman, F.J.R., Munhoven, G., Raymond, P.A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geosci, 6(8), 597-607, 2013.
- Regnier, P., Arndt, S., Goossens, N., Volta, C., Laruelle, G.G., Lauerwald, R., and Hartmann, J.: Modelling Estuarine Biogeochemical Dynamics: From the Local to the Global Scale. Aquatic Geochemistry, 19(5-6), 591-626, 2013b.
- Riemann, B., Simonsen, P., and Stensgaard, L.: The carbon and chlorophyll content of phytoplankton from various nutrient regimes. Journal of Plankton Research, 11 (5), 1037-1045, 1989.
- Savenije, H.H.G.: A one-dimensional model for salinity intrusion in alluvial estuaries. Journal of Hydrology, 85(1-2), 87-109, 1986.
- Savenije, H. H. G.: A simple analytical expression to describe tidal damping or amplification, J. Hydrol., 243, 205–215, 2001.
- Schwarz, G.E., Hoos, A.B., Alexander, R.B., and Smith, R.A.: The SPARROW Surface Water-Quality Model: Theory, Application and User Documentation. U.S. Geological Survey, Techniques and Methods Report, Book 6, Chapter B3, Reston, Virginia, 2006.
- Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., and Bouwman, A. F.: Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global

Nutrient Export from Watersheds (NEWS) models and their application, *Global Biogeochem*. *Cycles*, 19, GB4S01, doi:10.1029/2005GB002606, 2005.

- Signorini, S.R., Mannino, A., Najjar Jr, R.G., Friedrichs, M.A.M., Cai, W.J., Salisbury, J., Wang, Z.A., Thomas, H., and Shadwick, E.: Surface ocean pCO2 seasonality and sea-air CO2 flux estimates for the North American east coast. Journal of Geophysical Research C: Oceans, 118(10), 5439-5460, 2013.
- Simmons, H. B.: Some effects of inland discharge on estuarine hydraulics, Proc. Am. Soc. Civ. Eng.-ASCE, 81, 792, 1955.
- Sharp, J. H., Yoshiyama, K., Parker, Schwartz, M. C., Curless, S. E., Beauregard, A. Y., Ossolinski, J. E., and Davis, A. R.: A Biogeochemical View of Estuarine Eutrophication: Seasonal and Spatial Trends and Correlations in the Delaware Estuary. Estuaries and Coasts, 32, 1023-1043,. doi:10.1007/s12237-009-9210-8, 2009.
- Sharp, J. H.: Estuarine oxygen dynamics: What can we learn about hypoxia from long-time records in the Delaware Estuary? Limnol. Oceanogr., 55(2), 2010, 535–548, 2010.
- Soetaert, K., and Herman, P.M.J.: Nitrogen dynamics in the Westerschelde estuary (SW Netherlands) estimated by means of the ecosystem model MOSES. Hydrobiologia, 311(1-3), 225-246, 1995.
- Thieu, V., Mayorga, E., Billen, G., and Garnier, J.: Subregional and downscaled global scenarios of nutrient transfer in river basins: Seine-Somme-Scheldt case study. Global Biogeochemical Cycles, 24(2), 2010.
- Vanderborght, J.P., Wollast, R., Loijens, M., and Regnier, P.: Application of a transport-reaction model to the estimation of biogas fluxes in the Scheldt Estuary. Biogeochemistry, 59(1-2), 207-237, 2002.
- Vanderborght, J.P., Folmer, I., Aguilera, D.R., Uhrenholdt, T., and Regnier, P.: Reactive-transport modelling of a river-estuarine-coastal zone system: application to the Scheldt estuary. Mar. Chem. 106, 92-110, 2007.
- Van der Burgh, P.: Ontwikkeling van een methode voor het voorspellen van zoutverdelingen in estuaria, kanalen and zeeen, Rijkswaterstaat Rapport, The Netherlands, 1972.
- Volta, C., Arndt, S., Savenije, H.H.G., Laruelle, G.G., and Regnier, P.: C-GEM (v 1.0): a new, costefficient biogeochemical model for estuaries and its application to a funnel-shaped system. Geosci. Model Dev., 7, 1271-1295, doi:10.5194/gmd-7-1271-2014, 2014.
- Volta, C., Laruelle, G. G., and Regnier, P.: Regional carbon and CO₂ budgets of North Sea tidal estuaries, Estuarine, Coastal and Shelf Science, 176, 76-90, 2016.
- Volta, C., Laruelle, G. G., Arndt, S., and Regnier, P.: Linking biogeochemistry to hydro-geometrical variability in tidal estuaries: a generic modeling approach, Hydrol. Earth Syst. Sci., 20, 991-1030, doi:10.5194/hess-20-991-2016, 2016.
- Zeebe, R. E. and Wolf-Gladrow, D. (Eds.): CO2 in seawater: equilibrium, kinetics, isotopes, Elsevier, Amsterdam, 2001.

1 Updated Manuscript with track changes

2	
3	Air-water CO ₂ evasion from U.S. East Coast estuaries
4	Goossens, Nicolas ¹ , Laruelle, Goulven Gildas ^{1*} , Arndt, Sandra ² , Cai, Wei-Jun ³ & Regnier, Pierre ¹
5	
6	1 Department Geosciences, Environment and Society, Université Libre de Bruxelles, Brussels,
7	Belgium
8	2 School of Geographical Sciences, University of Bristol, Bristol, UK
9	3 School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
10	
11	*corresponding author: goulven.gildas.laruelle@ulb.ac.be
12	
13	

14 Abstract:

15	This study presents the first regional-scale assessment of estuarine CO_2 evasion along the East coast	
16	of the US (25 – 45 °N). The focus is on 43 tidal estuaries, which together drain a catchment of	
17	697000 km ² or 76 % of the total area within this latitudinal band. The approach is based on the	<
18	Carbon – Generic Estuarine Model (C-GEM) that allows simulating hydrodynamics, transport and	
19	biogeochemistry for a wide range of estuarine systems using readily available geometric parameters	
20	and global databases of seasonal climatic, hydraulic, and riverine biogeochemical information. Our	
21	simulations, performed using conditions representative of the year 2000, suggest that, together, US	
22	East coast estuaries emit 1.9 TgC yr ⁻¹ in the form of CO_2 , which correspond to about 40 % of the	
23	carbon inputs from rivers, marshes and mangroves. Carbon removal within estuaries results from a	
24	combination of physical (outgassing of supersaturated riverine waters) and biogeochemical	
25	processes (net heterotrophy and nitrification). The CO_2 evasion and its underlying drivers show	
26	important variations across individual systems, but reveal a clear latitudinal pattern characterized by	
27	a decrease in the relative importance of physical over biogeochemical processes along a North-South	
28	gradient. Finally, the results reveal that the ratio of estuarine surface area to the river discharge, S/Q	
29	(which has a scale of per meter discharged water per year), could be used as a predictor of the	
30	estuarine carbon processing in future regional and global scale assessments.	

Deleted: 10³

Formatted: Superscript

Deleted: Together

Formatted: Subscript

33 1 Introduction

34 Carbon fluxes along the land-ocean aquatic continuum are currently receiving increasing attention 35 because of their recently recognized role in the global carbon cycle and anthropogenic CO₂ budget (Bauer et al., 2013; Regnier et al., 2013a; LeQuéré et al., 2014, 2015). Estuaries are important 36 37 reactive conduits along this continuum, which links the terrestrial and marine global carbon cycles 38 (Cai, 2011). Large amounts of terrestrial carbon transit through these systems, where they mix with 39 carbon from autochthonous, as well as marine sources. During estuarine transit, heterotrophic 40 processes degrade a fraction of the allochthonous and autochthonous organic carbon inputs, supporting a potentially significant, yet poorly quantified CO₂ evasion flux to the atmosphere. Recent 41 estimates suggest that 0.15-0.25 PgC yr⁻¹ is emitted from estuarine systems worldwide (Borges and 42 Abril, 2012; Cai, 2011; Laruelle et al., 2010; Regnier et al., 2013a; Laruelle et al., 2013, Bauer et al., 43 44 2013). Thus, in absolute terms the global estuarine CO_2 evasion corresponds to about 15% of the open ocean CO₂ uptake despite the much smaller total surface area. 45

46	Currently, estimates of regional and global estuarine CO_2 emissions are mainly derived on the basis
47	of data-driven approaches that rely on the extrapolation of <u>a small number of local measurements</u>
48	(Cai, 2011; Chen et al., 2013; Laruelle et al., 2013). <u>These approaches</u> fail to capture the spatial and
49	temporal heterogeneity of the estuarine environment (Bauer et al., 2013) and, are biased towards
50	anthropogenically influenced estuarine systems located in industrialized countries (Regnier et al.,
51	2013a), Even in the best surveyed regions of the world (e.g. Australia, Western Europe, North
52	America or Chinal observations are merely available for a small number of estuarine systems. In
53	addition, if available, data sets are generally of low spatial and temporal resolution. As a
54	consequence, data-driven approaches can only provide first-order estimates of regional and global
55	estuarine CO ₂ emissions.
56	Integrated model-data approaches can help here, as models provide the means to extrapolate over

temporal and spatial scales and allow disentangling the complex and very dynamic network of 57

Deleted: few

estimates

Deleted: While these approaches provide useful first-order estimates, they Deleted: . In addition, these global

Deleted: .
Deleted: and e
Deleted: surveyed
Deleted: such as
Deleted: ,
Deleted: only
Deleted: fraction
Deleted:

71	physical and biogeochemical processes that controls estuarine CO ₂ emissions. Over the past
72	decades, increasingly complex process-based models have been applied, in combination with local
73	data, to elucidate the coupled carbon-nutrient cycles on the scale of individual estuaries (e.g.,
74	O'Kane, 1980; Soetaert and Herman, 1995; Vanderborght et al., 2002; Lin et al., 2007; Arndt et al.,
75	2009; Cerco et al., 2010; Baklouti et al., 2011). However, the application of such model approaches
76	remains limited to the local scale due to their high data requirements for calibration and validation
77	(e.g. bathymetric and geometric information and boundary conditions), as well as the high
78	computational demand associated with resolving the complex interplay of physical and
79	biogeochemical processes on the relevant temporal and spatial scales (Regnier et al., 2013b).
80	Complex process-based models are thus not suitable for the application on a regional or global scale
81	and, as a consequence, the estuarine carbon filter is, despite its increasingly recognized role in
82	regional and global carbon cycling (e.g. Bauer et al., 2013), typically not taken into account in model-
83	derived regional or global carbon budgets (Bauer et al., 2013). The lack of regional and global model
84	approaches that could be used as stand-alone applications or that could be coupled to regional
85	terrestrial river network models (e.g. GLOBALNEWS: Seitzinger et al., 2005; Mayorga et al., 2010;
86	SPARROW: Schwarz et al., 2006) and continental shelf models (e.g. Hofmann et al., 2011) is thus
87	<u>critical.</u>
88	The Carbon-Generic Estuary Model (C-GEM (v1.0); Volta et al., 2014) has been developed with the
89	aim of providing such a regional/global modeling tool that can help improve existing, observationally
90	derived first order estimates of estuarine CO ₂ emissions. C-GEM (v1.0) has been specifically designed
91	to reduce data requirements and computational demand and, thus, tackles the main impediments
92	for the application of estuarine models on a regional or global scale. The approach takes advantage
93	of the mutual dependency between estuarine geometry and hydrodynamics in alluvial estuaries
94	and uses an idealized representation of the estuarine geometry to support the hydrodynamic
95	calculations. It thus allows running steady state or fully transient annual to multi-decadal simulations
96	for a large number of estuarine systems, using geometric information readily available through maps

Deleted: located in the study area, often with limited spatial and temporal coverage.

Deleted: Furthermore, data alone Furthermore, observation-based approachesand do not provide sufficient insights into the complex and dynamic interplay of biogeochemical and physical processes that controls estuarine carbon and CO₂ fluxes. ¶

I

Formatted: English (U.K.)
Deleted: increasingly
Formatted: Font:
Formatted: English (U.K.), Not Highlight
Formatted: English (U.K.), Not Highlight
Deleted: these
Deleted: a
Formatted: English (U.K.), Not Highlight
Deleted: by
Deleted: procedures
Formatted: Not Highlight
Formatted: English (U.K.), Not Highlight
Deleted: by
Deleted: required
Deleted: to address the
Deleted: complex
Formatted: English (U.K.)
Formatted: English (U.K.), Not Highlight
Formatted: Not Highlight
Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers
Deleted: These models are thus not suitable for regional or global applications (Bauer et al., 2013), which require simplifications to afford the treatment of a large number of estuaries, including those for which morphological, hydrodynamic and biogeochemical data are incomplete or absent. Therefore, tThe regional and global munitifications of the returning of the three
quantification of the estuarine filter thus remains ignoredis not considered in modelling efforts because terrestrial models representing the river network typically do not account for the estuaries (i.e. GLOBALNEWS: Seitzinger et al., 200

Moved (insertion) [1]			
Formatted: French (France), Highlight			
Moved (insertion) [2]			
Deleted: a			

4

166	or remote sensing images. Although the development of such a regional/global tool inevitably
167	requires simplification, careful model evaluations have shown that, despite the geometric
168	simplification, C-GEM provides an accurate description of the hydrodynamics, transport and
169	biogeochemistry in tidal estuaries (Volta et al., 2014). In addition, the model approach was
170	successfully used to quantify the contribution of different biogeochemical processes for CO ₂ air-
171	water fluxes in an idealized, funnel-shaped estuary forced by typical summer conditions
172	characterizing a temperate Western European climate (Regnier et al., 2013b). Volta et al. (2016b)
173	further investigated the effect of estuarine geometry on the CO ₂ outgassing using three idealized
174	systems and subsequently established the first regional carbon budget for estuaries surrounding the
175	North Sea by explicitly simulating the six largest systems of the area (Volta et al., 2016a), including
176	the Scheldt and the Elbe for which detailed validation was performed.
177	Here, we extend the domain of application of C-GEM (v1.0) to quantify CO ₂ exchange fluxes, as well
178	as the overall organic and inorganic carbon budgets for the full suite of estuarine systems located
179	along the entire East coast of the United States, one of the most intensively monitored regions in the
180	world. A unique set of regional data, including partial pressure of CO ₂ in riverine and continental
181	shelf <u>waters</u> (pCO ₂ ; Signorini et al., 2013; Laruelle et al., 2015), riverine biogeochemical
182	characteristics (Lauerwald et al., 2013), estuarine eutrophication status (Bricker et al., 2007) and
183	estuarine morphology (NOAA, 1985) are available. These comprehensive data sets are
184	complemented by local observations of carbon cycling and CO_2 fluxes in selected, individual
185	estuarine systems (see Laruelle et al., 2013 for a review), making the East coast of the United States
186	an ideal region for a first, fully explicit regional evaluation of CO ₂ evasion resolving every major tidal
187	estuary along the selected coastal segment. The scale addressed in the present study is
188	unprecedented so far (> 3000 km of coastline) and covers a wide range of estuarine morphological
189	features, climatic conditions, land-use and land cover types, as well as urbanization levels. The
190	presented study will not only allow a further evaluation of C-GEM (v1.0), but will also provide the
191	first regional-scale assessment of estuarine CO_2 evasion along the East coast of the US (25 – 45 °N)
	5

Formatted: English (U.K.), Not Highlight

Deleted: careful

Deleted: enabling the quantification of biogeochemical dynamics in estuaries on a regional and global scale. The focus is on tidal systems as defined by Dürr et al. (2011) and the approach is based on a one-dimensional, time-dependent representation of hydrodynamic, transport and reaction processes within an estuary.

Deleted: C-GEM is computationally efficient and reduces data requirements by using an idealized representation of the geometry to support the hydrodynamic calculations and, subsequently, transport and biogeochemical reaction processes. The C-GEM modeling platform thus enables hundreds to thousands of steady state or fully transient simulations spanning years to decades for a multitude of estuarine systems, using geometric information readily available through maps or remote sensing images. Despite the geometric simplification, C-GEM resolves the most [.... Deleted: first

Deleted: succesfully
Formatted
Deleted: is applied
Formatted: Font: Not Bold, Not Italic, No underline
Moved up [1]: The global quantification filter thus remains ignored in modelling
Formatted: Font: Not Bold, Not Italic, No underline
Moved up [2]: The lack of regional or global evaluations of the estuarine carb(
Deleted: In this respect, integrated model-data approaches provide a suitat
Formatted: Font: Not Bold, Not Italic, No underline
Deleted: ¶
Deleted: an extended version of
Deleted: . The applied RTM approach allows to evaluate the relative significan
Deleted:
Deleted: sea partial pressure of CO ₂
Deleted: properties
Deleted: characterstics
Moved (insertion) [3]
Deleted: An extensive review of published local estimates of CO ₂ fluxes i
Moved up [3]: An extensive review of published local estimates of CO ₂ fluxes i
Formatted: Font: Not Bold, Not Italic, No underline

400	and will help explore general relationships between carbon cycling and CO ₂ evasion, and readily	
401	available estuarine geometrical parameters.	
402	After a description of the model itself and of the dataset used to set up the simulations, a local	Delet
403	validation is presented which includes salinity, pCO ₂ and pH longitudinal profiles for two well	Form No un
404	monitored systems (the Delaware Bay and the Altamaha River Estuary). The yearly averaged rates of	
405	CO ₂ exchange at the air-water interface simulated by the model for 13 individual estuaries are also	
406	compared with observed values reported in the literature. Next, regional scale simulations for 43	
407	tidal estuaries of the eastern US coast provide seasonal and yearly integrated estimates of the Net	
408	Ecosystem Metabolism (NEM), CO ₂ evasion and carbon filtering capacity, CFilt. Model results are	
409	then used to elucidate the estuarine biogeochemical behavior along the latitudinal transect	Form No un
410	encompassed by the present study (30-45° N). Finally, our results are used to derive general	No un
411	relationships between carbon cycling and CO ₂ evasion, and readily available estuarine geometrical	
412	parameters.	
413		
414	2. Regional description and model approach	

415 **2.1** Observation-based carbon budget for the East coast of the United States

6

			Deleted: Table
423	Regions (Fig. 1). Total carbon inputs from watersheds to US East coast estuaries (Tab. 1) have been	_	Deleted: ure
422	(2015). From North to South, the regions are called North Atlantic, Mid Atlantic and South Atlantic		
421	(Meybeck et al., 2006; Laruelle et al., 2013) and the further subdivision described in Laruelle et al.		
420	study, we define three sub-regions following the boundaries suggested by the COSCAT segmentation		
419	subdivided into several sub-regions following a latitudinal gradient (Signorini et al., 2013). In this		
418	zones and land cover types and exhibits a variety of morphologic features (Fig. 1). The region can be		Deleted: Figure
417	(25°N) to Cobscook Bay (45°N) at the US-Canada boundary. This area encompasses distinct climatic		
416	The study area covers the Atlantic coast of the United States (Fig.1), from the southern tip of Florida		

Deleted: 1 Formatted: Font: Not Bold, Not Italic, No underline

Formatted: Font: Not Bold, Not Italic, No underline

estimated to range from 4.0 to 10.7 Tg C yr⁻¹ (Mayorga et al., 2010; Shih et al., 2010; Stets and Strieg,
2012; Tian et al., 2010; Tian et al., 2012), consisting of dissolved organic carbon (DOC; ~50%),
dissolved inorganic carbon (DIC; ~40%) and particulate organic carbon (POC; ~10%). In addition, a
statistical approach has been applied to estuaries of the region to quantify organic carbon budgets
and Net Ecosystem Productivity (NEP) using empirical models (Herrmann et al., 2015).

433 Recent studies estimated that, along the East coast of the United States, rivers emit 11.4 TgC yr⁻¹ of 434 CO2 to the atmosphere (Raymond et al., 2013), while continental shelf waters absorb between 3.4 435 and 5.4 TgC yr⁻¹ of CO₂ from the atmosphere (Signorini et al., 2013). A total of thirteen local, annual 436 mean estuarine CO₂ flux estimates across the air-water interface based on measurements are also 437 reported in the literature and are grouped along a latitudinal gradient (Tab. 2). Four of these 438 estimates are located in the South Atlantic region (SAR): Sapelo Sound, Doboy Sound, Altamaha 439 Sound (Jiang et al., 2008), and the Satilla River estuary (Cai and Wang, 1998). Three studies 440 investigate CO₂ fluxes in the mid-Atlantic Region (MAR): the York River Estuary (Raymond et al., 441 2000) and the Hudson River (Raymond et al., 1997). There is also a comprehensive CO₂ flux study for 442 the Delaware Estuary published after the completion of this work (Joeseof et al., 2015). Six systems 443 are located in the North Atlantic region (NAR): The Great Bay, the Little Bay, the Oyster estuary, the 444 Bellamy estuary, the Cocheco estuary (Hunt et al., 2010; 2011), and the Parker River estuary (Raymond and Hopkinson, 2003). The mean annual flux per unit area from these local studies is 445 11.7 \pm 13.1 mol C m⁻² yr⁻¹ and its extrapolation to the total estuarine surface leads to a regional CO₂ 446 evasion estimate of 3.8 Tg C y^{-1} . This estimate is in line with that of Laruelle et al. (2013) for the same 447 region which proposes an average CO₂ emission rate of 10.8 mol C m⁻² yr⁻¹. Thus, CO₂ outgassing 448 449 could remove 35% to 95% of the riverine carbon loads during estuarine transit. About 75 % of the air-water exchange occurs in tidal estuaries (2.8 Tg C γ^{-1}) while lagoons and small deltas contribute to 450 451 the remaining 25 %. Although these simple extrapolations from limited observational data are 452 associated with large uncertainties, they highlight the potentially significant contribution of estuaries 453 to the CO₂ outgassing in the region. However, process-based quantifications of regional organic and

Deleted: fig Deleted: 1

7

inorganic C budgets including air-water CO₂ fluxes for the estuarine systems along the East coast are
not available.

458 2.2 Selection of estuaries

459 The National Estuarine Eutrophication Assessment (NEAA) survey (Bricker et al., 2007), which uses 460 geospatial data from the National Oceanic and Atmospheric Administration (NOAA) Coastal Assessment Framework (CAF) (NOAA, 1985), was used to identify and characterize <u>58</u> estuarine 461 462 systems discharging along the Atlantic coast of the United States. From this set, 43 'tidal' estuaries, 463 defined as a river stretch of water that is tidally influenced (Dürr et al., 2011), were retained (Fig. 1) 464 to be simulated by the C-GEM model, which is designed to represent such systems. Using outputs 465 from terrestrial models (Hartmann et al., 2009; Mayorga et al., 2010), the cumulated riverine carbon 466 loads for all the non-tidal estuaries that are excluded from the present study amount to 0.9 Tg C yr⁻¹, 467 which represents less than 15% of the total riverine carbon loads of the region. These 15 systems are 468 located in the SAR (10) and in the MAR (5),

The northeastern part of the domain (NAR, Fig. 1; <u>Tab.</u>1) includes 20 estuaries along the Gulf of Maine and the Scotian shelf, covering a cumulative surface area of ~5300 km². It includes drowned valleys, rocky shores and a few tidal marshes. The climate is relatively cold (annual mean= 8°C) and the human influence is relatively limited because of low population density and low freshwater inputs. The mean estuarine water depth is 12.9 m and the mean tidal range is 2.8 m.

The central zone (MAR) includes 17 tidal estuaries accounting for a total surface area of 14500 km². The Chesapeake Bay and the Delaware estuaries alone contribute more than 60% to the surface area of the region. In this region, estuaries are drowned valleys with comparatively high river discharge and intense exchange with the ocean. Several coastal lagoons, characterized by a limited exchange with the ocean are located here, but are not included in our analysis. The Mid-Atlantic Region (MAR) is characterized by a mean annual temperature of 13°C and is strongly impacted by human activities,

Deleted: 47
Deleted:
Deleted: fig
Formatted: Font: Not Bold, Not Italic, No underline
Deleted: The 15
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Deleted: and account for less than 15% of the total riverine carbon loads of the

region
Deleted: table

Deleted: 64

due to the presence of several large cities (e.g. New York, Washington, Philadelphia, Baltimore) and
intense agriculture. The mean water depth is about 4.7 m and the tidal range is 0.8 m.

The southern Atlantic region (SAR) includes 10 tidal estuaries covering a total surface area of 12182 km². These systems are generally dendritic and surrounded by extensive salt marshes. The climate is subtropical with an average annual temperature of 19°C. Land use includes agriculture and industry, but the population density is generally low. Estuarine systems in the SAR are characterized by a shallow mean water depth of 2.9 m and a tidal range of 1.2 m.

496 2.3 Model set-up

497 The generic 1D Reactive-Transport Model (RTM) C-GEM (Volta et al., 2014) is used to quantify the 498 estuarine carbon cycling in the <u>43</u> systems considered in this study. The approach is based on 499 idealized geometries (Savenije, 2005; Volta et al., 2014) and is designed for regional and global scale applications (Regnier et al., 2013b; Volta et al., 2014, 2016a). The model approach builds on the 500 premise that hydrodynamics exerts a first-order control on estuarine biogeochemistry (Arndt et al., 501 502 2007; Friedrichs and Hofmann, 2001) and CO₂ fluxes (Regnier et al., 2013a). The method takes 503 advantage of the mutual dependence between geometry and hydrodynamics in tidal estuaries 504 (Savenije, 1992) and the fact that, as a consequence, transport and mixing can be easily quantified 505 from readily available geometric data (Regnier et al., 2013a; Savenije, 2005; Volta et al., 2016b).

506 2.3.1 Description of idealized geometries for tidally-averaged conditions

Although tidal estuaries display a wide variety of shapes, they nevertheless share common geometric characteristics that are compatible with an idealized representation (Fig. 2, Savenije, 1986; Savenije, 2005). For tidally-averaged conditions, their width B (or cross-sectional area A) can be described by an exponential decrease as a function of distance, *x*, from the mouth (Savenije, 1986; Savenije, 2005): Deleted: 47

$$B = B0 * \exp\left(-\frac{x}{b}\right) \tag{1}$$

where B (m) is the tidally averaged width, B0 (m) the width at the mouth, x (m) the distance from the mouth (x=0) and b (m) the width convergence length (Fig. 2). The width convergence length, b, is defined as the distance between the mouth and the point at which the width is reduced to B0 e⁻¹. It is directly related to the dominant hydrodynamic forcing. A high river discharge typically results in a prismatic channel with long convergence length (river dominated estuary), while a large tidal range results in a funnel-shaped estuary with short convergence length (marine dominated estuary). At the upstream boundary, the estuarine width is given by:

$$B_L = B0 * \exp\left(-\frac{L}{b}\right) \tag{2}$$

520 Where L denotes the total estuarine length (m) along the estuarine longitudinal axis.

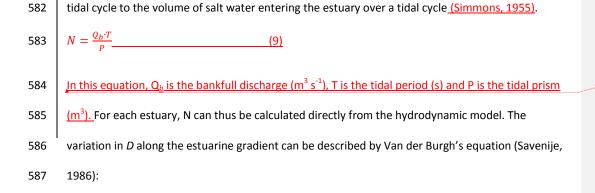
521 The total estuarine surface S (m²) can be estimated by integrating equation (1) over the estuarine 522 length:

$$S = \int_{0}^{L} B \, dx = b * B0 * \left(1 - \exp\left(-\frac{L}{b}\right) \right)$$
(3)

523

524 The width convergence length is then calculated from B0, B_L , L and the real estuarine surface area 525 (SR) by inserting equation (2) in equation (3):

$$b = \frac{SR}{B0 - BL} \tag{4}$$


526 SR is calculated for each system using the SRTM water body data (Fig. 3a), a geographical dataset 527 encoding high-resolution worldwide coastal outlines in a vector format (NASA/NGA, 2003). While 528 such a database exists for a well monitored region such as the East coast of the US, resorting to 529 using the idealized estuarine surface area (S) is necessary in many other regions. The longitudinal Deleted: fig

532	Assess	ment database (Bricker et al., 2007).		
533	Using	this idealized representation, the estuarine geometry ca	an be defined by a limited number of	
534	param	eters: the width at the mouth (B_0) , the estuarine let	ngth (L), the estuarine width at the	
535	upstre	am limit (B_L) and the mean depth h. These parameters	can be easily determined <u>from local</u>	Formatted: Font: Not Bold, Not Italic, No underline
536	<u>maps</u>	or Google Earth using Geographic Information System	ns (GIS), or obtained from databases	Formatted: Font: Not Bold, Not Italic, No underline
537	(NASA	/NGA, 2003).		Deleted: through GIS, local maps, Google Earth
538	2.3.2 H	lydrodynamics, transport and biogeochemistry		
539	Estuar	ine hydrodynamics <mark>are described by the one-dimensiona</mark>	l barotropic, cross-sectionally	Deleted: is
540	integra	ated mass and momentum conservation equations for a d	channel with arbitrary geometry	
541	(Nihou	l and Ronday, 1976; Regnier et al., 1998; Regnier and Ste	eefel, 1999):	
542		$r_s \frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$	(5)	
543		$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} = -g \frac{\partial \zeta}{\partial x} - g \frac{U U }{C_z^2 H}$	(6)	Deleted: $\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial t} = -$
544	where			Formatted: Lowered by 10 pt
544	where			
545	t	time	[s]	
546	x	distance along the longitudinal axis	[m]	
547	A	cross-section area $A = H \cdot B$	[m²]	
548	Q	cross-sectional discharge $Q = A \cdot U$	[m ³ s ⁻¹]	
549	U	flow velocity Q/A	[m s ⁻¹]	
550	r _s	storage ratio $r_s = B_s / B$	[-]	

mean, tidally averaged, depth h (m), is obtained from the National Estuarine Eutrophication

555B,storage width[m]556ggravitational acceleration
$$(m s^2)$$
557 ξ elevation $(m s^2)$ 558Htotal water depth $H = h + \xi(x, t)$ (m) 559 C_{c} Chezy coefficient $(m^{12} s^1)$ 560The coupled partial differential equations (Eqs. (a) and (b) are solved by specifying the elevationDeleted: 6561 $\xi_{d}(t)$ at the estuarine mouth and the river discharge $Q_{c}(t)$ at the upstream limit of the model domain.Deleted: 7562The one-dimensional, tidally-resolved, advection-dispersion equation for a constituent ofconcentration $C_{fx}(t)$ in an estuary can be written as (e.g. Pritchard, 1958):564 $\mathcal{L}_{cx} + \frac{Q}{A} \frac{Q}{Ax} = \frac{1}{A} \frac{Q}{Ax} \left(AD \frac{QC}{Ax}\right) + P$ (r)565where $Q(x,t)$ and $A(x,t)$ denote the cross-sectional discharge and area, respectively and are providedDeleted: 6566by the hydrodynamic model (eq. §, and §). P(x,t) is the sum of all production and consumptionDeleted: 6567process rates affection the concentration of the constituent. The effective dispersion coefficient DDeleted: 7568(m² s²) implicitly accounts for dispersion mechanisms associated to sub-grid scale processes (Fischer,Deleted: 7570virtually zero near the tail of the sati intrusion curve (Preddy, 1954; Kent, 1958; Ippen and Harleman,Deleted: 1005711961; Stigter and Siemons, 1967). The effective dispersion at the estuarine mouth can be quantifiedDeleted: 1972573 $D_0 = 26 \cdot (h_0)^{1/5} \cdot (N \cdot g)^{0/5}$ (g)

where h_0 (m) is the tidally-averaged water depth at the estuarine mouth and N is the dimensionless Canter Cremers' estuary number defined as the ratio of the freshwater entering the estuary during a

$$\frac{\partial D}{\partial x} = -K \frac{Q_r}{A}$$

where *K* is the dimensionless Van der Burgh's coefficient and the minus sign indicates that *D* increases in downstream direction (Savenije, 2012). The Van der Burgh's coefficient is a shape factor that has values between 0 and 1 (Savenije, 2012), and is a function of estuarine geometry for tidally average conditions. Therefore, each estuarine system has its own characteristic *K* value, which correlates with geometric and hydraulic scales (Savenije, 2005). Based on a regression analysis covering a set of 15 estuaries, it has been proposed to constrain *K* from the estuarine geometry (Savenije, 1992):

$$K = 4.32 \cdot \frac{h_0^{0.36}}{B_0^{0.21} \cdot h^{0.14}} \quad \text{with} \quad 0 < K < 1 \tag{11}$$

597Reaction processes P considered in C-GEM comprise aerobic degradation, denitrification,598nitrification, primary production, phytoplankton mortality and air-water gas exchange for O_2 and CO_2 599(Fig._4 and Tab._3). These processes and their mathematical formulation are described in detail in600Volta et al. (2014) and Volta et al. (2016a).

The non-linear partial differential equations for the hydrodynamics are solved by a finite difference scheme following the approach of (Regnier et al., 1997; Regnier and Steefel, 1999) and (Vanderborght et al., 2002). The timestep Δt is 150s and the grid size Δx is constant along the **Formatted:** Font: Not Bold, Not Italic, No underline

Deleted: 9

(<u>10</u>)

Deleted: 10

Deleted: Table
Deleted: 2

	Deleted:)
\square	Deleted: ,
	Deleted: (

611 longitudinal axis of the estuary. The grid size default value is 2000_m, but can be smaller for short 612 length estuaries to guarantee a minimum of 20 grid points within the computational domain. 613 Transport and reaction terms are solved in sequence within a single timestep using an operator 614 splitting approach (Regnier et al., 1997). The advection term in the transport equation is integrated 615 using a third-order accurate total variation diminishing (TVD) algorithm with flux limiters (Regnier et 616 al., 1998), ensuring monotonicity (Leonard, 1984), while a semi-implicit Crank-Nicholson algorithm is 617 used for the dispersion term (Press et al., 1992). These schemes have been extensively tested using 618 the CONTRASTE estuarine model (e.g. Regnier et al., 1998; Regnier and Steefel, 1999; Vanderborght 619 et al., 2002) and guarantee mass conservation to within <1%. The reaction network (including 620 erosion-deposition terms when the constituent is a solid species), is numerically integrated using the 621 Euler method (Press et al., 1992). The primary production dynamics, which requires vertical 622 resolution of the photic depth, is calculated according to the method described in Vanderborght et 623 al. (2007). This method assumes an exponential decrease of the light in the water column (Platt et 624 al., 1980), which is solved using a Gamma function.

625 2.4 Boundary and forcing conditions

626 Boundary and forcing conditions are extracted from global databases and global model outputs that 627 are available at 0.5° resolution. Therefore, C-GEM simulations are performed at the same resolution 628 according to the following procedure. First, <u>43</u> coastal cells corresponding to tidal estuaries are 629 identified in the studied area (Fig. 1). If the mouth of an estuary is spread over several 0.5° grid cells, 630 those cells are regrouped in order to represent a single estuary (e.g. Delaware estuary), and 631 subsequently, a single idealized geometry is defined as described above. The model outputs 632 (Hartmann et al., 2009; Mayorga et al., 2010) and databases (Antonov et al., 2010; Garcia et al., 633 2010a; Garcia et al., 2010b) used to constrain our boundary conditions are representative of the 634 year 2000.

Deleted: fig

Deleted: 47

For each resulting cell, boundary and forcing conditions are calculated for the following periods:
January-March; April-June; July-September and October-December. This allows for an explicit
representation of the seasonal variability in the simulations.

640 2.4.1 External forcings

Transient physical forcings are calculated for each season and grid cell using monthly mean values of water temperature (World Ocean Atlas, 2009) and seasonal averaged values for wind speed (Cross-Calibrated-Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses project (Atlas et al., 2011)). Mean daily solar radiation and photoperiods (corrected for cloud coverage <u>using the ISCCP Cloud</u> Data Products, Rossow and Schiffer, 1999) are calculated depending on latitude and day of the year

646 using a simple model (Brock, 1981).

647 2.4.2 Riverine discharge, concentrations and fluxes

648 River discharges are extracted from the UNH/GRDC runoff dataset (Fekete et al., 2002). These 649 discharges represent long-term averages (1960-1990) of monthly and annual runoff at 0.5 degree 650 resolution. The dataset is a composite of long-term gauging data, which provides average runoff for 651 the largest river basins, and a climate driven water balance model (Fekete et al., 2002). Total runoff 652 values are then aggregated for each watershed at the coarser 0.5 degree resolution (Fig. 3b). Next, seasonal mean values (in m³ s⁻¹) are derived in order to account for the intra-annual variability in 653 654 water fluxes. Based on annual carbon and nutrients inputs from the watersheds (Mg y^{-1}), mean 655 annual concentrations (mmol m⁻³) are estimated for each watershed using the UNH/GRDC annual 656 runoff (km³ y^{-1}). Mean seasonal concentrations are then calculated from the seasonally resolved 657 river water fluxes of a given sub-region.

Annual inputs of dissolved organic carbon (DOC), particulate organic carbon (POC) and inorganic
nutrients are derived from the globalNEWS2 model (Mayorga et al., 2010). Global NEWS is a spatially
explicit, multi-element (N, P, Si, C) and multi-form global model of nutrient exports by rivers. In a

Formatted: Font: Not Bold, Not Italic, No underline

Deleted: fig

662 nutshell, DOC exports are a function of runoff, wetland area, and consumptive water use (Harrison 663 et al., 2005). No distinction is made between agricultural and natural landscapes, since they appear 664 to have similar DOC export coefficients (Harrison et al., 2005). Sewage inputs of OC are ignored in 665 GlobalNEWS, because their inclusion did not improve model fit to data (Harrison et al., 2005). POC 666 exports from watersheds are estimated using an empirical relationship with Suspended Particulate 667 Matter (SPM; Ludwig et al., 1996). Inorganic nitrogen (DIN) and phosphorus (DIP) fluxes calculated 668 by GlobalNEWS depend on agriculture and tropical forest coverage, fertilizer application, animal 669 grazing, sewage input, atmospheric N deposition and biological N fixation (Mayorga et al., 2010). The 670 inputs of dissolved silica (DSi) are controlled by soil bulk density, precipitation, slope, and presence 671 of volcanic lithology (Beusen et al., 2009).

The DIN speciation is not provided by the GlobalNEWS2 model. The NH₄ and NO₃ concentrations are therefore determined independently on the basis of an empirical relationship between ammonium fraction (NH4/DIN ratio) and DIN loads (Meybeck, 1982). Dissolved Oxygen (DO) concentrations are extracted from the water quality criteria recommendations published by the United States Environmental Protection Agency (EPA, 2009). The same source is used for phytoplankton concentrations, using a chlorophyll-a to phytoplankton carbon ratio of 50 gC (gChla)⁻¹ (Riemann et al., 1989) to convert the EPA values to carbon units used in the present study.

679 Inputs of dissolved inorganic carbon (DIC) and total Alkalinity (ALK) are calculated from values 680 reported in the GLORICH database (Hartmann et al., 2009). For each watershed, seasonal mean 681 values of DIC and ALK concentrations are estimated from measurements performed at the sampling 682 locations that are closest to the river-estuary boundary. The spatial distribution of annual inputs of 683 TOC=DOC+POC, DIC, and TC=TOC+DIC from continental watersheds to estuaries are reported in Fig. 684 5a, 5c and 5d, respectively. The contribution of tidal wetlands to the TOC inputs is also shown (Fig. 685 5b). Overall, the TC input over the entire model domain is estimated at 4.6 Tg C yr⁻¹, which falls in 686 the lower end of previous reported estimations (Najjar et al. 2012).

Deleted: fig

688

689 2.4.3 Inputs from tidal wetlands

690 The DOC input of estuarine wetlands (Fig. 5b) scales to their fraction, W, of the total estuarine and is 691 calculated using the GlobalNEWS parameterization:

 $Y_DOC = \frac{\left[(E_C_{wet} * W) + E_C_{dry} * (1 - W) \right] * R^a * Q_{act}}{Q_{nat}}$

692

I

 $\frac{Y_DOC_{wet}}{Y_DOC} = \frac{E_C_{wet} * W}{E_C_{wet} * W + E_C_{drv} * (1 - W)}$ I

693

where Y_DOC is the DOC yield (kg C km⁻² y⁻¹) calculated for the entire watershed, Y_DOC_{wet} is the 694 estimated DOC yield from wetland areas (kg C km⁻² y⁻¹), Q_{act}/Q_{nat} is the ratio between the measured 695 696 discharge after dam construction and before dam construction, E_{wet} and E_{drv} (kg C km⁻² y⁻¹) are 697 the export coefficients of DOC from wetland and non-wetland soils, respectively. W is the 698 percentage of the land area within a watershed that is covered by wetlands, R is the runoff (m y^{-1}) 699 and a is a unit-less <u>calibration</u> coefficient defining how non-point source DOC export responds to 700 runoff. The value of a is set to 0.95, consistent with the original GlobalNEWS -DOC model of Harrison 701 et al. (2005). The carbon load Y_DOCwet is then exported as a diffuse source along the relevant 702 portions of estuary. The estuarine segments receiving carbon inputs from tidal wetlands are 703 identified using the National Wetlands Inventory of the U.S. Fish and Wildlife Service (U.S. Fish and 704 Wildlife Service, 2014). The inputs from those systems are then allocated to the appropriate grid cell 705 of the model domain using GIS. The flux calculated is an annual average that is subsequently 706 partitioned between the four seasons as a function of the mean seasonal temperature, assumed to 707 be the main control of the wetland-estuarine exchange. This procedure reflects the observation that

Formatted: Font: Not Bold, Not Italic, No underline Deleted: their surface area W Deleted: 11

Deleted: 12

(<u>12</u>)

(13)

711 in spring and early summer, DOC export is small as a result of its accumulation in the salt marshes 712 induced by the high productivity (Dai and Wiegert, 1996), (Jiang et al., 2008). In late summer and fall, 713 the higher water temperature and greater availability of labile DOC contribute to higher bacterial 714 remineralization rates in the intertidal marshes (Cai et al., 1999; Middelburg et al., 1996; Wang and 715 Cai, 2004), which induce an important export. This marsh production-recycle-export pattern is 716 consistent with the observed excess DIC signal in the offshore water (Jiang et al. 2013). DIC export 717 from tidal wetlands is neglected here because it is assumed that OC is not degraded before reaching 718 the estuarine realm. Although this assumption may lead to an overestimation of OC export from 719 marshes and respiration in estuarine water, it will not significantly affect the water pCO₂ and 720 degassing in the estuarine waters because mixing is faster than respiration.

721 2.4.4 Concentrations at the estuarine mouth

722 For each estuary, the downstream boundary is located 20 km beyond the mouth to minimize the 723 bias introduced by the choice of a fixed concentration boundary condition to characterize the ocean 724 water masses (e.g. Regnier et al., 1998). This approach also reduces the influence of marine 725 boundary conditions on the simulated estuarine dynamics, especially for all organic carbon species 726 whose concentrations are fixed at zero at the marine boundary. This assumption ignores the 727 intrusion of marine organic carbon into the estuary during the tidal cycle but allows focusing on the 728 fate of terrigenous material and its transit through the estuarine filter. DIC concentrations are 729 extracted from the GLODAP dataset (Key et al., 2004), from which ALK and pH are calculated 730 assuming CO₂ equilibrium between coastal waters and the atmosphere. The equilibrium value is 731 computed using temperature (WOA2009, Locarnini et al., 2010) and salinity (WOA2009, Antonov et 732 al. (2010)) data which vary both spatially and temporally. The equilibrium approach is a reasonable 733 assumption because differences in partial pressure ΔpCO_2 between coastal waters and the 734 atmosphere are generally much smaller (0-250 µatm (Signorini et al., 2013)) than those reported for 735 estuaries (ΔpCO₂ in the range 0-10000 μatm (Borges and Abril, 2012)). Salinity, DO, NO₃, DIP and DSi

Deleted:

concentrations are derived from the World Ocean Atlas (Antonov et al., 2010; Garcia et al., 2010a;
Garcia et al., 2010b). NH₄ concentrations are set to zero in marine waters. For all variables, seasonal
means are calculated for each grid cell of the <u>boundary</u>.

740

741 2.5 Biogeochemical indicators

The model outputs (longitudinal profiles of concentration and reaction rates) are integrated in time over the entire volume or surface of each estuary to produce the following indicators of the estuarine biogeochemical functioning (Regnier et al., 2013b): the mean annual Net Ecosystem Metabolism (*NEM*), the air-water CO_2 flux (*FCO*₂), the carbon and nitrogen filtering capacity (*CFilt* and *NFilt*) and their corresponding element budgets. The *NEM* (molC y⁻¹) (Caffrey, 2004; Odum, 1956) is defined as the difference between net primary production (*NPP*) and total heterotrophic respiration (*HR*) at the system scale:

$$NEM = \int_{0}^{365} \int_{0}^{L} [NPP(x,t) - R_{aer}(x,t) - R_{den}(x,t)] * B(x) * H(x,t) dx dt$$

749

where NPP is the Net Primary Production (mol C m^{-3} y⁻¹), R_{aer} the aerobic degradation of organic 750 matter (in mol C m⁻³ y⁻¹) and R_{den} the denitrification (in mol C m⁻³ y⁻¹) (see Volta et al., 2014 for 751 752 detailed formulations). NEM is thus controlled by the production and decomposition of 753 autochthonous organic matter, by the amount and degradability of organic carbon delivered by 754 rivers and tidal wetlands and by the export of terrestrial and in-situ produced organic matter to the 755 adjacent coastal zone. Following the definition of NEM, the trophic status of estuaries can be net 756 heterotrophic (NEM<0) when HR exceeds NPP or net autotrophic (NEM>0), when NPP is larger than 757 HR because the burial and export of autochthonous organic matter exceeds the decomposition of 758 river-borne material.

Deleted: domain

Deleted: 13

(<u>14</u>)

761 The FCO_2 (mol C y⁻¹) is defined as:

$$FCO_{2} = \int_{0}^{365} \int_{0}^{L} RCO_{2}(x,t) * B(x) \, dx \, dt$$

7	c	2
1	σ	2

I

$$| RCO_{2}(x,t) = -v_{p}(x,t) ([CO_{2(aq)}](x,t) - K_{0}(x,t) * P_{CO2}(x,t))$$
763

where RCO_2 (molC m⁻² y⁻¹) is the rate of exchange in CO₂ at the air-water interface per unit surface area, v_p is the piston velocity (m y⁻¹) and is calculated according to Regnier et al. (2002) to account for the effect of current velocity and wind speed, [CO2(aq)] is the concentration of CO₂ in the estuary (mol m⁻³), K_0 is Henry's constant of CO₂ in sea water (mol m⁻³ atm⁻¹) and P_{co2} is the atmospheric partial pressure in CO₂ (atm).

The carbon filtering capacity (in %) corresponds to the fraction of the river-borne supply that is lost to the atmosphere and is defined here as the ratio of the net outgassing flux of CO_2 and the total inputs of C, e.g. total carbon expressed as the sum of inorganic and organic carbon species, both in the dissolved and particulate phases.

773
$$CFilt = \frac{FCO_2}{\int_0^{365} Q*[TC]_{riv} dt} * 100$$
 (17)
Deleted: 16

(<u>15</u>)

(<u>16</u>)

Deleted: 14

Deleted: 15

where $[TC]_{riv}$ denote the total concentrations of C in the riverine inputs.

Flux<u>es</u> per unit area for FCO_2 and NEM, noted $\overline{FCO_2}$ and \overline{NEM} , respectively, are defined in mol C m⁻² y⁻¹ and are calculated by dividing the integrated values calculated above by the (idealized) estuarine surface *S*:

778	$\overline{NEM} = \frac{NEM}{S} * 1000$	(<u>18</u>)	Deleted: 17
779	$\overline{FCO_2} = \frac{FCO_2}{S} * 1000$	(<u>19</u>)	Deleted: 18

785 Seasonal values for the biogeochemical indicators are calculated using the same formula as above,

786 but calculate the integral over a seasonal rather than annual timescale (i.e. 3 months).

787

788

789 2.6 Model-data comparison

790	<u>C-GEM has been specifically designed for an application on a global/regional scale requiring the</u>
791	representation of a large number of individual and often data-poor systems. Maximum model
792	transferability and minimum validation requirements were thus central to the model design process
793	and the ability of the underlying approach in reproducing observed dynamics with minimal
794	calibration effort has been extensively tested. The performance <u>C-GEM's one-dimensional</u>
795	hydrodynamic and transport models using idealized geometries have been evaluated for a number
796	of estuarine systems exhibiting a wide variety of shapes (Savenije, 2012). In particular, it has been
797	shown that the estuarine salt intrusion can be successfully reproduced using the proposed modeling
798	approach (Savenije 2005; Volta et al., 2014; 2016b). In addition, C-GEM's biogeochemistry has also
799	been carefully validated for geometrically contrasting estuarine system in temperate climate zones.
800	Simulations for the Scheldt Estuary (Belgium and the Netherlands), a typical funnel-shaped estuary,
801	were validated through model-data and model-model comparison (Volta et al., 2014; Volta et al.,
802	2016a). Furthermore, simulations for the Elbe estuary (Germany), a typical prismatic shape estuary
803	that drains carbonate terrains and, thus, exhibits very high pH was validated against field data (Volta
804	et al., 2016a). In addition, C-GEM carbon budgets have been compared budget derived from,
805	observation <mark>s</mark> for 6 European estuaries discharging in the North Sea (Volta et al., 2016a). <u>Although C-</u>
806	GEM has been specifically designed and tested for the type of regional application presented here,
807	its transferability from North Sea to US East Coast estuaries was further evaluated by assessing its
808	performance in two East Coast estuaries. First, the hydrodynamic and transport model was tested

Formatted: Font: Not Bold, Not Italic, No underline

Deleted: of 1D

Formatted: Font: Not Bold, Not Italic, No underline

-{	Deleted: draining
-{	Deleted: resulting in
-{	Deleted: to
-{	Deleted: -based estimations
1	Formatted: Font: Not Bold, Not Italic, No underline

Deleted: Simulations

815	for the Delaware Bay (MAR). The model was forced with the monthly, minimal and maximal
816	observed discharge at Trenton over the period between 1912 and 1985 (UNH/GRDC Database,
817	Fekete et al., 2000). Simulated salinity profiles are compared with salinity observations from January,
818	February, May and June (the months with the highest number of data entries), which were extracted
819	from the UNH/GRDC Database. Figure 6 shows that the model captures both the salinity intrusion
820	length and the overall shape of the salinity profile well. In addition, the performance of the
821	biogeochemical model and specifically its ability to reproduce pH and pCO ₂ profiles was evaluated by
822	a model-data comparison for both the Delaware Bay (MAR) in July 2003 and the Altamaha river
823	estuary (SAR) in October 1995. Similar to Volta et al., 2016a, the test systems were chosen due to
824	their contrasting geometries. The Delaware Bay is a marine dominated system characterized by a
825	pronounced funnel shape, while the Altamaha River has a prismatic estuary characteristic of river
826	dominated systems (Jiang et al., 2008). Monthly upstream boundary conditions for nutrients, as well
827	as observed pH data and calculated pCO ₂ are extracted from datasets described in (Sharp, 2010) and
828	(Sharp et al., 2009) for the Delaware and in (Cai and Wang, 1998; Jiang et al., 2008) and (Cai et al.,
829	1998) for the Altamaha river estuary. The additional forcings and boundary conditions are set
830	similarly to the simulation for 2000 (see Tab. 2, 3, 4, 5, 6 in SI). Figure 7 shows that measured and
831	simulated pH values are in good agreement with observed pH and observation-derived calculations
832	of pCO ₂ . In the Delaware Bay, a pH minimum is located around km 140 and is mainly caused by
833	intense nitrification sustained by large inputs of NH ₄ from the Philadelphia urban area, coupled to an
834	intense heterotrophic activity. Both processes lead to a well-developed pCO ₂ increase in this area
835	(Fig. 7b). Although no pCO ₂ data were available for validation for the period from which boundary
836	conditions were extracted, the simulated profile agree with pCO ₂ measurement from July 2013
837	presented by Joesoef et al. (2015) with pCO ₂ values close to equilibrium with the atmosphere in the
838	widest section of the Delaware Bay (close to the estuarine mouth) and values above 1200 µatm at
839	salinities below 5. For the Altamaha river estuary, pH steadily increases from typical river to typical
840	coastal ocean values (Fig. 7b). In addition, both observations and model results reveal that

Formatted:	Font:	Not	Bold,	Not	Italic,
No underline					

Formatted: Font: Not Bold, Not Italic

Formatted: Font: Not Bold, Not Italic, No underline Formatted: Font: Not Bold, Not Italic, No underline

Formatted: Font: Not Bold, Not Italic, No underline Formatted: Font: Not Bold, Not Italic, No underline

841	outgassing is very intense in the low-salinity region with more than a 5 fold decrease in pCO_2		
842	between salinity 0 and 5 (Fig. 7d).		Formatted: Font: Not Bold, Not Italic, No underline
843	While such local validations allow assessing the performance of the model for a specific set of		
844	conditions, the purpose of this study is to capture the average biogeochemical behavior of the		
845	estuaries of the eastern coast of the US. Therefore, in addition to the system-specific validation,		
846	published annually averaged FCO ₂ estimates for 13 tidal systems located within the study area		
847	collected over the 1994-2006 period are compared to simulated FCO ₂ for conditions representative		
848	of the year 2000. Overall, simulated FCO ₂ are comparable to values reported in the literature (Tab.		Formatted: Font: Not Bold, Not Italic, No underline
849	2). Although discrepancies, which sometimes can significant, are observed at the level of individual		Formatted: Font: Not Bold, Not Italic, No underline
850	systems, the model captures remarkably well the overall trend in CO ₂ evasion rate across estuaries.		
851	The model simulates low CO_2 efflux (< 5 mol C m ⁻² yr ⁻¹) for the 7 systems were such conditions have		
852	been observed, while the 6 systems for which the CO_2 evasion exceeds 10 mol C m ⁻² yr ⁻¹ are the same		
853	in the observations and in the model runs. The discrepancy at the individual system level likely result		
854	from a combination of factors, including the choice of model processes and there parametrization,		
855	the uncertainties in constraining boundary conditions and the limited representability of		
856	instantaneous and local observed.		Deleted: This analysis is pursued here by evaluating our model results in the context
857	3 Results and discussion		of estuarine CO ₂ evasion estimates along the East coast of the US.
858	3.1 Spatial variability of estuarine carbon dynamics		
000			
859	Figure <u>8</u> presents the spatial distribution of simulated mean annual $\overline{FCO_2}$ and \overline{NEM} (Fig. <u>8a</u>), as well	\langle	Deleted: 6
860	as FCO ₂ and -NEM (Fig. <u>8</u> b). In general, mean annual $\overline{FCO_2}$ are about 30% larger than mean annual		Deleted: 6a
861	\overline{NEM} , with the exception of six estuaries situated in the North of the coastal segment. Overall, the		
862	\overline{NEM} is characterized by smaller system to system variability compared to the $\overline{FCO_2}$ in all regions. In		
863	addition, Fig. 8 reveals distinct differences across the three coastal segments and highlights the		Deleted: Figure
			Deleted: 6

873 important influence of the estuarine geometry and residence time, as well as the latitudinal874 temperature gradient on estuarine carbon cycling.

Overall, $\overline{FCO_2}$ values are the lowest in the NAR (mean flux = 17.3 ± 16.4 mol C m⁻² y⁻¹; surface 875 weighted average = 23.1 mol C m⁻² y⁻¹), consistent with previously reported very low values for small 876 estuaries surrounding the Gulf of Maine (Hunt et al., 2010; 2011; Tab. 2). In contrast, NEM reveals a 877 regional <u>minimum</u> in the NAR (-51.2 \pm 16.6 mol C m⁻² y⁻¹; surface weighted average = -52.8 mol C m⁻² 878 879 y⁻¹). The MAR is characterized by intermediate values for $\overline{FCO_2}$, with a mean flux of 26.3 ± 34.6 mol C m⁻² y⁻¹ (surface weighted average =11.1 mol C m⁻² y⁻¹) and lowest values for \overline{NEM} (-15.1 ± 14.2 mol 880 C m⁻² y⁻¹; surface weighted average =-7.4 mol C m⁻² y⁻¹). This region also shows the largest variability 881 882 in CO₂ outgassing compared to the NAR and SAR, with the standard deviation exceeding the mean $\overline{FCO_2}$, and individual estimates ranging from 3.9 mol C m⁻² y⁻¹ to 150.8 mol C m⁻² y⁻¹. This variability 883 884 is mainly the result of largely variable estuarine surface areas and volumes. Some of the largest East 885 coast estuaries (e.g. Chesapeake and Delaware Bays), as well as some of smallest estuaries (e.g. York 886 River and Hudson River estuaries, Raymond et al., 1997; 2000), are located in this region (Tab. 2 and 4). The maximum values of 150.8 mol C m⁻² y⁻¹ simulated in the MAR are similar to the highest FCO₂ 887 reported in the literature (132.3 mol C m⁻² y⁻¹ for the Tapti estuary in India; Sarma et al., 2012). The 888 SAR is characterized by the highest mean $\overline{FCO_2}$ (46.7 ± 33.0 mol C m⁻² y⁻¹; surface weighted average 889 890 = 40.0 mol C m⁻² y⁻¹) and intermediate \overline{NEM} (-36.8 ± 24.7 mol C m⁻² y⁻¹; surface weighted average = -31.2 mol C m⁻² y⁻¹). 891

The NAR is characterized by a regional minimum in $\overline{FCO_2}$, and only contributes 4.6% to the total *FCO*₂ of the East coast of the US, owing to the small cumulative surface area available for gas exchange in its 10 estuarine systems. In contrast, the 18 MAR estuaries, with their large relative contribution to the total regional estuarine surface area, account for <u>as much as 70.1%</u> of the total outgassing. Because of their smaller cumulated surface area compared to those of the MAR, the 14 SAR estuaries account for merely 25.3% of the total outgassing despite their regional maximal $\overline{FCO_2}$. Deleted: table
Deleted: 3
Deleted: maximum

Deleted: table

Formatted: Font: Not Bold, Not Italic, No underline Deleted: more than 70%

904	A similar, yet slightly less pronounced pattern emerges for the $\overline{\textit{NEM}}$. The NAR, MAR and SAR
905	respectively contribute 13.7%, 60.7% and 25.6% to the total regional net ecosystem metabolism. The
906	comparatively larger relative contribution of the NAR to the total NEM as compared to the total
907	FCO_2 can be explained by the importance of the specific aspect ratio for NEM. <u>A larger ratio of</u>
908	estuarine width b0 and convergence length b corresponds to a more funnel shaped estuary while a
909	low ratio corresponds to a more prismatic geometry (Savenije, 2000; Volta et al., 2014). In the NAR,
910	estuaries are generally characterized by relatively narrow widths and deep-water depths, thus
911	limiting the potential surface area for gas exchange with the atmosphere. However, the relative
912	contribution of each region to the total regional NEM and FCO_2 is largely controlled by estuarine
913	surface area. Figure <u>2</u> illustrates the cumulative NEM (a) and FCO_2 (b) as a function of the cumulative
914	estuarine surface areas. The disproportionate contribution of large estuaries from the MAR
915	translates into a handful of systems (Chesapeake and Delaware Bays and the main tributaries of the
916	former, in particular) contributing to roughly half of the regional NEM and FCO ₂ , in spite of relatively
917	low individual rates per unit surface area. However, the smallest systems (mostly located in the NAR
918	and SAR) nevertheless still contribute a significant fraction to the total regional NEM and FCO_2 . The
919	27 smallest systems merely account for less than 10% of the total regional estuarine surface area,
920	yet contribute 38% and 29% to the total regional NEM and FCO ₂ , respectively (Fig. 9). This
921	disproportioned contribution can be mainly attributed to their high individual $\overline{FCO_2}$ and \overline{NEM} . This
922	is illustrated by the average simulated $\overline{FCO_2}$ for all 27 smallest systems (calculated as the sum of
923	each estuarine CO_2 outgassing per unit surface area divided by the total number of estuarine
924	systems) which is significantly higher (30.2 mol C m ⁻² y ⁻¹) than its surface weighted average (14 mol C
925	$m^{-2} y^{-1}$). Thereby accounting for the disproportionate contribution of very large systems (calculated
926	as the sum of each estuarine CO_2 outgassing divided by the total estuarine surface area across the
927	region).

Formatted: Font: Not Bold, Not Italic, No underline

Deleted: 7

Deleted: Figure Deleted: 7

931	Following the approach used in Regnier et al. (2013), the contribution of each biogeochemical
932	process to FCO ₂ is assessed by evaluating their individual contribution to DIC and ALK changes taking
933	into account the local buffering capacity of an ionic solution when TA and DIC are changing due to
934	internal processes, but ignoring advection and mixing (Zeebe and Wolf-Gladrow 2001). In the
935	present study, we quantify the effect of the NEM on the CO ₂ balance, which is almost exclusively
936	controlled by aerobic degradation rates because the contributions of denitrification and NPP to the
937	net ecosystem balance are small. Nitrification, a process triggered by the transport and/or
938	production of NH ₄ in oxygenated waters, favors outgassing through its effect on pH, which shifts the
939	acid-base equilibrium of carbonate species and increases the CO ₂ concentration. The contribution of
940	supersaturated riverine waters to the overall estuarine CO2 dynamics is calculated as difference
941	between all the other processes creating or consuming CO ₂₄ Figure 10a presents the contribution of
942	the annually integrated NEM, nitrification and evasion of supersaturated, DIC enriched riverine
943	waters to the total outgassing for each system, as well as for individual regions of the domain. <u>The</u>
944	calculation of these annual values is based on the sum of the seasonal fluxes. Model results reveal
945	that, regionally, the NEM supports about 50% of the estuarine CO_2 outgassing, while nitrification and
946	riverine DIC inputs sustain about 17% and 33% of the CO_2 emissions, respectively. The relative
947	significance of the three processes described above shows important spatial variability. In the NAR,
948	oversaturated riverine waters and NEM respectively sustain 50% and 44% of the outgassing within
949	the sub-region, while nitrification is of minor importance (6%). In the MAR, the contribution of
950	riverine DIC inputs is significantly lower (~30%) and the main contribution to the outgassing is NEM
951	(~50%); nitrification accounting for slightly less than 20% of the outgassing. In the SAR, the riverine
952	contribution is even lower (~20%), and the outgassing is mainly attributed to the NEM (~55%) and
953	nitrification (~25%). Therefore, although the model results reveal significant variability across
954	individual systems, a clear latitudinal trend in the contribution to the total FCO_2 emerge from the
955	analysis; the importance of oversaturated riverine water decreasing from North to South, while NEM
956	and nitrification increase along the same latitudinal gradient. The increasing relative importance of

Formatted: Font: Not Bold, Not Italic, No underline Deleted: T Formatted: Font: Not Bold, Not Italic, No underline

Formatted: Font: Not Bold, Not Italic, No underline

Deleted: (see Regnier et al., 2013b)
Deleted: .
Deleted: 8a

Formatted: Font: Not Bold, Not Italic, No underline

Deleted: Nitrification, a process triggered by the transport and/or production of NH₄ in oxygenated waters, favors outgassing through its effect on pH, which shifts the acid-base equilibrium of carbonate species and increases the CO₂ concentration. In addition, the *NEM* is almost exclusively controlled by aerobic degradation rates because the contribution of denitrification and NPP to the net ecosystem balance is small. ¶ 972 estuarine biogeochemical processes over riverine DIC inputs as drivers of FCO₂ along the North-

973 South gradient is largely driven by increasing temperatures from North to South, especially in the

974 SAR region (<u>Tab.</u> S<u>I</u>1).

975 Contrasting patterns across the 3 regions can also be observed with respect to carbon filtering capacities, *CFilt* (Fig.<u>10b</u>). In the NAR, over 90% of the riverine carbon flux is exported to the coastal 976 977 ocean. However, in the MAR, the high efficiency of the largest systems in processing organic carbon 978 results in a regional CFilt that exceeds 50%. This contrast between the NAR and the MAR and its 979 potential implication for the carbon dynamics of the adjacent continental shelf waters has already 980 been discussed by Laruelle et al. (2015). In the NAR, short estuarine residence results in a much 981 lower removal of riverine carbon by degassing compared to the MAR. Laruelle et al. (2015) 982 suggested that this process could contribute to the weaker continental shelf carbon sink adjacent to 983 the NAR, compared to the MAR. In the SAR, most estuaries remove between 40% and 65% of the 984 carbon inputs. The high temperatures observed and resulting accelerated biogeochemical process 985 rates in this region favor the degradation of organic matter and contribute to increase the estuarine 986 filtering capacity for carbon. However, in the SAR, a large fraction of the OC loads is derived from 987 adjacent salt marshes located along the estuarine salinity gradients, thereby reducing the overall 988 residence time of OC within the systems. The filtering capacity of the riverine OC alone, which 989 transits through the entire estuary, would thus be higher than the one calculated here. As a 990 consequence, highest C retention rates are expected in warm tidal estuaries devoid of salt marshes 991 or mangroves (Cai, 2011).

992 **3.2 Seasonal variability of estuarine carbon dynamics**

Carbon dynamics in estuaries of the US East coast not only show a marked spatial variability, but also vary on the seasonal timescale. Table 5 presents the seasonal distribution of *NEM* and *FCO*₂ for each sub-region. In the NAR, a strong seasonality is simulated for the *NEM* and the summer period contributes more than a third to the annually integrated value. The outgassing reveals a lower Deleted: Table

Deleted: 8b

999 seasonal variability and is only slightly higher than summer outgassing during fall and lower during 1000 spring. In the MAR, summer contributes more to the NEM (>28% of the yearly total) than any other 1001 season, but seasonality is less pronounced than in the NAR. Here, FCO_2 is largest in winter and 1002 particularly low during summer. In the SAR, summer accounts for 30 % of the NEM, while spring 1003 contributes 21 %. FCO₂ is relatively constant throughout the year suggesting that seasonal variations 1004 in carbon processing decrease towards the lower latitudes in the SAR. This is partly related to the 1005 low variability in river discharge throughout the year in lower latitudes (Tab. Sl1). In riverine 1006 dominated systems with low residence times, such as, for instance, the Altamaha River estuary, the 1007 CO₂ exchange at the air-water interface is mainly controlled by the river discharge because the time 1008 required to degrade the entire riverine organic matter flux exceeds the transit time of OC through 1009 the estuary. Therefore, the riverine sustained outgassing is highest during the spring peak discharge 1010 periods. In contrast, the seasonal variability in FCO₂ in long-residence, marine-dominated systems 1011 with large marsh areas (e.g. Sapelo and Doboy Sound) is essentially controlled by seasonal 1012 temperature variations. Its maximum is reached during summer when marsh plants are dying and 1013 decomposing, as opposed to spring when marshes are in their productive stage (Jiang et al., 2008). 1014 These contrasting seasonal trends have already been reported for different estuarine systems in 1015 Georgia, such as the Altamaha Sound, the Sapelo Sound and the Doboy Sound (Cai, 2011). At the 1016 scale of the entire East coast of the US, the seasonal trends in NEM reveal a clear maximum in 1017 summer and minimal values during autumn and winter. The seasonality of FCO_2 is much less 1018 pronounced because the outgassing of oversaturated riverine waters throughout the year 1019 contributes to a large fraction of the FCO_2 and dampens the effect of the temperature dependent 1020 processes (NEM and denitrification). In our simulations, the competition between temperature and 1021 river discharge is the main driver of the seasonal estuarine carbon dynamics is. When discharge 1022 increases, the carbon loads increase proportionally and the residence time within the system 1023 decreases, consequently limiting an efficient degradation of organic carbon input fluxes. In warm

Deleted: Table

regions like the SAR, the temperature is sufficiently high all year round to sustain high C processingrates and this explains the reduced seasonal variability in NEM.

1027

1028 **3.3 Regional carbon budget: a comparative analysis**

1029 The annual carbon budget for the entire East coast of the US is summarized in Fig. 11a. The total carbon input to estuaries along the East coast of the US is 4.6 Tg C y⁻¹, of which 42% arrives in 1030 1031 organic form and 58% in inorganic form. Of this total input, saltmarshes contribute 0.6 Tg C yr⁻¹, 1032 which corresponds to about 14% of the total carbon loads and 32% of the organic loads in the 1033 region. The relative contribution of the saltmarshes to the total carbon input increases towards low latitudes and is as high as 60% in the SAR region. Model results suggest that 2.7 Tg C y⁻¹ is exported 1034 to the continental shelf (25% as TOC and 75% as DIC), while 1.9 Tg C y⁻¹ is emitted to the 1035 1036 atmosphere. The overall carbon filtering capacity of the region thus equals 41% of the total carbon 1037 entering the 43 estuarine systems (river + saltmarshes). Because of the current lack of a benthic 1038 module in C-GEM, the water column carbon removal occurs entirely in the form of CO₂ outgassing 1039 and does not account for the potential contribution of carbon burial in sediments. The estimated 1040 estuarine carbon retention presented here is thus likely a lower bound estimate. Reported to the modeled surface area of the region, the total FCO_2 of 1.9 Tg C y⁻¹ translates into a mean air water 1041 CO_2 flux of about 14 mol C m⁻² y⁻¹. This value is slightly higher than the estimate of 10.8 mol C m⁻² y⁻¹ 1042 calculated by Laruelle et al., (2013) on the basis of local $\overline{FCO_2}$ estimates assumed to be 1043 1044 representative of yearly averaged conditions (see section 2.1). The latter was calculated as the average of 13 annual $\overline{FCO_2}$ values reported in the literature (Tab. 2), irrespective of the size of the 1045 1046 systems. This approach is useful and widely used to derive regional and global carbon budgets 1047 (Borges et al., 2005; Laruelle et al., 2010; Chen et al., 2013). However, it may lead to potentially 1048 significant errors (Volta et al., 2016a) due to the uncertainty introduced by the spatial interpolation

Deleted: 47

Deleted: fig

Deleted: table Deleted: 3

1054 of local measurements to large regional surface areas, while useful and widely used to derive1055 regional and global carbon budgets.

1056 Regional C budgets are sparse. To our knowledge, the only other published regional assessment of 1057 the estuarine carbon and CO_2 dynamics comes from a relatively well studied region: the estuaries 1058 flowing into the North Sea in Western Europe (Fig. <u>11b</u>). This budget was calculated using a similar 1059 approach (Volta 2016a) and thus provides an ideal opportunity for a comparative assessment of C 1060 cycling in these regions. However, it is important to note that there are also important differences in 1061 the applied model approaches and those differences should be taken into account when comparing 1062 the derived budgets. In particular, the NW European study is based on a simulation of the 6 largest 1063 systems only (Elbe, Scheldt, Thames, Ems, Humber and Weser), accounting for about 40% for the 1064 riverine carbon loads of the region. It assumes that the intensity of carbon processing and evasion in 1065 all other smaller estuaries discharging into the North Sea (16 % of the carbon loads) can be 1066 represented by the average of the 6 largest system simulation results. In addition, the Rhine-Meuse 1067 system, which alone accounts for 44% of the carbon riverine inputs of the region, was treated as a 1068 passive conduit with respect to carbon due to its very short freshwater residence time (Abril et al., 1069 2002). The contribution of saltmarshes to the regional carbon budget was also ignored because their 1070 total surface area is much smaller than along the US East coast (Regnier et al., 2013b). Another 1071 important difference is the inclusion of seasonality in the present study while the budget calculated 1072 for the North Sea is derived from yearly average conditions (Volta et al., 2016a).

1073 Overall, although both regions receive similar amounts of C from rivers (4.6 Tg C y^{-1} and 5.9 Tg C y^{-1} 1074 for the East coast of the US and the North Sea, respectively), they reveal significantly different C 1075 filtering capacities. While the estuaries of the East coast of the US filter 41% of the riverine TC loads, 1076 those from the North Sea only remove 8% of the terrestrial-derived material. This is partly due to the 1077 large amounts of carbon transiting through the 'passive' Rhine-Meuse system. The regional filtering 1078 capacity is higher (15%) when this system is excluded from the analysis. However, even when Deleted: 9b

1080	neglecting this system, significant differences in filtering efficiencies between both regions remain.
1081	FCO_2 from the North Sea estuaries (0.5 Tg C y ⁻¹) is significantly lower than the 1.9 Tg C y ⁻¹ computed
1082	for the East coast of the US. The reason for the lower evasion rate in NW European estuaries is
1083	essentially twofold. First, the total cumulative surface area available for gas exchange is significantly
1084	lower along the North Sea, in spite of comparable flux densities calculated using the entire estuarine
1085	surface areas of both regions (14 mol C m ⁻² y ⁻¹ and 23 mol C m ⁻² y ⁻¹ for the East coast of the US and
1086	the North Sea, respectively). Second, although the overall riverine carbon loads are comparable in
1087	both regions (Fig. <u>11</u>), the ratio of organic to inorganic matter input is much lower in the North Sea
1088	area because of the regional lithology is dominated by carbonate rocks and mixed sediments that
1089	contain carbonates (Dürr et al., 2005; Hartmann et al., 2012). As a consequence, TOC represents less
1090	than 20% of the riverine loads and only 10% of the carbon exported to the North Sea. In both
1091	regions, however, the increase of the inorganic to organic carbon ratio between input and output is
1092	sustained by a negative NEM (Fig. <u>11</u>). Although the ratios themselves may significantly vary from a
1093	region of the world to the other as evidenced by these two studies, a NEM driven increase of the
1094	inorganic fraction within carbon load along the estuarine axis is consistent with the global estuarine
1095	carbon budget proposed by Bauer et al. (2013). In the East coast of the US, the respiration of riverine
1096	OC within the estuarine filter is partly compensated by OC inputs from marshes and mangroves in
1097	such a way that the input and export IC/OC ratios are closer than in the North Sea region.

1098 **3.4 Scope of applicability and model limitations**

Complex multidimensional models are now increasingly applied to quantitatively explore carbon and
 nutrient dynamics along the land-ocean transition zone over seasonal and even annual timescales
 (Garnier et al., 2001; Arndt et al., 2007, 2009; Arndt and Regnier, 2007; Mateus et al., 2012).
 However, the application of such complex models remains limited to individual, well-constrained
 systems due their high data requirements and computational demand resulting from the need to
 resolve important physical, biogeochemical and geological processes on relevant temporal and

Deleted: 9

Deleted: 9

1107	spatial scales. The one-dimensional, computationally efficient model C-GEM has been specifically	
1108	designed to reduce data requirements and computational demand and to enable regional/global	
1109	scale applications (Volta et al., 2014, 2016a). However, such a low data demand and computational	
1110	efficiency inevitably requires simplification. The following paragraphs critically discus these	
1111	simplifications and their implications.	
1112	<u>Spatial resolution</u>	
1113	Here, C-GEM is used with a 0.5° spatial resolution. While this resolution captures the features of	
1114	large systems, it is still very coarse for relatively small watershed, such as those of the St. Francis	
1115	River, Piscataqua River, May River or the Sapelo River. For instance, the 5 estuaries reported by Hunt	
1116	et al. (2010, 2011, see section 2.6) are all small systems contained by the same watershed at a 0.5°	
1117	resolution. Only watersheds whose area spans several grid cells can be properly identified and	
1118	represented (i.e. Merrimack or Penobscot with 6 and 9 cells, respectively).	
1119		
1120	Hydrodynamic and Transport Model	
1121	C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces	
1122	data requirements. These idealized geometries are fully described by three, easily obtainable	
1123	geometrical parameters (B, b ₀ , H). The model thus approximates the variability of estuarine width	
1124	and cross-section along the longitudinal axis through a set of exponential functions. A	
1125		
	comprehensive sensitivity study (Volta et al., 2014) has shown that integrated process rates are	
1126	comprehensive sensitivity study (Volta et al., 2014) has shown that integrated process rates are generally sensitive to changes in these geometrical parameters because of their control on estuarine	
1126 1127		
	generally sensitive to changes in these geometrical parameters because of their control on estuarine	
1127	generally sensitive to changes in these geometrical parameters because of their control on estuarine residence times. For instance, Volta et al. (2014) demonstrated that the NEM, is particularly sensitive	
1127 1128	generally sensitive to changes in these geometrical parameters because of their control on estuarine residence times. For instance, Volta et al. (2014) demonstrated that the NEM, is particularly sensitive to the convergence length. Similarly, the use of constant depth profile may lead to variations of	
1127 1128 1129	generally sensitive to changes in these geometrical parameters because of their control on estuarine residence times. For instance, Volta et al. (2014) demonstrated that the NEM, is particularly sensitive to the convergence length. Similarly, the use of constant depth profile may lead to variations of about 10% in NEM (Volta et al., 2014). Nevertheless, geometrical parameters are generally easy to	

1132	depths. In addition, the model also accounts for the slope of the estuarine channel. This approach	
1133	ensures that simulated estuarine surface areas, volumes and, thus, residence times are in good	
1134	agreement with those of the real systems and minimizes uncertainties associated to the physical set-	
1135	up.	
1136	In addition, the one-dimensional representation of the idealized estuarine systems does not resolve	
1137	two- or three-dimensional circulation features induced by complex topography and density driven	
1138	circulation. While C-GEM performs well in representing the dominant longitudional gradients, its	
1139	applicability to branched systems or those with aspect ratios for which a dominant axis is difficult to	
1140	identify (e.g. Blackwater estuary, UK; Pearl River estuary, China; Tagus estuary, Portugal; Bay of	
1141	Brest, France) is limited.	
1142	Biogeochemical Model	
1143	Although the reaction network of C-GEM accounts for all processes that control estuarine FCO ₂	
1144	(Borges and Abril, 2012; Cai, 2011), several, potentially important processes, such as benthic-pelagic	
1145	exchange processes, phosphorous sorption/desorption and mineral precipitation, a more complex	
1146	representation of the local phytoplankton community, grazing by higher trophic levels, or multiple	
1147	reactive organic carbon pools are not included. Although these processes are difficult to constrain	
1148	and their importance for FCO ₂ is uncertain, the lack of their explicit representations induces	
1149	uncertainties in Cfilt. In particular, the exclusion of benthic processes such as organic matter	
1150	degradation and burial in estuarine sediments could result in an underestimation of Cfilt. However,	
1151	because very little is known on the long term fate of organic carbon in estuarine sediments, setting	
1152	up and calibrating a benthic module proves a difficult task. Furthermore, to a certain degree model	
1153	parameters (such as organic matter degradation and denitrification rate constant) implicitly account	
1154	for benthic dynamics. We nonetheless acknowledge that, by ignoring benthic processes and burial in	
1155	particular, our estimates for the estuarine carbon filtering may be underestimated, particularly in	
1156	the shallow systems of the SAR.	

1157	Biogeochemical model parameters for regional and global applications are notoriously difficult to	
1158	constrain (Volta et al., 2016b). Model parameters implicitly account for processes that are not	
1159	explicitly resolved and their transferability between systems is thus limited. In addition, published	
1160	parameter values are generally biased towards temperate regions in industrialized countries (Volta	
1161	et al., 2016b). A first order estimation of the parameter uncertainty associated to the estuarine	
1162	carbon removal efficiency (CFilt) can be extrapolated from the extensive parameter sensitivity	
1163	analyses carried out by Volta et al. (2014, 2016b). These comprehensive sensitivity studies on end	
1164	member systems have shown that the relative variation in Cfilt when a number of key	
1165	biogeochemical parameters are varied by two orders of magnitude varies by is ±15 % in prismatic	
1166	(short residence time on order of days) to ±25 % in funnel-shaped (long residence time) systems.	
1167	Thus, assuming that uncertainty increases linearly between those bounds as a function of residence	
1168	time, an uncertainty estimate can be obtained for each of our modelled estuary. With this simple	
1169	method, the simulated regional Cfilt of 1.9 Tg C yr-1 would be associated with an uncertainty range	
1170	comprised between 1.5 and 2.2 Tg C yr ⁻¹ . Our regional estuarine CO ₂ evasion estimate is thus	
1171	reported with moderate confidence. Furthermore, in the future, this uncertainty range could be	
1172	further constrained using statistical methods such as Monte Carlo simulations (e.g. Lauerwald et al.,	
1173	<u>2015).</u>	
1174	Boundary Conditions and Forcings	
1175	In addition, simulations are only performed for climatological means over the period 1990-2010	
1176	without resolving interannual and secular variability. Boundary conditions and forcings are critical as	
1177	they place the modelled system in its environmental context and drive transient dynamics. However,	
1178	for regional applications, temporally resolved boundary conditions and forcings are difficult to	
1179	constrain. C-GEM places the lower boundary condition 20 km from the estuarine mouth into the	
1180	coastal ocean and the influence of this boundary condition on simulated biogeochemical dynamics is	
1181	thus limited. At the lower boundary condition, direct observations for nutrients and oxygen are	

1182	extracted from databases such as the World Ocean Atlas (Antonov et al., 2014). However, lower	
1183	boundary conditions for OC and pCO ₂ (zero concentration for OC and assumption of pCO ₂	
1184	equilibrium at the sea side) are simplified. This approach does not allow addressing the additional	
1185	complexity introduced by biogeochemical dynamics in the estuarine plume (see Arndt et al., 2011).	
1186	Yet, these dynamics only play a secondary role in the presented study that focuses on the role of the	
1187	estuarine transition zone in processing terrestrial-derived carbon.	
1188	Constraining upper boundary conditions and forcings is thus more critical. Here, C-GEM is forced by	
1189	seasonally-averaged conditions for Q, T, and radiation. To date, GlobalNEWS only provide yearly-	
1190	averaged conditions for a number of upper boundary conditions (Seitzinger et al., 2005; Mayorga et	
1191	al., 2010), representative of the year 2000. Simulations are thus only partly transient (induced by	
1192	seasonality in Q, T and radiation) and do not resolve short-lived events such as storms or extreme	
1193	drought conditions. In addition, direct observations of upper boundary conditions are rarely	
1194	available- in particular over seasonal or annual timescales. For the US East Coast estuaries, direct	
1195	observations are only available for O ₂ , chlorophyll a, DIC and Alk. For DIC and alkalinity and boundary	
1196	conditions are constrained by calculating the average concentration over a period of about three	
1197	decades. In addition, observational data is extracted at the station closest to the model's upper	
1198	boundary, which might be still located several kilometres upstream or downstream of the model	
1199	boundary. Upper boundary conditions of POC, DOC, DIN, DIP, DSi are extracted from GlobalNews	
1200	and thus model-derived. As a consequence, our results are thus intimately dependent on the	
1201	robustness of the GlobalNEWS predictions. These values are usually only considered robust	
1202	estimates for watersheds larger than ~10 cells (Beusen et al., 2005), which only correspond to 13 of	
1203	the 43 estuaries modelled in this study.	
1204	<u>Model-data comparison</u>	
1205	The generic nature of the applied model approach and, in particular the application of	
1206	seasonally/annually averaged or model-deduced boundary conditions renders a direct validation of	
I	35	

1207	model results on the basis of local and instantaneous observational data (e.g. longitudinal profiles),
1208	which is likely not representative of these long-term average conditions, difficult. Therefore, model
1209	performance is evaluated on the basis of spatially aggregated estimates (e.g. regional FCO ₂ estimates
1210	based on local measurements) rather than system-to-system comparisons with longitudinal profile
1211	from specific days. However, note that the performance of C-GEM has been intensively tested by
1212	specific model-data comparisons for a number of different systems (e.g. Volta et al., 2014, 2016a)
1213	and we are thus confident of its predictive capabilities.
1214	Despite the numerous simplifying assumptions inevitably required for such a regional assessment of
1214	
1215	carbon fluxes along the land-ocean continuum, the presented approach does nevertheless provide
1216	an important step forward in evaluating the role of land-ocean transition systems in the global

- 1217 carbon cycle. It provides a first robust estimate of carbon dynamics based on a theoretically well 1218 founded and carefully tested, spatially and temporally resolved model approach. This approach
 1219 provides novel insights that go beyond those gained through traditionally applied zero-salinity
 1220 method or box model approaches. In addition, it also highlights critical variables and data gaps and
 1221 thus helps guide efficient monitoring strategies.
- 1222 **3.5** Towards predictors of the estuarine carbon processing

1223 The mutual dependence between geometry and transport in tidal estuaries and, ultimately, their 1224 biogeochemical functioning (Savenije, 1992; Volta et al., 2014) allows relating easily extractable 1225 parameters linked to their shape or their hydraulic properties to biogeochemical indicators. In this 1226 section, we explore the relationships between such simple physical parameters and indicators of the estuarine carbon processing \overline{NEM} , $\overline{FCO_2}$ and CFilt. In order to account for the effect of temperature 1227 on C dynamics, $-\overline{NEM}$ and $\overline{FCO_2}$ are also normalized to the same temperature (arbitrarily chosen to 1228 be 0 degree). These normalized values are obtained by dividing $-\overline{NEM}$ and $\overline{FCO_2}$ by a Q₁₀ function 1229 f(T) (see Volta et al., 2014). This procedure allows accounting for the exponential increase in the rate 1230 1231 of several temperature dependent processes contributing to the NEM (i.e. photosynthesis, organic

Deleted: 4

Deleted:

1234 carbon degradation...). Applying the same normalization to $-\overline{NEM}$ and $\overline{FCO_2}$ is a way of testing how 1235 intimately linked NEM and FCO₂ are in estuarine systems. Indeed linear relationships relating one to 1236 the other have been reported (Mayer and Eyre, 2012). The three indicators are then investigated as 1237 a function of the ratio between the estuarine surface S and the seasonal river discharge Q. The 1238 surface area is calculated from the estuarine width and length, as described by equation 2, in order 1239 to use a parameter which is potentially applicable to other regions for which direct estimates of the 1240 real estuarine surface area is not available. Since the fresh water residence time of a system is 1241 obtained by dividing volume by river discharge, the S/Q ratio is also intimately linked to residence 1242 time. Here, we choose to exclude the estuarine depth from the analysis because this variable cannot be easily quantified from maps or remote sensing images and would thus compromise the 1243 1244 applicability of a predictive relationship on the global scale. However, from dimensional analysis, S/Q 1245 can be viewed as a water residence time normalized to meter depth of water. As shown by equation 3, S only requires constraining BO and width convergence length b, two parameters that can readily 1246 1247 be extracted from the Google Earth engine. Global database of river discharges, as for instance 1248 RivDIS (Vörösmarty et al., 1996) are also available in such a way that the S/Q ratio can potentially be 1249 extracted for all estuaries around the globe.

1250 Figure <u>12a</u> reveals that small values of S/Q are associated with the most negative $\overline{NEM} / f(T)$. The Deleted: 10a 1251 magnitude of the \overline{NEM} then exponentially decreases with increasing values of S/Q. Estuaries 1252 characterized by small values of S/Q are mainly located in the NAR sub-region and correspond to small surface area, and thus short residence time systems. It is possible to quantitatively relate -1253 \overline{NEM} /f(T) and S/Q through a power law function (y = 25.85 x^{-0.64} with a r² = 0.82). The coefficient 1254 1255 of determination remains the same when excluding estuaries from the NAR region and the equation 1256 itself is not significantly different, although those estuaries on their own do not display any 1257 statistically significant trend (Tab. 6). The decrease in the intensity of the net ecosystem metabolism 1258 in larger estuaries (Fig 2), characterized by high S/Q ratios, can be related to the extensive

Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic, Subscript

Deleted: table

Deleted: 6

consumption of the organic matter pool during its transit through the estuarine filter. However, when reported to the entire surface area of the estuary, larger systems (with high values of S/Q) still reveal the most negative surface integrated *NEM* (Fig. 12b). It can also be noted that some estuaries from the NAR region display very low values of *–NEM*. These data points correspond to fall and winter simulations for which the temperature was relatively cold (<5 °C) and biogeochemical processing was very low.

The overall response of $\overline{FCO_2}/f(T)$ to S/Q is comparable to that of $\overline{-NEM}/f(T)$ (Fig. 12c), with 1268 lower values of $\overline{FCO_2}$ observed for high values of S/Q. However, for S/Q < 3 days m⁻¹, the $\overline{FCO_2}$ 1269 values are very heterogeneous and contain many, low $\overline{FCO_2}$ outliers from the NAR region. These 1270 1271 data points generally correspond to low water temperature conditions which keep pCO2 low, even if 1272 the system generates enough CO_2 internally via NEM. Thus, the well-documented correlation between \overline{NEM} and $\overline{FCO_2}$ (Maher and Eyre, 2012) does not seem to hold for systems with very short 1273 residence times. For systems with S/Q > 3 days m⁻¹, we obtain a regression $FCO_2 = -0.64 \times NEM + 5.96$ 1274 1275 with a r^2 of 0.46, which compares well with the relation $FCO_2 = -0.42 \times NEM + 12$ proposed by Maher 1276 and Eyre (2012) who, used 24 seasonal estimates from small Australian estuaries. However, our 1277 results suggest that this relationship cannot be extrapolated to small systems such as those located 1278 in the NAR. Figure 12d, which reports non-normalized FCO2 reveals a monotonous increase of FCO2 1279 with S/Q. This suggests that, unlike the NEM for which the normalization by a temperature function 1280 allowed explaining most of the variability; FCO2 is mostly controlled by the water residence time 1281 within the system. Discharge is the main FCO2 driver in riverine dominated systems, while 1282 interactions with marshes are driving the outgassing in marine dominated systems surrounded by 1283 marshes. Net aquatic biological production (NEM being negative or near 0) in large estuaries (with 1284 large S/Q) is another important reason for low FCO₂ in such systems. For example, despite the higher 1285 CO_2 degassing flux in the upper estuary of the Delaware, strong biological CO_2 uptake in the mid-bay 1286 and near zero NEM in the lower bay result in a much lower FCO₂ for the entire estuary (Joesoef et al.

Deleted: fig Deleted: 10b

Deleted: 10c

Deleted: m

Formatted: Font: Italic

1291 2015). In systems with S/Q < 3 days m⁻¹, the short residence time prevents the excess CO₂ of 1292 oversaturated water from being entirely exchanged with the atmosphere and simulations reveal that 1293 the estuarine waters are still oversaturated in CO_2 at the estuarine mouth. Thus, the inorganic 1294 carbon, produced by the decomposition of organic matter, is not outgassed within the estuary but 1295 exported to the adjacent continental shelf waters. This result is consistent with the observation-1296 based hypothesis of Laruelle et al. (2015) for the NAR estuaries. As a consequence of the distinct 1297 behavior of short residence time systems, the coefficient of determination of the best-fitted power 1298 law function relating $\overline{FCO_2}$ and S/Q is only significant if NAR systems are excluded (y = 31.64 x^{-0.58} with a $r^2 = 0.70$). This thus suggest that such relationships (as well as that proposed by Maher and 1299 1300 Eyre, 2012) cannot be applied to any system but only those for which S/Q>3 day m⁻¹.

1301 Finally, Fig. 12e reports the simulated mean seasonal carbon filtering capacities as a function of the 1302 depth normalized residence time. Not surprisingly, and in overall agreement with previous studies 1303 on nutrient dynamics in estuaries (Nixon et al., 1996), the carbon filtering capacity increases with 1304 S/Q. The best statistical relation between CFilt and S/Q is obtained when including all 3 regions, 1305 resulting in $r^2 = 0.70$ (y = 40.64 log₁₀(x) + 11.84). Very little C removal occurs in systems with S/Q < 1 day m⁻¹. For systems characterized by longer depth-normalized residence times, CFilt increases 1306 regularly, and reaches 100% for S/Q > 100 day m⁻¹. Such high values are only observed for very large 1307 1308 estuaries from the MAR region (Delaware and Chesapeake Bays); the majority of our systems had an 1309 S/Q range between 1 and 100 day m⁻¹. The quantitative assessment of estuarine filtering capacities 1310 is further complicated by the complex interplay of estuarine and coastal processes. Episodically, 1311 marked spatial variability in concentration gradients near the estuarine mouth may lead to a reversal 1312 of net material fluxes from coastal waters into the estuary (Regnier at al., 1998; Arndt et al. 2011). 1313 Our results show that this feature is particularly significant for estuaries with a large width at the 1314 mouth and short convergence length (funnel shaped or 'Bay type' systems). These coastal nutrient 1315 and carbon inputs influence the internal estuarine C dynamics and lead to filtering capacities that Formatted: Superscript

Deleted: Figure

can exceed 100%. This feature is particularly significant in summer, when riverine inputs are low andthe marine material is intensively processed inside the estuary.

1320 Previous work investigated the relationship between fresh water residence time and nutrient 1321 retention (Nixon et al., 1996; Arndt et al., 2011; Laruelle, 2009). These studies, however, were 1322 constrained by the scarcity of data. For instance, the pioneering work of Nixon et al. (1996) only 1323 relied on a very limited number (<10) of quite heterogeneous coastal systems, all located along the 1324 North Atlantic. Here, our modeling approach allows us to generate 172 (43 x 4) data points, each 1325 representing a system-scale biogeochemical behavior. Together, this database spans the entire 1326 spectrum of estuarine settings and climatic conditions found along the East coast of the US. In 1327 addition, the ratio S/Q used as master variable for predicting temperature normalized \overline{NEM} , $\overline{FCO_2}$ 1328 and CFilt only requires a few easily accessible geometric parameters (B0, b and L) and an estimate of the river discharge. While it is difficult to accurately predict $\overline{FCO_2}$ for small systems such as those 1329 1330 located in the NAR region, the relationships found are quite robust for systems in which S/Q > 3 days 1331 m⁻¹. Most interestingly, *CFilt* values reveal a significant correlation with S/Q and could be used in 1332 combination with global riverine carbon delivery estimates such as GlobalNews 2 (Mayorga et al., 1333 2010) to constrain the estuarine CO_2 evasion and the carbon export to the coastal ocean at the 1334 continental and global scales.

1335 4. Conclusions

This study presents the first complete estuarine carbon budget for the East coast of the US using a modeling approach. The structure of the model C-GEM relies on a restricted number of readily available global datasets to constrain boundary conditions and limits the number of geometrical and physical parameters to be constrained. Our simulations predict a total CO₂ outgassing of 1.9 Tg C γ^{-1} for all tidal estuaries of the East coast of the US. This quantification accounts for the seasonality in estuarine carbon processing as well as for distinct individual behaviors among estuarine types (marine or river dominated). The total carbon output to the coastal ocean is estimated at 2.7 TgC γ^{-1} , 1343 and the carbon filtering capacity with respect to riverine, marshes and mangrove inputs is thus on 1344 the order of 40%. This value is significantly higher than the recently estimated C filtering capacity for 1345 estuaries surrounding the North Sea using a similar approach (Volta et al., 2016a), mainly because 1346 the surface area available for gas exchange and the draining lithology limits the CO₂ evasion in the 1347 NW European systems. At the regional scale of the US East coast estuaries, net heterotrophy is the 1348 main driver (50%) of the CO_2 outgassing, followed by the ventilation of riverine supersaturated 1349 waters entering the estuarine systems (32%) and nitrification (18%). The dominant mechanisms for 1350 the gas exchange and the resulting carbon filtering capacities nevertheless reveal a clear latitudinal 1351 pattern, which reflects the shapes of estuarine systems, climatic conditions and dominant land-use 1352 characteristics.

1353 Our model results are used to derive predictive relationships relating the intensity of the area-based Net Ecosystem Metabolism (\overline{NEM}), air-water CO₂ exchange ($\overline{FCO_2}$) and the carbon filtering capacity 1354 1355 (CFilt) to the depth normalized residence time, expressed as the ratio of the estuarine surface area 1356 to the river discharge. In the future, such simple relationships relying on readily available geometric 1357 and hydraulic parameters could be used to quantify carbon processing in areas of the world devoid 1358 of direct measurements. However, it is important to note that such simple relationships are only 1359 valid over the range of boundary conditions and forcings explored and may not be applicable to 1360 conditions that fall outside of this range. In regions with better data coverage, such as the one 1361 investigated here, our study highlights that the regional-scale quantification, attribution, and 1362 projection of estuarine biogeochemical cycling are now at reach.

Formatted: Font: Not Bold, Not Italic, No underline

1363 5. Acknowledgements

G. G. Laruelle is Chargé de recherches du F.R.S.-FNRS at the Université Libre de Bruxelles. The
research leading to these results has received funding from the European Union's Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agreement No 643052

Deleted: prediction

- 1368 (C-CASCADES project). The authors thank V. L. Mulder for her thorough reading of the manuscript
- 1369 upon submission.

1371	References:	Deleted: 1
1372	Abril, G., Nogueira, M., Etcheber, H., Cabeçadas, G., Lemaire, E., and Brogueira, M.J.: Behaviour of	
1373	organic carbon in nine contrasting European estuaries. Estuar. Coast. Shelf Sci., 54, 241-262,	
1374	2002.	
1375	Antonov, J.I., Seidov, D., Boyer, T.P., Locarnini, R.A., Mishonov, A.V., Garcia, H.E., Baranova, O.K.,	
1376	Zweng, M.M., and Johnson, D.R.: World Ocean Atlas 2009, Volume 2: Salinity. S., 2010.	
1377	Arndt, S., Vanderborght, J.P., and Regnier, P.: Diatom growth response to physical forcing in a	
1378	macrotidal estuary: Coupling hydrodynamics, sediment transport, and biogeochemistry.	
1379	Journal of Geophysical Research C: Oceans, 112(5), 2007.	
1380	Arndt, S. and Regnier, P.: A model for the benthic-pelagic coupling of silica in estuarine ecosystems:	
1381	sensitivity analysis and system scale simulation, Biogeosciences, 4, 331–352, doi:10.5194/bg-	Formatted: English (U.K.)
1382	<u>4-331-2007, 2007.</u>	
1383	Arndt, S., Regnier, P., and Vanderborght, J.P.: Seasonally-resolved nutrient export fluxes and filtering	
1384	capacities in a macrotidal estuary. Journal of Marine Systems, 78(1), 42-58, 2009.	
1385	Arndt, S., Lacroix, G., Gypens, N., Regnier, P., and Lancelot, C.: Nutrient dynamics and phytoplankton	
1386	development along an estuary-coastal zone continuum: A model study. Journal of Marine	
1387	Systems, 84(3-4), 49-66, 2011.	
1388	Atlas, R., Hoffman, R.N., Ardizzone, J., Leidner, S.M., Jusem, J.C., Smith, D.K. and Gombos, D.: A	
1389	cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and	
1390	oceanographic applications. Bulletin of the American Meteorological Society, 92(2), 157-174,	
1391	2011.	
1392	Baklouti, M., Chevalier, C., Bouvy, M., Corbin, D., Pagano, M., Troussellier, M., and Arfi, R.: A study of	Formatted: English (U.K.)
1393	plankton dynamics under osmotic stress in the Senegal River Estuary, West Africa, using a 3D	
1394	mechanistic model, Ecol. Model., 222, 2704–2721, 2011.	
1395	Bauer, J.E., Cai, W.J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., and Regnier, P.A.G.: The changing	Deleted: 1
1396	carbon cycle of the coastal ocean. Nature, 504(7478), 61-70, 2013.	
1397	Beusen, A. H.W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W., and Harrison, J.: Estimation of global	
1398	river transport of sediments and associated particulate C, N, and P, Global Biogeochem. Cy.,	
1399	<u>19, GB4S05, doi:10.1029/2005GB002453, 2005.</u>	
1400	Beusen, A.H.W., Bouwman, A.F., Dürr, H.H., Dekkers, A.L.M., and Hartmann, J.: Global patterns of	
1401	dissolved silica export to the coastal zone: Results from a spatially explicit global model.	
1402	Global Biogeochemical Cycles, 23, GB0A02, doi:10.1029/2008GB003281, 2009.	
1403	Billen, G., Thieu, V., Garnier, J., and Silvestre, M.: Modelling the N cascade in regional waters: The	
1404	case study of the Seine, Somme and Scheldt rivers, Agr. Ecosyst. Environ., 133, 234–246,	
1405	2009.	
1406	Borges, A.V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources of CO ₂ in the coastal	
1407	ocean: Diversity of ecosystems counts. Geophys. Res. Lett., 32(14), L14601, 2005.	
1408	Borges, A.V., and Abril, G.: Carbon Dioxide and Methane Dynamics in Estuaries. In: E. Wolanski and	
1409	D.S. McLusky (Editors), Treatise on Estuarine and Coastal Science. Academic Press, Waltham,	
1410	pp. 119–161, 2012.	
1411	Bricker, S., Longstaff, B., Dennison, W., Jones, A., Boicourt, K., Wicks, C., and Woerner, J.: Effects of	
1412	Nutrient Enrichment In the Nation's Estuaries: A Decade of Change, NOAA, MD, 2007.	
1413	Brock, T.D.: Calculating solar radiation for ecological studies. Ecological Modelling, 14(1-2), 1-19,	
1414	1981.	
1415	Caffrey, J.: Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries, 27(1), 90-101,	
1416	2004.	
1417 1419	Cai, W.J., and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters	
1418 1410	of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 43(4), 657-668, 1998.	
1419 1420	Cai, W.J., Wang, Y., and Hodson, R. E.: Acid-base properties of dissolved organic matter in the	Eormatted: English (U.K.)
1420	estuarine waters of Georgia, USA. Geochimica et Cosmochimica Acta, 62(3), 473-483, 1998.	Formatted: English (U.K.)
1761 I		Formatted: English (U.K.)

- Cai, W.J., Pomeroy, L.R., Moran, M.A., and Wang, Y.: Oxygen and carbon dioxide mass balance for
 the estuarine-intertidal marsh complex of five rivers in the southeastern U.S. Limnology and
 Oceanography, 44, 639-649, 1999.
- 1427Cai, W.J.: Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon1428incineration? Ann. Rev. Mar. Sci., 3, 123-145, 2011.
- 1429Cerco, C., Kim, S.-C., and Noel, M.: The 2010 Chesapeake Bay eutrophication model. US1430Environmental Protection Agency Chesapeake Bay Program, Annapolis, MD, 2010.
- 1431 Chen, C.-T.A., Huang, T.-H., Fu, Y.-H., Bai, Y., and He, X.: Strong sources of CO2 in upper estuaries
 1432 become sinks of CO2 in large river plumes. Current Opinion in Environmental Sustainability,
 1433 4(2), 179-185, 2012.
- 1434Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y.: Air-sea exchanges of CO2 in the1435world's coastal seas, Biogeosciences, 10, 6509–6544, doi:10.5194/bg-10-6509-2013, 2013.
- 1436Dai, T., and Wiegert, R.G.: Estimation of the primary productivity of Spartina alterniflora using a1437canopy model. Ecography, 19(4), 410-423, 1996.
- 1438 Dufore, C. M.: Spatial and Temporal Variations in the Air-Sea Carbon Dioxide Fluxes of Florida Bay,
 1439 Gratuate School Thesis, University of South Florida, 2012.
- Dürr, H.H., Meybeck, M., and Dürr, S.H.: Lithological composition of the Earth's continental surfaces
 derived from a new digital map emphasizing riverine material transfer. Glob. Biogeochem.
 Cycles 19 (4), GB4S10, 2005.
- Dürr, H.H., Laruelle, G.G., van Kempen, C.M., Slomp, C.P., Meybeck, M., and Middelkoop, H.:
 Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River
 Inputs to the Oceans. Estuaries and Coasts, 34(3), 441-458, 2011.
- 1446EPA (2009). "1970 2008 Average annual emissions, all criteria pollutants in MS Excel." National1447Emissions Inventory (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning1448and Standards. Available online at http://www.epa.gov/ttn/chief/trends/index.html
- Fekete, B.M., Vörösmarty, C.J., and Grabs, W.: High-resolution fields of global runoff combining
 observed river discharge and simulated water balances. Global Biogeochemical Cycles, 16(3),
 15-1, 2002.
- 1452Fischer, H. B.: Mixing and Dispersion in Estuaries, Annu. Rev. Fluid Mech., 8, 107–133,14531976.Friedrichs, M.A.M., and Hofmann, E.E.: Physical control of biological processes in the1454central equatorial Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers,145548(4), 1023-1069, 2001.
- Garcia, H.E., Locarnini, R.A., Boyer, E.W., Antonov, A., Baranova, O.K., Zweng, M.M., and Johnson,
 D.R.: World Ocean Atlas 2009, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization,
 and Oxygen Saturation, 2010a.
- 1459Garcia, H.E., Locarnini, R.A., Boyer, E.W., Antonov, J.I., Baranova, O.K., Zweng, M.M., and Johnson,1460D.R.: World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate), 2010b.

1461Garnier, J., Servais, P., Billen, G., Akopian, M., and Brion, N.: Lower Seine River and Estuary (France)1462Carbon and Oxygen Budgets During Low Flow, Estuaries, 24, 964–976, 2001.

- Harrison, J.A., Caraco, N., and Seitzinger, S.P.: Global patterns and sources of dissolved organic
 matter export to the coastal zone: Results from a spatially explicit, global model. Global
 Biogeochemical Cycles, 19(4), GB4S03, doi:10.1029/2004GB002357, 2005.
- Hartmann, J., Jansen, N., Dürr, H.H., Kempe, S., and Köhler, P.: Global CO₂ consumption by chemical
 weathering: What is the contribution of highly active weathering regions? Global Planet.
 Change, 69(4), 185-194, 2009.
- Hartmann, J., Dürr, H.H., Moosdorf, N., Meybeck, M., and Kempe, S.: The geochemical composition
 of the terrestrial surface (without soils) and comparison with the upper continental crust.
 Int. J. Earth Sci. 101, 365-376, 2012.
- Herrmann, M., Najjar, R.G., Kemp, W.M., Alexander, R.B., Boyer, E.W., Cai, W.-J., Griffith, P.C.,
 Kroeger, K.D., McCallister, S.L., and Smith, R.A.: Net ecosystem production and organic

Deleted: F

1475	carbon balance of U.S. East Coast estuaries: A synthesis approach, Global Biogeochem.		
1476	Cycles, 29, doi:10.1002/2013GB004736, 2015.		
1477	Hofmann, A.F., Soetaert, K., and Middelburg, J.J.: Present nitrogen and carbon dynamics in the		
1478	Scheldt estuary using a novel 1-D model. Biogeosciences, 5(4), 981-1006, 2008.		
1479	Hofmann, E.E., Cahill, B., Fennel, K., Friedrichs, M.A.M., Hyde, K., Lee, C., Mannino, A., Najjar, R.G.,		
1480	O'Reilly, J.E., Wilkin, J., and Xue, J.: Modeling the dynamics of continental shelf carbon. Ann		
1481	Rev Mar Sci. 3, 93-122, 2011.		
1482	Hunt, C. W., Salisbury, J. E., Vandemark, D., and McGillis, W.: Contrasting Carbon Dioxide Inputs and		
1483	Exchange in Three Adjacent New England Estuaries. Estuar. Coast., 34, 68–77,		
1484	doi:10.1007/s12237-010-9299-9, 2010.		
1485	Hunt, C.W., Salisbury, J.E., Vandemark, D., and McGillis, W.: Contrasting Carbon Dioxide Inputs and		
1486	Exchange in Three Adjacent New England Estuaries. Estuaries and Coasts, 34(1), 68-77, 2011.		
1487	Ippen, A.T., and Harleman, D.R.F.: One-dimensional Analysis of Salinity Intrusion in Estuaries,		
1488	Technical Bulletin No. 5, Committee on Tidal Hydraulics, Corps of Engineers, US Army,		
1489	Vicksburg, 1961.		
1490	Jiang, L.Q., Cai, W.J., and Wang, Y.: A comparative study of carbon dioxide degassing in river- and		
1491	marine-dominated estuaries. Limnology and Oceanography, 53(6), 2603-2615, 2008.		
1492	Jiang, LQ., Cai, WJ., Wang, Y., and Bauer, J. E.: Influence of terrestrial inputs on continental shelf		
1493	carbon dioxide, Biogeosciences, 10, 839–849, doi:10.5194/bg-10-839-2013, 2013.		
1494	Joesoef, A., Huang, WJ., Gao, Y., and Cai, WJ.: Air–water fluxes and sources of carbon dioxide in		
1495	the Delaware Estuary: spatial and seasonal variability, Biogeosciences, 12, 6085-6101,		
1496	doi:10.5194/bg-12-6085-2015, 2015.		
1497	Kent, B.H.: Turbulent diffusion in a Sectionally Homogeneous Estuary, Technical Report 16,		
1498	Chesapeake Bay Institute, John Hopkins, University, Baltimore, 1958.		
1498	Key, R.M., Kozyr, A., Sabine, C.L., Lee, K., Wanninkhof, R., Bullister, J.L., Feely, R.A., Millero, F.J.,		
1500	Mordy, C., and Peng, T.H.: A global ocean carbon climatology: Results from Global Data		
1501	Analysis Project (GLODAP). Global Biogeochemical Cycles, 18(4), 1-23, 2004.		
1502	Laruelle, G.G.: Quantifying nutrient cycling and retention in coastal waters at the global scale, Ph D		
1503	dissertation, Utrecht University, 2009.		
1504	Laruelle, G. G., Regnier, P., Ragueneau, O., Kempa, M., Moriceau, B., Ni Longphuirt, S., Leynaert, A.,		
1505	Thouzeau, G., and Chauvaud, L.: Benthic-pelagic coupling and the seasonal silica cycle in the		
1506	Bay of Brest (France): new insights from a coupled physical-biological model, Mar. Ecol		
1507	Prog. Ser., 385, 15–32, 2009.		
1508	Laruelle, G.G., Dürr, H.H., Slomp, C.P., and Borges, A.V.: Evaluation of sinks and sources of CO_2 in the		
1509	global coastal ocean using a spatially-explicit typology of estuaries and continental shelves.		
1510	Geophys. Res. Lett., 37(15), L15607, doi:10.1029/2010GL043691, 2010.		
1511	Laruelle, G.G., Dürr, H.H., Lauerwald, R., Hartmann, J., Slomp, C.P., Goossens, N., and Regnier, P.A.G.:		
1512	Global multi-scale segmentation of continental and coastal waters from the watersheds to		
1513	the continental margins. Hydrol. Earth Syst. Sci., 17(5), 2029-2051, 2013.		
1514	Laruelle, G.G., Lauerwald, R., Rotschi, J. Raymond, P.A., and Regnier, P.: Seasonal response of air-		
1515	water CO2 exchange along the land-ocean aquatic continuum of the northeast North		
1516	American coast. Biogeosci. 12, 1447-1458, 2015.		
1517	Lauerwald, R., Hartmann, J., Moosdorf, N., Kempe, S., and Raymond, P.A.: What controls the spatial		
1518	patterns of the riverine carbonate system? — A case study for North America. Chemical		
1519	Geology, 337–338, 114-127, 2013.		
1520	Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., and Regnier, P. A. G.: Spatial patterns in CO2		
1521	evasion from the global river network, Global Biogeochem. Cy., 29, 534–554,		
1522	doi:10.1002/2014GB004941, 2015.		
1523	Leonard, B.: Third-Order Upwinding as a Rational Basis for Computational Fluid Dynamics, in:		
1524	Computational Techniques and Applications: CTAC-83, edited by: Noye J. and Fletcher C. A.		
1525	J., Elsevier, North-Holland, 1984.		

1526 Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., 1527 Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, 1528 D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., 1529 Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., 1530 Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G.-H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, 1531 T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and Zaehle, S.: 1532 1533 Global carbon budget 2013, Earth Syst. Sci. Data, 6, 235-263, doi:10.5194/essd-6-235-2014, 1534 2014.

- Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., 1535 1536 Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., 1537 Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., 1538 Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, 1539 V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., 1540 Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., Nakaoka, S., 1541 Nojiri, Y., O'Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, 1542 G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B. 1543 D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van 1544 Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global Carbon 1545 Budget 2015, Earth Syst. Sci. Data, 7, 349-396, doi:10.5194/essd-7-349-2015, 2015.
- Lin, J., Xie, L., Pietrafesa, L. J., Ramus, J. S., and Paerl, H.W.: Water Quality Gradients across
 Albemarle-Pamlico Estuarine System: Seasonal Variations and Model Applications, J. Coast.
 Res., 23, 213–229, 2007.
- Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng, M.M.,
 and Johnson, D.R.: World Ocean Atlas 2009, Volume 1: Temperature, 2010.
- Ludwig, W., Probst, J. L., and Kempe, S.: predicting the oceanic input of organic carbon by continental erosion, Global Bio geochem. Cy., 10, 23–41, 1996.
- Maher, D.T., and Eyre, B.D.: Carbon budgets for three autotrophic Australian estuaries: Implications
 for global estimates of the coastal air-water CO2 flux. Global Biogeochem. Cycles, 26(1),
 GB1032, 2012.
- Mateus, M., Vaz, N., and Neves, R.: A process-oriented model of pelagic biogeochemistry for marine
 systems. Part II: Application to a mesotidal estuary, J. Mar. Syst., 94, 90–101, 2012.
- Mayorga, E., Seitzinger, S.P., Harrison, J.A., Dumont, E., Beusen, A.H.W., Bouwman, A.F., Fekete,
 B.M., Kroeze, C., and Van Drecht, G.: Global Nutrient Export from WaterSheds 2 (NEWS 2):
 Model development and implementation. Environmental Modelling and Software, 25(7),
 837-853, 2010.
- 1562 Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci., 282(4), 401-1563 450, 1982.
- Meybeck, M., Dürr, H. H., and Vörosmarty, C. J.: Global coastal segmentation and its river catchment
 contributors: A new look at land-ocean linkage, Global Biogeochem. Cy., 20, GB1S90,
 doi:10.1029/2005GB002540, 2006.
- Middelburg, J.J., Klaver, G., Nieuwenhuize, J., Wielemaker, A., De Haas, W., Vlug, T., and Van Der
 Nat, J.F.W.A.: Organic matter mineralization in intertidal sediments along an estuarine
 gradient. Marine Ecology Progress Series, 132(1-3), 157-168, 1996.
- 1570 NASA/NGA: SRTM Water Body Data Product Specific Guidance, Version 2.0, 2003.
- Najjar, R.G., Friedrichs, M., and Cai, W.-J. (Editors): Report of The U.S. East Coast Carbon Cycle
 Synthesis Workshop, January 19-20, 2012. Ocean Carbon and Biogeochemistry Program and
 North American Carbon Program, 34 pp, 2012.
- Nihoul, J. C. J., and Ronday, F.: Modèles d'estuaires partiellement stratifiés, Projet Mer, Vol. 10,
 Service de la Programmation Scientifique, Bruxelles, Belgium, 71–98, 1976.

Nixon, S.W., J.W. Ammerman, L.P. Atkinson, V.M. Berounsky, G. Billen, W.C. Boicourt, W.R. Boynton,
 T.M. Church, D.M. Ditoro, R. Elmgren, J.H. Garber, A.E. Giblin, R.A. Jahnke, N.J. P. Owens,
 M.E.Q. Pilson, and Seitzinger, S.P.: The fate of nitrogen and phosphorus at the land–sea

1579 margin of the North Atlantic Ocean. Biogeochemistry 3, 141–180, 1996.

- NOAA: National Estuarine Inventory Data Atlas, Volume 1: Physical and Hydrologic Characteristics,
 National Oceanic and Atmospheric Administration, MD, 1985.
- 1582 Odum, H.T.: Primary Production in Flowing Waters. Limnol. Oceanogr., 1, 102-117, 1956.
- 1583 <u>O'Kane, J. P.: Estuarine Water Quality Management. Pitman, London, U.K, 1980</u>
- 1584Paerl, H.W., Valdes, L.M., Peierls, B.L., Adolf, J.E., and Harding Jr, L.W.: Anthropogenic and climatic1585influences on the eutrophication of large estuarine ecosystems. Limnology and1586Oceanography, 51(1 II), 448-462, 2006.
- 1587Platt, T., Gallegos, C. L., and Harrison, W. G.: Photoinhibition of photosynthesis in natural
assemblages of marine phytoplankton. J. Mar. Res., 38, 687-701, 1980.
- Preddy, W. S.: The mixing and movement of water in the estuary of the Thames, J. Mar. biol. Ass. UK,
 33, 645–662, 1954.
- Press, W. H., Teukolosky, S. A., Vetterling, W. T., and Flannery, B.P.: Numerical Recipes in C: The Art
 of Scientific Programming, 2nd Edn., Cambridge University Press, USA, 1992.
- Pritchard, D. W.: The Equations of Mass Continuity and Salt Continuity in Estuaries, J. Marine Res.,
 15, 33–42, 1958.
- Raymond, P.A., Caraco, N.F., and Cole, J.J.: Carbon dioxide concentration and atmospheric flux in the
 Hudson River. Estuaries, 20(2), 381-390, 1997.
- Raymond, P.A., Bauer, J.E., and Cole, J.J.: Atmospheric CO2 evasion, dissolved inorganic carbon
 production, and net heterotrophy in the York River estuary. Limnology and Oceanography,
 45(8), 1707-1717, 2000.
- 1600Raymond, P.A., and Hopkinson, C.S.: Ecosystem Modulation of Dissolved Carbon Age in a Temperate1601Marsh-Dominated Estuary. Ecosystems, 6(7), 694-705, 2003.
- Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl,
 R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.:
 Global carbon dioxide emissions from inland waters. Nature, 503(7476), 355-359, 2013.
- Regnier, P., Wollast, R., and Steefel, C.I.: Long-term fluxes of reactive species in macrotidal estuaries:
 Estimates from a fully transient, multicomponent reaction-transport model. Marine
 Chemistry, 58(1-2), 127-145, 1997.
- 1608Regnier, P., Mouchet, A., Wollast, R., and Ronday, F.: A discussion of methods for estimating residual1609fluxes in strong tidal estuaries, Cont. Shelf Res., 18, 1543–1571, 1998.
- Regnier, P., and Steefel, C.I.: A high resolution estimate of the inorganic nitrogen flux from the
 Scheldt estuary to the coastal North Sea during a nitrogen-limited algal bloom, spring 1995.
 Geochimica et Cosmochimica Acta, 63(9), 1359-1374, 1999.
- Regnier, P., Vanderborght, J. P., Steefel, C. I., and O'Kane, J. P.: Modeling complex multi-component
 reactive-transport systems: Towards a simulation environment based on the concept of a
 Knowledge Base, Appl. Math. Model., 26, 913–927, 2002.
- Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G.,
 Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A.V., Dale, A.W.,
 Gallego-Sala, A., Godderis, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F.,
 LaRowe, D.E., Leifeld, J., Meysman, F.J.R., Munhoven, G., Raymond, P.A., Spahni, R.,
 Suntharalingam, P., and Thullner, M.: Anthropogenic perturbation of the carbon fluxes from
 land to ocean. Nature Geosci, 6(8), 597-607, 2013a.
- Regnier, P., Arndt, S., Goossens, N., Volta, C., Laruelle, G.G., Lauerwald, R., and Hartmann, J.:
 Modelling Estuarine Biogeochemical Dynamics: From the Local to the Global Scale. Aquatic
 Geochemistry, 19(5-6), 591-626, 2013b.
- 1625Riemann, B., Simonsen, P., and Stensgaard, L.: The carbon and chlorophyll content of phytoplankton1626from various nutrient regimes. Journal of Plankton Research, 11 (5), 1037-1045, 1989.

Deleted:

1628	Rossow, W.B., and Schiffer, R.A.: Advances in understanding clouds from ISCCP. Bull. Amer.
1629	Meteorol. Soc., 80, 2261-2288, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2,
1630	<u>1999.</u>
1631	Sarma, V.V.S.S., Viswanadham, R., Rao, G.D., Prasad, V.R., Kumar, B.S.K., Naidu, S.A., Kumar, N.A.,
1632	Rao, D.B., Sridevi, T., Krishna, M.S., Reddy, N.P.C., Sadhuram, Y., and Murty, T.V.R.: Carbon
1633	dioxide emissions from Indian monsoonal estuaries. Geophysical Research Letters, 39(3),
1634	L03602, 2012.
1635	Savenije, H.H.G.: A one-dimensional model for salinity intrusion in alluvial estuaries. Journal of
1636	Hydrology, 85(1-2), 87-109, 1986.
1637	Savenije, H.H.G.: Lagrangian solution of St. Venant's equations for alluvial estuary. Journal of
1638	Hydraulic Engineering, 118(8), 1153-1163, 1992.
1639	Savenije, H. H. G. (Ed.): Salinity and Tides in Alluvial Estuaries, 1st Edn., Elsevier, Amsterdam, 2005.
1640	Savenije, H. H. G. (Ed.): Salinity and Tides in Alluvial Estuaries, 2nd Edn., available at:
1641	http://salinityandtides.com (last access: 8 March 2015), 2012.
1642	Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., and Bouwman, A. F.: Sources and
1643	delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global
1644	Nutrient Export from Watersheds (NEWS) models and their application, Global Biogeochem.
1645	Cycles, 19, GB4S01, doi:10.1029/2005GB002606, 2005.
1646	Schwarz, G.E., Hoos, A.B., Alexander, R.B., and Smith, R.A.: The SPARROW Surface Water-Quality
1647	Model: Theory, Application and User Documentation. U.S. Geological Survey, Techniques
1648	and Methods Report, Book 6, Chapter B3, Reston, Virginia, 2006
1649	Sharp, J. H., Yoshiyama, K., Parker, Schwartz, M. C., Curless, S. E., Beauregard, A. Y., Ossolinski, J. E.,
1650	and Davis, A. R.: A Biogeochemical View of Estuarine Eutrophication: Seasonal and Spatial
1651	Trends and Correlations in the Delaware Estuary. Estuaries and Coasts, 32, 1023-1043,.
1652	<u>doi:10.1007/s12237-009-9210-8, 2009.</u>
1653	Sharp, J. H.: Estuarine oxygen dynamics: What can we learn about hypoxia from long-time records in
1654	<u>the Delaware Estuary? Limnol. Oceanogr., 55(2), 2010, 535–548, 2010.</u>
1655	Shih, JS., Alexander, R.B., Smith, R.A., Boyer, E.W., Schwarz, G.E., and Chung, S.: An initial SPARROW
1656	model of land use and in-stream controls on total organic carbon in streams of the
1657	conterminous United States, U. S. Geological Survey, Reston, Virginia, 2010.
1658	Signorini, S.R., Mannino, A., Najjar Jr, R.G., Friedrichs, M.A.M., Cai, W.J., Salisbury, J., Wang, Z.A.,
1659	Thomas, H., and Shadwick, E.: Surface ocean pCO2 seasonality and sea-air CO2 flux
1660	estimates for the North American east coast. Journal of Geophysical Research C: Oceans,
1661	118(10), 5439-5460, 2013.
1662	Simmons, H. B.: Some effects of inland discharge on estuarine hydraulics, Proc. Am. Soc. Civ. Eng
1663	<u>ASCE, 81, 792, 1955.</u>
1664	Soetaert, K., and Herman, P.M.J.: Nitrogen dynamics in the Westerschelde estuary (SW Netherlands)
1665	estimated by means of the ecosystem model MOSES. Hydrobiologia, 311(1-3), 225-246,
1666	1995.
1667	Stets, E.G., and Strieg, R.G.: Carbon export by rivers draining the conterminous united states. Inland
1668	Waters, 2(4), 177-184, 2012.
1669	Stigter, C., and Siemons, J.: Calculation of longitudinal salt distribution in estuaries as function of
1670	time, Publication Delft Hydraulics Laboratory, 52, The Netherlands, 1967.
1671	Thieu, V., Mayorga, E., Billen, G., and Garnier, J.: Subregional and downscaled global scenarios of
1672	nutrient transfer in river basins: Seine-Somme-Scheldt case study. Global Biogeochemical
1673	Cycles, 24(2) , 2010.
1674	Tian, H., Chen, G., Liu, M., Zhang, C., Sun, G., Lu, C., Xu, X., Ren, W., Pan, S., and Chappelka, A.: Model
1675	estimates of net primary productivity, evapotranspiration, and water use efficiency in the
1676	terrestrial ecosystems of the southern United States during 1895-2007. Forest Ecology and
1677	Management, 259(7), 1311-1327, 2010.

- Tian, H., Chen, G., Zhang, C., Liu, M., Sun, G., Chappelka, A., Ren, W., Xu, X., Lu, C., Pan, S., Chen, H.,
 Hui, D., McNulty, S., Lockaby, G., and Vance, E.: Century-Scale Responses of Ecosystem
 Carbon Storage and Flux to Multiple Environmental Changes in the Southern United States.
 Ecosystems, 15(4), 674-694, 2012.
- U. S. Fish and Wildlife Service. 2014. National Wetlands Inventory website. U.S. Department of the
 Interior, Fish and Wildlife Service, Washington, D.C. http://www.fws.gov/wetlands/, last
 accessed: February 2015.
- Vanderborght, J.P., Wollast, R., Loijens, M., and Regnier, P.: Application of a transport-reaction model to the estimation of biogas fluxes in the Scheldt Estuary. Biogeochemistry, 59(1-2), 207-237, 2002.
- Vanderborght, J.P., Folmer, I., Aguilera, D.R., Uhrenholdt, T., and Regnier, P.: Reactive-transport
 modelling of a river-estuarine-coastal zone system: application to the Scheldt estuary. Mar.
 Chem. 106, 92-110, 2007.
- 1691Van der Burgh, P.: Ontwikkeling van een methode voor het voorspellen van zoutverdelingen in1692estuaria, kanalen and zeeen, Rijkswaterstaat Rapport, The Netherlands, 1972.
- Volta, C., Arndt, S., Savenije, H.H.G., Laruelle, G.G., and Regnier, P.: C-GEM (v 1.0): a new, costefficient biogeochemical model for estuaries and its application to a funnel-shaped system.
 Geosci. Model Dev., 7, 1271-1295, doi:10.5194/gmd-7-1271-2014, 2014.
- 1696 Volta, C., Laruelle, G. G., and Regnier, P.: Regional carbon and CO₂ budgets of North Sea tidal 1697 estuaries, Estuarine, Coastal and Shelf Science, 176, 76-90, 2016a.
- Volta, C., Laruelle, G. G., Arndt, S., and Regnier, P.: Linking biogeochemistry to hydro-geometrical
 variability in tidal estuaries: a generic modeling approach, Hydrol. Earth Syst. Sci., 20, 991 1030, doi:10.5194/hess-20-991-2016, 2016b.
- Vörösmarty, C.J., Fekete, B., and Tucker, B.A.: River Discharge Database, Version 1.0 (RivDIS v1.0),
 Volumes 0 through 6. A contribution to IHP-V Theme 1. Technical Documents in Hydrology
 Series. UNESCO, Paris, 1996.
- Wang, Z.A., and Cai, W.J.: Carbon dioxide degassing and inorganic carbon export from a marshdominated estuary (the Duplin River): A marsh CO2 pump. Limnology and Oceanography,
 49(2), 341-354, 2004.
- 1707

Deleted: 6(4), 5645-5709,

Deleted: 1

1710	Table 1: Estimates of total annual riverine input from watersheds to estuaries (Tg C yr ⁻¹). The ranges	
------	--	--

1711 are based on Stets and Striegl (2012), Global NEWS (Mayorga et al. 2010), Hartmann et al. (2009),

1712 SPARROW (Shih et al. 2010) and DLEM (Tian et al. 2010, 2012). Modified from Najjar et al. 2012.

	DIC	DOC	POC	TOTAL
NAR	0.2-0.8	0.3-2.1	0.1-0.2	0.6-3.1
MAR	1.4-1.8	0.5-2.3	0.1-0.3	2.0-4.4
SAR	0.4-1.4	0.9-1.6	0.1-0.2	1.4-3.2
TOTAL	2.0-4.0	1.7-6.0	0.3-0.7	4.0-10.7

Table 2: Published local annually averaged estimates of $\overline{FCO_2}$ in mol C m⁻² yr⁻¹ for estuaries along the East coast of the US." 1717

<u>Name</u>	<u>Lon</u>	<u>Lat</u>	FCO ₂		<u>Reference</u>
			Observed.	Modeled	
Altamaha Sound	<u>-81.3</u>	<u>31.3</u>	<u>32.4</u>	<u>72.7</u>	<u>Jiang et al. (2008)</u>
<u>Bellamy</u>	<u>-70.9</u>	<u>43.2</u>	<u>3.6</u>	<u>3.9</u>	<u>Hunt et al. (2010)</u>
<u>Cocheco</u>	<u>-70.9</u>	<u>43.2</u>	<u>3.1</u>	<u>3.9</u>	<u>Hunt et al. (2010)</u>
Doboy Sound	<u>-81.3</u>	<u>31.4</u>	<u>13.9</u>	<u>25.7</u>	<u>Jiang et al. (2008)</u>
<u>Great Bay</u>	<u>-70.9</u>	<u>43.1</u>	<u>3.6</u>	<u>3.9</u>	<u>Hunt et al. (2011)</u>
<u>Little Bay</u>	<u>-70.9</u>	<u>43.1</u>	<u>2.4</u>	<u>3.9</u>	<u>Hunt et al. (2011)</u>
Oyster Bay	<u>-70.9</u>	<u>43.1</u>	<u>4</u>	<u>3.9</u>	<u>Hunt et al. (2011)</u>
Parker River estuary	<u>-70.8</u>	<u>42.8</u>	<u>1.1</u>	<u>3.9</u>	Raymond and Hopkinson (2003)
Sapelo Sound	<u>-81.3</u>	<u>31.6</u>	<u>13.5</u>	<u>20.6</u>	<u>Jiang et al. (2008)</u>
Satilla River	<u>-81.5</u>	<u>31</u>	<u>42.5</u>	<u>25.7</u>	<u>Cai and Wang (1998)</u>
<u>York River</u>	<u>-76.4</u>	<u>37.2</u>	<u>6.2</u>	<u>8.1</u>	<u>Raymond et al. (2000)</u>
Hudson River	<u>-74</u>	<u>40.6</u>	<u>13.5</u>	<u>15.5</u>	<u>Raymond et al. (1997)</u>
Florida Bay	-80.68	24.96	1.4	n.a.	Dufore (2012)

Table <u>3</u>: State variables and processes explicitly implemented in CGEM.

State variables		
Name	Symbol	Unit
Suspended Particulate Mater	SPM	gL ⁻¹
Total Organic Carbon	тос	μΜ C
Nitrate	NO ₃	μΜ Ν
Ammonium	NH_4	μΜ Ν
Phosphate	DIP	μΜ Ρ
Dissolved Oxygen	DO	μM O ₂
Phytoplankton	Phy	μΜ C
Dissolved Silica	dSi	μM Si
Dissolved Inorganic Carbon	DIC	μM C
Biogeochemical reactions		
Name	Symbol	Unit
Gross primary production	GPP	μM C s⁻¹
Net primary production	NPP	μM C s ⁻¹
Phytoplankton mortality	М	μM C s⁻¹
Aerobic degradation	R	μM C s⁻¹
Denitrification	D	μM C s ⁻¹
Nitrification	Ν	μM N s⁻¹
O ₂ exchange with the atmosphere	FO ₂	μM O₂ s⁻¹
CO_2 exchange with the atmosphere	FCO ₂	μM C s ⁻¹
SPM erosion	E _{SPM}	gL ⁻¹ s ⁻¹
SPM deposition	D _{SPM}	gL ⁻¹ s ⁻¹

Deleted: 2

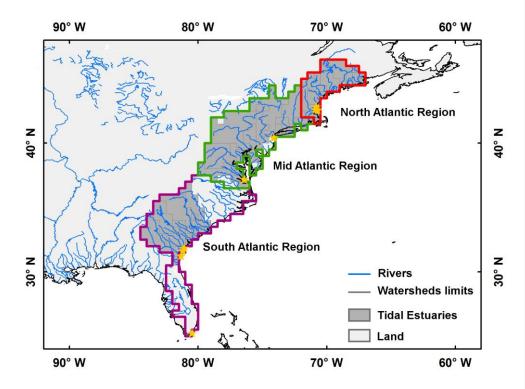
long	lat	S	Q	Rt	FCO ₂ mol C m ⁻² yr ⁻¹	NEM	FCO ₂	NEM
degrees	degrees	km ²	$m^{3}s^{-1}$	days	mol C m⁻² yr⁻¹	$mol C m^{-2} yr^{-1}$	$10^6 \text{ mol } C \text{ yr}^{-1}$	10 ⁶ mol C yr⁻¹
NAR								
-67.25	44.75	7	38.5	15	3.7	-37.4	27	-270
-67.25	45.25	12	73.6	15	6.0	-56.7	71	-666
-67.25	45.25	12	73.6	15	13.8	-56.6	162	-666
-67.75	44.75	3	68.5	4	6.7	-63.5	23	-221
-68.25	44.75	14	69.5	19	4.1	-56.2	58	-791
-68.75	44.75	89	309.9	23	27.4	-58.2	2431	-5163
-69.75	44.25	50	626.6	5	32.3	-74.4	1607	-3703
-70.25	43.75	3	25.8	10	2.1	-21.0	7	-71
-70.75	41.75	288	103.6	958	5.0	-4.0	1428	-1146
-70.75	42.25	63	210.7	40	16.2	-32.9	1025	-2081
-70.75	42.75	17	105.8	3	56.3	-69.0	943	-1155
MAR								
-70.75	43.25	31	29.9	11	21.6	-37.4	662	-1146
-71.25	41.75	257	28.2	808	3.9	-2.5	997	-650
-71.75	41.25	21	112.4	4	35.2	-32.6	726	-672
-72.75	40.75	20	25.4	62	30.7	-21.1	623	-430
-72.75	41.25	10	142.5	2	150.8	-36.9	1578	-386
-72.75	41.75	55	476.6	3	55.9	-45.7	3088	-2523
-73.25	40.75	19	26.8	56	31.4	-28.4	608	-550
-74.25	40.75	1192	608.2	126	15.5	-11.8	18432	-14047
-75.25	38.25	399	80.5	172	13.9	-5.0	5558	-2016
-75.25	38.75	354	31.8	357	7.5	-3.0	2659	-1076
-75.25	39.75	1716	499.0	221	10.0	-7.8	17072	-13439
-75.75	39.25	224	18.3	434	7.5	-2.9	1685	-640
-76.25	39.25	3427	717.1	352	8.1	-5.1	27646	-17352
-76.75	37.25	586	272.3	74	15.0	-10.4	8810	-6084
-76.75 -76.75	37.75 39.25	154 59	36.3 71.2	163	10.7	-6.6	1654	-1023
				29	48.6	-34.6	2862	-2038
-77.25 -77.25	38.25 38.75	206 568	30.2 259.2	268 118	6.1 16.7	-3.3 -10.8	1265 9488	-676 -6134
-77.25 SAR	56.75	506	259.2	110	10.7	-10.8	9400	-0154
-78.25	34.25	48	167.4	7	122.5	-62.4	5916	-3015
-79.25	33.25	48	56.3	42	43.4	-36.5	2056	-1728
-79.25	33.75	45	291.4	8	85.1	-78.7	3843	-3551
-79.75	33.25	25	33.8	15	37.9	-32.8	956	-828
-80.25	32.75	25	33.8	13 50	48.8	-42.5	1214	-1057
-80.25	33.25	92	75.5	61	62.7	-61.2	5769	-5625
-80.25	32.25	92 71	21.1	182	12.9	-7.0	918	-5025
-80.75	32.75	164	63.1	95	20.6	-11.5	3372	-1879
-81.25	31.75	92	71.7	45	25.7	-20.9	2361	-1926
-81.25	32.25	130	379.8	11	51.7	-39.2	6732	-5097
-81.75	30.75	34	18.7	61	17.5	-14.7	602	-5057
-81.75	31.25	130	17.7	294	5.5	-4.0	713	-523
-81.75	31.75	56	350.5	4	72.7	-67.4	4068	-3770
01.75	51.75	50	550.5	т	1 1	U.1.T		5,70

1725 **Table 4:** Yearly averaged surface area (*S*), fresh water discharge (*Q*), residence time (*Rt*), *FCO*₂ and 1726 NEM of all simulated estuaries.

Deleted: Table 3: Published local annually averaged estimates of $\overline{FCO_2}$ for estuaries along the East coast of the US. ¶

(<u>...</u>

Name

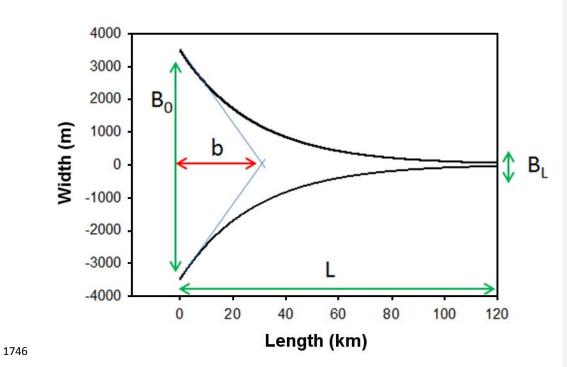

1727

Region	NEM	winter	spring	summer	fall	FCO ₂	winter	spring	summer	fall
	mol C y ⁻¹	%	%	%	%	mol C y ⁻¹	%	%	%	%
NAR	-16.3 10 ⁹	14.7	21.2	37.0	27.2	7.2 10 ⁹	26.3	18.9	26.5	28.3
MAR	-72.2 10 ⁹	21.9	25.9	28.8	23.4	$108.3 \ 10^9$	29.8	23.3	20.7	26.2
SAR	-30.5 10 ⁹	24.6	20.9	30.3	24.2	39.2 10 ⁹	26	23.4	27	23.6

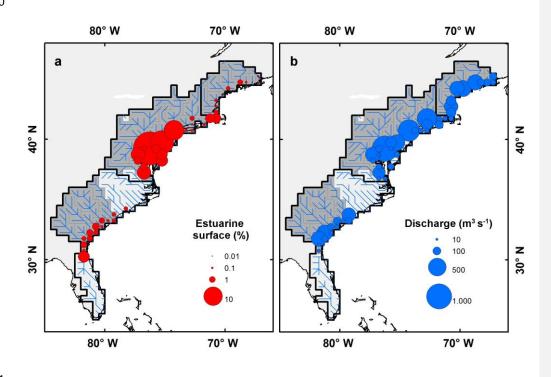
Table 5: Seasonal contribution to FCO₂ and NEM in each the sub-region. The seasons displaying the
 highest percentages are indicated in bold. Winter is defined as January, February and March, Spring
 as April, May and June and so on...

Region	$-\overline{NEM}/f(T)$	$\overline{FCO_2}/f(T)$	CFilt
NAR	$y = 27.84 x^{-0.17}$	$y = 6.07 x^{0.00}$	$y = 15.08 \log_{10}(x) + 4.86$
	$r^2 = 0.11$	$r^2 = 0.00$	$r^2 = 0.40$
MAR	y = 26.03 x ^{-0.63}	y = 34.36 x ^{-0.58}	$y = 40.46 \log_{10}(x) + 9.60$
	$r^2 = 0.86$	r ² = 0.68	$r^2 = 0.70$
SAR	y = 28.36 x ^{-0.71}	y = 32.82 x ^{-0.66}	y = 23.19 log ₁₀ (x) + 43.71
	r ² = 0.76	$r^2 = 0.80$	$r^2 = 0.46$
MAR + SAR	y = 25.85 x ^{-0.64}	y = 31.64 x ^{-0.58}	$y = 33.30 \log_{10}(x) + 24.88$
	$r^2 = 0.82$	r ² = 0.70	r ² = 0.57
NAR + MAR + SAR	y = 28.98 x ^{-0.66}	y = 12.98 x ^{-0.33}	$y = 40.64 \log_{10}(x) + 11.84$
	$r^2 = 0.82$	$r^2 = 0.30$	$r^2 = 0.70$

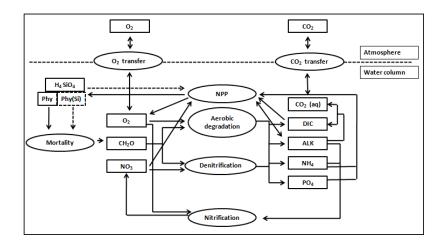
Table 6: Regressions and associated coefficient of determination between the depth normalized1738residence time (S/Q) and $-\overline{NEM} / f(T)$, $\overline{FCO_2} / f(T)$ and CFilt.



1742 Figure 1: Limits of the 0.5 degrees resolution watersheds corresponding to tidal estuaries of the East


1743 coast of the US. 3 sub-regions are delimited with colors and orange stars represent the location of

1744 previous studies.


1747 Figure 2: Idealized estuarine geometry and main parameters. Parameters indicated by green arrows

are measured, b is calculated. See section 2.3.1 for further details.

1752 Figure 3: Estuarine surface area (a) and mean annual freshwater discharge (b) for each tidal estuary

of the East coast of the US. Estuarine surface area are expressed as percentage of the entire surface
 area of the region (19830 km²)

1757 Figure 4: Conceptual scheme of the biogeochemical module of C-GEM used in this study. State-1758 variables and processes are represented by boxes and oval shapes, respectively. Modified from Volta

1759 et al., 2014.

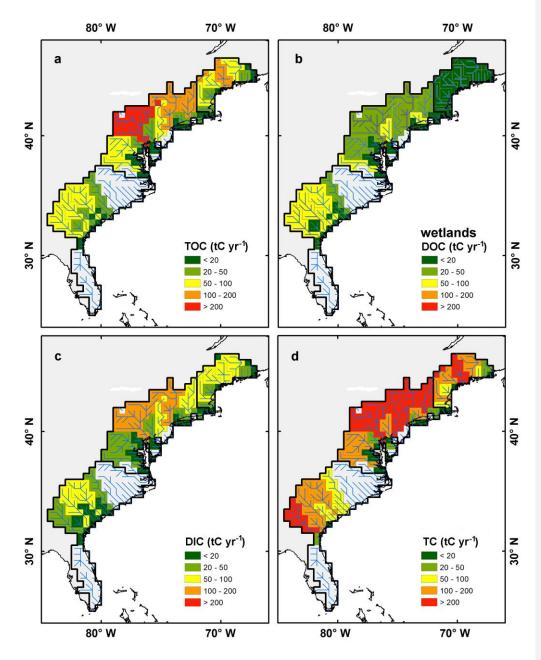
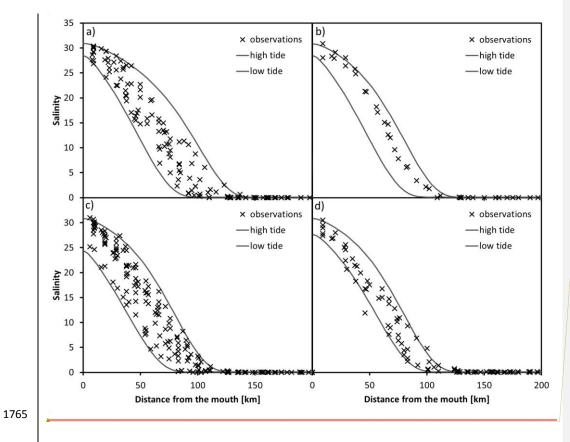
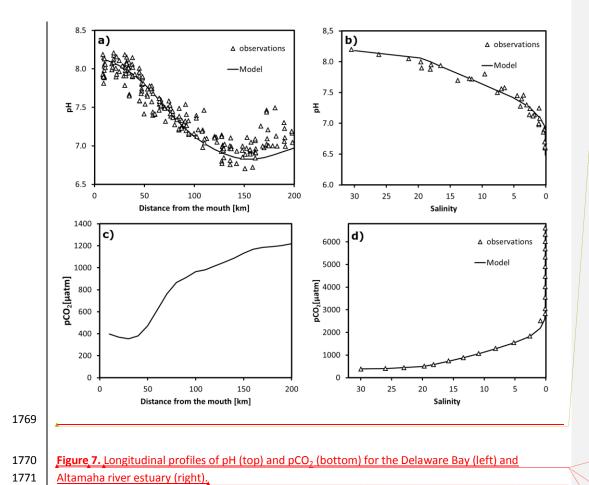
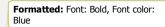



Figure 5: Annual river carbon loads of TOC (a), annual DOC fluxes from wetlands (b), annual river
carbon loads of DIC (c) and annual TC fluxes (d). All fluxes are indicated per watershed.

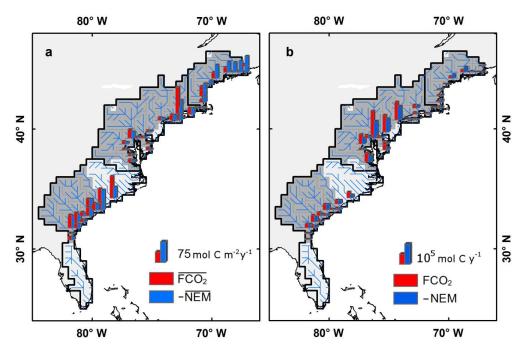
(a), February (b), May (c), June (d). The two lines correspond to high and low tides.

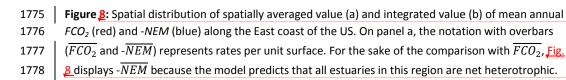

Formatted: Font color: Blue

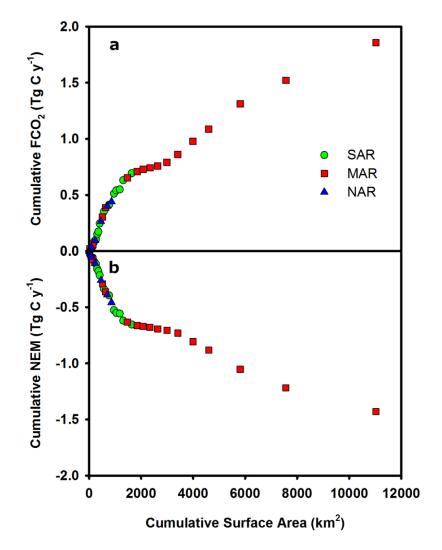

Figure 6. Modeled (lines) and measured (crosses) salinities in the Delaware Bay estuary for January

1766 1767

1768


Formatted: Font: Bold, Not Italic Formatted: Font: Not Italic




1	Formatted: Font: Not Italic, No underline
1	Formatted: Font: Not Italic, No underline
ľ	Formatted: Font: Not Bold, Not Italic, No underline
Υ	Formatted: Font: Not Italic, No

underline

Deleted: 6
Deleted: figure
Deleted: 6

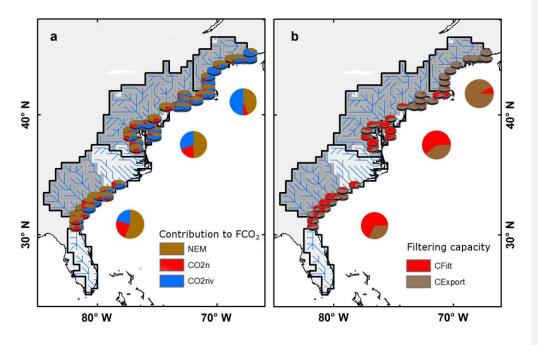
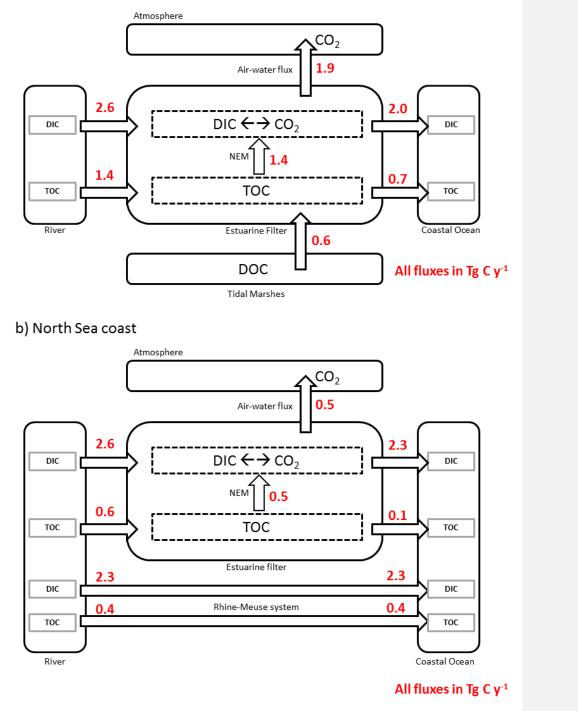


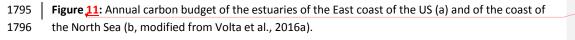
Figure 2: The Cumulative *FCO*₂ (a) and *NEM* (b) as functions of the cumulative estuarine surface area.

Systems are sorted by increasing surface area.

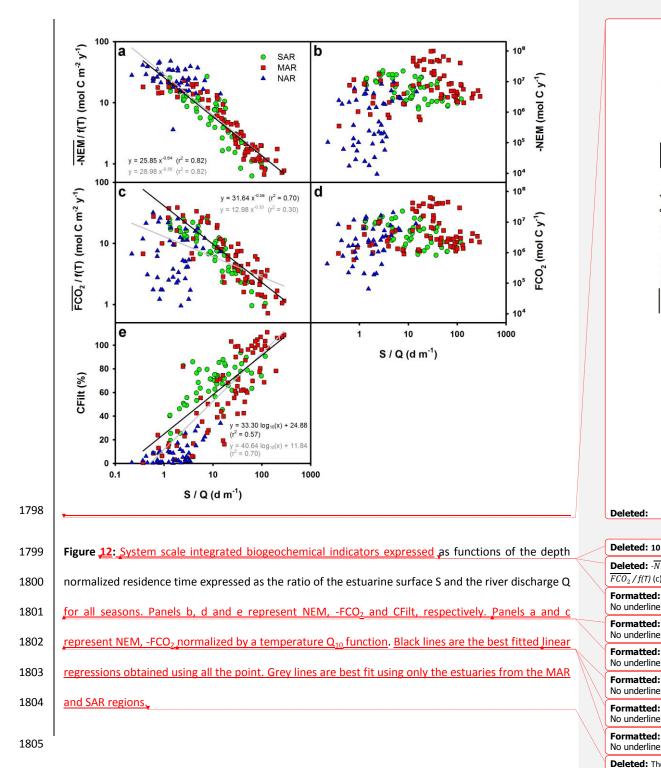
Deleted: 7



1792


Figure 10: Contribution of *NEM*, nitrification and riverine waters super-saturated waters to the mean
annual *FCO*₂ (a). Spatial distribution of mean annual carbon filtration capacities (*CFilt*) and export
(*CExport*) along the East coast of the US (b).

Deleted: 8


a) Eastern US coast

1794

Deleted: 9

-NEM / f(T) (mol C m⁻² y^{-1}) 25.85 x^{-0.6} = 28 98 y FCO_2 / f(T) (mol C m⁻² y⁻¹) е CFilt (%) 0.1 Deleted:

Deleted: $-\overline{NEM} / f(T)$ (a), -NEM (b), $\overline{FCO_2} / f(T)$ (c), FCO_2 (d) and $CFilt$ (e)
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Deleted: The grey and black lines are the best fitted regressions obtained using all the point or only the estuaries from the MAR and SAR regions, respectively.

Air-water CO₂ evasion from U.S. East Coast estuaries Goossens, Nicolas¹, Laruelle, Goulven Gildas^{1*}, Arndt, Sandra², Cai, Wei-Jun³ & Regnier, Pierre¹ 1 Department Geosciences, Environment and Society, Université Libre de Bruxelles, Brussels, Belgium 2 School of Geographical Sciences, University of Bristol, Bristol, UK 3 School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA *corresponding author: goulven.gildas.laruelle@ulb.ac.be

12 Abstract:

13	This study presents the first regional-scale assessment of estuarine CO_2 evasion along the East coast	
14	of the US (25 – 45 °N). The focus is on 43 tidal estuaries, which together drain a catchment of	
15	697000 km ² or 76 % of the total area within this latitudinal band. The approach is based on the	
16	Carbon – Generic Estuarine Model (C-GEM) that allows simulating hydrodynamics, transport and	٦
17	biogeochemistry for a wide range of estuarine systems using readily available geometric parameters	
18	and global databases of seasonal climatic, hydraulic, and riverine biogeochemical information. Our	
19	simulations, performed using conditions representative of the year 2000, suggest that, together, US	
20	East coast estuaries emit 1.9 TgC yr ⁻¹ in the form of CO_2 , which correspond to about 40 % of the	
21	carbon inputs from rivers, marshes and mangroves. Carbon removal within estuaries results from a	
22	combination of physical (outgassing of supersaturated riverine waters) and biogeochemical	
23	processes (net heterotrophy and nitrification). The CO_2 evasion and its underlying drivers show	
24	important variations across individual systems, but reveal a clear latitudinal pattern characterized by	
25	a decrease in the relative importance of physical over biogeochemical processes along a North-South	
26	gradient. Finally, the results reveal that the ratio of estuarine surface area to the river discharge, S/Q	
27	(which has a scale of per meter discharged water per year), could be used as a predictor of the	
28	estuarine carbon processing in future regional and global scale assessments.	

Deleted: 10³

Formatted: Superscript

Deleted: Together

Formatted: Subscript

31 1 Introduction

32 Carbon fluxes along the land-ocean aquatic continuum are currently receiving increasing attention 33 because of their recently recognized role in the global carbon cycle and anthropogenic CO₂ budget (Bauer et al., 2013; Regnier et al., 2013a; LeQuéré et al., 2014, 2015). Estuaries are important 34 35 reactive conduits along this continuum, which links the terrestrial and marine global carbon cycles 36 (Cai, 2011). Large amounts of terrestrial carbon transit through these systems, where they mix with 37 carbon from autochthonous, as well as marine sources. During estuarine transit, heterotrophic processes degrade a fraction of the allochthonous and autochthonous organic carbon inputs, 38 39 supporting a potentially significant, yet poorly quantified CO₂ evasion flux to the atmosphere. Recent estimates suggest that 0.15-0.25 PgC yr⁻¹ is emitted from estuarine systems worldwide (Borges and 40 Abril, 2012; Cai, 2011; Laruelle et al., 2010; Regnier et al., 2013a; Laruelle et al., 2013, Bauer et al., 41 42 2013). Thus, in absolute terms the global estuarine CO_2 evasion corresponds to about 15% of the open ocean CO₂ uptake despite the much smaller total surface area. 43

44	Currently, estimates of regional and global estuarine CO_2 emissions are mainly derived on the basis
45	of data-driven approaches that rely on the extrapolation of <u>a small number of</u> local measurements
46	(Cai, 2011; Chen et al., 2013; Laruelle et al., 2013). These approaches fail to capture the spatial and
47	temporal heterogeneity of the estuarine environment (Bauer et al., 2013) and, are biased towards
48	anthropogenically influenced estuarine systems located in industrialized countries (Regnier et al.,
49	2013a), Even in the best surveyed regions of the world (e.g. Australia, Western Europe, North
50	America or China) observations are merely available for a small number of estuarine systems. In
51	addition, if available, data sets are generally of low spatial and temporal resolution. As a
52	consequence, data-driven approaches can only provide first-order estimates of regional and global
53	estuarine CO ₂ emissions.
F 4	Integrated model data approaches can bell here, as models provide the means to outrapolate over

54 Integrated model-data approaches can help here, as models provide the means to extrapolate over
 55 temporal and spatial scales and allow disentangling the complex and very dynamic network of

Deleted: few

estimates

Deleted: While these approaches provide useful first-order estimates, they Deleted: . In addition, these global

Deleted: .	
Deleted: and e	
Deleted: surveyed	
Deleted: such as	
Deleted: ,	
Deleted: only	
Deleted: fraction	
Deleted:	_

69	physical and biogeochemical processes that controls estuarine CO ₂ emissions. Over the past
70	decades, increasingly complex process-based models have been applied, in combination with local
71	data, to elucidate the coupled carbon-nutrient cycles on the scale of individual estuaries (e.g.,
72	O'Kane, 1980; Soetaert and Herman, 1995; Vanderborght et al., 2002; Lin et al., 2007; Arndt et al.,
73	2009; Cerco et al., 2010; Baklouti et al., 2011). However, the application of such model approaches
74	remains limited to the local scale due to their high data requirements for calibration and validation
75	(e.g. bathymetric and geometric information and boundary conditions), as well as the high
76	computational demand associated with resolving the complex interplay of physical and
77	biogeochemical processes on the relevant temporal and spatial scales (Regnier et al., 2013b).
78	Complex process-based models are thus not suitable for the application on a regional or global scale
79	and, as a consequence, the estuarine carbon filter is, despite its increasingly recognized role in
80	regional and global carbon cycling (e.g. Bauer et al., 2013), typically not taken into account in model-
81	derived regional or global carbon budgets (Bauer et al., 2013). The lack of regional and global model
82	approaches that could be used as stand-alone applications or that could be coupled to regional
83	terrestrial river network models (e.g. GLOBALNEWS: Seitzinger et al., 2005; Mayorga et al., 2010;
84	SPARROW: Schwarz et al., 2006) and continental shelf models (e.g. Hofmann et al., 2011) is thus
85	<u>critical.</u>
86	The Carbon-Generic Estuary Model (C-GEM (v1.0); Volta et al., 2014) has been developed with the
87	aim of providing such a regional/global modeling tool that can help improve existing, observationally
88	derived first order estimates of estuarine CO ₂ emissions. C-GEM (v1.0) has been specifically designed
89	to reduce data requirements and computational demand and, thus, tackles the main impediments
90	for the application of estuarine models on a regional or global scale. The approach takes advantage
91	of the mutual dependency between estuarine geometry and hydrodynamics in alluvial estuaries
92	and uses an idealized representation of the estuarine geometry to support the hydrodynamic
93	calculations. It thus allows running steady state or fully transient annual to multi-decadal simulations
94	for a large number of estuarine systems, using geometric information readily available through maps

Deleted: located in the study area, often with limited spatial and temporal coverage.

Deleted: Furthermore, data alone Furthermore, observation-based approachesand do not provide sufficient insights into the complex and dynamic interplay of biogeochemical and physical processes that controls estuarine carbon and CO_2 fluxes. ¶

I

(
Formatted: English (U.K.)
Deleted: increasingly
Formatted: Font:
Formatted: English (U.K.), Not Highlight
Formatted: English (U.K.), Not Highlight
Deleted: these
Deleted: a
Formatted: English (U.K.), Not Highlight
Deleted: by
Deleted: procedures
Formatted: Not Highlight
Formatted: English (U.K.), Not Highlight
Deleted: by
Deleted: required
Deleted: to address the
Deleted: complex
Formatted: English (U.K.)
Formatted: English (U.K.), Not Highlight
Formatted: Not Highlight
Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers
Deleted: These models are thus not suitable for regional or global applications (Bauer et al., 2013), which require simplifications to afford the treatment of a large number of estuaries, including those for which morphological, hydrodynamic and biogeochemical data are incomplete or
absent. Therefore, tThe regional and global quantification of the estuarine filter thus remains ignoredis not considered in modelling efforts because terrestrial models representing the river network typically do not account for the estuaries (i.e. GLOBALNEWS: Seitzinger et al., 200

	0,
Moved (ins	ertion) [1]
Formatted:	French (France), Highlight
Moved (ins	ertion) [2]
Deleted: a	

164	or remote sensing images. Although the development of such a regional/global tool inevitably	
165	requires simplification, careful model evaluations have shown that, despite the geometric	
166	simplification, C-GEM provides an accurate description of the hydrodynamics, transport and	
167	biogeochemistry in tidal estuaries (Volta et al., 2014). In addition, the model approach was	/
168	successfully used to quantify the contribution of different biogeochemical processes for CO ₂ air-	\setminus
169	water fluxes in an idealized, funnel-shaped estuary forced by typical summer conditions	
170	characterizing a temperate Western European climate (Regnier et al., 2013b). Volta et al. (2016b)	
171	further investigated the effect of estuarine geometry on the CO ₂ outgassing using three idealized	
172	systems and subsequently established the first regional carbon budget for estuaries surrounding the	
173	North Sea by explicitly simulating the six largest systems of the area (Volta et al., 2016a), including	
174	the Scheldt and the Elbe for which detailed validation was performed.	
175	Here, we extend the domain of application of C-GEM (v1.0) to quantify CO ₂ exchange fluxes, as well	
176	as the overall organic and inorganic carbon budgets for the full suite of estuarine systems located	
177	along the entire East coast of the United States, one of the most intensively monitored regions in the	
178	world. A unique set of regional data, including <u>partial pressure of CO₂ in</u> river <u>ine</u> and continental	
179	shelf <u>waters</u> (pCO ₂ ; Signorini et al., 2013; Laruelle et al., 2015), riverine biogeochemical	
180	characteristics (Lauerwald et al., 2013), estuarine eutrophication status (Bricker et al., 2007) and	
181	estuarine morphology (NOAA, 1985) are available. These comprehensive data sets are	
182	complemented by local observations of carbon cycling and CO_2 fluxes in selected, individual	
183	estuarine systems (see Laruelle et al., 2013 for a review), making the East coast of the United States	
184	an ideal region for a first, fully explicit regional evaluation of CO ₂ evasion resolving every major tidal	
185	estuary along the selected coastal segment. The scale addressed in the present study is	
186	unprecedented so far (> 3000 km of coastline) and covers a wide range of estuarine morphological	
187	features, climatic conditions, land-use and land cover types, as well as urbanization levels. The	
188	presented study will not only allow a further evaluation of C-GEM (v1.0), but will also provide the	
189	first regional-scale assessment of estuarine CO ₂ evasion along the East coast of the US (25 – 45 °N)	
	5	

Formatted: English (U.K.), Not Highlight

Deleted: careful

Deleted: enabling the quantification of biogeochemical dynamics in estuaries on a regional and global scale. The focus is on tidal systems as defined by Dürr et al. (2011) and the approach is based on a one-dimensional, time-dependent representation of hydrodynamic, transport and reaction processes within an estuary.

Deleted: C-GEM is computationally efficient and reduces data requirements by using an idealized representation of the geometry to support the hydrodynamic calculations and, subsequently, transport and biogeochemical reaction processes. The C-GEM modeling platform thus enables hundreds to thousands of steady state or fully transient simulations spanning years to decades for a multitude of estuarine systems, using geometric information readily available through maps or remote sensing images. Despite the geometric simplification, C-GEM resolves the most [.... Deleted: first

Deleted: succesfully
Formatted
Deleted: is applied
Formatted: Font: Not Bold, Not Italic, No underline
Moved up [1]: The global quantification filter thus remains ignored in modelling
Formatted: Font: Not Bold, Not Italic, No underline
Moved up [2]: The lack of regional or global evaluations of the estuarine carb(
Deleted: In this respect, integrated model-data approaches provide a suitat
Formatted: Font: Not Bold, Not Italic, No underline
Deleted: ¶
Deleted: an extended version of
Deleted: . The applied RTM approach allows to evaluate the relative significan
Deleted:
Deleted: sea partial pressure of CO ₂
Deleted: properties
Deleted: characterstics
Moved (insertion) [3]
Deleted: An extensive review of published local estimates of CO ₂ fluxes i
Moved up [3]: An extensive review of published local estimates of CO ₂ fluxes i
Formatted: Font: Not Bold, Not Italic, No underline

398	and will help explore general relationships between carbon cycling and CO ₂ evasion, and readily	
399	available estuarine geometrical parameters.	
400	After a description of the model itself and of the dataset used to set up the simulations, a local	 Deleted: ¶
401	validation is presented which includes salinity, pCO ₂ and pH longitudinal profiles for two well	Formatted: Font: Not Bold, Not Italic, No underline
402	monitored systems (the Delaware Bay and the Altamaha River Estuary). The yearly averaged rates of	
403	CO ₂ exchange at the air-water interface simulated by the model for 13 individual estuaries are also	
404	compared with observed values reported in the literature. Next, regional scale simulations for 43	
405	tidal estuaries of the eastern US coast provide seasonal and yearly integrated estimates of the Net	
406	Ecosystem Metabolism (NEM), CO ₂ evasion and carbon filtering capacity, CFilt. Model results are	
407	then used to elucidate the estuarine biogeochemical behavior along the latitudinal transect	 Formatted: Font: Not Bold, Not Italic, No underline
408	encompassed by the present study (30-45° N). Finally, our results are used to derive general	
409	relationships between carbon cycling and CO ₂ evasion, and readily available estuarine geometrical	
410	parameters.	
411		
412	2. Regional description and model approach	

2.1 Observation-based carbon budget for the East coast of the United States 413

414	The study area covers the Atlantic coast of the United States (Fig.1), from the southern tip of Florida	
415	(25°N) to Cobscook Bay (45°N) at the US-Canada boundary. This area encompasses distinct climatic	
416	zones and land cover types and exhibits a variety of morphologic features (Fig. 1). The region can be	 Deleted: Figure
417	subdivided into several sub-regions following a latitudinal gradient (Signorini et al., 2013). In this	
418	study, we define three sub-regions following the boundaries suggested by the COSCAT segmentation	
419	(Meybeck et al., 2006; Laruelle et al., 2013) and the further subdivision described in Laruelle et al.	
420	(2015). From North to South, the regions are called North Atlantic, Mid Atlantic and South Atlantic	
421	Regions (Fig., 1). Total carbon inputs from watersheds to US East coast estuaries (Tab. 1) have been	 Deleted: ure
		 Deleted: Table

eleted: ¶

6

ire Гable estimated to range from 4.0 to 10.7 Tg C yr⁻¹ (Mayorga et al., 2010; Shih et al., 2010; Stets and Strieg,
2012; Tian et al., 2010; Tian et al., 2012), consisting of dissolved organic carbon (DOC; ~50%),
dissolved inorganic carbon (DIC; ~40%) and particulate organic carbon (POC; ~10%). In addition, a
statistical approach has been applied to estuaries of the region to quantify organic carbon budgets
and Net Ecosystem Productivity (NEP) using empirical models (Herrmann et al., 2015).

431 Recent studies estimated that, along the East coast of the United States, rivers emit 11.4 TgC yr⁻¹ of 432 CO₂ to the atmosphere (Raymond et al., 2013), while continental shelf waters absorb between 3.4 433 and 5.4 TgC yr⁻¹ of CO₂ from the atmosphere (Signorini et al., 2013). A total of thirteen local, annual 434 mean estuarine CO₂ flux estimates across the air-water interface based on measurements are also 435 reported in the literature and are grouped along a latitudinal gradient (Tab. 2). Four of these 436 estimates are located in the South Atlantic region (SAR): Sapelo Sound, Doboy Sound, Altamaha 437 Sound (Jiang et al., 2008), and the Satilla River estuary (Cai and Wang, 1998). Three studies 438 investigate CO₂ fluxes in the mid-Atlantic Region (MAR): the York River Estuary (Raymond et al., 439 2000) and the Hudson River (Raymond et al., 1997). There is also a comprehensive CO₂ flux study for 440 the Delaware Estuary published after the completion of this work (Joeseof et al., 2015). Six systems 441 are located in the North Atlantic region (NAR): The Great Bay, the Little Bay, the Oyster estuary, the 442 Bellamy estuary, the Cocheco estuary (Hunt et al., 2010; 2011), and the Parker River estuary (Raymond and Hopkinson, 2003). The mean annual flux per unit area from these local studies is 443 11.7 \pm 13.1 mol C m⁻² yr⁻¹ and its extrapolation to the total estuarine surface leads to a regional CO₂ 444 evasion estimate of 3.8 Tg C y^{-1} . This estimate is in line with that of Laruelle et al. (2013) for the same 445 region which proposes an average CO₂ emission rate of 10.8 mol C m⁻² yr⁻¹. Thus, CO₂ outgassing 446 447 could remove 35% to 95% of the riverine carbon loads during estuarine transit. About 75 % of the air-water exchange occurs in tidal estuaries (2.8 Tg C γ^{-1}) while lagoons and small deltas contribute to 448 449 the remaining 25 %. Although these simple extrapolations from limited observational data are 450 associated with large uncertainties, they highlight the potentially significant contribution of estuaries 451 to the CO₂ outgassing in the region. However, process-based quantifications of regional organic and

Deleted: fig Deleted: 1

454 inorganic C budgets including air-water CO_2 fluxes for the estuarine systems along the East coast are 455 not available.

456 2.2 Selection of estuaries

457 The National Estuarine Eutrophication Assessment (NEAA) survey (Bricker et al., 2007), which uses geospatial data from the National Oceanic and Atmospheric Administration (NOAA) Coastal 458 Assessment Framework (CAF) (NOAA, 1985), was used to identify and characterize <u>58</u> estuarine 459 460 systems discharging along the Atlantic coast of the United States. From this set, 43 'tidal' estuaries, 461 defined as a river stretch of water that is tidally influenced (Dürr et al., 2011), were retained (Fig. 1) 462 to be simulated by the C-GEM model, which is designed to represent such systems. Using outputs 463 from terrestrial models (Hartmann et al., 2009; Mayorga et al., 2010), the cumulated riverine carbon 464 loads for all the non-tidal estuaries that are excluded from the present study amount to 0.9 Tg C yr⁻¹, 465 which represents less than 15% of the total riverine carbon loads of the region. These 15 systems are 466 located in the SAR (10) and in the MAR (5),

The northeastern part of the domain (NAR, Fig. 1; <u>Tab.</u>1) includes 20 estuaries along the Gulf of Maine and the Scotian shelf, covering a cumulative surface area of ~5300 km². It includes drowned valleys, rocky shores and a few tidal marshes. The climate is relatively cold (annual mean= 8°C) and the human influence is relatively limited because of low population density and low freshwater inputs. The mean estuarine water depth is 12.9 m and the mean tidal range is 2.8 m.

The central zone (MAR) includes 17 tidal estuaries accounting for a total surface area of 14500 km². The Chesapeake Bay and the Delaware estuaries alone contribute more than 60% to the surface area of the region. In this region, estuaries are drowned valleys with comparatively high river discharge and intense exchange with the ocean. Several coastal lagoons, characterized by a limited exchange with the ocean are located here, but are not included in our analysis. The Mid-Atlantic Region (MAR) is characterized by a mean annual temperature of 13°C and is strongly impacted by human activities,

Deleted: 47
Deleted:
Deleted: fig
Formatted: Font: Not Bold, Not Italic, No underline
Deleted: The 15
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Deleted: and account for less than 15% of the total riverine carbon loads of the

Deleted: 64

region

Deleted: table

due to the presence of several large cities (e.g. New York, Washington, Philadelphia, Baltimore) and
intense agriculture. The mean water depth is about 4.7 m and the tidal range is 0.8 m.

The southern Atlantic region (SAR) includes 10 tidal estuaries covering a total surface area of 12182 km². These systems are generally dendritic and surrounded by extensive salt marshes. The climate is subtropical with an average annual temperature of 19°C. Land use includes agriculture and industry, but the population density is generally low. Estuarine systems in the SAR are characterized by a shallow mean water depth of 2.9 m and a tidal range of 1.2 m.

494 2.3 Model set-up

495 The generic 1D Reactive-Transport Model (RTM) C-GEM (Volta et al., 2014) is used to quantify the 496 estuarine carbon cycling in the <u>43</u> systems considered in this study. The approach is based on 497 idealized geometries (Savenije, 2005; Volta et al., 2014) and is designed for regional and global scale applications (Regnier et al., 2013b; Volta et al., 2014, 2016a). The model approach builds on the 498 premise that hydrodynamics exerts a first-order control on estuarine biogeochemistry (Arndt et al., 499 500 2007; Friedrichs and Hofmann, 2001) and CO₂ fluxes (Regnier et al., 2013a). The method takes 501 advantage of the mutual dependence between geometry and hydrodynamics in tidal estuaries 502 (Savenije, 1992) and the fact that, as a consequence, transport and mixing can be easily quantified 503 from readily available geometric data (Regnier et al., 2013a; Savenije, 2005; Volta et al., 2016b).

504 2.3.1 Description of idealized geometries for tidally-averaged conditions

Although tidal estuaries display a wide variety of shapes, they nevertheless share common geometric characteristics that are compatible with an idealized representation (Fig. 2, Savenije, 1986; Savenije, 2005). For tidally-averaged conditions, their width B (or cross-sectional area A) can be described by an exponential decrease as a function of distance, *x*, from the mouth (Savenije, 1986; Savenije, 2005): Deleted: 47

$$B = B0 * \exp\left(-\frac{x}{b}\right) \tag{1}$$

where B (m) is the tidally averaged width, B0 (m) the width at the mouth, x (m) the distance from the mouth (x=0) and b (m) the width convergence length (Fig. 2). The width convergence length, b, is defined as the distance between the mouth and the point at which the width is reduced to B0 e⁻¹. It is directly related to the dominant hydrodynamic forcing. A high river discharge typically results in a prismatic channel with long convergence length (river dominated estuary), while a large tidal range results in a funnel-shaped estuary with short convergence length (marine dominated estuary). At the upstream boundary, the estuarine width is given by:

$$B_L = B0 * \exp\left(-\frac{L}{b}\right) \tag{2}$$

518 Where L denotes the total estuarine length (m) along the estuarine longitudinal axis.

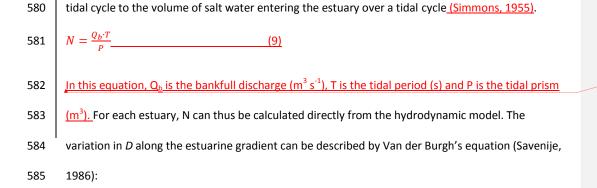
519 The total estuarine surface S (m²) can be estimated by integrating equation (1) over the estuarine 520 length:

$$S = \int_{0}^{L} B \, dx = b * B0 * \left(1 - \exp\left(-\frac{L}{b}\right) \right)$$
(3)

521

522 The width convergence length is then calculated from B0, B_L , L and the real estuarine surface area 523 (SR) by inserting equation (2) in equation (3):

$$b = \frac{SR}{B0 - BL} \tag{4}$$


524 SR is calculated for each system using the SRTM water body data (Fig. 3a), a geographical dataset 525 encoding high-resolution worldwide coastal outlines in a vector format (NASA/NGA, 2003). While 526 such a database exists for a well monitored region such as the East coast of the US, resorting to 527 using the idealized estuarine surface area (S) is necessary in many other regions. The longitudinal Deleted: fig

530	Assess	ment database (Bricker et al., 2007).			
531	Using	this idealized representation, the estuarine geometry ca	an be defined by a lir	nited number of	
532	param	eters: the width at the mouth (B_0) , the estuarine le	ngth (L), the estuarin	ne width at the	
533	upstre	am limit (B_L) and the mean depth h. These parameters	can be easily detern	nined <u>from local</u>	Formatted: Font: Not Bold, Not Italic, No underline
534	<u>maps</u>	or Google Earth using Geographic Information System	ns (GIS), or obtained	from databases	Formatted: Font: Not Bold, Not Italic, No underline
535	(NASA,	/NGA, 2003).			Deleted: through GIS, local maps, Google Earth
536	2.3.2 H	lydrodynamics, transport and biogeochemistry			
537	Estuar	ine hydrodynamics <mark>are </mark> described by the one-dimensiona	l barotropic, cross-sec	ctionally	 Deleted: is
538	integra	ated mass and momentum conservation equations for a	channel with arbitrary	geometry	
539	(Nihou	l and Ronday, 1976; Regnier et al., 1998; Regnier and Ste	eefel, 1999):		
540		$r_s \frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$		(5)	
541		$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} = -g \frac{\partial \zeta}{\partial x} - g \frac{U U }{C_z^2 H}$		(6)	Deleted: $\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial r} = -$
542					Formatted: Lowered by 10 pt
542	where				
543	t	time	[s]		
544	x	distance along the longitudinal axis	[m]		
545	А	cross-section area $A = H \cdot B$	[m ²]		
546	Q	cross-sectional discharge $Q = A \cdot U$	[m ³ s ⁻¹]		
547	U	flow velocity Q/A	[m s ⁻¹]		
548	r _s	storage ratio $r_s = B_s / B$	[-]		

mean, tidally averaged, depth h (m), is obtained from the National Estuarine Eutrophication

553B, storage width[m]554ggravitational acceleration
$$[ms^2]$$
555 ξ elevation $[m]$ 556Htotal water depth $H = h + \xi(x,t)$ $[m]$ 557 C_{c} chéry coefficient $[m^{12} s^2]$ 568The coupled partial differential equations (Eqs. (g) and (g)) are solved by specifying the elevationDeletad: i559 $\xi_{d}(t)$ at the estuarine mouth and the river discharge $Q_{c}(t)$ at the upstream limit of the model domain.Deletad: i560The one-dimensional, tidally-resolved, advection-dispersion equation for a constituent ofconcentration $C(x,t)$ in an estuary can be written as (e.g. Pritchard, 1958):562 $\frac{2C}{dt} + \frac{Q}{A} \frac{2C}{dt} = \frac{1}{A} \frac{2}{Dt} \left(AD \frac{2C}{Dt} \right) + f$ (r)563where $Q(x,t)$ and $A(x,t)$ denote the cross-sectional discharge and area, respectively and are providedDeleted: i564by the hydrodynamic model (eq. §, and §). P(x,t) is the sum of all production and consumptionDeleted: 7575process rates affection the concentration of the constituent. The effective dispersion coefficient DDeleted: 7566(m² s²) implicitly accounts for dispersion mechanisms associated to sub grid scale processes (Flischer,Deleted: 75761976; Regnier et al., 1998). In general, D is maximal near the sea, decreases upstream and becomesDeleted: 7571 $D_{c} = 20 \cdot (h_{0})^{1/5} \cdot (N \cdot g)^{1/5}$ (g)572 $D_{p} = 20 \cdot (h_{0})^{1/5} \cdot (N \cdot g)^{1/5}$ (g)

572 where h_0 (m) is the tidally-averaged water depth at the estuarine mouth and N is the dimensionless 573 Canter Cremers' estuary number defined as the ratio of the freshwater entering the estuary during a

$$\frac{\partial D}{\partial x} = -K \frac{Q_r}{A}$$

where *K* is the dimensionless Van der Burgh's coefficient and the minus sign indicates that *D* increases in downstream direction (Savenije, 2012). The Van der Burgh's coefficient is a shape factor that has values between 0 and 1 (Savenije, 2012), and is a function of estuarine geometry for tidally average conditions. Therefore, each estuarine system has its own characteristic *K* value, which correlates with geometric and hydraulic scales (Savenije, 2005). Based on a regression analysis covering a set of 15 estuaries, it has been proposed to constrain *K* from the estuarine geometry (Savenije, 1992):

$$K = 4.32 \cdot \frac{h_0^{0.36}}{B_0^{0.21} \cdot b^{0.14}} \quad \text{with} \quad 0 < K < 1 \tag{11}$$

Reaction processes *P* considered in C-GEM comprise aerobic degradation, denitrification, nitrification, primary production, phytoplankton mortality and air-water gas exchange for O_2 and CO_2 (Fig._4 and <u>Tab._3</u>). These processes and their mathematical formulation are described in detail in Volta et al. (2014) and Volta et al. (2016a).

The non-linear partial differential equations for the hydrodynamics are solved by a finite difference scheme following the approach of (Regnier et al., 1997; Regnier and Steefel, 1999) and (Vanderborght et al., 2002). The timestep Δt is 150s and the grid size Δx is constant along the **Formatted:** Font: Not Bold, Not Italic, No underline

Deleted: 9

(<u>10</u>)

Deleted: 10

Deleted: Table
Deleted: 2

_	Deleted:)
\square	Deleted: ,
- M	Deleted: (

609 longitudinal axis of the estuary. The grid size default value is 2000_m, but can be smaller for short 610 length estuaries to guarantee a minimum of 20 grid points within the computational domain. 611 Transport and reaction terms are solved in sequence within a single timestep using an operator 612 splitting approach (Regnier et al., 1997). The advection term in the transport equation is integrated 613 using a third-order accurate total variation diminishing (TVD) algorithm with flux limiters (Regnier et 614 al., 1998), ensuring monotonicity (Leonard, 1984), while a semi-implicit Crank-Nicholson algorithm is 615 used for the dispersion term (Press et al., 1992). These schemes have been extensively tested using 616 the CONTRASTE estuarine model (e.g. Regnier et al., 1998; Regnier and Steefel, 1999; Vanderborght 617 et al., 2002) and guarantee mass conservation to within <1%. The reaction network (including 618 erosion-deposition terms when the constituent is a solid species), is numerically integrated using the 619 Euler method (Press et al., 1992). The primary production dynamics, which requires vertical 620 resolution of the photic depth, is calculated according to the method described in Vanderborght et 621 al. (2007). This method assumes an exponential decrease of the light in the water column (Platt et 622 al., 1980), which is solved using a Gamma function.

623 2.4 Boundary and forcing conditions

624 Boundary and forcing conditions are extracted from global databases and global model outputs that 625 are available at 0.5° resolution. Therefore, C-GEM simulations are performed at the same resolution 626 according to the following procedure. First, <u>43</u> coastal cells corresponding to tidal estuaries are 627 identified in the studied area (Fig. 1). If the mouth of an estuary is spread over several 0.5° grid cells, 628 those cells are regrouped in order to represent a single estuary (e.g. Delaware estuary), and 629 subsequently, a single idealized geometry is defined as described above. The model outputs 630 (Hartmann et al., 2009; Mayorga et al., 2010) and databases (Antonov et al., 2010; Garcia et al., 631 2010a; Garcia et al., 2010b) used to constrain our boundary conditions are representative of the 632 year 2000.

Deleted: 47

Deleted: fig

For each resulting cell, boundary and forcing conditions are calculated for the following periods:
January-March; April-June; July-September and October-December. This allows for an explicit
representation of the seasonal variability in the simulations.

638 2.4.1 External forcings

Transient physical forcings are calculated for each season and grid cell using monthly mean values of
water temperature (World Ocean Atlas, 2009) and seasonal averaged values for wind speed (CrossCalibrated-Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses project (Atlas et al., 2011)).
Mean daily solar radiation and photoperiods (corrected for cloud coverage using the ISCCP Cloud
Data Products, Rossow and Schiffer, 1999) are calculated depending on latitude and day of the year

644 using a simple model (Brock, 1981).

645 2.4.2 Riverine discharge, concentrations and fluxes

646 River discharges are extracted from the UNH/GRDC runoff dataset (Fekete et al., 2002). These 647 discharges represent long-term averages (1960-1990) of monthly and annual runoff at 0.5 degree 648 resolution. The dataset is a composite of long-term gauging data, which provides average runoff for 649 the largest river basins, and a climate driven water balance model (Fekete et al., 2002). Total runoff 650 values are then aggregated for each watershed at the coarser 0.5 degree resolution (Fig. 3b). Next, 651 seasonal mean values (in m³ s⁻¹) are derived in order to account for the intra-annual variability in 652 water fluxes. Based on annual carbon and nutrients inputs from the watersheds (Mg y^{-1}), mean 653 annual concentrations (mmol m⁻³) are estimated for each watershed using the UNH/GRDC annual 654 runoff (km³ y^{-1}). Mean seasonal concentrations are then calculated from the seasonally resolved 655 river water fluxes of a given sub-region.

Annual inputs of dissolved organic carbon (DOC), particulate organic carbon (POC) and inorganic nutrients are derived from the globalNEWS2 model (Mayorga et al., 2010). Global NEWS is a spatially explicit, multi-element (N, P, Si, C) and multi-form global model of nutrient exports by rivers. In a **Formatted:** Font: Not Bold, Not Italic, No underline

Deleted: fig

660 nutshell, DOC exports are a function of runoff, wetland area, and consumptive water use (Harrison 661 et al., 2005). No distinction is made between agricultural and natural landscapes, since they appear 662 to have similar DOC export coefficients (Harrison et al., 2005). Sewage inputs of OC are ignored in 663 GlobalNEWS, because their inclusion did not improve model fit to data (Harrison et al., 2005). POC 664 exports from watersheds are estimated using an empirical relationship with Suspended Particulate 665 Matter (SPM; Ludwig et al., 1996). Inorganic nitrogen (DIN) and phosphorus (DIP) fluxes calculated 666 by GlobalNEWS depend on agriculture and tropical forest coverage, fertilizer application, animal 667 grazing, sewage input, atmospheric N deposition and biological N fixation (Mayorga et al., 2010). The 668 inputs of dissolved silica (DSi) are controlled by soil bulk density, precipitation, slope, and presence 669 of volcanic lithology (Beusen et al., 2009).

The DIN speciation is not provided by the GlobalNEWS2 model. The NH₄ and NO₃ concentrations are therefore determined independently on the basis of an empirical relationship between ammonium fraction (NH4/DIN ratio) and DIN loads (Meybeck, 1982). Dissolved Oxygen (DO) concentrations are extracted from the water quality criteria recommendations published by the United States Environmental Protection Agency (EPA, 2009). The same source is used for phytoplankton concentrations, using a chlorophyll-a to phytoplankton carbon ratio of 50 gC (gChla)⁻¹ (Riemann et al., 1989) to convert the EPA values to carbon units used in the present study.

677 Inputs of dissolved inorganic carbon (DIC) and total Alkalinity (ALK) are calculated from values 678 reported in the GLORICH database (Hartmann et al., 2009). For each watershed, seasonal mean 679 values of DIC and ALK concentrations are estimated from measurements performed at the sampling 680 locations that are closest to the river-estuary boundary. The spatial distribution of annual inputs of 681 TOC=DOC+POC, DIC, and TC=TOC+DIC from continental watersheds to estuaries are reported in Fig. 682 5a, 5c and 5d, respectively. The contribution of tidal wetlands to the TOC inputs is also shown (Fig. 683 5b). Overall, the TC input over the entire model domain is estimated at 4.6 Tg C yr⁻¹, which falls in 684 the lower end of previous reported estimations (Najjar et al. 2012).

Deleted: fig

686

687 2.4.3 Inputs from tidal wetlands

The DOC input of estuarine wetlands (Fig. 5b) scales to <u>their fraction, W, of the total estuarine</u> and is
 calculated using the GlobalNEWS parameterization:

$$Y_DOC = \frac{\left[(E_C_{wet} * W) + E_C_{dry} * (1 - W) \right] * R^{a} * Q_{act}}{Q_{nat}}$$

690

 $\frac{Y_DOC_{wet}}{Y_DOC} = \frac{E_C_{wet} * W}{E_C_{wet} * W + E_C_{dry} * (1 - W)}$

691

where Y_DOC is the DOC yield (kg C km⁻² y⁻¹) calculated for the entire watershed, Y_DOC_{wet} is the 692 estimated DOC yield from wetland areas (kg C km⁻² y⁻¹), Q_{act}/Q_{nat} is the ratio between the measured 693 694 discharge after dam construction and before dam construction, $E_{C_{wet}}$ and $E_{C_{dry}}$ (kg C km⁻² y⁻¹) are 695 the export coefficients of DOC from wetland and non-wetland soils, respectively. W is the 696 percentage of the land area within a watershed that is covered by wetlands, R is the runoff (m y^{-1}) 697 and a is a unit-less <u>calibration</u> coefficient defining how non-point source DOC export responds to 698 runoff. The value of a is set to 0.95, consistent with the original GlobalNEWS -DOC model of Harrison 699 et al. (2005). The carbon load Y_DOCwet is then exported as a diffuse source along the relevant 700 portions of estuary. The estuarine segments receiving carbon inputs from tidal wetlands are 701 identified using the National Wetlands Inventory of the U.S. Fish and Wildlife Service (U.S. Fish and 702 Wildlife Service, 2014). The inputs from those systems are then allocated to the appropriate grid cell 703 of the model domain using GIS. The flux calculated is an annual average that is subsequently 704 partitioned between the four seasons as a function of the mean seasonal temperature, assumed to 705 be the main control of the wetland-estuarine exchange. This procedure reflects the observation that

Formatted: Font: Not Bold, Not Italic, No underline Deleted: their surface area W Deleted: 11

Deleted: 12

(<u>12</u>)

(13)

709 in spring and early summer, DOC export is small as a result of its accumulation in the salt marshes 710 induced by the high productivity (Dai and Wiegert, 1996), (Jiang et al., 2008). In late summer and fall, 711 the higher water temperature and greater availability of labile DOC contribute to higher bacterial 712 remineralization rates in the intertidal marshes (Cai et al., 1999; Middelburg et al., 1996; Wang and 713 Cai, 2004), which induce an important export. This marsh production-recycle-export pattern is 714 consistent with the observed excess DIC signal in the offshore water (Jiang et al. 2013). DIC export 715 from tidal wetlands is neglected here because it is assumed that OC is not degraded before reaching 716 the estuarine realm. Although this assumption may lead to an overestimation of OC export from 717 marshes and respiration in estuarine water, it will not significantly affect the water pCO₂ and 718 degassing in the estuarine waters because mixing is faster than respiration.

719 2.4.4 Concentrations at the estuarine mouth

720 For each estuary, the downstream boundary is located 20 km beyond the mouth to minimize the 721 bias introduced by the choice of a fixed concentration boundary condition to characterize the ocean 722 water masses (e.g. Regnier et al., 1998). This approach also reduces the influence of marine 723 boundary conditions on the simulated estuarine dynamics, especially for all organic carbon species whose concentrations are fixed at zero at the marine boundary. This assumption ignores the 724 725 intrusion of marine organic carbon into the estuary during the tidal cycle but allows focusing on the 726 fate of terrigenous material and its transit through the estuarine filter. DIC concentrations are 727 extracted from the GLODAP dataset (Key et al., 2004), from which ALK and pH are calculated 728 assuming CO₂ equilibrium between coastal waters and the atmosphere. The equilibrium value is computed using temperature (WOA2009, Locarnini et al., 2010) and salinity (WOA2009, Antonov et 729 730 al. (2010)) data which vary both spatially and temporally. The equilibrium approach is a reasonable 731 assumption because differences in partial pressure ΔpCO_2 between coastal waters and the 732 atmosphere are generally much smaller (0-250 µatm (Signorini et al., 2013)) than those reported for 733 estuaries (ΔpCO₂ in the range 0-10000 μatm (Borges and Abril, 2012)). Salinity, DO, NO₃, DIP and DSi

Deleted:

concentrations are derived from the World Ocean Atlas (Antonov et al., 2010; Garcia et al., 2010a;
Garcia et al., 2010b). NH₄ concentrations are set to zero in marine waters. For all variables, seasonal
means are calculated for each grid cell of the <u>boundary</u>.

738

739 2.5 Biogeochemical indicators

The model outputs (longitudinal profiles of concentration and reaction rates) are integrated in time over the entire volume or surface of each estuary to produce the following indicators of the estuarine biogeochemical functioning (Regnier et al., 2013b): the mean annual Net Ecosystem Metabolism (*NEM*), the air-water CO_2 flux (*FCO*₂), the carbon and nitrogen filtering capacity (*CFilt* and *NFilt*) and their corresponding element budgets. The *NEM* (molC y⁻¹) (Caffrey, 2004; Odum, 1956) is defined as the difference between net primary production (*NPP*) and total heterotrophic respiration (*HR*) at the system scale:

$$NEM = \int_{0}^{365} \int_{0}^{L} [NPP(x,t) - R_{aer}(x,t) - R_{den}(x,t)] * B(x) * H(x,t) dx dt$$

747

19

where NPP is the Net Primary Production (mol C m^{-3} y⁻¹), R_{aer} the aerobic degradation of organic 748 matter (in mol C m⁻³ y⁻¹) and R_{den} the denitrification (in mol C m⁻³ y⁻¹) (see Volta et al., 2014 for 749 750 detailed formulations). NEM is thus controlled by the production and decomposition of 751 autochthonous organic matter, by the amount and degradability of organic carbon delivered by 752 rivers and tidal wetlands and by the export of terrestrial and in-situ produced organic matter to the 753 adjacent coastal zone. Following the definition of NEM, the trophic status of estuaries can be net 754 heterotrophic (NEM<0) when HR exceeds NPP or net autotrophic (NEM>0), when NPP is larger than 755 HR because the burial and export of autochthonous organic matter exceeds the decomposition of 756 river-borne material.

Deleted: 13

(<u>14</u>)

Deleted: domain

The FCO_2 (mol C y⁻¹) is defined as:

$$FCO_{2} = \int_{0}^{365} \int_{0}^{L} RCO_{2}(x,t) * B(x) \, dx \, dt$$

$$| RCO_{2}(x,t) = -v_{p}(x,t) ([CO_{2(aq)}](x,t) - K_{0}(x,t) * P_{CO2}(x,t))$$
761

where RCO_2 (molC m⁻² y⁻¹) is the rate of exchange in CO₂ at the air-water interface per unit surface area, v_p is the piston velocity (m y⁻¹) and is calculated according to Regnier et al. (2002) to account for the effect of current velocity and wind speed, [CO2(aq)] is the concentration of CO₂ in the estuary (mol m⁻³), K_0 is Henry's constant of CO₂ in sea water (mol m⁻³ atm⁻¹) and P_{co2} is the atmospheric partial pressure in CO₂ (atm).

The carbon filtering capacity (in %) corresponds to the fraction of the river-borne supply that is lost to the atmosphere and is defined here as the ratio of the net outgassing flux of CO_2 and the total inputs of C, e.g. total carbon expressed as the sum of inorganic and organic carbon species, both in the dissolved and particulate phases.

771
$$CFilt = \frac{FCO_2}{\int_0^{365} Q*[TC]_{riv} dt} * 100$$
 (17)
Deleted: 16

(<u>15</u>)

(<u>16</u>)

Deleted: 14

Deleted: 15

where $[TC]_{riv}$ denote the total concentrations of C in the riverine inputs.

Flux<u>es</u> per unit area for FCO_2 and NEM, noted $\overline{FCO_2}$ and \overline{NEM} , respectively, are defined in mol C m⁻² y⁻¹ and are calculated by dividing the integrated values calculated above by the (idealized) estuarine surface *S*:

776	$\overline{NEM} = \frac{NEM}{S} * 1000$	(<u>18</u>)	Deleted: 17
777	$\overline{FCO_2} = \frac{FCO_2}{S} * 1000$	(<u>19)</u>	Deleted: 18

783 Seasonal values for the biogeochemical indicators are calculated using the same formula as above,

784 but calculate the integral over a seasonal rather than annual timescale (i.e. 3 months).

785

786

787 2.6 Model-data comparison

788	<u>C-GEM has been specifically designed for an application on a global/regional scale requiring the</u>
789	representation of a large number of individual and often data-poor systems. Maximum model
790	transferability and minimum validation requirements were thus central to the model design process
791	and the ability of the underlying approach in reproducing observed dynamics with minimal
792	calibration effort has been extensively tested. The performance <u>C-GEM's one-dimensional</u>
793	hydrodynamic and transport models using idealized geometries have been evaluated for a number
794	of estuarine systems exhibiting a wide variety of shapes (Savenije, 2012). In particular, it has been
795	shown that the estuarine salt intrusion can be successfully reproduced using the proposed modeling
796	approach (Savenije 2005; Volta et al., 2014; 2016b). In addition, C-GEM's biogeochemistry has also
797	been carefully validated for geometrically contrasting estuarine system in temperate climate zones.
798	Simulations for the Scheldt Estuary (Belgium and the Netherlands), a typical funnel-shaped estuary,
799	were validated through model-data and model-model comparison (Volta et al., 2014; Volta et al.,
800	2016a). Furthermore, simulations for the Elbe estuary (Germany), a typical prismatic shape estuary
801	that drains carbonate terrains and, thus, exhibits, very high pH was validated against field data (Volta
802	et al., 2016a). In addition, C-GEM carbon budgets have been compared budget derived from,
803	observation <mark>s</mark> for 6 European estuaries discharging in the North Sea (Volta et al., 2016a). <u>Although C-</u>
804	GEM has been specifically designed and tested for the type of regional application presented here,
805	its transferability from North Sea to US East Coast estuaries was further evaluated by assessing its
806	performance in two East Coast estuaries. First, the hydrodynamic and transport model was tested

Formatted: Font: Not Bold, Not Italic, No underline

Deleted: of 1D

Formatted: Font: Not Bold, Not Italic, No underline

Deleted: draining
Deleted: resulting in
Deleted: to
Deleted: -based estimations
Formatted: Font: Not Bold, Not Italic, No underline

Deleted: Simulations

813	for the Delaware Bay (MAR). The model was forced with the monthly, minimal and maximal
814	observed discharge at Trenton over the period between 1912 and 1985 (UNH/GRDC Database,
815	Fekete et al., 2000). Simulated salinity profiles are compared with salinity observations from January,
816	February, May and June (the months with the highest number of data entries), which were extracted
817	from the UNH/GRDC Database. Figure 6 shows that the model captures both the salinity intrusion
818	length and the overall shape of the salinity profile well. In addition, the performance of the
819	biogeochemical model and specifically its ability to reproduce pH and pCO ₂ profiles was evaluated by
820	a model-data comparison for both the Delaware Bay (MAR) in July 2003 and the Altamaha river
821	estuary (SAR) in October 1995. Similar to Volta et al., 2016a, the test systems were chosen due to
822	their contrasting geometries. The Delaware Bay is a marine dominated system characterized by a
823	pronounced funnel shape, while the Altamaha River has a prismatic estuary characteristic of river
824	dominated systems (Jiang et al., 2008). Monthly upstream boundary conditions for nutrients, as well
825	as observed pH data and calculated pCO ₂ are extracted from datasets described in (Sharp, 2010) and
826	(Sharp et al., 2009) for the Delaware and in (Cai and Wang, 1998; Jiang et al., 2008) and (Cai et al.,
827	1998) for the Altamaha river estuary. The additional forcings and boundary conditions are set
828	similarly to the simulation for 2000 (see Tab. 2, 3, 4, 5, 6 in SI). Figure 7 shows that measured and
829	simulated pH values are in good agreement with observed pH and observation-derived calculations
830	of pCO ₂ . In the Delaware Bay, a pH minimum is located around km 140 and is mainly caused by
831	intense nitrification sustained by large inputs of NH ₄ from the Philadelphia urban area, coupled to an
832	intense heterotrophic activity. Both processes lead to a well-developed pCO2 increase in this area
833	(Fig. 7b). Although no pCO ₂ data were available for validation for the period from which boundary
834	conditions were extracted, the simulated profile agree with pCO ₂ measurement from July 2013
835	presented by Joesoef et al. (2015) with pCO ₂ values close to equilibrium with the atmosphere in the
836	widest section of the Delaware Bay (close to the estuarine mouth) and values above 1200 µatm at
837	salinities below 5. For the Altamaha river estuary, pH steadily increases from typical river to typical
838	coastal ocean values (Fig. 7b). In addition, both observations and model results reveal that

Formatted: Font:	Not	Bold,	Not	Italic,
No underline				

Formatted: Font: Not Bold, Not Italic

Formatted: Font: Not Bold, Not Italic, No underline Formatted: Font: Not Bold, Not Italic, No underline

Formatted: Font: Not Bold, Not Italic, No underline Formatted: Font: Not Bold, Not Italic, No underline

839	outgassing is very intense in the low-salinity region with more than a 5 fold decrease in pCO_2		
840	between salinity 0 and 5 (Fig. 7d).	_	Formatted: Font: Not Bold, Not Italic, No underline
841	While such local validations allow assessing the performance of the model for a specific set of		
842	conditions, the purpose of this study is to capture the average biogeochemical behavior of the		
843	estuaries of the eastern coast of the US. Therefore, in addition to the system-specific validation,		
844	published annually averaged FCO ₂ estimates for 13 tidal systems located within the study area		
845	collected over the 1994-2006 period are compared to simulated FCO ₂ for conditions representative		
846	of the year 2000. Overall, simulated FCO ₂ are comparable to values reported in the literature (Tab.		Formatted: Font: Not Bold, Not Italic, No underline
847	2). Although discrepancies, which sometimes can significant, are observed at the level of individual		Formatted: Font: Not Bold, Not Italic, No underline
848	systems, the model captures remarkably well the overall trend in CO ₂ evasion rate across estuaries.		
849	The model simulates low CO_2 efflux (< 5 mol C m ⁻² yr ⁻¹) for the 7 systems were such conditions have		
850	been observed, while the 6 systems for which the CO_2 evasion exceeds 10 mol C m ⁻² yr ⁻¹ are the same		
851	in the observations and in the model runs. The discrepancy at the individual system level likely result		
852	from a combination of factors, including the choice of model processes and there parametrization,		
853	the uncertainties in constraining boundary conditions and the limited representability of		
854	instantaneous and local observed.		Deleted: This analysis is pursued here by evaluating our model results in the context
855	3 Results and discussion		of estuarine CO_2 evasion estimates along the East coast of the US.
856	3.1 Spatial variability of estuarine carbon dynamics		
857	Figure $\frac{8}{2}$ presents the spatial distribution of simulated mean annual $\overline{FCO_2}$ and \overline{NEM} (Fig. <u>8a</u>), as well	<	Deleted: 6
858	as FCO_2 and -NEM (Fig. <u>8</u> b). In general, mean annual $\overline{FCO_2}$ are about 30% larger than mean annual		Deleted: 6a
859	$\overline{\textit{NEM}}$, with the exception of six estuaries situated in the North of the coastal segment. Overall, the		
860	\overline{NEM} is characterized by smaller system to system variability compared to the $\overline{FCO_2}$ in all regions. In		
861	addition, Fig. 8 reveals distinct differences across the three coastal segments and highlights the	_	Deleted: Figure
			Deleted: 6

871 important influence of the estuarine geometry and residence time, as well as the latitudinal872 temperature gradient on estuarine carbon cycling.

Overall, $\overline{FCO_2}$ values are the lowest in the NAR (mean flux = 17.3 ± 16.4 mol C m⁻² y⁻¹; surface 873 weighted average = 23.1 mol C m⁻² y⁻¹), consistent with previously reported very low values for small 874 estuaries surrounding the Gulf of Maine (Hunt et al., 2010; 2011; <u>Tab. 2</u>). In contrast, <u>NEM</u> reveals a 875 regional minimum in the NAR (-51.2 \pm 16.6 mol C m⁻² y⁻¹; surface weighted average = -52.8 mol C m⁻² 876 877 y⁻¹). The MAR is characterized by intermediate values for $\overline{FCO_2}$, with a mean flux of 26.3 ± 34.6 mol C m⁻² y⁻¹ (surface weighted average =11.1 mol C m⁻² y⁻¹) and lowest values for \overline{NEM} (-15.1 ± 14.2 mol 878 C m⁻² y⁻¹; surface weighted average =-7.4 mol C m⁻² y⁻¹). This region also shows the largest variability 879 in CO2 outgassing compared to the NAR and SAR, with the standard deviation exceeding the mean 880 $\overline{FCO_2}$, and individual estimates ranging from 3.9 mol C m⁻² y⁻¹ to 150.8 mol C m⁻² y⁻¹. This variability 881 882 is mainly the result of largely variable estuarine surface areas and volumes. Some of the largest East 883 coast estuaries (e.g. Chesapeake and Delaware Bays), as well as some of smallest estuaries (e.g. York 884 River and Hudson River estuaries, Raymond et al., 1997; 2000), are located in this region (Tab. 2 and 4). The maximum values of 150.8 mol C m⁻² y⁻¹ simulated in the MAR are similar to the highest FCO₂ 885 reported in the literature (132.3 mol C m⁻² y⁻¹ for the Tapti estuary in India; Sarma et al., 2012). The 886 SAR is characterized by the highest mean $\overline{FCO_2}$ (46.7 ± 33.0 mol C m⁻² y⁻¹; surface weighted average 887 = 40.0 mol C m⁻² y⁻¹) and intermediate \overline{NEM} (-36.8 ± 24.7 mol C m⁻² y⁻¹; surface weighted average = -888 31.2 mol C m⁻² y⁻¹). 889

The NAR is characterized by a regional minimum in $\overline{FCO_2}$, and only contributes 4.6% to the total *FCO*₂ of the East coast of the US, owing to the small cumulative surface area available for gas exchange in its 10 estuarine systems. In contrast, the 18 MAR estuaries, with their large relative contribution to the total regional estuarine surface area, account for <u>as much as 70.1%</u> of the total outgassing. Because of their smaller cumulated surface area compared to those of the MAR, the 14 SAR estuaries account for merely 25.3% of the total outgassing despite their regional maximal $\overline{FCO_2}$. Deleted: 1able
Deleted: 3
Deleted: maximum

Deleted: table

Formatted: Font: Not Bold, Not Italic, No underline Deleted: more than 70%

902	A similar, yet slightly less pronounced pattern emerges for the $\overline{\textit{NEM}}$. The NAR, MAR and SAR
903	respectively contribute 13.7%, 60.7% and 25.6% to the total regional net ecosystem metabolism. The
904	comparatively larger relative contribution of the NAR to the total NEM as compared to the total
905	FCO_2 can be explained by the importance of the specific aspect ratio for NEM. <u>A larger ratio of</u>
906	estuarine width b0 and convergence length b corresponds to a more funnel shaped estuary while a
907	low ratio corresponds to a more prismatic geometry (Savenije, 2000; Volta et al., 2014). In the NAR,
908	estuaries are generally characterized by relatively narrow widths and deep-water depths, thus
909	limiting the potential surface area for gas exchange with the atmosphere. However, the relative
910	contribution of each region to the total regional NEM and FCO_2 is largely controlled by estuarine
911	surface area. Figure <u>9</u> illustrates the cumulative NEM (a) and FCO_2 (b) as a function of the cumulative
912	estuarine surface areas. The disproportionate contribution of large estuaries from the MAR
913	translates into a handful of systems (Chesapeake and Delaware Bays and the main tributaries of the
914	former, in particular) contributing to roughly half of the regional NEM and FCO ₂ , in spite of relatively
915	low individual rates per unit surface area. However, the smallest systems (mostly located in the NAR
916	and SAR) nevertheless still contribute a significant fraction to the total regional NEM and FCO_2 . The
917	27 smallest systems merely account for less than 10% of the total regional estuarine surface area,
918	yet contribute 38% and 29% to the total regional NEM and FCO ₂ , respectively (Fig. 9). This
919	disproportioned contribution can be mainly attributed to their high individual $\overline{FCO_2}$ and \overline{NEM} . This
920	is illustrated by the average simulated $\overline{FCO_2}$ for all 27 smallest systems (calculated as the sum of
921	each estuarine CO_2 outgassing per unit surface area divided by the total number of estuarine
922	systems) which is significantly higher (30.2 mol C m ⁻² y ⁻¹) than its surface weighted average (14 mol C
923	$m^{-2} y^{-1}$). Thereby accounting for the disproportionate contribution of very large systems (calculated
924	as the sum of each estuarine CO_2 outgassing divided by the total estuarine surface area across the
925	region).

Formatted: Font: Not Bold, Not Italic, No underline

Deleted: 7

Deleted: Figure Deleted: 7

929	Following the approach used in Regnier et al. (2013), the contribution of each biogeochemical
930	process to FCO_2 is assessed by evaluating their individual contribution to DIC and ALK changes <u>taking</u>
931	into account the local buffering capacity of an ionic solution when TA and DIC are changing due to
932	internal processes, but ignoring advection and mixing (Zeebe and Wolf-Gladrow 2001). In the
933	present study, we quantify the effect of the NEM on the CO_2 balance, which is almost exclusively
934	controlled by aerobic degradation rates because the contributions of denitrification and NPP to the
935	net ecosystem balance are small. Nitrification, a process triggered by the transport and/or
936	production of NH ₄ in oxygenated waters, favors outgassing through its effect on pH, which shifts the
937	acid-base equilibrium of carbonate species and increases the CO ₂ concentration. The contribution of
938	supersaturated riverine waters to the overall estuarine CO2 dynamics is calculated as difference
939	between all the other processes creating or consuming $CO_{2_{v}}$ Figure <u>10a</u> presents the contribution of
940	the annually integrated NEM, nitrification and evasion of supersaturated, DIC enriched riverine
941	waters to the total outgassing for each system, as well as for individual regions of the domain. The
942	calculation of these annual values is based on the sum of the seasonal fluxes. Model results reveal
943	that, regionally, the NEM supports about 50% of the estuarine CO_2 outgassing, while nitrification and
944	riverine DIC inputs sustain about 17% and 33% of the CO_2 emissions, respectively. The relative
945	significance of the three processes described above shows important spatial variability. In the NAR,
946	oversaturated riverine waters and NEM respectively sustain 50% and 44% of the outgassing within
947	the sub-region, while nitrification is of minor importance (6%). In the MAR, the contribution of
948	riverine DIC inputs is significantly lower (~30%) and the main contribution to the outgassing is NEM
949	(~50%); nitrification accounting for slightly less than 20% of the outgassing. In the SAR, the riverine
950	contribution is even lower (~20%), and the outgassing is mainly attributed to the NEM (~55%) and
951	nitrification (~25%). Therefore, although the model results reveal significant variability across
952	individual systems, a clear latitudinal trend in the contribution to the total FCO_2 emerge from the
953	analysis; the importance of oversaturated riverine water decreasing from North to South, while NEM
954	and nitrification increase along the same latitudinal gradient. The increasing relative importance of

Formatted: Font: Not Bold, Not Italic, No underline Deleted: T Formatted: Font: Not Bold, Not Italic, No underline

Formatted: Font: Not Bold, Not Italic, No underline

Deleted: (see Regnier et al., 2013b)
Deleted: .
Deleted: 8a

Formatted: Font: Not Bold, Not Italic, No underline

Deleted: Nitrification, a process triggered by the transport and/or production of NH₄ in oxygenated waters, favors outgassing through its effect on pH, which shifts the acid-base equilibrium of carbonate species and increases the CO₂ concentration. In addition, the *NEM* is almost exclusively controlled by aerobic degradation rates because the contribution of denitrification and NPP to the net ecosystem balance is small. ¶ 970 estuarine biogeochemical processes over riverine DIC inputs as drivers of FCO₂ along the North-

971 South gradient is largely driven by increasing temperatures from North to South, especially in the

972 SAR region (<u>Tab.</u> S<u>I</u>1).

973 Contrasting patterns across the 3 regions can also be observed with respect to carbon filtering capacities, *CFilt* (Fig.<u>10b</u>). In the NAR, over 90% of the riverine carbon flux is exported to the coastal 974 975 ocean. However, in the MAR, the high efficiency of the largest systems in processing organic carbon 976 results in a regional CFilt that exceeds 50%. This contrast between the NAR and the MAR and its 977 potential implication for the carbon dynamics of the adjacent continental shelf waters has already 978 been discussed by Laruelle et al. (2015). In the NAR, short estuarine residence results in a much 979 lower removal of riverine carbon by degassing compared to the MAR. Laruelle et al. (2015) 980 suggested that this process could contribute to the weaker continental shelf carbon sink adjacent to 981 the NAR, compared to the MAR. In the SAR, most estuaries remove between 40% and 65% of the 982 carbon inputs. The high temperatures observed and resulting accelerated biogeochemical process 983 rates in this region favor the degradation of organic matter and contribute to increase the estuarine 984 filtering capacity for carbon. However, in the SAR, a large fraction of the OC loads is derived from 985 adjacent salt marshes located along the estuarine salinity gradients, thereby reducing the overall 986 residence time of OC within the systems. The filtering capacity of the riverine OC alone, which 987 transits through the entire estuary, would thus be higher than the one calculated here. As a 988 consequence, highest C retention rates are expected in warm tidal estuaries devoid of salt marshes 989 or mangroves (Cai, 2011).

990 **3.2 Seasonal variability of estuarine carbon dynamics**

Carbon dynamics in estuaries of the US East coast not only show a marked spatial variability, but also vary on the seasonal timescale. Table 5 presents the seasonal distribution of *NEM* and *FCO*₂ for each sub-region. In the NAR, a strong seasonality is simulated for the *NEM* and the summer period contributes more than a third to the annually integrated value. The outgassing reveals a lower Deleted: Table

Deleted: 8b

997 seasonal variability and is only slightly higher than summer outgassing during fall and lower during 998 spring. In the MAR, summer contributes more to the NEM (>28% of the yearly total) than any other 999 season, but seasonality is less pronounced than in the NAR. Here, FCO_2 is largest in winter and 1000 particularly low during summer. In the SAR, summer accounts for 30 % of the NEM, while spring 1001 contributes 21 %. FCO₂ is relatively constant throughout the year suggesting that seasonal variations 1002 in carbon processing decrease towards the lower latitudes in the SAR. This is partly related to the 1003 low variability in river discharge throughout the year in lower latitudes (Tab. Sl1). In riverine 1004 dominated systems with low residence times, such as, for instance, the Altamaha River estuary, the 1005 CO₂ exchange at the air-water interface is mainly controlled by the river discharge because the time 1006 required to degrade the entire riverine organic matter flux exceeds the transit time of OC through 1007 the estuary. Therefore, the riverine sustained outgassing is highest during the spring peak discharge 1008 periods. In contrast, the seasonal variability in FCO₂ in long-residence, marine-dominated systems 1009 with large marsh areas (e.g. Sapelo and Doboy Sound) is essentially controlled by seasonal 1010 temperature variations. Its maximum is reached during summer when marsh plants are dying and 1011 decomposing, as opposed to spring when marshes are in their productive stage (Jiang et al., 2008). 1012 These contrasting seasonal trends have already been reported for different estuarine systems in 1013 Georgia, such as the Altamaha Sound, the Sapelo Sound and the Doboy Sound (Cai, 2011). At the 1014 scale of the entire East coast of the US, the seasonal trends in NEM reveal a clear maximum in 1015 summer and minimal values during autumn and winter. The seasonality of FCO_2 is much less 1016 pronounced because the outgassing of oversaturated riverine waters throughout the year 1017 contributes to a large fraction of the FCO_2 and dampens the effect of the temperature dependent 1018 processes (NEM and denitrification). In our simulations, the competition between temperature and 1019 river discharge is the main driver of the seasonal estuarine carbon dynamics is. When discharge 1020 increases, the carbon loads increase proportionally and the residence time within the system 1021 decreases, consequently limiting an efficient degradation of organic carbon input fluxes. In warm

Deleted: Table

regions like the SAR, the temperature is sufficiently high all year round to sustain high C processingrates and this explains the reduced seasonal variability in NEM.

1025

1026 **3.3 Regional carbon budget: a comparative analysis**

1027 The annual carbon budget for the entire East coast of the US is summarized in Fig. 11a. The total carbon input to estuaries along the East coast of the US is 4.6 Tg C y⁻¹, of which 42% arrives in 1028 1029 organic form and 58% in inorganic form. Of this total input, saltmarshes contribute 0.6 Tg C yr⁻¹, 1030 which corresponds to about 14% of the total carbon loads and 32% of the organic loads in the 1031 region. The relative contribution of the saltmarshes to the total carbon input increases towards low latitudes and is as high as 60% in the SAR region. Model results suggest that 2.7 Tg C y⁻¹ is exported 1032 to the continental shelf (25% as TOC and 75% as DIC), while 1.9 Tg C y⁻¹ is emitted to the 1033 1034 atmosphere. The overall carbon filtering capacity of the region thus equals 41% of the total carbon 1035 entering the 43 estuarine systems (river + saltmarshes). Because of the current lack of a benthic 1036 module in C-GEM, the water column carbon removal occurs entirely in the form of CO₂ outgassing 1037 and does not account for the potential contribution of carbon burial in sediments. The estimated 1038 estuarine carbon retention presented here is thus likely a lower bound estimate. Reported to the modeled surface area of the region, the total FCO_2 of 1.9 Tg C y⁻¹ translates into a mean air water 1039 CO_2 flux of about 14 mol C m⁻² y⁻¹. This value is slightly higher than the estimate of 10.8 mol C m⁻² y⁻¹ 1040 calculated by Laruelle et al., (2013) on the basis of local $\overline{FCO_2}$ estimates assumed to be 1041 1042 representative of yearly averaged conditions (see section 2.1). The latter was calculated as the average of 13 annual $\overline{FCO_2}$ values reported in the literature (Tab. 2), irrespective of the size of the 1043 1044 systems. This approach is useful and widely used to derive regional and global carbon budgets 1045 (Borges et al., 2005; Laruelle et al., 2010; Chen et al., 2013). However, it may lead to potentially 1046 significant errors (Volta et al., 2016a) due to the uncertainty introduced by the spatial interpolation

Deleted: fig Deleted: 9a

Deleted: table

of local measurements to large regional surface areas, while useful and widely used to deriveregional and global carbon budgets.

1054 Regional C budgets are sparse. To our knowledge, the only other published regional assessment of 1055 the estuarine carbon and CO_2 dynamics comes from a relatively well studied region: the estuaries 1056 flowing into the North Sea in Western Europe (Fig. <u>11b</u>). This budget was calculated using a similar 1057 approach (Volta 2016a) and thus provides an ideal opportunity for a comparative assessment of C 1058 cycling in these regions. However, it is important to note that there are also important differences in 1059 the applied model approaches and those differences should be taken into account when comparing 1060 the derived budgets. In particular, the NW European study is based on a simulation of the 6 largest 1061 systems only (Elbe, Scheldt, Thames, Ems, Humber and Weser), accounting for about 40% for the 1062 riverine carbon loads of the region. It assumes that the intensity of carbon processing and evasion in 1063 all other smaller estuaries discharging into the North Sea (16 % of the carbon loads) can be 1064 represented by the average of the 6 largest system simulation results. In addition, the Rhine-Meuse 1065 system, which alone accounts for 44% of the carbon riverine inputs of the region, was treated as a 1066 passive conduit with respect to carbon due to its very short freshwater residence time (Abril et al., 1067 2002). The contribution of saltmarshes to the regional carbon budget was also ignored because their 1068 total surface area is much smaller than along the US East coast (Regnier et al., 2013b). Another 1069 important difference is the inclusion of seasonality in the present study while the budget calculated 1070 for the North Sea is derived from yearly average conditions (Volta et al., 2016a).

1071 Overall, although both regions receive similar amounts of C from rivers (4.6 Tg C y^{-1} and 5.9 Tg C y^{-1} 1072 for the East coast of the US and the North Sea, respectively), they reveal significantly different C 1073 filtering capacities. While the estuaries of the East coast of the US filter 41% of the riverine TC loads, 1074 those from the North Sea only remove 8% of the terrestrial-derived material. This is partly due to the 1075 large amounts of carbon transiting through the 'passive' Rhine-Meuse system. The regional filtering 1076 capacity is higher (15%) when this system is excluded from the analysis. However, even when Deleted: 9b

1078	neglecting this system, significant differences in filtering efficiencies between both regions remain.
1079	FCO_2 from the North Sea estuaries (0.5 Tg C y ⁻¹) is significantly lower than the 1.9 Tg C y ⁻¹ computed
1080	for the East coast of the US. The reason for the lower evasion rate in NW European estuaries is
1081	essentially twofold. First, the total cumulative surface area available for gas exchange is significantly
1082	lower along the North Sea, in spite of comparable flux densities calculated using the entire estuarine
1083	surface areas of both regions (14 mol C m ⁻² y ⁻¹ and 23 mol C m ⁻² y ⁻¹ for the East coast of the US and
1084	the North Sea, respectively). Second, although the overall riverine carbon loads are comparable in
1085	both regions (Fig. <u>11</u>), the ratio of organic to inorganic matter input is much lower in the North Sea
1086	area because of the regional lithology is dominated by carbonate rocks and mixed sediments that
1087	contain carbonates (Dürr et al., 2005; Hartmann et al., 2012). As a consequence, TOC represents less
1088	than 20% of the riverine loads and only 10% of the carbon exported to the North Sea. In both
1089	regions, however, the increase of the inorganic to organic carbon ratio between input and output is
1090	sustained by a negative NEM (Fig. <u>11</u>). Although the ratios themselves may significantly vary from a
1091	region of the world to the other as evidenced by these two studies, a NEM driven increase of the
1092	inorganic fraction within carbon load along the estuarine axis is consistent with the global estuarine
1093	carbon budget proposed by Bauer et al. (2013). In the East coast of the US, the respiration of riverine
1094	OC within the estuarine filter is partly compensated by OC inputs from marshes and mangroves in
1095	such a way that the input and export IC/OC ratios are closer than in the North Sea region.

1096 **3.4 Scope of applicability and model limitations**

1097 Complex multidimensional models are now increasingly applied to quantitatively explore carbon and
 1098 nutrient dynamics along the land-ocean transition zone over seasonal and even annual timescales
 1099 (Garnier et al., 2001; Arndt et al., 2007, 2009; Arndt and Regnier, 2007; Mateus et al., 2012).
 1100 However, the application of such complex models remains limited to individual, well-constrained
 1101 systems due their high data requirements and computational demand resulting from the need to
 1102 resolve important physical, biogeochemical and geological processes on relevant temporal and

Deleted: 9

Deleted: 9

1105	spatial scales. The one-dimensional, computationally efficient model C-GEM has been specifically
1106	designed to reduce data requirements and computational demand and to enable regional/global
1107	scale applications (Volta et al., 2014, 2016a). However, such a low data demand and computational
1108	efficiency inevitably requires simplification. The following paragraphs critically discus these
1109	simplifications and their implications.
1110	<u>Spatial resolution</u>
1111	Here, C-GEM is used with a 0.5° spatial resolution. While this resolution captures the features of
1112	large systems, it is still very coarse for relatively small watershed, such as those of the St. Francis
1113	River, Piscataqua River, May River or the Sapelo River. For instance, the 5 estuaries reported by Hunt
1114	et al. (2010, 2011, see section 2.6) are all small systems contained by the same watershed at a 0.5°
1115	resolution. Only watersheds whose area spans several grid cells can be properly identified and
1116	represented (i.e. Merrimack or Penobscot with 6 and 9 cells, respectively).
1117	
1117 1118	Hydrodynamic and Transport Model
	<u>Hydrodynamic and Transport Model</u> <u>C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces</u>
1118	
1118 1119	C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces
1118 1119 1120	<u>C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces</u> <u>data requirements. These idealized geometries are fully described by three, easily obtainable</u>
1118 1119 1120 1121	<u>C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces</u> <u>data requirements. These idealized geometries are fully described by three, easily obtainable</u> <u>geometrical parameters (B, b₀, H). The model thus approximates the variability of estuarine width</u>
1118 1119 1120 1121 1122	<u>C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces</u> <u>data requirements. These idealized geometries are fully described by three, easily obtainable</u> <u>geometrical parameters (B, b₀, H). The model thus approximates the variability of estuarine width</u> <u>and cross-section along the longitudinal axis through a set of exponential functions. A</u>
1118 1119 1120 1121 1122 1123	<u>C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces</u> <u>data requirements. These idealized geometries are fully described by three, easily obtainable</u> <u>geometrical parameters (B, b₀, H). The model thus approximates the variability of estuarine width</u> <u>and cross-section along the longitudinal axis through a set of exponential functions. A</u> <u>comprehensive sensitivity study (Volta et al., 2014) has shown that integrated process rates are</u>
 1118 1119 1120 1121 1122 1123 1124 	<u>C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces</u> data requirements. These idealized geometries are fully described by three, easily obtainable geometrical parameters (B, b ₀ , H). The model thus approximates the variability of estuarine width and cross-section along the longitudinal axis through a set of exponential functions. A comprehensive sensitivity study (Volta et al., 2014) has shown that integrated process rates are generally sensitive to changes in these geometrical parameters because of their control on estuarine
 1118 1119 1120 1121 1122 1123 1124 1125 	C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces data requirements. These idealized geometries are fully described by three, easily obtainable geometrical parameters (B, b ₀ , H). The model thus approximates the variability of estuarine width and cross-section along the longitudinal axis through a set of exponential functions. A comprehensive sensitivity study (Volta et al., 2014) has shown that integrated process rates are generally sensitive to changes in these geometrical parameters because of their control on estuarine residence times. For instance, Volta et al. (2014) demonstrated that the NEM, is particularly sensitive
 1118 1119 1120 1121 1122 1123 1124 1125 1126 	C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces data requirements. These idealized geometries are fully described by three, easily obtainable geometrical parameters (B, b ₀ , H). The model thus approximates the variability of estuarine width and cross-section along the longitudinal axis through a set of exponential functions. A comprehensive sensitivity study (Volta et al., 2014) has shown that integrated process rates are generally sensitive to changes in these geometrical parameters because of their control on estuarine residence times. For instance, Volta et al. (2014) demonstrated that the NEM, is particularly sensitive to the convergence length. Similarly, the use of constant depth profile may lead to variations of
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127	C-GEM is based on a theoretical framework that uses idealized geometries and significantly reduces data requirements. These idealized geometries are fully described by three, easily obtainable geometrical parameters (B, b ₀ , H). The model thus approximates the variability of estuarine width and cross-section along the longitudinal axis through a set of exponential functions. A comprehensive sensitivity study (Volta et al., 2014) has shown that integrated process rates are generally sensitive to changes in these geometrical parameters because of their control on estuarine residence times. For instance, Volta et al. (2014) demonstrated that the NEM, is particularly sensitive to the convergence length. Similarly, the use of constant depth profile may lead to variations of about 10% in NEM (Volta et al., 2014). Nevertheless, geometrical parameters are generally easy to

1130	depths. In addition, the model also accounts for the slope of the estuarine channel. This approach
1131	ensures that simulated estuarine surface areas, volumes and, thus, residence times are in good
1132	agreement with those of the real systems and minimizes uncertainties associated to the physical set-
1133	up.
1134	In addition, the one-dimensional representation of the idealized estuarine systems does not resolve
1135	two- or three-dimensional circulation features induced by complex topography and density driven
1136	circulation. While C-GEM performs well in representing the dominant longitudional gradients, its
1137	applicability to branched systems or those with aspect ratios for which a dominant axis is difficult to
1138	identify (e.g. Blackwater estuary, UK; Pearl River estuary, China; Tagus estuary, Portugal; Bay of
1139	Brest, France) is limited.
1140	Biogeochemical Model
1141	Although the reaction network of C-GEM accounts for all processes that control estuarine FCO ₂
1142	(Borges and Abril, 2012; Cai, 2011), several, potentially important processes, such as benthic-pelagic
1143	exchange processes, phosphorous sorption/desorption and mineral precipitation, a more complex
1144	representation of the local phytoplankton community, grazing by higher trophic levels, or multiple
1145	reactive organic carbon pools are not included. Although these processes are difficult to constrain
1146	and their importance for FCO_2 is uncertain, the lack of their explicit representations induces
1147	uncertainties in Cfilt. In particular, the exclusion of benthic processes such as organic matter
1148	degradation and burial in estuarine sediments could result in an underestimation of Cfilt. However,
1149	because very little is known on the long term fate of organic carbon in estuarine sediments, setting
1150	up and calibrating a benthic module proves a difficult task. Furthermore, to a certain degree model
1151	parameters (such as organic matter degradation and denitrification rate constant) implicitly account
1152	for benthic dynamics. We nonetheless acknowledge that, by ignoring benthic processes and burial in
1153	particular, our estimates for the estuarine carbon filtering may be underestimated, particularly in
1154	the shallow systems of the SAR.
	33

1155	Biogeochemical model parameters for regional and global applications are notoriously difficult to
1156	constrain (Volta et al., 2016b). Model parameters implicitly account for processes that are not
1157	explicitly resolved and their transferability between systems is thus limited. In addition, published
1158	parameter values are generally biased towards temperate regions in industrialized countries (Volta
1159	et al., 2016b). A first order estimation of the parameter uncertainty associated to the estuarine
1160	carbon removal efficiency (CFilt) can be extrapolated from the extensive parameter sensitivity
1161	analyses carried out by Volta et al. (2014, 2016b). These comprehensive sensitivity studies on end-
1162	member systems have shown that the relative variation in Cfilt when a number of key
1163	biogeochemical parameters are varied by two orders of magnitude varies by is ±15 % in prismatic
1164	(short residence time on order of days) to ±25 % in funnel-shaped (long residence time) systems.
1165	Thus, assuming that uncertainty increases linearly between those bounds as a function of residence
1166	time, an uncertainty estimate can be obtained for each of our modelled estuary. With this simple
1167	method, the simulated regional Cfilt of 1.9 Tg C yr-1 would be associated with an uncertainty range
1168	comprised between 1.5 and 2.2 Tg C yr ⁻¹ . Our regional estuarine CO ₂ evasion estimate is thus
1169	reported with moderate confidence. Furthermore, in the future, this uncertainty range could be
1170	further constrained using statistical methods such as Monte Carlo simulations (e.g. Lauerwald et al.,
1171	<u>2015).</u>
1172	Boundary Conditions and Forcings
1173	In addition, simulations are only performed for climatological means over the period 1990-2010
1174	without resolving interannual and secular variability. Boundary conditions and forcings are critical as
1175	they place the modelled system in its environmental context and drive transient dynamics. However,
1176	for regional applications, temporally resolved boundary conditions and forcings are difficult to
1177	constrain. C-GEM places the lower boundary condition 20 km from the estuarine mouth into the
1178	coastal ocean and the influence of this boundary condition on simulated biogeochemical dynamics is
1179	thus limited. At the lower boundary condition, direct observations for nutrients and oxygen are

1180	extracted from databases such as the World Ocean Atlas (Antonov et al., 2014). However, lower
1181	boundary conditions for OC and pCO_2 (zero concentration for OC and assumption of pCO_2
1182	equilibrium at the sea side) are simplified. This approach does not allow addressing the additional
1183	complexity introduced by biogeochemical dynamics in the estuarine plume (see Arndt et al., 2011).
1184	Yet, these dynamics only play a secondary role in the presented study that focuses on the role of the
1185	estuarine transition zone in processing terrestrial-derived carbon.
1186	Constraining upper boundary conditions and forcings is thus more critical. Here, C-GEM is forced by
1187	seasonally-averaged conditions for Q, T, and radiation. To date, GlobalNEWS only provide yearly-
1188	averaged conditions for a number of upper boundary conditions (Seitzinger et al., 2005; Mayorga et
1189	al., 2010), representative of the year 2000. Simulations are thus only partly transient (induced by
1190	seasonality in Q, T and radiation) and do not resolve short-lived events such as storms or extreme
1191	drought conditions. In addition, direct observations of upper boundary conditions are rarely
1192	available- in particular over seasonal or annual timescales. For the US East Coast estuaries, direct
1193	observations are only available for O ₂ , chlorophyll a, DIC and Alk. For DIC and alkalinity and boundary
1194	conditions are constrained by calculating the average concentration over a period of about three
1195	decades. In addition, observational data is extracted at the station closest to the model's upper
1196	boundary, which might be still located several kilometres upstream or downstream of the model
1197	boundary. Upper boundary conditions of POC, DOC, DIN, DIP, DSi are extracted from GlobalNews
1198	and thus model-derived. As a consequence, our results are thus intimately dependent on the
1199	robustness of the GlobalNEWS predictions. These values are usually only considered robust
1200	estimates for watersheds larger than ~10 cells (Beusen et al., 2005), which only correspond to 13 of
1201	the 43 estuaries modelled in this study.
1202	Model-data comparison
1203	The generic nature of the applied model approach and, in particular the application of
1204	seasonally/annually averaged or model-deduced boundary conditions renders a direct validation of
I	35

1205	model results on the basis of local and instantaneous observational data (e.g. longitudinal profiles),
1206	which is likely not representative of these long-term average conditions, difficult. Therefore, model
1207	performance is evaluated on the basis of spatially aggregated estimates (e.g. regional FCO ₂ estimates
1208	based on local measurements) rather than system-to-system comparisons with longitudinal profile
1209	from specific days. However, note that the performance of C-GEM has been intensively tested by
1210	specific model-data comparisons for a number of different systems (e.g. Volta et al., 2014, 2016a)
1211	and we are thus confident of its predictive capabilities.
1010	
1212	Despite the numerous simplifying assumptions inevitably required for such a regional assessment of
1213	carbon fluxes along the land-ocean continuum, the presented approach does nevertheless provide
1214	an important step forward in evaluating the role of land-ocean transition systems in the global
1215	carbon cycle. It provides a first robust estimate of carbon dynamics based on a theoretically well-
1216	founded and carefully tested, spatially and temporally resolved model approach. This approach
1217	provides novel insights that go beyond those gained through traditionally applied zero-salinity
1218	method or box model approaches. In addition, it also highlights critical variables and data gaps and
1219	thus helps guide efficient monitoring strategies.

1220 **3,5** Towards predictors of the estuarine carbon processing

1221 The mutual dependence between geometry and transport in tidal estuaries and, ultimately, their 1222 biogeochemical functioning (Savenije, 1992; Volta et al., 2014) allows relating easily extractable 1223 parameters linked to their shape or their hydraulic properties to biogeochemical indicators. In this 1224 section, we explore the relationships between such simple physical parameters and indicators of the estuarine carbon processing $\overline{\textit{NEM}}$, $\overline{\textit{FCO}_2}$ and CFilt. In order to account for the effect of temperature 1225 on C dynamics, $-\overline{NEM}$ and $\overline{FCO_2}$ are also normalized to the same temperature (arbitrarily chosen to 1226 be 0 degree). These normalized values are obtained by dividing $-\overline{NEM}$ and $\overline{FCO_2}$ by a Q₁₀ function 1227 1228 f(T) (see Volta et al., 2014). This procedure allows accounting for the exponential increase in the rate 1229 of several temperature dependent processes contributing to the NEM (i.e. photosynthesis, organic

Deleted: 4

Deleted:

1232 carbon degradation...). Applying the same normalization to $-\overline{NEM}$ and $\overline{FCO_2}$ is a way of testing how 1233 intimately linked NEM and FCO₂ are in estuarine systems. Indeed linear relationships relating one to 1234 the other have been reported (Mayer and Eyre, 2012). The three indicators are then investigated as 1235 a function of the ratio between the estuarine surface S and the seasonal river discharge Q. The 1236 surface area is calculated from the estuarine width and length, as described by equation 2, in order 1237 to use a parameter which is potentially applicable to other regions for which direct estimates of the 1238 real estuarine surface area is not available. Since the fresh water residence time of a system is 1239 obtained by dividing volume by river discharge, the S/Q ratio is also intimately linked to residence 1240 time. Here, we choose to exclude the estuarine depth from the analysis because this variable cannot 1241 be easily quantified from maps or remote sensing images and would thus compromise the 1242 applicability of a predictive relationship on the global scale. However, from dimensional analysis, S/Q 1243 can be viewed as a water residence time normalized to meter depth of water. As shown by equation 3, S only requires constraining BO and width convergence length b, two parameters that can readily 1244 1245 be extracted from the Google Earth engine. Global database of river discharges, as for instance 1246 RivDIS (Vörösmarty et al., 1996) are also available in such a way that the S/Q ratio can potentially be 1247 extracted for all estuaries around the globe.

Figure <u>12a</u> reveals that small values of S/Q are associated with the most negative $\overline{NEM} / f(T)$. The 1248 magnitude of the \overline{NEM} then exponentially decreases with increasing values of S/Q. Estuaries 1249 1250 characterized by small values of S/Q are mainly located in the NAR sub-region and correspond to small surface area, and thus short residence time systems. It is possible to quantitatively relate -1251 <u>NEM</u> /f(T) and S/Q through a power law function (y = 25.85 x^{-0.64} with a r² = 0.82). The coefficient 1252 1253 of determination remains the same when excluding estuaries from the NAR region and the equation 1254 itself is not significantly different, although those estuaries on their own do not display any 1255 statistically significant trend (Tab. 6). The decrease in the intensity of the net ecosystem metabolism 1256 in larger estuaries (Fig 2), characterized by high S/Q ratios, can be related to the extensive

Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic, Subscript

Deleted: 10a

Deleted: table

Deleted: 6

consumption of the organic matter pool during its transit through the estuarine filter. However, when reported to the entire surface area of the estuary, larger systems (with high values of S/Q) still reveal the most negative surface integrated *NEM* (Fig. 12b). It can also be noted that some estuaries from the NAR region display very low values of *–NEM*. These data points correspond to fall and winter simulations for which the temperature was relatively cold (<5 °C) and biogeochemical processing was very low.

The overall response of $\overline{FCO_2}/f(T)$ to S/Q is comparable to that of $\overline{-NEM}/f(T)$ (Fig. 12c), with 1266 lower values of $\overline{FCO_2}$ observed for high values of S/Q. However, for S/Q < 3 days m⁻¹, the $\overline{FCO_2}$ 1267 values are very heterogeneous and contain many, low $\overline{FCO_2}$ outliers from the NAR region. These 1268 1269 data points generally correspond to low water temperature conditions which keep pCO2 low, even if 1270 the system generates enough CO_2 internally via NEM. Thus, the well-documented correlation between \overline{NEM} and $\overline{FCO_2}$ (Maher and Eyre, 2012) does not seem to hold for systems with very short 1271 residence times. For systems with S/Q > 3 days m⁻¹, we obtain a regression $FCO_2 = -0.64 \times NEM + 5.96$ 1272 1273 with a r^2 of 0.46, which compares well with the relation $FCO_2 = -0.42 \times NEM + 12$ proposed by Maher 1274 and Eyre (2012) who, used 24 seasonal estimates from small Australian estuaries. However, our 1275 results suggest that this relationship cannot be extrapolated to small systems such as those located 1276 in the NAR. Figure 12d, which reports non-normalized FCO2 reveals a monotonous increase of FCO2 1277 with S/Q. This suggests that, unlike the NEM for which the normalization by a temperature function 1278 allowed explaining most of the variability; FCO2 is mostly controlled by the water residence time 1279 within the system. Discharge is the main FCO2 driver in riverine dominated systems, while 1280 interactions with marshes are driving the outgassing in marine dominated systems surrounded by 1281 marshes. Net aquatic biological production (NEM being negative or near 0) in large estuaries (with 1282 large S/Q) is another important reason for low FCO₂ in such systems. For example, despite the higher 1283 CO_2 degassing flux in the upper estuary of the Delaware, strong biological CO_2 uptake in the mid-bay 1284 and near zero NEM in the lower bay result in a much lower FCO₂ for the entire estuary (Joesoef et al.

Deleted: 10c

Deleted: fig Deleted: 10b

Deleted: m

Formatted: Font: Italic

1289 2015). In systems with S/Q < 3 days m⁻¹, the short residence time prevents the excess CO₂ of 1290 oversaturated water from being entirely exchanged with the atmosphere and simulations reveal that 1291 the estuarine waters are still oversaturated in CO_2 at the estuarine mouth. Thus, the inorganic 1292 carbon, produced by the decomposition of organic matter, is not outgassed within the estuary but 1293 exported to the adjacent continental shelf waters. This result is consistent with the observation-1294 based hypothesis of Laruelle et al. (2015) for the NAR estuaries. As a consequence of the distinct 1295 behavior of short residence time systems, the coefficient of determination of the best-fitted power 1296 law function relating $\overline{FCO_2}$ and S/Q is only significant if NAR systems are excluded (y = 31.64 x^{-0.58} with a $r^2 = 0.70$). This thus suggest that such relationships (as well as that proposed by Maher and 1297 1298 Eyre, 2012) cannot be applied to any system but only those for which S/Q>3 day m⁻¹.

1299 Finally, Fig. 12e reports the simulated mean seasonal carbon filtering capacities as a function of the 1300 depth normalized residence time. Not surprisingly, and in overall agreement with previous studies 1301 on nutrient dynamics in estuaries (Nixon et al., 1996), the carbon filtering capacity increases with 1302 S/Q. The best statistical relation between CFilt and S/Q is obtained when including all 3 regions, 1303 resulting in $r^2 = 0.70$ (y = 40.64 log₁₀(x) + 11.84). Very little C removal occurs in systems with S/Q < 1 day m⁻¹. For systems characterized by longer depth-normalized residence times, CFilt increases 1304 regularly, and reaches 100% for S/Q > 100 day m⁻¹. Such high values are only observed for very large 1305 1306 estuaries from the MAR region (Delaware and Chesapeake Bays); the majority of our systems had an 1307 S/Q range between 1 and 100 day m⁻¹. The quantitative assessment of estuarine filtering capacities 1308 is further complicated by the complex interplay of estuarine and coastal processes. Episodically, 1309 marked spatial variability in concentration gradients near the estuarine mouth may lead to a reversal 1310 of net material fluxes from coastal waters into the estuary (Regnier at al., 1998; Arndt et al. 2011). 1311 Our results show that this feature is particularly significant for estuaries with a large width at the 1312 mouth and short convergence length (funnel shaped or 'Bay type' systems). These coastal nutrient 1313 and carbon inputs influence the internal estuarine C dynamics and lead to filtering capacities that Formatted: Superscript

Deleted: Figure

can exceed 100%. This feature is particularly significant in summer, when riverine inputs are low andthe marine material is intensively processed inside the estuary.

1318 Previous work investigated the relationship between fresh water residence time and nutrient 1319 retention (Nixon et al., 1996; Arndt et al., 2011; Laruelle, 2009). These studies, however, were 1320 constrained by the scarcity of data. For instance, the pioneering work of Nixon et al. (1996) only 1321 relied on a very limited number (<10) of quite heterogeneous coastal systems, all located along the 1322 North Atlantic. Here, our modeling approach allows us to generate 172 (43 x 4) data points, each 1323 representing a system-scale biogeochemical behavior. Together, this database spans the entire 1324 spectrum of estuarine settings and climatic conditions found along the East coast of the US. In 1325 addition, the ratio S/Q used as master variable for predicting temperature normalized \overline{NEM} , $\overline{FCO_2}$ 1326 and CFilt only requires a few easily accessible geometric parameters (B0, b and L) and an estimate of the river discharge. While it is difficult to accurately predict $\overline{FCO_2}$ for small systems such as those 1327 1328 located in the NAR region, the relationships found are quite robust for systems in which S/Q > 3 days 1329 m⁻¹. Most interestingly, *CFilt* values reveal a significant correlation with S/Q and could be used in 1330 combination with global riverine carbon delivery estimates such as GlobalNews 2 (Mayorga et al., 1331 2010) to constrain the estuarine CO_2 evasion and the carbon export to the coastal ocean at the 1332 continental and global scales.

1333 4. Conclusions

This study presents the first complete estuarine carbon budget for the East coast of the US using a modeling approach. The structure of the model C-GEM relies on a restricted number of readily available global datasets to constrain boundary conditions and limits the number of geometrical and physical parameters to be constrained. Our simulations predict a total CO₂ outgassing of 1.9 Tg C y⁻¹ for all tidal estuaries of the East coast of the US. This quantification accounts for the seasonality in estuarine carbon processing as well as for distinct individual behaviors among estuarine types (marine or river dominated). The total carbon output to the coastal ocean is estimated at 2.7 TgC y⁻¹, 1341 and the carbon filtering capacity with respect to riverine, marshes and mangrove inputs is thus on 1342 the order of 40%. This value is significantly higher than the recently estimated C filtering capacity for 1343 estuaries surrounding the North Sea using a similar approach (Volta et al., 2016a), mainly because 1344 the surface area available for gas exchange and the draining lithology limits the CO₂ evasion in the 1345 NW European systems. At the regional scale of the US East coast estuaries, net heterotrophy is the 1346 main driver (50%) of the CO_2 outgassing, followed by the ventilation of riverine supersaturated 1347 waters entering the estuarine systems (32%) and nitrification (18%). The dominant mechanisms for 1348 the gas exchange and the resulting carbon filtering capacities nevertheless reveal a clear latitudinal 1349 pattern, which reflects the shapes of estuarine systems, climatic conditions and dominant land-use 1350 characteristics.

1351 Our model results are used to derive predictive relationships relating the intensity of the area-based Net Ecosystem Metabolism (\overline{NEM}), air-water CO₂ exchange ($\overline{FCO_2}$) and the carbon filtering capacity 1352 1353 (CFilt) to the depth normalized residence time, expressed as the ratio of the estuarine surface area 1354 to the river discharge. In the future, such simple relationships relying on readily available geometric 1355 and hydraulic parameters could be used to quantify carbon processing in areas of the world devoid 1356 of direct measurements. However, it is important to note that such simple relationships are only 1357 valid over the range of boundary conditions and forcings explored and may not be applicable to 1358 conditions that fall outside of this range. In regions with better data coverage, such as the one 1359 investigated here, our study highlights that the regional-scale quantification, attribution, and 1360 projection of estuarine biogeochemical cycling are now at reach.

Formatted: Font: Not Bold, Not Italic, No underline

1361 5. Acknowledgements

G. G. Laruelle is Chargé de recherches du F.R.S.-FNRS at the Université Libre de Bruxelles. The
research leading to these results has received funding from the European Union's Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agreement No 643052

Deleted: prediction

1366 (C-CASCADES project). The authors thank V. L. Mulder for her thorough reading of the manuscript

1367 upon submission.

1369	References:	Deleted: 1
1370	Abril, G., Nogueira, M., Etcheber, H., Cabeçadas, G., Lemaire, E., and Brogueira, M.J.: Behaviour of	
1371 1372	organic carbon in nine contrasting European estuaries. Estuar. Coast. Shelf Sci., 54, 241-262, 2002.	
1373	Antonov, J.I., Seidov, D., Boyer, T.P., Locarnini, R.A., Mishonov, A.V., Garcia, H.E., Baranova, O.K.,	
1374	Zweng, M.M., and Johnson, D.R.: World Ocean Atlas 2009, Volume 2: Salinity. S., 2010.	
1375	Arndt, S., Vanderborght, J.P., and Regnier, P.: Diatom growth response to physical forcing in a	
1376	macrotidal estuary: Coupling hydrodynamics, sediment transport, and biogeochemistry.	
1377	Journal of Geophysical Research C: Oceans, 112(5), 2007.	
1378	Arndt, S. and Regnier, P.: A model for the benthic-pelagic coupling of silica in estuarine ecosystems:	
1379	sensitivity analysis and system scale simulation, Biogeosciences, 4, 331–352, doi:10.5194/bg-	Formatted: English (U.K.)
1380	<u>4-331-2007, 2007.</u>	
1381	Arndt, S., Regnier, P., and Vanderborght, J.P.: Seasonally-resolved nutrient export fluxes and filtering	
1382	capacities in a macrotidal estuary. Journal of Marine Systems, 78(1), 42-58, 2009.	
1383	Arndt, S., Lacroix, G., Gypens, N., Regnier, P., and Lancelot, C.: Nutrient dynamics and phytoplankton	
1384	development along an estuary-coastal zone continuum: A model study. Journal of Marine	
1385	Systems, 84(3-4), 49-66, 2011.	
1386	Atlas, R., Hoffman, R.N., Ardizzone, J., Leidner, S.M., Jusem, J.C., Smith, D.K. and Gombos, D.: A	
1387	cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and	
1388	oceanographic applications. Bulletin of the American Meteorological Society, 92(2), 157-174,	
1389	2011.	
1390	Baklouti, M., Chevalier, C., Bouvy, M., Corbin, D., Pagano, M., Troussellier, M., and Arfi, R.: A study of	Formatted: English (U.K.)
1391	plankton dynamics under osmotic stress in the Senegal River Estuary, West Africa, using a 3D	
1392	<u>mechanistic model, Ecol. Model., 222, 2704–2721, 2011.</u>	
1393	Bauer, J.E., Cai, W.J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., and Regnier, P.A.G.: The changing	Deleted: ¶
1394	carbon cycle of the coastal ocean. Nature, 504(7478), 61-70, 2013.	
1395	Beusen, A. H.W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W., and Harrison, J.: Estimation of global	
1396	river transport of sediments and associated particulate C, N, and P, Global Biogeochem. Cy.,	
1397	<u>19, GB4S05, doi:10.1029/2005GB002453, 2005.</u>	
1398	Beusen, A.H.W., Bouwman, A.F., Dürr, H.H., Dekkers, A.L.M., and Hartmann, J.: Global patterns of	
1399	dissolved silica export to the coastal zone: Results from a spatially explicit global model.	
1400	Global Biogeochemical Cycles, 23, GB0A02, doi:10.1029/2008GB003281, 2009.	
1401	Billen, G., Thieu, V., Garnier, J., and Silvestre, M.: Modelling the N cascade in regional waters: The	
1402	case study of the Seine, Somme and Scheldt rivers, Agr. Ecosyst. Environ., 133, 234–246,	
1403	2009.	
1404	Borges, A.V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources of CO ₂ in the coastal	
1405	ocean: Diversity of ecosystems counts. Geophys. Res. Lett., 32(14), L14601, 2005.	
1406	Borges, A.V., and Abril, G.: Carbon Dioxide and Methane Dynamics in Estuaries. In: E. Wolanski and	
1407	D.S. McLusky (Editors), Treatise on Estuarine and Coastal Science. Academic Press, Waltham,	
1408	pp. 119–161, 2012.	
1409	Bricker, S., Longstaff, B., Dennison, W., Jones, A., Boicourt, K., Wicks, C., and Woerner, J.: Effects of	
1410	Nutrient Enrichment In the Nation's Estuaries: A Decade of Change, NOAA, MD, 2007.	
1411	Brock, T.D.: Calculating solar radiation for ecological studies. Ecological Modelling, 14(1-2), 1-19,	
1412	1981.	
1413	Caffrey, J.: Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries, 27(1), 90-101,	
1414	2004.	
1415	Cai, W.J., and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters	
1416	of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 43(4), 657-668,	
1417	1998.	
1418	Cai, W.J., Wang, Y., and Hodson, R. E.: Acid-base properties of dissolved organic matter in the	Formatted: English (U.K.)
1419	estuarine waters of Georgia, USA. Geochimica et Cosmochimica Acta, 62(3), 473-483, 1998.	Formatted: English (U.K.)

- Cai, W.J., Pomeroy, L.R., Moran, M.A., and Wang, Y.: Oxygen and carbon dioxide mass balance for
 the estuarine-intertidal marsh complex of five rivers in the southeastern U.S. Limnology and
 Oceanography, 44, 639-649, 1999.
- 1425Cai, W.J.: Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon1426incineration? Ann. Rev. Mar. Sci., 3, 123-145, 2011.
- 1427Cerco, C., Kim, S.-C., and Noel, M.: The 2010 Chesapeake Bay eutrophication model. US1428Environmental Protection Agency Chesapeake Bay Program, Annapolis, MD, 2010.
- Chen, C.-T.A., Huang, T.-H., Fu, Y.-H., Bai, Y., and He, X.: Strong sources of CO2 in upper estuaries
 become sinks of CO2 in large river plumes. Current Opinion in Environmental Sustainability,
 4(2), 179-185, 2012.
- 1432Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y.: Air-sea exchanges of CO2 in the1433world's coastal seas, Biogeosciences, 10, 6509–6544, doi:10.5194/bg-10-6509-2013, 2013.
- 1434Dai, T., and Wiegert, R.G.: Estimation of the primary productivity of Spartina alterniflora using a1435canopy model. Ecography, 19(4), 410-423, 1996.
- 1436 Dufore, C. M.: Spatial and Temporal Variations in the Air-Sea Carbon Dioxide Fluxes of Florida Bay,
 1437 Gratuate School Thesis, University of South Florida, 2012.
- Dürr, H.H., Meybeck, M., and Dürr, S.H.: Lithological composition of the Earth's continental surfaces
 derived from a new digital map emphasizing riverine material transfer. Glob. Biogeochem.
 Cycles 19 (4), GB4S10, 2005.
- Dürr, H.H., Laruelle, G.G., van Kempen, C.M., Slomp, C.P., Meybeck, M., and Middelkoop, H.:
 Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River
 Inputs to the Oceans. Estuaries and Coasts, 34(3), 441-458, 2011.
- 1444EPA (2009). "1970 2008 Average annual emissions, all criteria pollutants in MS Excel." National1445Emissions Inventory (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning1446and Standards. Available online at http://www.epa.gov/ttn/chief/trends/index.html
- Fekete, B.M., Vörösmarty, C.J., and Grabs, W.: High-resolution fields of global runoff combining
 observed river discharge and simulated water balances. Global Biogeochemical Cycles, 16(3),
 15-1, 2002.
- 1450Fischer, H. B.: Mixing and Dispersion in Estuaries, Annu. Rev. Fluid Mech., 8, 107–133,14511976.Friedrichs, M.A.M., and Hofmann, E.E.: Physical control of biological processes in the1452central equatorial Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers,145348(4), 1023-1069, 2001.
- Garcia, H.E., Locarnini, R.A., Boyer, E.W., Antonov, A., Baranova, O.K., Zweng, M.M., and Johnson,
 D.R.: World Ocean Atlas 2009, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization,
 and Oxygen Saturation, 2010a.
- 1457Garcia, H.E., Locarnini, R.A., Boyer, E.W., Antonov, J.I., Baranova, O.K., Zweng, M.M., and Johnson,1458D.R.: World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate), 2010b.

Garnier, J., Servais, P., Billen, G., Akopian, M., and Brion, N.: Lower Seine River and Estuary (France)
 Carbon and Oxygen Budgets During Low Flow, Estuaries, 24, 964–976, 2001.

- Harrison, J.A., Caraco, N., and Seitzinger, S.P.: Global patterns and sources of dissolved organic
 matter export to the coastal zone: Results from a spatially explicit, global model. Global
 Biogeochemical Cycles, 19(4), GB4S03, doi:10.1029/2004GB002357, 2005.
- Hartmann, J., Jansen, N., Dürr, H.H., Kempe, S., and Köhler, P.: Global CO₂ consumption by chemical
 weathering: What is the contribution of highly active weathering regions? Global Planet.
 Change, 69(4), 185-194, 2009.
- Hartmann, J., Dürr, H.H., Moosdorf, N., Meybeck, M., and Kempe, S.: The geochemical composition
 of the terrestrial surface (without soils) and comparison with the upper continental crust.
 Int. J. Earth Sci. 101, 365-376, 2012.
- Herrmann, M., Najjar, R.G., Kemp, W.M., Alexander, R.B., Boyer, E.W., Cai, W.-J., Griffith, P.C.,
 Kroeger, K.D., McCallister, S.L., and Smith, R.A.: Net ecosystem production and organic

Deleted: F

1473	carbon balance of U.S. East Coast estuaries: A synthesis approach, Global Biogeochem.
1474	Cycles, 29, doi:10.1002/2013GB004736, 2015.
1475	Hofmann, A.F., Soetaert, K., and Middelburg, J.J.: Present nitrogen and carbon dynamics in the
1476	Scheldt estuary using a novel 1-D model. Biogeosciences, 5(4), 981-1006, 2008.
1477	Hofmann, E.E., Cahill, B., Fennel, K., Friedrichs, M.A.M., Hyde, K., Lee, C., Mannino, A., Najjar, R.G.,
1478	O'Reilly, J.E., Wilkin, J., and Xue, J.: Modeling the dynamics of continental shelf carbon. Ann
1479	Rev Mar Sci. 3, 93-122, 2011.
1480	Hunt, C. W., Salisbury, J. E., Vandemark, D., and McGillis, W.: Contrasting Carbon Dioxide Inputs and
1481	Exchange in Three Adjacent New England Estuaries. Estuar. Coast., 34, 68–77,
1482	doi:10.1007/s12237-010-9299-9, 2010.
1483	Hunt, C.W., Salisbury, J.E., Vandemark, D., and McGillis, W.: Contrasting Carbon Dioxide Inputs and
1484	Exchange in Three Adjacent New England Estuaries. Estuaries and Coasts, 34(1), 68-77, 2011.
1485	Ippen, A.T., and Harleman, D.R.F.: One-dimensional Analysis of Salinity Intrusion in Estuaries,
1486	Technical Bulletin No. 5, Committee on Tidal Hydraulics, Corps of Engineers, US Army,
1487	Vicksburg, 1961.
1488	Jiang, L.Q., Cai, W.J., and Wang, Y.: A comparative study of carbon dioxide degassing in river- and
1489	marine-dominated estuaries. Limnology and Oceanography, 53(6), 2603-2615, 2008.
1490	Jiang, LQ., Cai, WJ., Wang, Y., and Bauer, J. E.: Influence of terrestrial inputs on continental shelf
1491	carbon dioxide, Biogeosciences, 10, 839–849, doi:10.5194/bg-10-839-2013, 2013.
1492	Joesoef, A., Huang, WJ., Gao, Y., and Cai, WJ.: Air–water fluxes and sources of carbon dioxide in
1493	the Delaware Estuary: spatial and seasonal variability, Biogeosciences, 12, 6085-6101,
1494	doi:10.5194/bg-12-6085-2015, 2015.
1494	Kent, B.H.: Turbulent diffusion in a Sectionally Homogeneous Estuary, Technical Report 16,
1496	Chesapeake Bay Institute, John Hopkins, University, Baltimore, 1958.
1490	Key, R.M., Kozyr, A., Sabine, C.L., Lee, K., Wanninkhof, R., Bullister, J.L., Feely, R.A., Millero, F.J.,
1497	Mordy, C., and Peng, T.H.: A global ocean carbon climatology: Results from Global Data
1499	Analysis Project (GLODAP). Global Biogeochemical Cycles, 18(4), 1-23, 2004.
1500	Laruelle, G.G.: Quantifying nutrient cycling and retention in coastal waters at the global scale, Ph D
1501	dissertation, Utrecht University, 2009.
1502	Laruelle, G. G., Regnier, P., Ragueneau, O., Kempa, M., Moriceau, B., Ni Longphuirt, S., Leynaert, A.,
1503	Thouzeau, G., and Chauvaud, L.: Benthic-pelagic coupling and the seasonal silica cycle in the
1504	Bay of Brest (France): new insights from a coupled physical-biological model, Mar. Ecol
1505	Prog. Ser., 385, 15–32, 2009.
1506	Laruelle, G.G., Dürr, H.H., Slomp, C.P., and Borges, A.V.: Evaluation of sinks and sources of CO ₂ in the
1507	global coastal ocean using a spatially-explicit typology of estuaries and continental shelves.
1508	Geophys. Res. Lett., 37(15), L15607, doi:10.1029/2010GL043691, 2010.
1509	Laruelle, G.G., Dürr, H.H., Lauerwald, R., Hartmann, J., Slomp, C.P., Goossens, N., and Regnier, P.A.G.:
1510	Global multi-scale segmentation of continental and coastal waters from the watersheds to
1511	the continental margins. Hydrol. Earth Syst. Sci., 17(5), 2029-2051, 2013.
1512	Laruelle, G.G., Lauerwald, R., Rotschi, J. Raymond, P.A., and Regnier, P.: Seasonal response of air-
1513	water CO2 exchange along the land-ocean aquatic continuum of the northeast North
1514	American coast. Biogeosci. 12, 1447-1458, 2015.
1515	Lauerwald, R., Hartmann, J., Moosdorf, N., Kempe, S., and Raymond, P.A.: What controls the spatial
1516	patterns of the riverine carbonate system? — A case study for North America. Chemical
1517	Geology, 337–338, 114-127, 2013.
1518	Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., and Regnier, P. A. G.: Spatial patterns in CO2
1519	<u>evasion from the global river network, Global Biogeochem. Cy., 29, 534–554,</u>
1520	doi:10.1002/2014GB004941, 2015.
1521	Leonard, B.: Third-Order Upwinding as a Rational Basis for Computational Fluid Dynamics, in:
1522	Computational Techniques and Applications: CTAC-83, edited by: Noye J. and Fletcher C. A.
1523	J., Elsevier, North-Holland, 1984.

1524 Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., 1525 Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, 1526 D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., 1527 Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., 1528 Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G.-H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, 1529 T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and Zaehle, S.: 1530 1531 Global carbon budget 2013, Earth Syst. Sci. Data, 6, 235-263, doi:10.5194/essd-6-235-2014, 1532 2014.

- Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., 1533 1534 Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., 1535 Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., 1536 Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, 1537 V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., 1538 Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., Nakaoka, S., 1539 Nojiri, Y., O'Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, 1540 G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B. 1541 D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van 1542 Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global Carbon 1543 Budget 2015, Earth Syst. Sci. Data, 7, 349-396, doi:10.5194/essd-7-349-2015, 2015.
- Lin, J., Xie, L., Pietrafesa, L. J., Ramus, J. S., and Paerl, H.W.: Water Quality Gradients across
 Albemarle-Pamlico Estuarine System: Seasonal Variations and Model Applications, J. Coast.
 Res., 23, 213–229, 2007.
- Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng, M.M.,
 and Johnson, D.R.: World Ocean Atlas 2009, Volume 1: Temperature, 2010.
- 1549 Ludwig, W., Probst, J. L., and Kempe, S.: predicting the oceanic input of organic carbon by 1550 continental erosion, Global Bio geochem. Cy., 10, 23–41, 1996.
- Maher, D.T., and Eyre, B.D.: Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air-water CO2 flux. Global Biogeochem. Cycles, 26(1), GB1032, 2012.

Mateus, M., Vaz, N., and Neves, R.: A process-oriented model of pelagic biogeochemistry for marine
 systems. Part II: Application to a mesotidal estuary, J. Mar. Syst., 94, 90–101, 2012.

- Mayorga, E., Seitzinger, S.P., Harrison, J.A., Dumont, E., Beusen, A.H.W., Bouwman, A.F., Fekete,
 B.M., Kroeze, C., and Van Drecht, G.: Global Nutrient Export from WaterSheds 2 (NEWS 2):
 Model development and implementation. Environmental Modelling and Software, 25(7),
 837-853, 2010.
- 1560 Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci., 282(4), 401-1561 450, 1982.
- Meybeck, M., Dürr, H. H., and Vörosmarty, C. J.: Global coastal segmentation and its river catchment
 contributors: A new look at land-ocean linkage, Global Biogeochem. Cy., 20, GB1S90,
 doi:10.1029/2005GB002540, 2006.
- Middelburg, J.J., Klaver, G., Nieuwenhuize, J., Wielemaker, A., De Haas, W., Vlug, T., and Van Der
 Nat, J.F.W.A.: Organic matter mineralization in intertidal sediments along an estuarine
 gradient. Marine Ecology Progress Series, 132(1-3), 157-168, 1996.

1568 NASA/NGA: SRTM Water Body Data Product Specific Guidance, Version 2.0, 2003.

- Najjar, R.G., Friedrichs, M., and Cai, W.-J. (Editors): Report of The U.S. East Coast Carbon Cycle
 Synthesis Workshop, January 19-20, 2012. Ocean Carbon and Biogeochemistry Program and
 North American Carbon Program, 34 pp, 2012.
- Nihoul, J. C. J., and Ronday, F.: Modèles d'estuaires partiellement stratifiés, Projet Mer, Vol. 10,
 Service de la Programmation Scientifique, Bruxelles, Belgium, 71–98, 1976.

- Nixon, S.W., J.W. Ammerman, L.P. Atkinson, V.M. Berounsky, G. Billen, W.C. Boicourt, W.R. Boynton,
 T.M. Church, D.M. Ditoro, R. Elmgren, J.H. Garber, A.E. Giblin, R.A. Jahnke, N.J. P. Owens,
 M.E.Q. Pilson, and Seitzinger, S.P.: The fate of nitrogen and phosphorus at the land-sea
- 1577 margin of the North Atlantic Ocean. Biogeochemistry 3, 141–180, 1996.
- NOAA: National Estuarine Inventory Data Atlas, Volume 1: Physical and Hydrologic Characteristics,
 National Oceanic and Atmospheric Administration, MD, 1985.
- 1580 Odum, H.T.: Primary Production in Flowing Waters. Limnol. Oceanogr., 1, 102-117, 1956.
- 1581 O'Kane, J. P.: Estuarine Water Quality Management. Pitman, London, U.K, 1980.
- 1582Paerl, H.W., Valdes, L.M., Peierls, B.L., Adolf, J.E., and Harding Jr, L.W.: Anthropogenic and climatic1583influences on the eutrophication of large estuarine ecosystems. Limnology and1584Oceanography, 51(1 II), 448-462, 2006.
- 1585Platt, T., Gallegos, C. L., and Harrison, W. G.: Photoinhibition of photosynthesis in natural
assemblages of marine phytoplankton. J. Mar. Res., 38, 687-701, 1980.
- Preddy, W. S.: The mixing and movement of water in the estuary of the Thames, J. Mar. biol. Ass. UK,
 33, 645–662, 1954.
- Press, W. H., Teukolosky, S. A., Vetterling, W. T., and Flannery, B.P.: Numerical Recipes in C: The Art
 of Scientific Programming, 2nd Edn., Cambridge University Press, USA, 1992.
- Pritchard, D. W.: The Equations of Mass Continuity and Salt Continuity in Estuaries, J. Marine Res.,
 15, 33–42, 1958.
- Raymond, P.A., Caraco, N.F., and Cole, J.J.: Carbon dioxide concentration and atmospheric flux in the
 Hudson River. Estuaries, 20(2), 381-390, 1997.
- Raymond, P.A., Bauer, J.E., and Cole, J.J.: Atmospheric CO2 evasion, dissolved inorganic carbon
 production, and net heterotrophy in the York River estuary. Limnology and Oceanography,
 45(8), 1707-1717, 2000.
- 1598Raymond, P.A., and Hopkinson, C.S.: Ecosystem Modulation of Dissolved Carbon Age in a Temperate1599Marsh-Dominated Estuary. Ecosystems, 6(7), 694-705, 2003.
- Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl,
 R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.:
 Global carbon dioxide emissions from inland waters. Nature, 503(7476), 355-359, 2013.
- Regnier, P., Wollast, R., and Steefel, C.I.: Long-term fluxes of reactive species in macrotidal estuaries:
 Estimates from a fully transient, multicomponent reaction-transport model. Marine
 Chemistry, 58(1-2), 127-145, 1997.
- Regnier, P., Mouchet, A., Wollast, R., and Ronday, F.: A discussion of methods for estimating residual
 fluxes in strong tidal estuaries, Cont. Shelf Res., 18, 1543–1571, 1998.
- Regnier, P., and Steefel, C.I.: A high resolution estimate of the inorganic nitrogen flux from the
 Scheldt estuary to the coastal North Sea during a nitrogen-limited algal bloom, spring 1995.
 Geochimica et Cosmochimica Acta, 63(9), 1359-1374, 1999.
- Regnier, P., Vanderborght, J. P., Steefel, C. I., and O'Kane, J. P.: Modeling complex multi-component
 reactive-transport systems: Towards a simulation environment based on the concept of a
 Knowledge Base, Appl. Math. Model., 26, 913–927, 2002.
- Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G.,
 Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A.V., Dale, A.W.,
 Gallego-Sala, A., Godderis, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F.,
 LaRowe, D.E., Leifeld, J., Meysman, F.J.R., Munhoven, G., Raymond, P.A., Spahni, R.,
 Suntharalingam, P., and Thullner, M.: Anthropogenic perturbation of the carbon fluxes from
 land to ocean. Nature Geosci, 6(8), 597-607, 2013a.
- Regnier, P., Arndt, S., Goossens, N., Volta, C., Laruelle, G.G., Lauerwald, R., and Hartmann, J.:
 Modelling Estuarine Biogeochemical Dynamics: From the Local to the Global Scale. Aquatic
 Geochemistry, 19(5-6), 591-626, 2013b.
- 1623Riemann, B., Simonsen, P., and Stensgaard, L.: The carbon and chlorophyll content of phytoplankton1624from various nutrient regimes. Journal of Plankton Research, 11 (5), 1037-1045, 1989.

Deleted:

1626	Rossow, W.B., and Schiffer, R.A.: Advances in understanding clouds from ISCCP. Bull. Amer.
1627	Meteorol. Soc., 80, 2261-2288, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2,
1628	1999.
1629	Sarma, V.V.S.S., Viswanadham, R., Rao, G.D., Prasad, V.R., Kumar, B.S.K., Naidu, S.A., Kumar, N.A.,
1630	Rao, D.B., Sridevi, T., Krishna, M.S., Reddy, N.P.C., Sadhuram, Y., and Murty, T.V.R.: Carbon
1631	dioxide emissions from Indian monsoonal estuaries. Geophysical Research Letters, 39(3),
1632	L03602, 2012.
1633	Savenije, H.H.G.: A one-dimensional model for salinity intrusion in alluvial estuaries. Journal of
1634	Hydrology, 85(1-2), 87-109, 1986.
1635	Savenije, H.H.G.: Lagrangian solution of St. Venant's equations for alluvial estuary. Journal of
1636	Hydraulic Engineering, 118(8), 1153-1163, 1992.
1637	Savenije, H. H. G. (Ed.): Salinity and Tides in Alluvial Estuaries, 1st Edn., Elsevier, Amsterdam, 2005.
1638	Savenije, H. H. G. (Ed.): Salinity and Tides in Alluvial Estuaries, 2nd Edn., available at:
1639	http://salinityandtides.com (last access: 8 March 2015), 2012.
1640	Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., and Bouwman, A. F.: Sources and
1641	delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global
1642	Nutrient Export from Watersheds (NEWS) models and their application, <i>Global Biogeochem</i> .
1643	<i>Cycles</i> , 19, GB4S01, doi:10.1029/2005GB002606, 2005.
1644	Schwarz, G.E., Hoos, A.B., Alexander, R.B., and Smith, R.A.: The SPARROW Surface Water-Quality
1645	Model: Theory, Application and User Documentation. U.S. Geological Survey, Techniques
1646	and Methods Report, Book 6, Chapter B3, Reston, Virginia, 2006
1647	Sharp, J. H., Yoshiyama, K., Parker, Schwartz, M. C., Curless, S. E., Beauregard, A. Y., Ossolinski, J. E.,
1648	and Davis, A. R.: A Biogeochemical View of Estuarine Eutrophication: Seasonal and Spatial
1649	Trends and Correlations in the Delaware Estuary. Estuaries and Coasts, 32, 1023-1043,.
1650	doi:10.1007/s12237-009-9210-8, 2009.
1651	Sharp, J. H.: Estuarine oxygen dynamics: What can we learn about hypoxia from long-time records in
1652	the Delaware Estuary? Limnol. Oceanogr., 55(2), 2010, 535–548, 2010.
1653	Shih, JS., Alexander, R.B., Smith, R.A., Boyer, E.W., Schwarz, G.E., and Chung, S.: An initial SPARROW
1654	model of land use and in-stream controls on total organic carbon in streams of the
1655	conterminous United States, U. S. Geological Survey, Reston, Virginia, 2010.
1656	Signorini, S.R., Mannino, A., Najjar Jr, R.G., Friedrichs, M.A.M., Cai, W.J., Salisbury, J., Wang, Z.A.,
1657	Thomas, H., and Shadwick, E.: Surface ocean pCO2 seasonality and sea-air CO2 flux
1658	estimates for the North American east coast. Journal of Geophysical Research C: Oceans,
1659	118(10), 5439-5460, 2013.
1660	Simmons, H. B.: Some effects of inland discharge on estuarine hydraulics, Proc. Am. Soc. Civ. Eng
1661	ASCE, 81, 792, 1955.
1662	Soetaert, K., and Herman, P.M.J.: Nitrogen dynamics in the Westerschelde estuary (SW Netherlands)
1663	estimated by means of the ecosystem model MOSES. Hydrobiologia, 311(1-3), 225-246,
1664	1995.
1665	Stets, E.G., and Strieg, R.G.: Carbon export by rivers draining the conterminous united states. Inland
1666	Waters, 2(4), 177-184, 2012.
1667	Stigter, C., and Siemons, J.: Calculation of longitudinal salt distribution in estuaries as function of
1668	time, Publication Delft Hydraulics Laboratory, 52, The Netherlands, 1967.
1669	Thieu, V., Mayorga, E., Billen, G., and Garnier, J.: Subregional and downscaled global scenarios of
	nutrient transfer in river basins: Seine-Somme-Scheldt case study. Global Biogeochemical
1670 1671	Cycles, 24(2), 2010.
1671	Tian, H., Chen, G., Liu, M., Zhang, C., Sun, G., Lu, C., Xu, X., Ren, W., Pan, S., and Chappelka, A.: Model
1672	estimates of net primary productivity, evapotranspiration, and water use efficiency in the
1673	terrestrial ecosystems of the southern United States during 1895-2007. Forest Ecology and
1674	Management, 259(7), 1311-1327, 2010.
1012	ויומוומפרוולווו, בסש(י), בסברי, בטבט.

- Tian, H., Chen, G., Zhang, C., Liu, M., Sun, G., Chappelka, A., Ren, W., Xu, X., Lu, C., Pan, S., Chen, H.,
 Hui, D., McNulty, S., Lockaby, G., and Vance, E.: Century-Scale Responses of Ecosystem
 Carbon Storage and Flux to Multiple Environmental Changes in the Southern United States.
 Ecosystems, 15(4), 674-694, 2012.
- U. S. Fish and Wildlife Service. 2014. National Wetlands Inventory website. U.S. Department of the
 Interior, Fish and Wildlife Service, Washington, D.C. http://www.fws.gov/wetlands/, last
 accessed: February 2015.
- Vanderborght, J.P., Wollast, R., Loijens, M., and Regnier, P.: Application of a transport-reaction
 model to the estimation of biogas fluxes in the Scheldt Estuary. Biogeochemistry, 59(1-2),
 207-237, 2002.
- Vanderborght, J.P., Folmer, I., Aguilera, D.R., Uhrenholdt, T., and Regnier, P.: Reactive-transport
 modelling of a river-estuarine-coastal zone system: application to the Scheldt estuary. Mar.
 Chem. 106, 92-110, 2007.
- 1689Van der Burgh, P.: Ontwikkeling van een methode voor het voorspellen van zoutverdelingen in1690estuaria, kanalen and zeeen, Rijkswaterstaat Rapport, The Netherlands, 1972.
- Volta, C., Arndt, S., Savenije, H.H.G., Laruelle, G.G., and Regnier, P.: C-GEM (v 1.0): a new, costefficient biogeochemical model for estuaries and its application to a funnel-shaped system.
 Geosci. Model Dev., 7, 1271-1295, doi:10.5194/gmd-7-1271-2014, 2014.
- Volta, C., Laruelle, G. G., and Regnier, P.: Regional carbon and CO₂ budgets of North Sea tidal
 estuaries, Estuarine, Coastal and Shelf Science, 176, 76-90, 2016a.
- Volta, C., Laruelle, G. G., Arndt, S., and Regnier, P.: Linking biogeochemistry to hydro-geometrical
 variability in tidal estuaries: a generic modeling approach, Hydrol. Earth Syst. Sci., 20, 991 1030, doi:10.5194/hess-20-991-2016, 2016b.
- Vörösmarty, C.J., Fekete, B., and Tucker, B.A.: River Discharge Database, Version 1.0 (RivDIS v1.0),
 Volumes 0 through 6. A contribution to IHP-V Theme 1. Technical Documents in Hydrology
 Series. UNESCO, Paris, 1996.
- Wang, Z.A., and Cai, W.J.: Carbon dioxide degassing and inorganic carbon export from a marshdominated estuary (the Duplin River): A marsh CO2 pump. Limnology and Oceanography,
 49(2), 341-354, 2004.

1705

Deleted: 6(4), 5645-5709,

Deleted: 1

1708	Table 1: Estimates of total annual riverine input from watersheds to estuaries (Tg C yr ⁻¹). The ranges
------	---

are based on Stets and Striegl (2012), Global NEWS (Mayorga et al. 2010), Hartmann et al. (2009),

1710 SPARROW (Shih et al. 2010) and DLEM (Tian et al. 2010, 2012). Modified from Najjar et al. 2012.

	DIC	DOC	POC	TOTAL
NAR	0.2-0.8	0.3-2.1	0.1-0.2	0.6-3.1
MAR	1.4-1.8	0.5-2.3	0.1-0.3	2.0-4.4
SAR	0.4-1.4	0.9-1.6	0.1-0.2	1.4-3.2
TOTAL	2.0-4.0	1.7-6.0	0.3-0.7	4.0-10.7

Table 2: Published local annually averaged estimates of $\overline{FCO_2}$ in mol C m⁻² yr⁻¹ for estuaries along the East coast of the US." 1715

<u>Name</u>	<u>Lon</u>	<u>Lat</u>	FCO ₂		<u>Reference</u>
			Observed.	Modeled	
Altamaha Sound	<u>-81.3</u>	<u>31.3</u>	<u>32.4</u>	<u>72.7</u>	<u>Jiang et al. (2008)</u>
<u>Bellamy</u>	<u>-70.9</u>	<u>43.2</u>	<u>3.6</u>	<u>3.9</u>	<u>Hunt et al. (2010)</u>
<u>Cocheco</u>	<u>-70.9</u>	<u>43.2</u>	<u>3.1</u>	<u>3.9</u>	<u>Hunt et al. (2010)</u>
Doboy Sound	<u>-81.3</u>	<u>31.4</u>	<u>13.9</u>	<u>25.7</u>	<u>Jiang et al. (2008)</u>
<u>Great Bay</u>	<u>-70.9</u>	<u>43.1</u>	<u>3.6</u>	<u>3.9</u>	<u>Hunt et al. (2011)</u>
<u>Little Bay</u>	<u>-70.9</u>	<u>43.1</u>	<u>2.4</u>	<u>3.9</u>	<u>Hunt et al. (2011)</u>
Oyster Bay	<u>-70.9</u>	<u>43.1</u>	<u>4</u>	<u>3.9</u>	<u>Hunt et al. (2011)</u>
Parker River estuary	<u>-70.8</u>	<u>42.8</u>	<u>1.1</u>	<u>3.9</u>	Raymond and Hopkinson (2003)
Sapelo Sound	<u>-81.3</u>	<u>31.6</u>	<u>13.5</u>	<u>20.6</u>	<u>Jiang et al. (2008)</u>
Satilla River	<u>-81.5</u>	<u>31</u>	<u>42.5</u>	<u>25.7</u>	<u>Cai and Wang (1998)</u>
York River	<u>-76.4</u>	<u>37.2</u>	<u>6.2</u>	<u>8.1</u>	<u>Raymond et al. (2000)</u>
<u>Hudson River</u>	<u>-74</u>	<u>40.6</u>	<u>13.5</u>	<u>15.5</u>	<u>Raymond et al. (1997)</u>
Florida Bay	-80.68	24.96	1.4	n.a.	Dufore (2012)

Table <u>3</u>: State variables and processes explicitly implemented in CGEM.

State variables		
Name	Symbol	Unit
Suspended Particulate Mater	SPM	gL⁻¹
Total Organic Carbon	тос	μΜ C
Nitrate	NO ₃	μΜ Ν
Ammonium	NH_4	μΜ Ν
Phosphate	DIP	μΜ Ρ
Dissolved Oxygen	DO	$\mu M O_2$
Phytoplankton	Phy	μΜ C
Dissolved Silica	dSi	μM Si
Dissolved Inorganic Carbon	DIC	μΜ C
Biogeochemical reactions		
Name	Symbol	Unit
Gross primary production	GPP	μM C s⁻¹
Net primary production	NPP	μM C s⁻¹
Phytoplankton mortality	М	μM C s ⁻¹
Aerobic degradation	R	μM C s ⁻¹
Denitrification	D	μM C s⁻¹
Nitrification	Ν	μM N s⁻¹
O ₂ exchange with the atmosphere	FO ₂	μM O₂ s⁻¹
CO ₂ exchange with the atmosphere	FCO ₂	µM C s ⁻¹
SPM erosion	E _{SPM}	gL ⁻¹ s ⁻¹
SPM deposition	D _{SPM}	gL ⁻¹ s ⁻¹

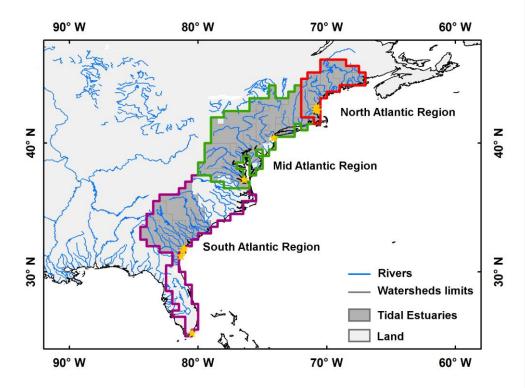
Deleted: 2

long	lat	S	Q	Rt	FCO ₂ mol C m ⁻² yr ⁻¹	NEM	FCO ₂	NEM
degrees	degrees	km ²	$m^{3}s^{-1}$	days	mol C m ⁻² yr ⁻¹	mol C m ⁻² yr ⁻¹	10 ⁶ mol C yr ⁻¹	10 ⁶ mol C yr ⁻¹
NAR								
-67.25	44.75	7	38.5	15	3.7	-37.4	27	-270
-67.25	45.25	12	73.6	15	6.0	-56.7	71	-666
-67.25	45.25	12	73.6	15	13.8	-56.6	162	-666
-67.75	44.75	3	68.5	4	6.7	-63.5	23	-221
-68.25	44.75	14	69.5	19	4.1	-56.2	58	-791
-68.75	44.75	89	309.9	23	27.4	-58.2	2431	-5163
-69.75	44.25	50	626.6	5	32.3	-74.4	1607	-3703
-70.25	43.75	3	25.8	10	2.1	-21.0	7	-71
-70.75	41.75	288	103.6	958	5.0	-4.0	1428	-1146
-70.75	42.25	63	210.7	40	16.2	-32.9	1025	-2081
-70.75	42.75	17	105.8	3	56.3	-69.0	943	-1155
MAR								
-70.75	43.25	31	29.9	11	21.6	-37.4	662	-1146
-71.25	41.75	257	28.2	808	3.9	-2.5	997	-650
-71.75	41.25	21	112.4	4	35.2	-32.6	726	-672
-72.75	40.75	20	25.4	62	30.7	-21.1	623	-430
-72.75	41.25	10	142.5	2	150.8	-36.9	1578	-386
-72.75	41.75	55	476.6	3	55.9	-45.7	3088	-2523
-73.25	40.75	19	26.8	56	31.4	-28.4	608	-550
-74.25	40.75	1192	608.2	126	15.5	-11.8	18432	-14047
-75.25	38.25	399	80.5	172	13.9	-5.0	5558	-2016
-75.25	38.75	354	31.8	357	7.5	-3.0	2659	-1076
-75.25	39.75	1716	499.0	221	10.0	-7.8	17072	-13439
-75.75	39.25	224	18.3	434	7.5	-2.9	1685	-640
-76.25	39.25	3427	717.1	352	8.1	-5.1	27646	-17352
-76.75	37.25	586	272.3	74	15.0	-10.4	8810	-6084
-76.75	37.75	154	36.3	163	10.7	-6.6	1654	-1023
-76.75	39.25	59	71.2	29	48.6	-34.6	2862	-2038
-77.25	38.25	206	30.2	268	6.1	-3.3	1265	-676
-77.25	38.75	568	259.2	118	16.7	-10.8	9488	-6134
SAR								
-78.25	34.25	48	167.4	7	122.5	-62.4	5916	-3015
-79.25	33.25	47	56.3	42	43.4	-36.5	2056	-1728
-79.25	33.75	45	291.4	8	85.1	-78.7	3843	-3551
-79.75	33.25	25	33.8	15	37.9	-32.8	956	-828
-80.25	32.75	25	31.0	50	48.8	-42.5	1214	-1057
-80.25	33.25	92	75.5	61	62.7	-61.2	5769	-5625
-80.75	32.25	71	21.1	182	12.9	-7.0	918	-501
-80.75	32.75	164	63.1	95	20.6	-11.5	3372	-1879
-81.25	31.75	92	71.7	45	25.7	-20.9	2361	-1926
-81.25	32.25	130	379.8	11	51.7	-39.2	6732	-5097
-81.75	30.75	34	18.7	61	17.5	-14.7	602	-505
-81.75	31.25	130	17.7	294	5.5	-4.0	713	-523
-81.75	31.75	56	350.5	4	72.7	-67.4	4068	-3770

1723 **Table 4:** Yearly averaged surface area (*S*), fresh water discharge (*Q*), residence time (*Rt*), *FCO*₂ and
1724 *NEM* of all simulated estuaries.

Deleted: Table 3: Published local annually averaged estimates of $\overline{FCO_2}$ for estuaries along the East coast of the US. ¶

(<u>...</u>


Name

Region	NEM	winter	spring	summer	fall	FCO ₂	winter	spring	summer	fall
	mol C y⁻¹	%	%	%	%	mol C y⁻¹	%	%	%	%
NAR	-16.3 10 ⁹	14.7	21.2	37.0	27.2	7.2 10 ⁹	26.3	18.9	26.5	28.3
MAR	-72.2 10 ⁹	21.9	25.9	28.8	23.4	108.3 10 ⁹	29.8	23.3	20.7	26.2
SAR	-30.5 10 ⁹	24.6	20.9	30.3	24.2	39.2 10 ⁹	26	23.4	27	23.

Table 5: Seasonal contribution to FCO₂ and NEM in each the sub-region. The seasons displaying the
 highest percentages are indicated in bold. Winter is defined as January, February and March, Spring
 as April, May and June and so on...

Region	$-\overline{NEM}/f(T)$	$\overline{FCO_2}/f(T)$	CFilt
NAR	$y = 27.84 x^{-0.17}$	$y = 6.07 x^{0.00}$	$y = 15.08 \log_{10}(x) + 4.86$
	$r^2 = 0.11$	$r^2 = 0.00$	$r^2 = 0.40$
MAR	y = 26.03 x ^{-0.63}	y = 34.36 x ^{-0.58}	$y = 40.46 \log_{10}(x) + 9.60$
	r ² = 0.86	r ² = 0.68	$r^2 = 0.70$
SAR	$y = 28.36 x^{-0.71}$	y = 32.82 x ^{-0.66}	$y = 23.19 \log_{10}(x) + 43.71$
	r ² = 0.76	$r^2 = 0.80$	$r^2 = 0.46$
MAR + SAR	y = 25.85 x ^{-0.64}	y = 31.64 x ^{-0.58}	$y = 33.30 \log_{10}(x) + 24.88$
	r ² = 0.82	r ² = 0.70	r ² = 0.57
NAR + MAR + SAR	y = 28.98 x ^{-0.66}	y = 12.98 x ^{-0.33}	$y = 40.64 \log_{10}(x) + 11.84$
	$r^2 = 0.82$	$r^2 = 0.30$	$r^2 = 0.70$

Table 6: Regressions and associated coefficient of determination between the depth normalized1736residence time (S/Q) and $-\overline{NEM} / f(T)$, $\overline{FCO_2} / f(T)$ and CFilt.

1740 Figure 1: Limits of the 0.5 degrees resolution watersheds corresponding to tidal estuaries of the East

1741 coast of the US. 3 sub-regions are delimited with colors and orange stars represent the location of

¹⁷⁴² previous studies.

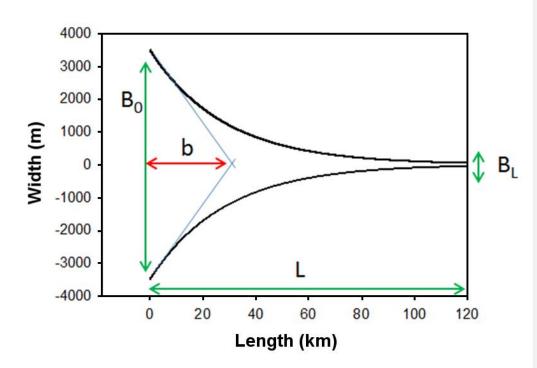
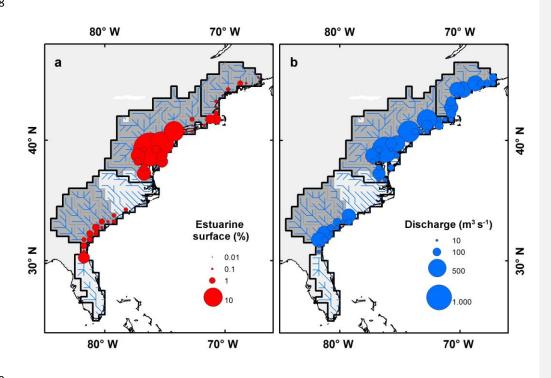
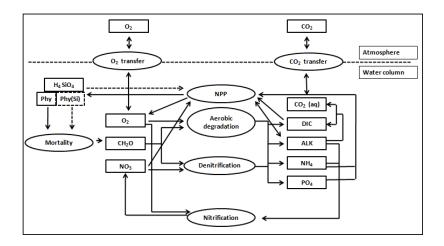




Figure 2: Idealized estuarine geometry and main parameters. Parameters indicated by green arrows
are measured, b is calculated. See section 2.3.1 for further details.

1750 Figure 3: Estuarine surface area (a) and mean annual freshwater discharge (b) for each tidal estuary

of the East coast of the US. Estuarine surface area are expressed as percentage of the entire surface
 area of the region (19830 km²)

1755 Figure 4: Conceptual scheme of the biogeochemical module of C-GEM used in this study. State-1756 variables and processes are represented by boxes and oval shapes, respectively. Modified from Volta

1757 et al., 2014.

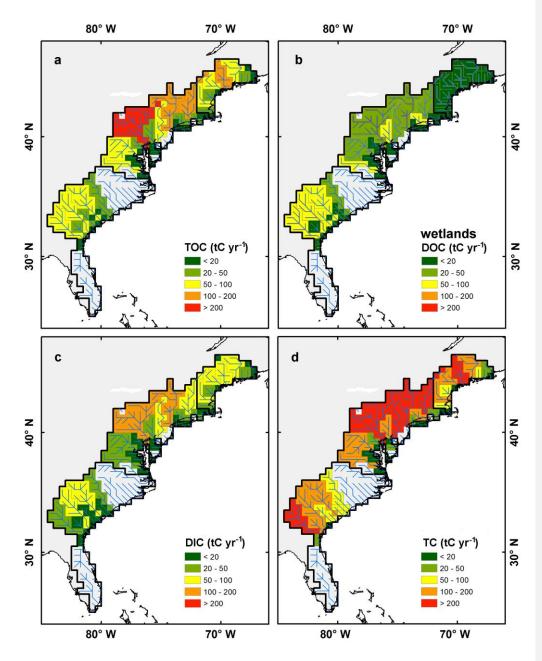
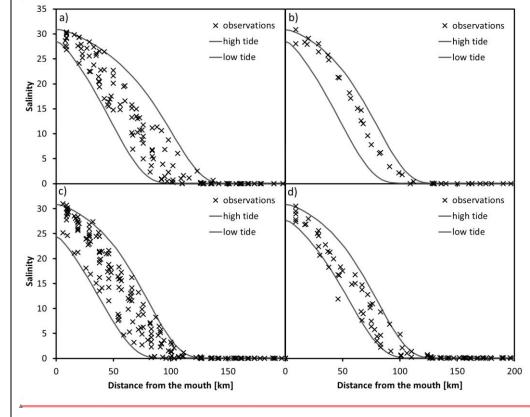
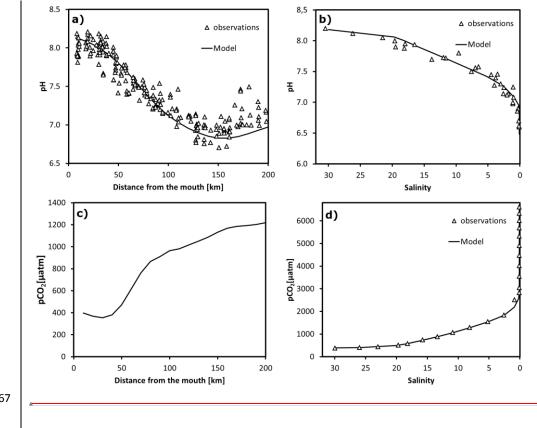



Figure 5: Annual river carbon loads of TOC (a), annual DOC fluxes from wetlands (b), annual river
carbon loads of DIC (c) and annual TC fluxes (d). All fluxes are indicated per watershed.

Formatted: Font color: Blue


1763

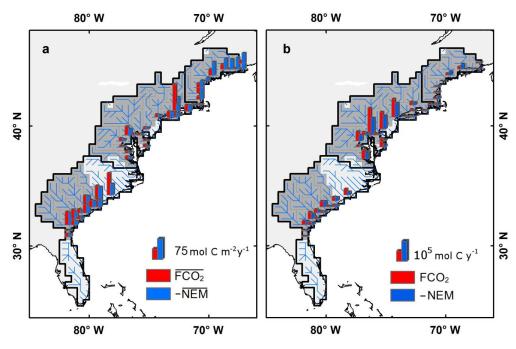
1764 1765

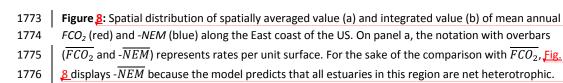
(a), February (b), May (c), June (d). The two lines correspond to high and low tides.

Figure 6. Modeled (lines) and measured (crosses) salinities in the Delaware Bay estuary for January

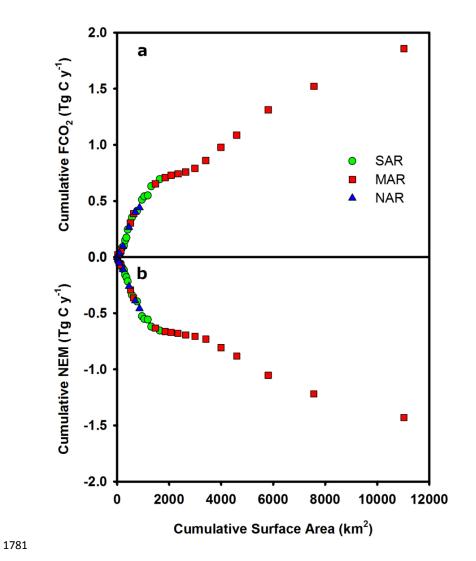
Formatted: Font: Bold, Not Italic Formatted: Font: Not Italic

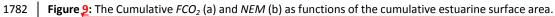
1	7	6	7

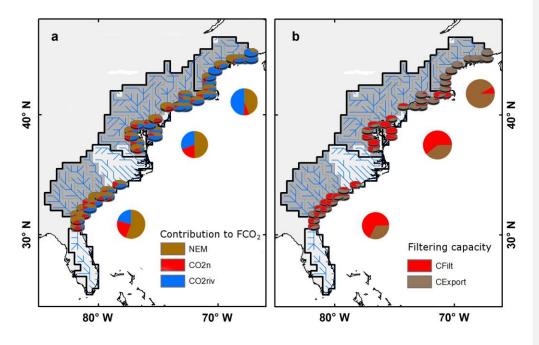

1768 1769


Figure 7. Longitudinal profiles of pH (top) and pCO₂ (bottom) for the Delaware Bay (left) and Altamaha river estuary (right).

1770

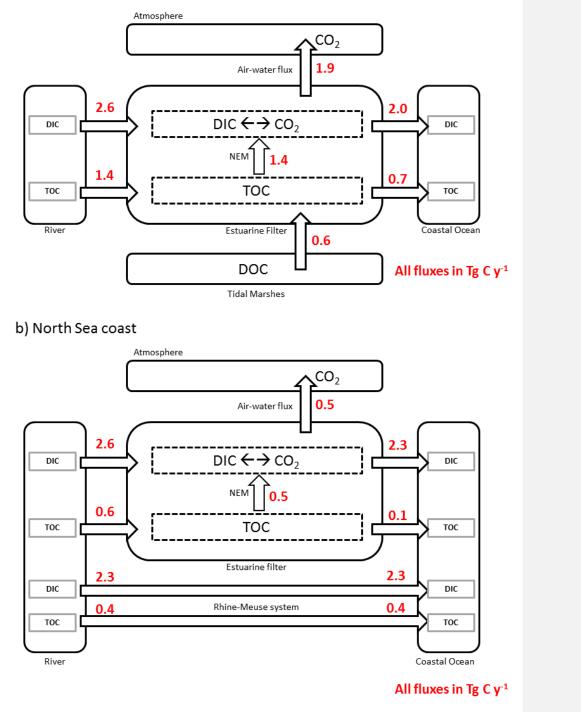

Formatted: Font: Not Italic, No underline Formatted: Font: Not Italic, No underline Formatted: Font: Not Bold, Not Italic, No underline


Formatted: Font: Not Italic, No underline

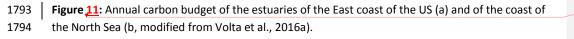


Deleted: 7

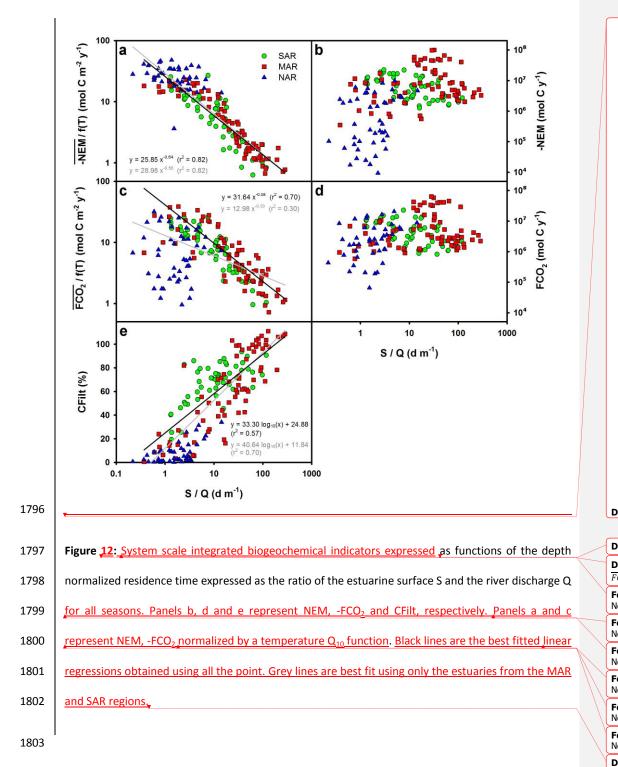
1783 Systems are sorted by increasing surface area.

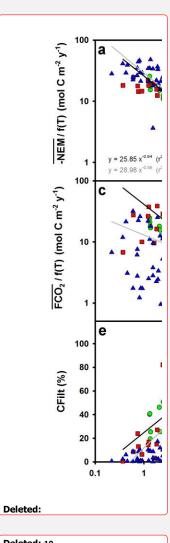


1790


Figure 10: Contribution of *NEM*, nitrification and riverine waters super-saturated waters to the mean
annual *FCO*₂ (a). Spatial distribution of mean annual carbon filtration capacities (*CFilt*) and export
(*CExport*) along the East coast of the US (b).

Deleted: 8


a) Eastern US coast



1792

Deleted: 9

Deleted: 10
Deleted: $-\overline{NEM} / f(T)$ (a), -NEM (b), $\overline{FCO_2} / f(T)$ (c), FCO_2 (d) and $CFilt$ (e)
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Formatted: Font: Not Bold, Not Italic, No underline
Deleted: The grey and black lines are the best fitted regressions obtained using all the point or only the estuaries from the MAR and SAR regions, respectively.