1 Response to Referee #1 (Dr. Kleinen)

We would like to thank Dr. Kleinen for his thoughtful and constructive review. Our responses toall of the referee's comments (italicized) are presented below.

4 In their manuscript, the authors present a model study of soil carbon accumulation in Alaska

5 over the last 15000 years with a special focus on peat carbon accumulation. Overall, the

6 manuscript is quite interesting and suitable for publication in biogeosciences. However, a

7 number of minor issues remain before it is ready for publication.

8 We made all edits and changes following the referee's comments and suggestions. We detailed9 our responses below.

10 Figure 2 shows the vegetation distribution used to drive the model for 5 time slices. However,

11 results are presented in Figs. 7 and 9 for 6 time slices. This is confusing for the reader. At the

12 very least it needs to be clearly marked in the figure caption. The symbols used in Fig. 2 to show

13 peat basal dates are also very difficult to make out. Maybe it is possible for the authors to make

14 this Figure clearer.

15 We have five vegetation distribution maps for five time slices. In Fig. 2, we present those five

16 maps. We present six maps of carbon density distribution in Figs. 7 and 8. The reason is that

during 5 ka-1900 AD, there was climate change affecting carbon accumulation rates, although

the vegetation map remains the same during 9ka-1900 AD. Yes, it is indeed confusing for

readers. Thus, in this revision, we made the explanation in the captions of Figs 2, 7, and 8 to

clarify this. Also, we have made all panels in Fig. 2 clearer and changed the symbol size.

Figure 7: Figure caption is unclear. How can you show cumulative SOC density? This would
imply only the very last time in the time interval is shown. I assume you actually mean the mean

23 SOC density.

24 Correct. For non-peatland soils, we wanted to show the mean carbon density during each time 25 slice. We have made the caption clearer to readers and change the "cumulative" to "average".

Figure 12: Caption also unclear. I assume the late 20th century distribution is shown? Figure
caption shows 15ka to 2000AD, implying a mean value over this time frame.

28 The maps of total SOC density in Alaska are the sums of SOC during all periods, from 15ka,

which is the beginning of the simulation, to the late 20^{th} , which is the end. This is the cumulative

30 carbon density. We have changed the caption of panel (d) to "area-weighted total (peatland plus

non-peatland) SOC density from 15 ka to 2000 AD, and added "total" in the descriptions of other

32 panels.

33 Since a large part of the results hinges on the modelled changes in peatland area, it is essential

34 that a description of how area changes are determined is provided. Currently it is only stated

that area is prescribed from Matthews & Fung, implying no change is possible.

Page 15, line 339 – page 16, line 349: how were peatland area changes determined? Completely
unclear (see comment #4)

38 The change of peatland area is determined by the basal ages of the peatland. And from the

distribution of the basal ages in Fig. 2, we link some vegetation types during each time slice to

the ages. For example, during 15-11ka, the peatland area is determined based on the alpine

41 tundra. However, within each pixel, we assume the inundated area represents the peatland area

42 and other area represents non-peatland. The inundation area information is from the modern

inundation map and does not change. The number of pixels that have peatland vegetation is

changing through time determined by the basal age distribution. The percentage of peatland area

45 within each pixel is unchanging. We have made the description clearer in the Method section.

46 We added the peatland expansion into Results& Discussion section to better describe the link

between basal ages and the peatland area change. We also added the drawbacks of suchassumption.

49 Page 4, lines 94-95: the Spahni et al. Model has actually been evaluated with respect to the
50 variables listed – see Wania et al. Publications on the LPJ-Why model on which Spahni is based.

51

Thanks for pointing out our wrong statement here. We checked the relevant references andcorrected our statement.

Page 5, line 97: Why do you cite Kleinen et al. 2010? They do not use a processbased peatland
model, but rather prescribed peat accumulation. I assume you actually meant to cite Kleinen et
al. 2012?

57 We have cited Kleinen et al. (2012) instead.

58 Page 7 and 8, lines 159-166: The aboveground vegetation in your calibration site is significantly

59 *different from the Mer Bleu site you use for belowground calibration. In addition the climatic*

60 situation at the two sites is significantly different. Therefore is seems quite a stretch to argue that

belowground processes are basically the same. Please provide more justification for thisassumption.

63 Assuming the belowground carbon in Mer Bleu is the same as that in APEXCON could be

64 wrong. In this revision, we added another site (Suurisuo mire complex) in southern Finland,

65 which is a sedge fen dominated by *Carex rostrate*. We compared the ratios of belowground

biomass over total biomass at both sites and applied 70% to APEX site and then estimated the

- belowground biomass. We added the description in the text and cited the reference in this 67 revision. 68
- Page 8, line 173: Please correct date for late Holocene time frame 69
- We have corrected the date from "9 ka-1900AD" to "5ka-1900 AD". 70
- 71 Page 9, lines 194-195: The Shuttle Radar Topography Mission (SRTM) only covered latitudes
- 56S-60N. Therefore there is NO SRTM data for Alaska. You obviously used some other source 72 73 for topography data – please provide correct reference.
- 74 We directly used the data from He et al. (2014). We cited Zhuang et al. (2007) paper instead.
- 75 Page 9, lines 197-203: Downscaling / bias correction is unclear. From the text one gets the
- 76 impression, that ECBILT fields and CRU data may be significantly different for 20th century.
- However, my reading of the original publications is that bias correction minimised that 77
- *difference. Please clarify this it would strongly strengthen the text.* 78
- Yes, the climate data were bias-corrected to minimize the difference between ECBILT and CRU. 79
- We made the clarification on this. 80
- Page 12, line 256: References to Figures 2 and 3 mixed up, please correct. 81
- 82 We have made the change.
- 83
- 84 Page 13, lines 279-289: Study sites unclear. Please provide table of site locations.
- Below is the table of descriptions of those sites. We cited Wang et al. (2016) in this revision 85
- 86
- 87 Sites used for comparison of carbon accumulation rates between simulation and observation [Jones and Yu, 2010]
- 88

Site name	Location	Peatland type	Latitude	Longitude	Dating method	No. of dates	Basal age (cal yr BP)	Time-weighted Holocene accumulation rates (g C m ⁻² yr ⁻¹)
Kenai Gasfield	Alaska, USA	fen	60°27'N	151°14'W	AMS	12	11,408	13.1
No Name Creek	Alaska, USA	fen	60°38'N	151°04'W	AMS	11	11,526	12.3
Horsetrail fen	Alaska, USA	rich fen	60°25'N	150°54'W	AMS	10	13,614	10. 7

Swanson fen Alaska, USA poor fen 60°47'N 150°49'W AMS 9 14,225 5.7

89	
90 91 92	Page 14, lines 314-316 and table 4: table 4 only lists uncertainty ranges for peatland vegetation. How were uncertainty ranges for upland vegetation derived? Certainly not from the ranges in table 4. Please clarify. Page 15, lines 333-334 – see comment #13.
93 94 95 96	Thankfully, the authors have used a spellchecker, so there are very few typos. However, there are numerous places in the text, where grammar needs checking: Temporal forms are not always consistent, and some sentences are missing single words or larger parts. Therefore CAREFUL COPY-EDITING is highly important.
97 98 99 100	The uncertainties of the upland vegetation are from the uncertainties of parameters in previous study (Tang and Zhuang, 2008; 2009). We used the prior ranges of the parameters based on those studies. We added this statement in the text in this revision. Following the referee's recommendation, we have carefully checked the whole text in terms of language.
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	

4

116 **Response to Referee #2 (Dr. Tupek)**

- 117 We would like to thank Dr. Tupek for his thoughtful and constructive review, as well as his
- 118 detailed comments. Our responses to all of the referee's comments are provided as below.
- 119 Authors tested SOC simulations from the modified version of their Terrestrial Ecosystem Model
- 120 (TEM) for peatlands (P-TEM) for Alaska region for time periods defined by climatic
- 121 *characteristics (solar radiation, temperature, and precipitation levels) and vegetation*
- 122 distribution during last 15 000 years. The model was applied for peatlands and non-peatlands
- 123 (mineral soil forests). Simulated C distributions, NPP, and peat depths were presented for
- 124 Alaska at fine scale spatial resolution (maps) and summarized for vegetation types. This can be
- 125 *an interesting study if presented carefully*

126 Thanks for the constructive comments. Following your comments, we made all edits and

127 changes as detailed below. The Method, Result, and Discussion sections were totally revised.

128 We also had revisions with respect to grammar and typos in the Abstract, Introduction and

129 Conclusions sections. However, those revisions were not marked. Please see the final

- 130 manuscript without tracks for a better vision.
- 131 The advances of the model include hydrology, soil thermal, C and N dynamics modules. This
- 132 looks promising however, the model code is not publicly available and need to be asked from
- 133 authors. No software details were given. I'd like to see the code and run an example simulation
- 134 in R to understand the model structure. Description of NPP simulation by the model is missing.
- 135 Description of Carbon and Nitrogen dynamics of CNDM module is also missing. Add
- 136 descriptions for clarity. Results largely depended on the adopted distribution of vegetation types.
- 137 Authors mentioned that distribution of vegetation types and their changes overdriven C
- 138 accumulation over climate, but also noted that climate had probably driven distribution of
- 139 vegetation types. Individual parameter values are not listed. It would be interesting to see the
- 140 *changes of key parameters between vegetation types in relation to their prevailing climate.*
- 141 Response: The descriptions of P-TEM including modules of STM, HM, CNDM, and MDM were
- 142 less listed in this manuscript indeed. The main reason is that we have described the model
- 143 framework, specific parameters and the parameterization processes, along with the comparison
- between simulation and observation regarding soil moisture, methane emissions, water-table
- 145 depth, and carbon and nitrogen dynamics in our previous study. Specifically, please find the
- 146paper "Quantifying Peat Carbon Accumulation in Alaska Using a Process-Based
- 147 Biogeochemistry Model" for details (Wang, S., Q. Zhuang, Z. Yu, S. Bridgham, and J. K.
- 148 Keller (2016), Quantifying peat carbon accumulation in Alaska using a process-based
 149 biogeochemistry model, J. Geophys. Res. Biogeosci., 121, doi:10.1002/2016JG003452.).
- 150 The above paper was under review by JGR-Biogeosciences at that time we submitted this
- regional study to Biogeoscience. Now the paper was published, therefore we believe there is no reason to repeat those model details. We have cited this newly published paper in the text in this
- 153 revision.

- Our model source codes are written in C/C++, not in R. The model has a number of sub-models, 154
- 155 thus its source code is rather lengthy. We appreciate your interests in the model, we are open to
- collaborate by using the model to do research so that we have sufficient time to understand the 156 157 code.

159 Description of observations of peat depths that were used for model validation is not sufficient. Some description is in section 2.5 but it is not clear and the points on the maps in Fig. 2 are 160

- barely visible. Describe clearly. 161
- Response: The peat depths for model validation are from Hugelius et al. (2014). We used the 162
- basal ages to determine the process of peatland expansion from Gorham et al. (2012). We added 163
- our findings of the linkage between basal ages and vegetation distribution in the Result& 164
- Discussion section (sec. 3.3) and discussed the related uncertainties. We also changed the symbol 165
- size in Fig. 2 to make the figure of the basal age distribution much clearer to readers. 166
- 167 Structure of the paper is unclear. Reorder the ideas, avoid using repetitions.
- Response: Thanks for the comments. In this revision, we re-ordered the ideas mainly in Result 168
- 169 and Discussion sections and made the structure more logical to readers. We also combined the
- 170 Result and Discussion sections to avoid repetitions. We shortened the Sec. 3.1, 3.2 and added the
- text describing peat expansion and vegetation changes in Sec. 3.3. 171
- Methods are presented in results. Results are presented in discussion. For example lines 369-370 172
- 173 in results describe how peat depth was calculated for the first time. Discussion Section 4.3
- 174 presents too many numbers without deeper insights on reason behind differences between other
- studies. At the end of discussion a scatterplot Fig. 14 between observed and modeled peat depths 175
- is presented for the 1st time. The Fig. 14 shows that without exceptional agreement of 3 largest 176
- 177 values the rest of the scatter is just a gunshot indicating poor performance of the model in most conditions. Authors avoid the explanation. Move results to result section. Present some values in
- 178
- Tables. In discussion interpret the results with a focus on the model and data input. 179
- Response: Thanks for the comments, which helped us significantly improve our presentation of 180
- the study. In this revision, we combined the Result and Discussion sections. Also we have 181
- 182 shortened some sentences, only providing key points. We have moved the statement of the peat
- 183 depth calculation into the Method section. In the Result& Discussion section, we added some
- 184 contents regarding the reasons behind the vegetation changes through time, e.g., the relationships
- 185 between climate and vegetation distribution. Besides, we added some sentences to discuss the
- 186 uncertainties of the model and some assumptions in this study. This can represent the reasons
- 187 behind the differences between model simulation and observation. For the comparison of peat
- depth, we used the peat sample at each site and directly compared the modeled depth with the 188
- observation for that particular pixel. However, as the peat characteristics may differ from site to 189
- 190 site, even several kilometers apart, it is very hard for the model to really capture the true peat
- depth. We added this statement at the end of the discussion. The model is suitable for being 191
- applied at regional level and can capture the peat depths features (e.g., the mean values) in a 192 large area as showed similarity of the spatial peat depth distribution between our model and
- 193 194

- 195 Interesting results as underestimation in uplands, lack of C loss simulation (Fig. 2), reasons
- 196 *behind vegetation controlling C storage, disagreement with observations, assumption that*
- 197 peatlands will remain C sink are brushed away. The agreement with other studies is OK but not
- 198 enough for discussion. Describe reasons for agreement/disagreements, give insights on
- 199 function/performance and reason why to use/trust your model. Although the authors claimed that
- the PTEM includes CN module, nothing can be learned from reading the paper how this or other modules affect the results. Given the SOC underestimation of uplands and large scatter with
- peatlands, and large-scale climate estimates, could accounting for differences in nutrient status
- or reevaluating response of C/N ratio be a key for improved estimation of spatial variability of
- 204 SOC accumulation of P-TEM or TEM model?
- 205 Given the complexity of the biogeochemistry of peatlands, we were not able to address and
- 206 discuss all processes and mechanisms related to C and N in our simulations. Rather we
- 207 dedicated our discussion on 1) how the features of vegetation distribution changes over time
- affect carbon accumulation; 2) how different climates in various paleo-periods affect carbon
- $\label{eq:compared} \mbox{accumulation rates. We admitted that we have not discussed how N affects C in the model.}$
- 210 However, P-TEM is a version that inherited all processes of C and N interactions in an early
- version of TEM (Zhuang et al., 2003, McGuire et al., 1992), which has been extensively
 evaluated and applied in numerous applications in northern high latitudes. Here we assume the C
- evaluated and applied in numerous applications in northern high latitudes. Here we assume the Cand N interactions will also be valid for the peatland ecosystems. In fact, we have started to use
- C and N data collected from SPRUCE (Brain et al., 2016) experiment to evaluate the N
- feedbacks to C dynamics. We expect to have a new version of P-TEM to fully account for C and
- 216 N feedbacks in peatland ecosystems.
- 217 Authors claim that recent climate is warmer and wetter in summers and therefore with future
- 218 warmer-wetter climate peatland carbon sink will continue. Possibility of increased respiration
- and C loss due to droughts or warmer winters is not mentioned. For the conclusion on future C
- sink a simulations with climate scenarios would be useful.
- Agreed. We have revised our statement regarding future carbon accumulation. We further stated that further study is needed to have a better view on the soil carbon dynamic under future climate scenarios. Given the complexity of peatland dynamics in terms of their areal changes (e.g.,
- 224 expansion and shrinkage, and new peatland formation), we feel analyzing how peatland carbon
- 225 responds to future climate changes and peatland dynamics is a tremendous work, which is well
- 226 beyond this study. In addition, the current paper is already very long. Thus, we decided to
- 227 conduct a full analysis on Arctic peatland carbon responses to future climates in a separate study.
- 228
- 229 Increase Figs. 2, 3, 4 and their legends size by 50 or 100%
- 230 We have increased the legends size and symbol size to make the figures clearer.
- 231 Meanwhile, the sequence of some tables and figures has been adjusted to better present the232 results.
- why are panels b, d, f in Fig. 3 scaled by zero? that makes differences to appear smaller increase
 legend in Fig. 5

- We have decreased the axis scale in Fig. 3 to make the difference appear bigger. We also
- increased the legend in Fig. 5.
- 237 increase Fig. 7 and 9, why fig. 9 it has 2 legend bars?
- We have increased the size of each panel. We mistakenly put extra color bar in panel (f). Wehave deleted it.
- 240 line 137 "observed water contents drive STM"?, did you mean observed temperatures?
- 241 The STM considers soil water content at different depths to simulate the soil temperature. We
- used the observed soil water content at particular site to drive the STM when parameterizing the
- 243 model in Wang, S., Q. Zhuang, Z. Yu, S. Bridgham, and J. K. Keller (2016), Quantifying peat
- 244 carbon accumulation in Alaska using a process-based biogeochemistry model, J. Geophys.
- 245 **Res. Biogeosci.**, 121, doi:10.1002/2016JG003452. During the regional simulation, we used the
- simulated soil water content at different depths directly from HM to drive the STM.
- 247 lines 235-238 reformulate for clarity
- 248 We have reformulated the sentences.
- 249 *line 293 correct value of C storage*
- 250 We have changed this value to 0.8 kg C m^{-2} .
- 251 lines 300-302, 309 reformulate for clarity
- 252 We have made the reformulation.
- 253 *line 315 range of what?*
- 254 The range here is for vegetation carbon storage. We have clarified this.
- lines 325 "spots were widely spread" reformulate, "SOC concentration" do you mean SOCstorage?
- 257 We have reformulated them.
- 258 line 326 reformulate "tundra was taking back area" or similar
- 259 We have reformulated it.
- 260 *line 361 Table 4 is not showing parameters*
- We have changed the statement to "due to uncertainties of observation" and cited the paper which has the parameters listed.
- 263 *lines 375-377 reformulate for clarity*
- 264 We have reformulated the section.
- 265 *lines* 420 460 *reformulate for clarity*

- 266 We have reformulated the discussion part.
- 267 *line 424 why if p* < 0.05 *"some certain effects"*?
- From the result in Wang et al. (2016) that p-value is less than 0.05, we can get the idea that the interaction factor is one of the significant factors. We reorganized this part.
- 270 line 428 "positive effect" of temperature? low temp slowed SOC accumulation, that's negative
 271 effect
- Yes, it should be "negative effect" as the cooler condition during the neoglacier period slowedthe carbon accumulation. We reformulated this sentence.
- 274 line 437 delete "suggesting the warmest climate during HTM" it comes by definition of HTM
- 275 Correct. Repeating the definition of HTM can be awkward. We revised it.
- 276 *lines 443-448 does not make sense*
- 277 We deleted this part since it was talking about the uncertainties coming from the climate model
- (ECBILT) itself, and has already been discussed in He et al. (2014). In this study, we directlyused the output of the model.
- 280 *line 452 what is "stored C in overall in the spatial scale"?*
- 281 We have reformulated the statement.
- *line 454 "negative accumulation rate" avoid writing nonsense*
- 283 We have added "(meaning C loss)" right after this statement.
- lines 485 545 reformulate whole section, move results into results, check for repetitions,
- highlight only most important trends and insights, shorten discussion if nothing much relevant to
 say
- 287 We have reformulated the result and discussion.
- 288 lines 508-519 OK
- 289 References change into the corresponding format of Biogeosciences
- 290 Thanks for pointing this out. We have changed the reference and citation format according to
- *Biogeosciences* submission requirement The manuscript has never been submitted to other journals before.
- 293
- 294
- 295
- 296

297			
298			
299			
300			
301			
302			
303			
304			
305			
306			
307			
308			
309			
310			
311			

2	2	2
3	2	z
-		

323 324	Quantifying Soil Carbon Accumulation in Alaskan Terrestrial Ecosystems during the Last 15,000 Years
325	
326	
327	Sirui Wang ¹ , Qianlai Zhuang ^{1,2*} , Zicheng Yu ³
328 329	¹ Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, 47907
330	² Department of Agronomy, Purdue University, West Lafayette, IN 47907
331	³ Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015
332	Correspondence to: <u>qzhuang@purdue.edu</u>
333	
334	
335	
336	
337	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	

350	Abstract: Northern high latitudes contain large amounts of soil organic carbon (SOC), in which
351	Alaskan terrestrial ecosystems account for a substantial proportion. In this study, the SOC
352	accumulation in Alaskan terrestrial ecosystems over the last 15,000 years was simulated using a
353	process-based biogeochemistry model for both peatland and non-peatland terrestrial ecosystems.
354	Comparable with the previous estimates of 25-70 Pg C in peatland and 13-22 Pg C in non-
355	peatland soils within 1-m depth in Alaska, our model estimated a total SOC of 36-63 Pg C at
356	present, including 27-48 Pg C in peatland soils and 9-15 Pg C in non-peatland soils. Vegetation
357	stored only 2.5-3.7 Pg C in Alaska currently with 0.3-0.6 Pg C in peatlands and 2.2-3.1 Pg C in
358	non-peatlands. The simulated average rate of peat C sequestration was 2.3 Tg C yr^{-1} with a peak
359	value of 5.1 Tg C yr ⁻¹ during the Holocene Thermal Maximum (HTM) in the early Holocene,
360	four folds higher than the average rate of 1.4 Tg C yr^{-1} over the rest of the Holocene. The SOC
361	accumulation slowed down, or even ceased, during the neoglacial climate cooling after the mid-
362	Holocene, but accumulation increased again in the 20 th century. The model-estimated peat depths
363	ranged from 1.1 to 2.7 m, similar to the field-based estimate of 2.29 m for the region. We found
364	that the changes in vegetation types and their distributions due to climate change were the main
365	factors determining the spatial variations of SOC accumulation during different time periods.
366	Warmer summer temperature and stronger radiation seasonality, along with higher precipitation
367	in the HTM and the 20 th century might have resulted in the extensive peatland expansion and
368	carbon accumulation, implying that soil C accumulation would continue under future warming
369	conditions.

370 Keywords: Carbon, Peatlands, Alaska, Modelling, Climate

372 1. Introduction

373 Global surface air temperature has been increasing since the middle of the 19th century (Jones and Mogberg, 2003; Manabe and Wetherald, 1980, 1986). Since 1970, the warming trend 374 has accelerated at a rate of 0.35 °C per decade in northern high latitudes (Euskirchen et al., 2007; 375 McGuire et al., 2009). It is predicted that the warming will continue in the next 100 years (Arctic 376 Climate Impact Assessment 2005; Intergovernmental Panel on Climate Change (IPCC), 2013, 377 378 2014). The land surface in northern high latitudes (>45° N) occupies 22% of the global surface 379 and stores over 40% of the global soil organic carbon (SOC) (McGuire et al., 1995; Melillo et 380 al., 1995; McGuire and Hobbie, 1997). Specifically, the northern high latitudes were estimated to store 200-600 Pg C (1 Pg C = 10^{15} g C) in peatland soils depending on the depth considered 381 382 (Gorham, 1990, 1991; Yu, 2012), 750 Pg C in non-peatland soils (within 3 m) (Schuur et al., 383 2008; Tarnocai et al., 2009; Hugelius et al., 2014), and additional 400 Pg C in frozen loess deposits of Siberia (Zimov et al., 2006a). Peatland area is around 40 million hectares in Alaska 384 compared with total 350 million hectares in northern high-latitude regions (Kivinen and 385 386 Pakarinen, 1981). Alaskan peatlands account for the most vast peatland area in the USA and cover at least 8% of total land area (Bridgham et al., 2006). To date, the regional soil C and its 387 388 responses to the climate change are still with large uncertainty (McGuire et al., 2009; Loisel et al., 2014). 389

The warming climate could increase C input to soils as litters through stimulating plant net primary production (NPP) (Loisel et al., 2012). However, it can also decrease the SOC by increasing soil respiration (Yu et al., 2009). Warming can also draw down the water table in peatlands by increasing evapotranspiration, resulting in a higher decomposition rate as the aerobic respiration has a higher rate than anaerobic respiration in general (Hobbie et al., 2000).

395	SOC accumulates where the rate of soil C input is higher than decomposition. The variation of
396	climate may switch the role of soils between a C sink and a C source (Davidson and Janssens,
397	2006; Davidson et al., 2000; Jobbagy and Jackson, 2000). Unfortunately, due to the data gaps of
398	field-measurement and uncertainties in estimating regional C stock (Yu, 2012), with limited
399	understanding of both peatlands and non-peatlands and their responses to climate change, there is
400	no consensus on the sink and source activities of these ecosystems (Frolking et al., 2011; Belyea,
401	2009: McGuire et al., 2009).

402 To date, both observation and model simulation studies have been applied to understand 403 the long-term peat C accumulation in northern high latitudes. Most field estimations are based on 404 series of peat-core samples (Turunen et al., 2002; Roulet et al., 2007; Yu et al., 2009; Tarnocai et al., 2009). However, those core analyses may not be adequate for estimating the regional C 405 406 accumulation due to their limited spatial coverage. Model simulations have also been carried out. 407 For instance, Frolking et al. (2010) developed a peatland model considering the effects of plant 408 community, hydrological dynamics and peat properties on SOC accumulation. The simulated 409 results were compared with peat-core data. They further analyzed the contributions of different 410 plant functional types (PFTs) to the peat C accumulation. However, this 1-D model has not been 411 used in large spatial-scale simulations by considering other environmental factors (e.g., temperature, vapor pressure, and radiation). In contrast, Spahni et al. (2013) used a dynamic 412 413 global vegetation and land surface process model (LPX), based on LPJ (Sitch et al., 2003), imbedded with a peatland module, which considered the nitrogen feedback on plant productivity 414 (Xu-Ri and Prentice, 2008) and plant biogeography, to simulate the SOC accumulation rates of 415 416 northern peatlands. However, these models have not been evaluated with respect to their simulations of soil moisture, water table depth, methane fluxes, and carbon fluxes presumably 417

418	due to relatively simple model structures, especially in terms of ecosystem processes (Stocker et
419	al., 2011, 2014; Kleinen et al., 2010). Furthermore, climatic effects on SOC were not fully
420	explained. The Terrestrial Ecosystem Model (TEM) has been applied to study C and nitrogen
421	pools and fluxes in the Arctic (Zhuang et al., 2001, 2002, 2003, 2015; He et al., 2014). However,
422	the model has not been calibrated and evaluated with peat-core C data, and has not been applied
423	to investigate the peatland C dynamics. Building upon these efforts, recently we fully evaluated
424	the peatland version of TEM (P-TEM) including modules of hydrology (HM), soil thermal
425	(STM), C and nitrogen dynamics (CNDM) for both upland and peatland ecosystems (Wang et
426	al., 2016).
427	Here we used the peatland-core data for various peatland ecosystems to parameterize and
428	test P-TEM (Figure 1). The model was then used to quantify soil C accumulation of both
429	peatland and non-peatland ecosystems across the Alaskan landscape since the last deglaciation.
430	This study is among the first to examine the current peatlands and non-peatlands C distributions
431	and peat depths in various ecosystems at the regional scale.
432	
433	2. Methods
434	2.1 Model Description
435	In P TEM, peatland soil organic C (SOC) accumulation is determined by the difference
436	between the net primary production (NPP) and acrobic and anacrobic decompostion. Peatlands
437	accumulate C where NPP is greater than decomposition, resulting in positive net ecosystem
438	production (NEP):

439	$\frac{NEP = NPP - R_{H} - R_{CH_{\mp}} - R_{CWM} - R_{CM} - R_{COM} (1)$
440	P TEM was develoepd based on the Terrestrial Ecosystem Model (TEM) at a monthly
441	step (Zhuang et al., 2003; 2015). It explicitly considers the process of aerobic decomposition
442	(R_{H}) related to the variability of water table depth; net methane emission after methane oxidation
443	$(R_{CH_{\pm}})$; CO ₂ emission due to methane oxidation (R_{CWM}) (Zhuang et al., 2015); CO ₂ release
444	accompanied with the methanogenesis (R_{CM}) (Tang et al., 2010; Conrad, 1999); and CO ₂ release
445	from other anaerobic processes (R_{COM} , e.g., fermentation, terminal electron acceptor (TEA)
446	reduction) (Keller and Bridgham, 2007; Keller and Takagi, 2013). For upland soils, we only
447	considered the heterotrohic respiration under acrobic condition (Raich, 1991). For detailed model
448	description see Supplement.
449	We model peatland soils as a two layer system for hydrological module (HM) while
450	keeping the three layer system for upland soils (Zhuang et al., 2002). The soil layers above the
451	lowest water table position are divided into: (1) moss (or litter) organic layer (0-10 cm); and (2)
452	humic organic layer (10-30 cm) (Wang et al., 2016). Based on the total amount of water content
453	within those two unsaturated layers, the actual water table depth (WTD) is estimated. The water
454	content at each 1 cm above the water table can be then determined after solving the water
455	balance equations (Zhuang et al., 2004).
456	In the STM module, the soil vertical profile is divided into four layers: (1) snowpack in
457	winter, (2) moss (or litter) organic layer, (3) upper and (4) lower humic organic soil (Wang et al.,
458	2016). Each of these soil layers is characterized with a distinct soil thermal conductivity and heat
459	capacity. We used the observed water contents at the particular sites to drive the STM (Zhuang et
460	al., 2001).

461	The methane dynamics module (MDM) (Zhuang et al., 2004) considers the processes of
462	methanogenesis, methanotrophy, and the transportation pathways including: (1) diffusion
463	through the soil profile; (2) plant aided transportation; and (3) ebullition. The soil temperatures
464	calculated from STM, after interpolation into 1 cm sub layers, are input to the MDM. The water
465	table depth and soil water content in the unsaturated zone for methane production and emission
466	are obtained from HM, and the net primary production (NPP) is calculated from the CNDM.
467	Soil water pH is prescribed from observed data and the root distribution determines the redox
468	potential (Zhuang et al., 2004).
469	2.2 Model Parameterization
470	We have parameterized the key parameters of the individual modules including HM,
471	STM, and MDM (Wang et al., 2016). The parameters in CNDM for upland soils and vegetation
472	have been optimized in the previous studies (Zhuang et al 2002, 2003; Tang and Zhuang 2008).
473	The parameters for peatland soils in P TEM were parameterized using a moderate rich
474	Sphagnum spp. open fen (APEXCON) and a Sphagnum black spruce (Picea mariana) bog
475	(APEXPER) (Table 3). Both are located in the Alaskan Peatland Experiment site (APEX) study
476	area, where Picea mariana is the only tree species above breast height in APEXPER. Three
477	water table position manipulations were established in APEX including a control, a lowered, and
478	a raised water table plots (Chivers et al., 2009; Turetsky et al., 2008; Kane et al., 2010; Churchill
479	et al., 2011). There were also several internal collapse scars that formed with thaw of surface
480	permafrost, including a non-, an old, and a new collapse plots. APEXCON represents the control
481	manipulation and APEXPER represents the non collapse plot. The annual NPP and aboveground
482	biomass at both sites have been measured in 2009. There were no belowground observations;
483	however, at a Canadian peatland, Mer Bleue, which includes Sphagnum spp. dominated bog

484	(dominated by shrubs and Sphagnum) and pool fen (dominated by sedges and herbs and
485	Sphagnum). Assuming the belowground biomass in APEXCON and APEXPER was close to that
486	in Mer Bleue, we used the belowground biomass at Mer Bleue to represent the missing
487	observations at both sites (Table 4). We conducted a set of 100,000 Monte Carlo ensemble
488	simulations for each site level calibration, and parameters with the highest mode in posterior
489	distribution were selected (Tang and Zhuang, 2008, 2009).
490	2.3 Regional Vegetation Data
491	The Alaskan C stock was simulated through the Holocene where the vegetation biome
492	maps were reconstructed at four time periods: a time period encompassing a millennial scale
493	warming event during the last deglaciation known as the Bølling Allerød at 15-11 ka (1 ka =
494	1000 cal yr Before Present), HTM during the early Holocene at 11-10 and 10-9 ka as well as the
495	mid (9 5 ka) and late Holocene (9 ka 1900 AD) (He et al., 2014). We used the modern
496	vegetation distribution for the simulation during the period 1900 2000 AD (Figure 2). We
497	assumed that the vegetation distribution remained static within each corresponding time period.
498	Five vegetation types were classified as upland vegetation: boreal deciduous broadleaf forest,
499	boreal evergreen needleleaf and mixed forest, alpine tundra, wet tundra; and barren (Table 1).
500	Mountain ranges and large water bodies were delineated as 'Barren' and data could not be
501	interpolated across them. By using the same vegetation distribution map, we reclassified the
502	upland vegetation into two peatland vegetation types: Sphagnum spp. poor fens (SP) generated
503	from tundra ecosystems, and Sphagnum spp black spruce (Picea mariana) bog/ peatland (SBP)
504	generated from forest ecosystems (Table 1), both of which dominate the major area of Alaskan
505	peatlands. We used both the upland and peatland vegetation types to simulate the C dynamics in
506	Alaska.

Upland and peatland distribution for each grid cell was determined using the wetland
inundation data extracted from the NASA/ GISS global natural wetland dataset (Matthews and
Fung, 1987). The resolution was resampled to $0.5^{\circ} \times 0.5^{\circ}$ from $1^{\circ} \times 1^{\circ}$. We postulated that,
given the same topography of Alaska during the Holocene, it was reasonable to assume that the
wetland distribution can be represented by modern inundation map. The inundation fraction was
assumed to be the same within each grid through time and the land grids not covered by
expanded peatland yet were assumed as uplands. We calculated the total area of modern Alaskan
peatlands to be 302,410 km ² , which was within the range from 132,000 km ² (Bridgham et al.,
2006) to 596,000 km ² (Kivinen and Pakarinen, 1991). The soil water pH data were extracted
from Carter and Scholes (2000), and the elevation data were derived from Shuttle Radar
Topography Mission and were resampled to $0.5^{\circ} \times 0.5^{\circ}$ spatial resolution.
2.4 Climate Data
Climate data were downscaled and bias corrected from ECBilt CLIO model output
(Timm and Timmermann, 2007; He et al., 2014). Climate fields include monthly precipitation,
monthly air temperature, monthly net incoming solar radiation, and monthly vapor pressure
$(2.5^{\circ} \times 2.5^{\circ})$. We used the same time dependent forcing atmospheric carbon dioxide
concentration data for model input as were used in ECBilt CLIO transient simulations from the
Taylor Dome (Timm and Timmermann, 2007). The historical climate data used for the
simulation through the 20 th century are monthly CRU2.0 data.
The mean annual net incoming solar radiation (NIRR) was 78 ± 4.8 W m ⁻² before the
HTM (15–11 ka). It showed an increase at the early HTM (11–10 ka), reaching 83.6 ± 4.5 W m ⁻²
and continueed to increase to 84 ± 4.7 W m ⁻² at the late HTM (10.9 ka). NIRR decreased after

529	the HTM through the entire mid Holocene (9.5 ka) to a minimum of 79 ± 5 W m ⁻² at the end of
530	the Holocene. It became higher from 1900 to 2000 AD, with annual mean 82 ± 5.1 W m ⁻²
531	(Figure 3b). The mean annual air temperature showed a similar pattern as it rose from 7 ± 1.8 -°C
532	to 5 ± 1.6 °C at the early HTM and reached 4.7 ± 1.5 °C at the late HTM, indicating a warmer-
533	than present climate. There was also a temperature decrease when HTM ended through the rest
534	of the Holocene and the temperature increased again from 1900 AD to 5.8±1.5 °C, presumably
535	due to the global warming (Figure 3d). Total annual precipitation increased from 306 ± 40 mm to
536	369 ± 25 mm at the end of the HTM, suggesting an overall wet climate. A dryer condition
537	occurred from the mid Holocene and became driest in the late Holocene (5 ka 1900 AD) (Figure
538	3f). The monthly values of NIRR followed the same pattern as annual means, except during the
539	winter. The maximum summer radiation occurred during the late HTM, leading to the highest
540	radiation seasonality. Large seasonality also appeared in the 20 th century, however, lower than
541	that during the HTM (Figure 3a). Temperature seasonality followed the trend of annual
542	temperature. The days of year with temperature above 0 °C increased 10-15 days at the HTM
543	compared with that before the HTM, suggesting a longer growing season (Figure 3c).
544	Precipitations were highest during the summer (July September) in each time period and lowest
545	during the winter and early spring (December April). The periods at 15-11ka and in the late-
546	Holocene exhibited less overall, especially summer precipitations than at the HTM. During the
547	20 th century, there was less winter precipitation but it was compensated by a higher summer
548	precipitation compared with the late Holocene (Figure 3e). The orbital induced maximum
549	seasonality of insolation and the warmest climate during the HTM as described in Huybers et al.
550	(2006) and Yu et al. (2010) corresponded well to the simulated trends of air temperature.

552 2.5 Data of Peatland Basal Ages

553 We conducted the simulation from 15 to 5 ka for an Alaskan peatland assuming it started to accumulate C since 15 ka. However, assuming that peatlands in all grids had the same basal 554 age (15 ka) could overestimate the total peat SOC accumulation. Therefore we used the observed 555 556 basal ages of peat samples from Gorham et al. (2012) and categorized them into different time periods (Figure 2). We found that during each period, the spatial distribution of peatland basal 557 was similar to that of the vegetation types (e.g., peatland initiation points were mainly 558 located where was dominated by alpine tundra at south, northwestern, and southeastern coast 559 560 during 15 11 ka). We thus used the vegetation types to estimate the peatland basal ages at 561 regional scales (Table 2).

562 2.6 Simulations and Sensitivity Test

563 To verify the model ability to simulate the peat C accumulation rates in the past 15,000 years, we conducted a simulation using pixels located on the Kenai Peninsula from 15 to 5 ka 564 after model parameterization. We compared the model simulation results with the peat-core data 565 from four peatlands on the Kenai Peninsula, Alaska (Jones and Yu, 2010; Yu et al., 2010) (see 566 567 Wang et al. (2016) for detail). The observed data include the peat depth, bulk density of both 568 organic and inorganic matters at 1 cm interval, and age determinations. The simulated C 569 accumulation rates represent the actual ("true") rates at different times in the past. However, the 570 calculated accumulation rates from peat cores are considered as "apparent" accumulation rates, 571 as peat would continue to decompose since the time of formation until present when the measurement was made (Yu, 2012). To facilitate comparison between simulated and observed 572 573 accumulation rates, we converted the simulated "true" accumulation rates to "apparent" rates,

574	following the approach by Spahni et al. (2013). That is, we summed the annual net C
575	accumulation over each 500 year interval and deducted the total amount of C decomposition
576	from that time period, then dividing by 500 years.
577	For the study region, we conducted a transient simulation using continuous monthly
578	meteorology data (Figure 2) from 15 ka to 2000 AD. Five maps (Figure 3) were used to represent
579	the vegetation distributions of Alaska and were assumed to be static during each time period
580	(e.g., 15–11 ka, 11–10 ka, 10–9 ka, 9 ka–1900 AD, and 1900–2000 AD). The simulation was
581	firstly conducted assuming all grid cells were taken up by upland vegetation to get the upland
582	soil C spatial distributions during different time periods. We then conducted the second
583	simulation assuming all grid cells were dominated by peatland vegetation by merging upland
584	types into peatland types following Table 1 to obtain the distributions of peat SOC accumulation.
585	We used the inundation fraction map to extract both uplands and peatlands from each grid and
586	estimated the corresponding SOC stocks within each grid, which were then summed up to
587	represent the Alaskan SOC stock.
588	We conducted a sensitivity test to evaluate the responses of NPP, SOC decomposition
589	rates (aerobic plus anaerobic respiration), and net SOC balance to the climate variables.
590	Simulations under three scenarios were conducted to test the temperature effect. We used the
591	original forcing data as the standard scenario and the warmer (monthly temperature +5°C) and
592	cooler (-5°C) as other two while keeping the rest forcing data unchanged. Similarly, we used the
593	original forcing data as the standard scenario and the wetter (monthly precipitation +10 mm) and
594	drier (-10 mm) to test the effect from precipitation. To further study if vegetation distribution
595	has stronger effects on SOC sequestration than climate in Alaska, we simply replaced SBP with
596	SP and simultaneously replaced the upland forests with tundra at the beginning of 15 ka. We also

conducted the simulation under "warmer" and "wetter" conditions described before while
keeping the vegetation distribution unchanged.
2. Methods
2.1. Overview
To conduct regional simulations of carbon accumulation for both uplands and peatlands,
we first parameterized the P-TEM for representative ecosystems in Alaska. Second, we
organized the regional vegetation and peatland distribution data, spatial basal age data for all
peatland grid cells based on site-level soil core data, and climate data for each period during the
Holocene. Finally, we conducted the regional simulations and sensitivity analysis.
2.2 Model Description
In P-TEM (Wang et al., 2016), peatland soil organic C (SOC) accumulation is determined
by the difference between NPP and aerobic and anaerobic decompostion. Peatlands accumulate
C where NPP is greater than decomposition, resulting in positive net ecosystem production
<u>(NEP):</u>
$NEP = NPP - R_H - R_{CH_4} - R_{CWM} - R_{CM} - R_{COM} $ (1)
P-TEM was developed based on the Terrestrial Ecosystem Model (TEM) at a monthly
step (Zhuang et al., 2003; 2015). It explicitly considers the process of aerobic decomposition
(R_H) related to the variability of water-table depth; net methane emission after methane oxidation
(R_{CH_4}) ; CO ₂ emission due to methane oxidation (R_{CWM}) (Zhuang et al., 2015); CO ₂ release
accompanied with the methanogenesis (R_{CM}) (Tang et al., 2010; Conrad, 1999); and CO ₂ release
from other anaerobic processes (R_{COM} , e.g., fermentation, terminal electron acceptor (TEA)

618	reduction) (Keller and Bridgham, 2007; Keller and Takagi, 2013). For upland soils, we only
619	considered the heterotrohic respiration under aerobic condition (Raich, 1991). For detailed model
620	description see Wang et al. (2016).
621	We modeled peatland soils as a two-layer system for hydrological module (HM) while
622	keeping the three-layer system for upland soils (Zhuang et al., 2002). The soil layers above the
623	lowest water table position are divided into: (1) moss (or litter) organic layer (0-10 cm); and (2)
624	humic organic layer (10-30 cm) (Wang et al., 2016). Based on the total amount of water content
625	within those two unsaturated layers, the actual water table depth (WTD) is estimated. The water
626	content at each 1 cm above the water table can be then determined after solving the water
627	balance equations (Zhuang et al., 2004).
628	In the STM module, the soil vertical profile is divided into four layers: (1) snowpack in
629	winter, (2) moss (or litter) organic layer, (3) upper and (4) lower humic organic soil (Wang et al.,
630	2016). Each of these soil layers is characterized with a distinct soil thermal conductivity and heat
631	capacity. We used the observed water content to drive the STM (Zhuang et al., 2001).
632	The methane dynamics module (MDM) (Zhuang et al., 2004) considers the processes of
633	methanogenesis, methanotrophy, and the transportation pathways including: (1) diffusion
634	through the soil profile; (2) plant-aided transportation; and (3) ebullition. The soil temperatures
635	calculated from STM, after interpolation into 1-cm sub-layers, are input to the MDM. The water-
636	table depth and soil water content in the unsaturated zone for methane production and emission
637	are obtained from HM, and NPP is calculated from the CNDM. Soil-water pH is prescribed from
638	observed data and the root distribution determines the redox potential (Zhuang et al., 2004).
639	

640 **2.3 Model Parameterization**

We have parameterized the key parameters of the individual modules including HM, 641 STM, and MDM in Wang et al. (2016). The parameters in CNDM for upland soils and 642 vegetation have been optimized in the previous studies (Zhuang et al 2002, 2003; Tang and 643 Zhuang 2008). Here we parameterized P-TEM for peatland ecosystems using data from a 644 moderate rich Sphagnum spp. open fen (APEXCON) and a Sphagnum-black spruce (Picea 645 mariana) bog (APEXPER) (Table 1). Both are located in the Alaskan Peatland Experiment 646 (APEX) study area, where *Picea mariana* is the only tree species above breast height in 647 APEXPER. Three water table position manipulations were established in APEX including a 648 control, a lowered, and a raised water table plots (Chivers et al., 2009; Turetsky et al., 2008; 649 Kane et al., 2010; Churchill et al., 2011). There were also several internal collapse scars that 650 formed with thaw of surface permafrost, including a non-, an old, and a new collapse plots. 651 APEXCON represents the control manipulation and APEXPER represents the non-collapse plot. 652 653 The annual NPP and aboveground biomass at both sites have been measured in 2009. There were 654 no belowground observations at APEX, however at a Canadian peatland, Mer Bleue, which 655 includes Sphagnum spp. dominated bog (dominated by shrubs and Sphagnum) and pool fen (dominated by sedges and herbs and Sphagnum). The belowground biomass was also observed at 656 Suurisuo mire complex, southern Finland, a sedge fen site dominated by Carex rostrate. We 657 used the ratio (70%) of belowground biomass to total biomass from these two study sites to 658 calculate the missing belowground biomass values at APEXCON and APEXPER (Table 2). We 659 conducted 100,000 Monte Carlo ensemble simulations to calibrate the model for each site using 660 a Bayesian approach and parameter values with the modes in their posterior distributions were 661 selected (Tang and Zhuang, 2008, 2009). 662

663	
664	2.4 Regional Model Input Data
665	The Alaskan C stock was simulated through the Holocene driven with vegetation data
666	reconstructed for four time periods including a time period encompassing a millennial-scale
667	warming event during the last deglaciation known as the Bølling-Allerød at 15-11 ka (1 ka =
668	1000 cal yr Before Present), HTM during the early Holocene at 11-10 and 10-9 ka, and the mid-
669	(9-5 ka) and late- Holocene (5 ka-1900 AD) (He et al., 2014). We used the modern vegetation
670	distribution for the simulation during the period 1900-2000 AD (Figure 2). We assumed that the
671	vegetation distribution remained static within each corresponding time period. Upland
672	ecosystems were classified into boreal deciduous broadleaf forest, boreal evergreen needleleaf
673	and mixed forest, alpine tundra, wet tundra; and barren lands (Table 3). By using the same
674	vegetation distribution map, we reclassified the upland ecosystems into two peatland types
675	including Sphagnum spp. poor fens (SP) dominated by tundra and Sphagnum sppblack spruce
676	(Picea mariana) bog/ peatland (SBP) dominated by forest ecosystems (Table 3).
677	Upland and peatland ecosystem distribution for each grid cell was determined using the
678	wetland inundation data extracted from the NASA/ GISS global natural wetland dataset
679	(Matthews and Fung, 1987). The resolution was resampled to $0.5^{\circ} \times 0.5^{\circ}$ from $1^{\circ} \times 1^{\circ}$. Given
680	the same topography of Alaska during the Holocene, we assumed that the wetland distribution
681	kept the same throughout the Holocene. The inundation fraction was assumed to be the same
682	within each grid through time and the land grids not covered by peatland were treated as uplands.
683	We calculated the total area of modern Alaskan peatlands to be 302,410 km ² , which was within
684	the range from 132,000 km ² (Bridgham et al., 2006) to 596,000 km ² (Kivinen and Pakarinen,

685	1991). The soil water pH data were extracted from Carter and Scholes (2000), and the elevation
686	data were derived from Zhuang et al. (2007).
687	Our regional simulations considered the effects of basal ages on carbon accumulation. To
688	obtain the spatially explicit basal age data for all peatlands grid cells, we first categorized the
689	observed basal ages of peat samples from Gorham et al. (2012) into different time periods
690	(Figure 2). During each period, the spatial distribution of peatland basal ages was correlated with
691	the dominated vegetation types. For instance, peatland initiations during 15-11 ka occurred in the
692	pixels that were dominated by alpine tundra at south, northwestern, and southeastern coast. We
693	thus used the vegetation types to estimate the peatland basal ages for all grid cells at regional
694	scales (Table 4).
695	Climate data were bias-corrected from ECBilt-CLIO model output (Timm and
696	Timmermann, 2007) to minimize the difference from CRU data (He et al., 2014). Climate fields
697	include monthly precipitation, monthly air temperature, monthly net incoming solar radiation,
698	and monthly vapor pressure at resolution of $2.5^{\circ} \times 2.5^{\circ}$. We used the same time-dependent
699	forcing atmospheric carbon dioxide concentration data for model input as were used in ECBilt-
700	CLIO transient simulations from the Taylor Dome (Timm and Timmermann, 2007). The
701	historical climate data used for the simulation through the 20 th century were monthly CRU2.0
702	data (Mitchell et al., 2004).
703	2.5 Simulations and Sensitivity Test
704	Simulations for pixels located on the Kenai Peninsula from 15 to 5 ka were first
705	conducted with the parameterized model. The peat-core data from four peatlands on the Kenai
706	Peninsula, Alaska (Jones and Yu, 2010; Yu et al., 2010) (see Wang et al. (2016) Table 3) were

707	used to compare with the simulations. The observed data include the peat depth, bulk density of
708	both organic and inorganic matters at 1-cm interval, and age determinations. The simulated C
709	accumulation rates represent the actual ("true") rates at different times in the past. However, the
710	calculated accumulation rates from peat cores are considered as "apparent" accumulation rates,
711	as peat would continue to decompose since the time of formation until present when the
712	measurement was made (Yu, 2012). To facilitate comparison between simulated and observed
713	accumulation rates, we converted the simulated "true" accumulation rates to "apparent" rates,
714	following the approach by Spahni et al. (2013). That is, we summed the annual net C
715	accumulation over each 500-year interval and deducted the total amount of C decomposition
716	from that time period, then dividing by 500 years.
717	Second, we conducted a transient regional simulation driven with monthly climatic data
718	(Figure 3) from 15 ka to 2000 AD. The simulation was conducted assuming all grid cells were
719	taken up by upland ecosystems to get the upland soil C spatial distributions during different time
720	periods. We then conducted the second simulation assuming all grid cells were dominated by
721	peatland ecosystems following Table 3 to obtain the distributions of peat SOC accumulation.
722	Finally, we used the inundation fraction map to extract both uplands and peatlands and estimated
	the corresponding SOC stocks within each grid, which were then summed up to represent the
723	
724	Alaskan SOC stock. We also used the observed mean C content of 46.8% in peat mass and bulk
725	<u>density of 166\pm76 kg m⁻³ in Alaska (Loisel et al., 2014) to estimate peat depth distribution from</u>
726	the simulated peat SOC density (kg C m^{-2}).
727	Third, we conducted a series of extra simulations to further examine how uncertain
728	climates and vegetation distribution affect our results. We used the original forcing data as the
729	standard scenario and the warmer (monthly temperature $+5^{\circ}C$) and cooler ($-5^{\circ}C$) as other two

730	scenarios while keeping the rest forcing data unchanged. Similarly, we used the original forcing	
731	data as the standard scenario and the wetter (monthly precipitation $+10$ mm) and drier (-10	
732	mm) to test the effect from precipitation. To further study if vegetation distribution has stronger	
733	effects on SOC accumulation than climate in Alaska, we simply replaced SBP with SP and	
734	replaced the upland forests with tundra at the beginning of 15 ka. We then conducted the	
735	simulation under "warmer" and "wetter" conditions simultaneously as described before while	
736	keeping the vegetation distribution unchanged.	
737	•	Formatte
738	3. Results	
739	3.1 Simulated Peatland Carbon Accumulation Rates at Site Level	
740	Our paleo simulation showed a large peak of peat C accumulation rates at 11 9 ka during	
741	the HTM (Figure 4). The simulated "true" and "apparent" rates captured this primary feature in	
742	peat core data at almost all sites (Jones and Yu, 2010). The simulated magnitude of this peak was	
743	similar to observations at No Name Creek and Horse Trail Fen, but overestimated at Kenai	
744	Gasfield and Swanson Fen at 10 9 ka (late HTM). The secondary peak of C accumulation rates	
745	appeared at 6 5 ka in the mid Holocene. The simulation successfully estimated both peaks at	
746	Swanson Fen, No Name Creek, and Kenai Gasfield, but with overestimated magnitude at	
747	Swanson Fen. The comparison between simulation and observation using averages in 500 year	
748	bins revealed a high correlation ($R^2 = 0.90, 0.88, and 0.39$), especially at No Name Creek and	
749	Horse Trail Fen. The simulated SOC accumulation rates corresponded well to the synthesis	
750	curves at four sites (Figure 4b).	
751	3.2 Vegetation Carbon Storage	

Formatted: Indent: First line: 0"

752	
753	HTM (15-11 ka) (Figure 5a), paralleled to the relatively low annual NPP (Figure 5b). The
754	Sphagnum dominated peatland represented the lowest vegetation C storage (2.5 kg C m ⁻²),
755	much lower than the Sphagnum black spruce peatland (1 kg C m ^{-2}). Upland vegetation showed a
756	generally higher C storage, with the highest amount of C stored in boreal evergreen needleleaf
757	forests (2 kg C m ^{-2}). The upland forests also showed a higher rate of annual NPP (0.31-0.35)
758	$kg C m^{-2}yr^{-1}$). C storage of alpine and moist tundra was higher than peatlands, while the annual
759	NPP were lower (0.08 0.1 kg C m ^{-2} yr ^{-1}). Higher NPP were shown in almost all vegetation
760	types during the early Holocene. There were no significant changes of vegetation C storage in
761	peatlands and tundra compared with boreal forests. All vegetation showed a higher NPP and
762	vegetation C during the late HTM. Mean annual vegetation C exceeded 0.5 g C m ^{-2} and 1.3
763	g C m ^{-2} for <i>Sphagnum</i> and black spruce peatlands. Evergreen forest stored over 4.7 kg C m ^{-2} .
764	During the mid Holocene, almost all vegetation types represented a decrease in both NPP and
765	vegetation C. The plant productivity along with the vegetation C began to slightly increase at
766	late Holocene and became stable, possibly resulted from the rising temperature.
767	Approximately 2 Pg C was stored in both upland and peatland vegetation in Alaska
768	before the HTM (Figure 6). Upland moist tundra accounted for the most amount of C due to its
769	large area. At the early HTM, evergreen needleleaf forest area became the largest, and about 1.9
770	Pg C was stored in boreal forests. More C was stored in black spruce peatland also because of
771	the forest formation. Boreal forest accounted for 3.5 Pg C at the late HTM. Decrease of
772	vegetation C occurred at mid Holocene. The simulation through the Holocene to present
773	indicated that the lowest amount C was stored in vegetation before the HTM, while vegetation
774	assimilated the largest amount of C during the late Holocene. We estimated a total 2.9 Pg C

775	stored in modern Alaskan vegetation, with 0.4 Pg in peatlands and 2.5 Pg in non-peatlands. The
776	uncertainties of the parameters during the model calibration (Table 4) resulted in a range of 0.3-
777	0.6 Pg C and 2.2 3.1 Pg C in peatlands and non peatlands, respectively.
778	
779	
780	3.3 Soil Carbon Stocks
781	Carbon storage in Alaskan non peatland soils varied spatially (Figure 7). Generally,
782	deciduous broadleaf forests had a higher SOC (8 13 kg C m ⁻²) than evergreen needleleaf forests
783	$(3.8 \text{ kg C m}^{-2})$, while moist tundra had the highest SOC (12.25 kg C m}^{-2}). The SOC showed an
784	overall increase in both boreal forests and moist tundra during the early HTM (11-10 ka)
785	(Figures 7a, b). With the continued expansion of the boreal forests during the late HTM (10-9
786	ka) (Figure 4c), the spots of low SOC concentration were widely spread (Figure 7c). During the
787	mid- (9-5 ka) and late-Holocene (5 ka-1900 AD), although the wet tundra took back the most
788	area, the SOC decreased (Figure 7d) presumably due to the cooler and drier conditions, which
789	was consistent with the decline in mean annual NPP and vegetation C (Figure 5). An increase
790	occurred again in the last century with mean SOC comparable to the late HTM (Figure 7f). An
791	average of 3.1 Pg C was simulated before the HTM (Figure 8). The SOC increased sharply
792	during the early HTM (to 11.5 Pg C) across Alaska and slightly decreased to 9 Pg C at the end of
793	HTM. There was little variation during the mid and late Holocene (10.7 Pg C) and the amount
794	increased to 11.2 Pg C at the end of the 20 th century. Due to model parameterization (Table 4),
795	the regional soil C estimates ranged from 9 to 15 Pg C at present.

796	The peatland SOC showed a different pattern compared to upland soils. Peatlands started
797	to accumulate C at 15 ka mainly in northwestern, southeastern, and south coastal regions of
798	Alaska (Figure 9a). Much less C (<10 kg C m ⁻²) was accumulated in the southeastern coast in
799	comparison to other coastal parts (>15 kg C m ⁻²). Initially, only Sphagnum open peatland (SP)
800	existed, with no Sphagnum black spruce forested peatland (SBP). At the beginning of the HTM,
801	there was a peatland area of $\sim 4.5 \times 10^5$ km ² (Figure 10). During the early HTM, the SP formed
802	in the north coast and the SBP rapidly expanded in south coast and east central regions,
803	becoming the dominant peatland type in Alaska (Figure 9b). Meanwhile the peatlands area
804	increased to $\sim 13 \times 10^{5}$ km ² (Figure 10). The SBP continued to expand to the central Alaska
805	during the late HTM (Figure 9c). Although peatlands continued to form towards west in the mid-
806	Holocene (Figures 9d, 10), some areas that were dominated by SBP in interior Alaska stopped
807	accumulating SOC. By the end of the mid Holocene, almost all the peatlands have formed
808	(Figure 10) and some grids showed negative accumulation in the late-Holocene (Figure 9e).
809	However, as the global warming began in the 20 th century, SOC accumulation increased rapidly
810	again (Figure 9f).
811	The mean annual SOC accumulation rates increased from 0.9 to 28.7 g C m ^{-2} yr ^{-1} and
812	from 0 to 57.1 g C m ⁻² yr ⁻¹ in the early HTM (11-10 ka) for SP and SBP, respectively, with an
813	area weighted rate of 41.6 C m ⁻² yr ⁻¹ (Figure 11). The accumulation rate of the SP increased to
814	48.6 g C m ⁻² yr ⁻¹ while the rate of SBP slightly decreased to 56.7 g C m ⁻² yr ⁻¹ with an overall
815	rate 54.7 C m ⁻² yr ⁻¹ in the late HTM (10 9 ka) (Figure 11), followed by a drop to 22.7 and 13.1
816	g C m ⁻² yr ⁻¹ in the mid Holocene (Figure 11). Late Holocene rates ranged from 9.8 to 8.0
817	g C m ⁻² yr ⁻¹ for SP and SBP. The rates of SP and SBP reached 42.5 and 33.2 g C m ⁻² yr ⁻¹
818	respectively in the 20 th century.

819	The change in total SOC stock corresponded well to the mean annual accumulation rates
820	during the last 15,000 years (Figures 8, 11). A total of 37.4 Pg C was estimated to accumulate in
821	Alaskan peatlands, with 23.9 Pg C in SP and 13.5 Pg C in SBP, from 15 ka to 2000 AD. The
822	total peat C stock had an uncertainty range of 27 48 Pg C depending on model parameters (Table
823	4). The peatlands in the northern and southern coastal regions showed the highest SOC densities
824	(>150 kg C m ⁻²), while some central regions had the lowest (<20 kg C m ⁻²) (Figure 12a). For
825	newly formed peatlands in west central part and west coast, <100 kg C m ⁻² SOC was
826	accumulated. The non peatland SOC distribution was mainly decided by the vegetation types,
827	with high densities (>15 kg C m ^{-2}) in west and north coast where tundra dominated and low
828	densities (<10 kg C m ^{-2}) in central and east parts where boreal forests dominated (Figure 12b).
829	We used the observed mean C content of 46.8% in peat mass and bulk density of 166 ± 76
830	kg m ^{-3} in Alaska (Loisel et al., 2014) to estimate peat depth at each peat grid cell from the
831	simulated peat SOC density (kg C m $^{-2}$). The spatial pattern of peat depth is identical to the SOC
832	distribution, with most regions having peat depths of <2.5 m (Figure 12c). Based on the modern
833	land area in each TEM gird cell and the inundation map, we estimated a weighted average depth
834	of 1.9 m (ranging from 1.1 to 2.7 m, considering uncertainty in bulk density values) for Alaska
835	peatlands. We also combined the SOC in both peatlands and non peatlands results together to
836	generate the total SOC distribution (Figure 12d). Soils at northern coast had the highest densities,
837	many grids had SOC >40 kg C m ⁻² . Southwestern coast and eastern central Alaska also showed
838	a high total SOC accumulation (>40 kg C m ^{-2}). Central, eastern parts and west coast had the
839	lowest SOC densities (<20 kg C m ⁻²).

3.4 Sensitivity Test

841	We found that NPP and decomposition rates changed simultaneously, but NPP had the
842	dominant effect as the net SOC accumulation rate of Alaska increased and decreased under
843	warmer and cooler conditions, respectively (Figures 13a, c, e). The net SOC accumulation rate
844	increased as the condition became wetter and vice versa (Figures 13b, d, f). We also found an
845	increase of SOC from 11.2 to 14.6 Pg C for upland mineral soils and 37.5 to 71 Pg C for
846	peatlands after replacing the SP to SBP and upland forest systems with tundra. Meanwhile, under
847	"warmer" and "wetter" conditions, the upland and peatland SOC increased by 13.8 Pg C and 35
848	Pg C, respectively.
849	4. Discussion
850	4.1 Effects of Climate on Ecosystem Carbon Accumulation
851	
852	coolest temperature appeared at 15-11 ka, followed by the late Holocene (5 ka-1900 AD). Those
853	two periods were also generally dry (Figure 3f). The former represented colder and drier climate
854	before the onset of the Holocene and the HTM (Barber and Finney, 2000; Edwards et al., 2001).
855	The latter represented post HTM neoglacial cooling, which caused permafrost aggradation
856	across northern high latitudes (Oksanen et al., 2001; Zoltai, 1995).
857	The simulated NPP, vegetation C density and storage were highest during the HTM
858	(Figures 5, 6). The highest C accumulation rates in both peatlands and non peatlands occurred at
859	the time (Figures 7 11). ECBilt CLIO simulated an increase of temperature in the growing
860	season (Figure 3c), also leading to a stronger seasonality of temperature during the HTM
861	(Kaufman et al., 2004, 2016), caused by the maximum summer insolation (Berger and Loutre,
862	1991; Renssen et al., 2009). The highest mean annual and highest summer precipitations were

863	also simulated during the 10-9 ka period. The highest vegetation C uptake and SOC
864	accumulation rates coincided with the warmest summer and the wetter than before conditions,
865	suggesting a strong link between those climate variables and C dynamics in Alaska. Enhanced
866	climate seasonality characterized by warmer summer, enhanced summer precipitation and
867	possibly earlier snow melt during the HTM increased NPP, as shown in our sensitivity test.
868	Annual NPP increased by 40 and 20 g C m ^{-2} yr ^{-1} under the warmer and wetter scenarios,
869	respectively (Figures 13a, b), indicating summer temperature and precipitation were the primary
870	controls over NPP. Warmer condition could positively affect the SOC decomposition (Nobrega
871	et al., 2007). Furthermore, hydrological effect can also be significant as higher precipitation
872	could raise the water table position, allowing less space for aerobic respiration. As shown in the
873	sensitivity test, warmer and wetter could lead to an increase of decomposition up to 35 and 15
874	g C m ⁻² yr ⁻¹ , respectively (Figures 13c, d). Such climatic effects on ecosystem productivity
875	were consistent with modern studies (Tucker et al., 2001; Kimball et al., 2004; Linderholm,
876	2006). Our results did not show a decrease in total heterotrophic respiration throughout Alaska
877	from the higher precipitation, presumably due to a much larger area of upland soils (1.3×10^6)
878	km^2) than peatland soils (0.26 × 10 ⁶ km ²), as higher precipitation would cause higher aerobic
879	respiration in the unsaturated zone of upland soils. The relatively low vegetation NPP and C
880	density, along with the low total vegetation and soil C stocks during 15-11 ka period and late-
881	Holocene were consistent with the unfavorable cool and dry climate conditions (Figures 5, 6, 8,
882	11). Our previous simulations at four peatland sites in Alaska (Wang et al., 2016) suggested that
883	temperature had the most significant effect on peat accumulation rate, followed by the
884	seasonality of net solar radiation and temperature. Precipitation and the interactive effect from
885	temperature and precipitation had some certain effects ($p < 0.05$). The period from 15 to 11 ka

886	experienced lower snowfall than the HTM. The combination of decreased snowfall and lower
887	temperature could result in deeper frost depth due to the decreased insulative effects of the
888	snowpack, and therefore shortening the period for active photosynthetic C uptake, leading to an
889	overall low productivity (McGuire et al., 2000; Stieglitz et al., 2003). The positive effect of
890	temperature on SOC accumulation as shown in this study, may help explain the coincidence
891	between low SOC accumulation rates across the northern peatland domain and the cooler
892	condition during the neoglacial period (Marcott et al., 2013; Vitt et al., 2000; Peteet et al., 1998;
893	Yu et al. 2010). The stimulation of SOC accumulation from the warming and the rapid SOC
894	accumulation rates during the 20 th century in our study suggested a continue C sink will exist
895	under the warmer and wetter climate conditions in the 21 st century, as also concluded in Spahni
896	et al. (2013).
897	The 20 th -century represented a temperature rise induced by global warming. It was still
898	1.1 °C lower than the late HTM, suggesting the warmest climate during the HTM, which agreed
899	with the previous study (Stafford et al., 2000). It was also lower than the mid Holocene, which
900	compared favorably with other estimates (Anderson and Brubaker, 1993; Kaufman et al., 2004).
901	
	However, the annual precipitation during modern time estimated from other studies was higher
902	However, the annual precipitation during modern time estimated from other studies was higher than the HTM and mid Holocene (Barber and Finney, 2000). The model output we used may
902 903	
	than the HTM and mid Holocene (Barber and Finney, 2000). The model output we used may
903	than the HTM and mid Holocene (Barber and Finney, 2000). The model output we used may overestimate the precipitation in the HTM, which could subsequently overestimate the water-
903 904	than the HTM and mid Holocene (Barber and Finney, 2000). The model output we used may overestimate the precipitation in the HTM, which could subsequently overestimate the water- table position and thus, the annual C accumulation rates. As studied, regional precipitation varies
903 904 905	than the HTM and mid Holocene (Barber and Finney, 2000). The model output we used may overestimate the precipitation in the HTM, which could subsequently overestimate the water- table position and thus, the annual C accumulation rates. As studied, regional precipitation varies largely depending on the local topography (Stafford et al., 2000), thus the estimates with large-

908	the location- and topographic-specific climate data, especially precipitation (Whitlock and
909	Bartlein, 1993; Mock and Bartlein, 1995).
910	-4.2 Effects of Vegetation Distribution on Ecosystem Carbon Accumulation
911	Different vegetation distributions during various periods led to clear step changes,
912	suggesting vegetation composition is likely to be the primary control on C dynamics. Similarly,
913	SBP areas stored lower C than SP in overall at the spatial seale during each time period (Figure
914	9). Under cooler and drier climates, forested peatlands generally stopped accumulating SOC
915	during the mid-and late Holocene with some areas accompanied by a negative accumulation rate
916	(Figures 9d,e), suggesting that such type of peatland could be more vulnerable to climate change
917	due to its low C storage.
918	As key parameters controlling C dynamics in the model (e.g., maximum rate of
919	photosynthesis, litter fall C) are ecosystem type specific, vegetation distribution change may
920	have a dominant effect on simulated regional plant productivity and C storage. Our sensitivity
921	test indicated that by replacing all vegetation types with forest systems, there was a total increase
922	of 36.9 Pg in upland and peatland soils. There was also an increase of 48.8 Pg C under warmer
923	and wetter conditions. These tests indicated that both climate and vegetation distribution have
924	significant effects on C storage.
925	However, the high correlation between climate and ecosystem C dynamics as discussed
926	above indicated that climate was probably the fundamental driver for vegetation composition
927	changes over time. The vegetation changes as reconstructed from fossil pollen data during
928	different time periods followed the general climate history during the last 15,000 years (He et al.,
929	2014). Upland alpine and moist tundra stored the largest amounts of C due to their large areas

930	among all vegetation types, as forests areas were limited before the HTM (Figure 6). On the
931	basis of the observed relationship between the distributions of basal ages of peat samples and
932	vegetation types (Table 2, Figure 2), alpine and moist tundra were favorable for peatlands
933	initiation under a cooler climate. No forested peatlands formed before the HTM. Under the warm
934	condition in the HTM, boreal evergreen needleleaf and deciduous broadleaf forests expanded
935	(Figures 2b, c) as indicated by other studies (Bartlein et al., 2011; Edwards et al., 2005; Williams
936	et al., 2001). Meanwhile, large areas were taken up by forested peatlands, characterized by the
937	sharp increase of SOC storage in such ecosystems. The cooler temperature during the mid-
938	Holocene limited the productivity of tree plants, leading to the retreat of trees. This is broadly
939	consistent with other studies (Prentice et al., 1996; Edwards et al., 2000; Williams et al., 2001;
940	Bigelow et al., 2003). Large proportion of forested peatlands thus changed back into Sphagnum
941	spp. peatlands. The retreat of treeline on the Seward Peninsula in the cooler mid Holocene likely
942	reflects much shorter and cooler growing seasons, influenced by an expansion of sea ice in the
943	Bering Sea (Crockford and Frederick, 2007) and the onset of the cooler Neoglacial climate.
944	Forested peatlands ceased accumulating SOC in central Alaska with an overall low accumulation
945	rates through the whole mid to late Holocene (Figures 8, 9, 11).
946	4.3 Comparison between Simulated Carbon Dynamics and Other Estimates
947	A large variation of "true" peat C accumulation rates was simulated on the Kenai
948	Peninsula (Figure 4a), ranging from -4 (that is, peat C loss) to 50 C m ^{-2} yr ^{-1} . We simulated an
949	average of peat SOC "apparent" accumulation rate of 11.4 g C m ⁻² yr ⁻¹ from 15 to 5 ka (Figure
950	4b), which was slightly higher than the observed average rate from four sites (10.45
951	g C m ⁻² yr ⁻¹). The simulated rate during the HTM was 26.5 g C m ⁻² yr ⁻¹ , up to five times
952	higher than the rest of the Holocene (5.04 g C m ^{-2} yr ^{-4}). The simulation results corresponded to

953	the observations, in which an average rate of 20 C m ⁻² yr ⁻¹ from 11.5 to 8.6 ka was observed,
954	four times higher than 5 C m ^{-2} yr ^{-1} over the rest of the Holocene.
955	We estimated an average peat SOC "apparent" accumulation rate of 13 g C m ⁻² yr ⁻¹ (2.3
956	Tg C yr ⁻¹ for the entire Alaska) from 15 ka to 2000 AD, lower than the value of 18.6
957	g C m ⁻² yr ⁻¹ as estimated from peat cores for northern peatlands (Yu et al., 2010), and slightly
958	higher than the observed rate of 13.2 g C m ⁻² yr ⁻¹ from four peatlands in Alaska (Jones and Yu,
959	2010). A simulated peak occurred during the HTM with the rate 29.1 g C m ⁻² yr ⁻¹ (5.1 Tg C
960	yr ⁻¹), which was slightly higher than the observed 25 g C m ⁻² yr ⁻¹ for northern peatlands and
961	-20 g C m ⁻² yr ⁻¹ for Alaska (Yu et al., 2010). It was almost four times higher than the rate 6.9
962	g C m ⁻² yr ⁻¹ (1.4 Tg C yr ⁻¹) over the rest of the Holocene, which corresponded to the peat core-
963	based observations of ~5 g C m ^{-2} yr ^{-1} . The mid and late Holocene showed much slower C
964	accumulation at a rate approximately five folds lower than during the HTM. This corresponded
965	to the observation of a six fold decrease in the rate of new peatland formation after 8.6 ka (Jones
966	and Yu 2010). The C accumulation rates increased abruptly to 39.2 g C m ⁻² yr ⁻¹ during the last
967	century, within the field measured average apparent rate range of 20 50 g C m ^{-2} yr ^{-1} over the
968	last 2000 years (Yu et al., 2010).
969	The SOC stock of northern peatlands has been estimated in many studies, ranging from
970	210 to 621 Pg (Oechel 1989; Gorham 1991; Armentano and Menges, 1986; Turunen et al., 2002;
971	Yu et al., 2010; see Yu 2012 for a review). Assuming Alaskan peatlands were representative of
972	northern peatlands and using the area of Alaskan peatlands ($0.45 \times 10^{6} \text{ km}^{2}$; Kivinen and
973	Pakarinen, 1981) divided by the total area of northern peatlnads ($\sim 4 \times 10^{6} \text{ km}^{2}$; Maltby and
974	Immirzi 1993), we estimated a SOC stock of 23.6 69.9 Pg C for Alaskan peatlands. Our model

975	estimated 27-48 Pg C had been accumulated from 15 ka to 2000 AD. The uncertainty may be
976	resulted from peat basal age distributions and the peatland area, as we used modern inundation
977	data to estimate an area of 0.26×10^{6} km ² . By incorporating the observed basal age distribution,
978	we estimated that approximately 68% of Alaskan peatlands had formed by the end of the HTM,
979	similar to the estimation from observed basal peat ages that 75% peatlands have formed by 8.6
980	ka (Jones and Yu 2010).
981	The northern circumpolar soils were estimated to cover approximately 18.78×10^{6} km ²
982	(Tarnocai et al., 2009). The non peatland soil C stock was estimated to be in the range of 150-
983	191 Pg C for boreal forests (Apps et al., 1993; Jobbagy and Jackson, 2000), and 60 144 Pg C for
984	tundra (Apps et al., 1993; Gilmanov and Oechel, 1995; Oechel et al., 1993) in the 0-100 cm
985	depth. Using the difference between Alaskan total land area (1.69× 10 ⁶ km ²) and peatland area
986	$(0.45 \times 10^{6} \text{ km}^{2})$, we estimated that the non-peatland area in Alaska was $1.24 \times 10^{6} \text{ km}^{2}$.
987	Therefore, Alaska non-peatland area contained 17-27 Pg C by using the ratio of Alaskan non-
988	peatland over northern non peatland. In comparison, our estimate of 9-15 Pg C within 1-meter
989	depth suggested that our model might have underestimated the C stock for non peatland soils.
990	Meanwhile, our estimated 2.5 3.7 Pg C stored in the Alaskan vegetation was lower than the
991	previous estimate of 5 Pg (Balshi et al., 2007; McGuire et al., 2009). The underestimation could
992	be resulted from the uncertainties in both peatland area fraction within each grid and the model
993	parameterization.
994	-The simulated modern SOC distribution (Figure 12c) was largely consistent with the
995	study of Hugelius et al. (2014) (see Figure 3 in the paper). The model captured the high peat
996	SOC density areas on northern and southwestern coasts of Alaska, where observational data
997	showed some locations with SOC >75 kg C m ⁻² . This corresponded to our model simulation that

998	many grids had the SOC >75 kg C m ^{-2} in those areas. The observed overall average SOC
999	density of >40 kg C m ^{-2} was also consistent with our simulation. Eastern part and west coast had
1000	the lowest SOC densities, corresponding to the model result that most grids in those areas had
1001	SOC values between 20 and 40 kg C m ⁻² . Our estimated average peat depth of 1.9 m ranging
1002	from 1.1 to 2.7 m from simulated peat SOC density was similar to the observed mean depth of
1003	2.29 m for Alaskan peatlands (Gorham et al., 1991, 2012). Our estimates (Figure 12d) showed a
1004	high correlation with the 64 observed peat samples (Figure 14) ($R^2 = 0.45$). The large intercept
1005	of the regression line (101 cm) suggested that the model may not perform well in estimating the
1006	grids with low peat depths (<50 cm).
1007	3. Results and Discussion
1008	3.1 Simulated Peatland Carbon Accumulation Rates at Site Level
1009	Our paleo simulations showed a large peak of peat C accumulation rates at 11-9 ka
1010	during the HTM (Figure 4). The simulated "true" and "apparent" rates captured this primary
1011	feature in peat-core data at almost all sites (Jones and Yu, 2010; See Wang e al. (2016) Table 3
1012	for sites details). We simulated an average of peat SOC "apparent" accumulation rate of 11.4
1013	g C m ⁻² yr ⁻¹ from 15 to 5 ka, which was slightly higher than the observations at four sites
1014	(10.45 g C m ⁻² yr ⁻¹). The simulated rate during the HTM was 26.5 g C m ⁻² yr ⁻¹ , up to five
	times higher than the rest of the Holocene (5.04 g C m ⁻² yr ⁻¹). This corresponded to the
1015	
1015 1016	observed average rate of 20 C m ⁻² yr ⁻¹ from 11.5 to 8.6 ka, which is, four times higher than 5
	observed average rate of 20 C m ⁻² yr ⁻¹ from 11.5 to 8.6 ka, which is, four times higher than 5 C m ⁻² yr ⁻¹ over the rest of the Holocene.

1019 3.2 Vegetation Carbon

1020	Model simulations showed an overall low vegetation C before the HTM (15-11 ka)
1021	(Figure 5a), paralleled to the relatively low annual NPP (Figure 5b). The lowest amount of C
1022	(~0.8 kg C m ⁻²) was stored in Sphagnum-dominated peatland. Sphagnum-black spruce peatland
1023	also had low vegetation C density (~1 kg C m ⁻²). Upland vegetation showed a generally higher
1024	<u>C storage, among which boreal evergreen needleleaf forest ranked the first (~2 kg C m⁻²).</u>
1025	Highest NPP accompanied by highest vegetation carbon appeared during the HTM (11-9 ka)
1026	(Figures 5a and b). Lower annual C uptake along with lower C was found during mid- and late-
1027	Holocene (9 ka-19 th), where peatland ecosystems exhibited the most obvious drops (Figures 5a
1028	<u>and b).</u>
1029	In general, vegetation held about 2 Pg C before the HTM (Figure 6). Upland tundra
1030	ecosystems accounted for the most amount of C. During the HTM, Boreal evergreen needleleaf
1031	forest reached its highest and had an overwhelming proportion over total C. Similarly, a peak of
1032	total vegetation C appeared at the same time, averaging around 4.3 Pg C. Large decrease
1033	occurred at the mid-Holocene and a slight decline continued till the late-Holocene. We estimated
1034	a total 2.9 Pg C stored in modern Alaskan vegetation, with 0.4 Pg in peatlands and 2.5 Pg in non-
1035	peatlands. The uncertainties during the model calibration (Table 4) resulted in 0.3-0.6 Pg C and
1036	2.2-3.1 Pg C in peatlands (see Wang et al. (2016) for model parameters) and non-peatland
1037	vegetation (see Tang and Zhuang (2008) for uncertainty analyses for upland vegetation).
1038	respectively. Our estimation of 2.5-3.7 Pg C stored in the Alaskan vegetation was lower than the
1039	previous estimate of 5 Pg (Balshi et al., 2007; McGuire et al., 2009), presumably due to the prior
1040	ranges of model parameters used from Tang and Zhuang (2008). Our overestimation of peatland
1041	area may also lead to a reduction of Alaskan non-peatland area.

1043	<u>3.3 Soil Carbon</u>
1044	Carbon storage in Alaskan non-peatland soils varied spatially (Figure 7). Moist tundra
1045	had the highest SOC density (12-25 kg C m ^{-2}), followed by deciduous broadleaf forest (8-13)
1046	kg C m ⁻²) and evergreen needleleaf forest (3-8 kg C m ⁻²) through all time slices between 15 ka
1047	and 2000 AD. Dramatic changes of vegetation types have occurred in Alaska during different
1048	periods (Figure 2). Before the HTM (15-11 ka), the terrestrial ecosystem was dominated by
1049	tundra. Northwestern coast and eastern interior was covered by moist tundra. Southwestern
1050	Alaska and the interior south of the Brooks Range were dominated by alpine tundra (Figure 2a).
1051	The basal ages of peat samples from Gorham et al. (2012) suggested that peatlands were likely to
1052	form from the (alpine) tundra ecosystems, although patches of boreal deciduous broadleaf forest
1053	and boreal evergreen needleleaf and mixed forest appeared at the north of the Alaska Range.
1054	Initially, only Sphagnum open peatland (SP) existed, with less C (<10 kg C m ⁻²) sequestrated in
1055	the southeastern Brooks Range in comparison with southwestern and northwestern coastal parts
1056	$(>15 \text{ kg C m}^{-2})$ (Figure 8a). Approximately $4.5 \times 10^5 \text{ km}^2$ area was covered by peatlands at the
1057	beginning of the HTM (~11 ka) (Figure 9). During the HTM (11-9 ka), boreal deciduous
1058	broadleaf and boreal evergreen needleleaf and mixed forests expanded (Figures 8b and c).
1059	Coastal tundra (moist wet tundra) covered north of the Brooks Range between 11 and 10 ka,
1060	where SP continued its expansion (Figure 8b). Sphagnum-black spruce forested peatland began
1061	forming in southwestern coast and eastern interior regions, with a rapid increase of total peatland
1062	area to about 13×10^5 km ² (Figure 9). At 10-9 ka, boreal deciduous forest expanded to north of
1063	the Brooks Range, making forest the dominant biome in Alaska (Figure 2c). Prevailing forest
1064	ecosystems indicated a large expansion of peatland, with SBP covering the interior Alaska

1065	(Figure 8c). During the mid-Holocene (9-5 ka), the terrestrial landscape generally resembled
1066	present-day ecosystems (Bigelow et al., 2003). Boreal evergreen needleleaf and mixed forest
1067	prevailed in southern and interior Alaska with tundra returned to north of the Brooks Range and
1068	western Alaska (Figures 2d and e). Although SP kept forming towards west, some areas
1069	dominated by SBP in interior Alaska ceased accumulating C (Figure 8d). At 5k-19th, almost all
1070	the peatlands have formed, with some interior regions exhibiting a C loss (Figure 8e). C
1071	accumulation increased again in the last century, averaging about 20 kg C m ⁻² kyr ⁻¹ (Figure 8f).
1072	We found that the distribution of SOC densities of both upland and peatland varied greatly
1073	depending on the vegetation distribution within each time slice, indicating that vegetation
1074	composition might be a major factor controlling regional C dynamics.
1075	<u>An average peat SOC "apparent" accumulation rate of 13 g C m⁻²yr⁻¹ (2.3 Tg C yr⁻¹</u>
1076	for the entire Alaska) was estimated from 15 ka to 2000 AD (Figure 10), lower than 18.6
1077	g C m ⁻² yr ⁻¹ as estimated from peat cores for northern peatlands (Yu et al., 2010), and slightly
1078	<u>higher than the observed rate of 13.2 g C m^{-2} yr^{-1} from four peatlands in Alaska (Jones and Yu,</u>
1079	2010). A simulated peak occurred during the HTM with the rate 29.1 g C m ⁻² yr ⁻¹ (5.1 Tg C
1080	yr^{-1}), which was slightly higher than the observed 25 g C m ⁻² yr ⁻¹ for northern peatlands and
1081	~ 20 g C m ⁻² yr ⁻¹ for Alaska (Yu et al., 2010). It was almost four times higher than the rate 6.9
1082	g C m ⁻² yr ⁻¹ (1.4 Tg C yr ⁻¹) over the rest of the Holocene, which corresponded to the peat core-
1083	based observations of ~5 g C m ⁻² yr ⁻¹ . The mid- and late Holocene showed much slower C
1084	accumulation at a rate approximately five folds lower than during the HTM. This corresponded
1085	to the observation of a six-fold decrease in the rate of new peatland formation after 8.6 ka (Jones
1086	and Yu 2010). The C accumulation rates increased abruptly to 39.2 g C m ⁻² yr ⁻¹ during the last

1087	century, within the field-measured average apparent rate range of 20-50 g C m ⁻² yr ⁻¹ over the
1088	<u>last 2000 years (Yu et al., 2010).</u>
1089	The SOC stock of northern peatlands has been estimated in many studies, ranging from
1090	210 to 621 Pg (Oechel 1989; Gorham 1991; Armentano and Menges, 1986; Turunen et al., 2002;
1091	Yu et al., 2010; see Yu 2012 for a review). Assuming Alaskan peatlands were representative of
1092	<u>northern peatlands and using the area of Alaskan peatlands (0.45×10^6 km²; Kivinen and</u>
1093	Pakarinen, 1981) divided by the total area of northern peatlnads (~ 4×10^6 km ² ; Maltby and
1094	Immirzi 1993), we estimated a SOC stock of 23.6-69.9 Pg C for Alaskan peatlands. Our model
1095	estimated 27-48 Pg C (23.9 Pg C in SP and 13.5 Pg C in SBP) had been accumulated from 15 ka
1096	to 2000 AD (Figure 11), due to uncertain parameters (Table 4, see Wang et al. (2016) for model
1097	parameters). The uncertainty can also be resulted from peat basal age distributions and the
1098	estimation of total peatland area using modern inundation data as discussed above. By
1099	incorporating the observed basal age distribution to determine the expansion of peatland through
1100	time, we estimated that approximately 68% of Alaskan peatlands had formed by the end of the
1101	HTM, similar to the estimation from observed basal peat ages that 75% peatlands have formed
1102	<u>by 8.6 ka (Jones and Yu 2010).</u>
1103	The northern circumpolar soils were estimated to cover approximately 18.78×10^6 km ²
1105	(Tarnocai et al., 2009). The non-peatland soil C stock was estimated to be in the range of 150-
1104	(Tarnocar et al., 2009). The non-peatiand son C stock was estimated to be in the range of 150-
1105	191 Pg C for boreal forests (Apps et al., 1993; Jobbagy and Jackson, 2000), and 60-144 Pg C for
1106	tundra in the 0-100 cm depth (Apps et al., 1993; Gilmanov and Oechel, 1995; Oechel et al.,
1107	<u>1993).</u> 1.24 \times 10 ⁶ km ² non-peatland area was estimated from the total land area of Alaska
1108	(1.69 × 10 ⁶ km ²). Therefore, Alaska non-peatland soil contained 17-27 Pg C by using the ratio

1109	of Alaskan over northern non-peatland. In comparison, we modeled 9-15 Pg C (within 1-meter
1110	depth), depending on the prior ranges of model parameters from Tang and Zhuang (2008).
1111	The simulated modern SOC distribution (Figure 12c) was largely consistent with the
1112	study of Hugelius et al. (2014) (see Figure 3 in the paper). The model captured the SOC density
1113	on northern and southwestern coasts of Alaska with most grids >40 kg C m ⁻² on average. Those
1114	regions also showed high SOC density (>75 kg C m ^{-2}), which was also exhibited in our result.
1115	East part and west coast had the lowest SOC densities, corresponding to the simulation result that
1116	most grids had SOC values between 20 and 40 kg C m ⁻² . We estimated an average peat depth of
1117	1.9 ± 0.8 m considering the uncertainties within dry bulk densities. It was similar to the observed
1118	mean depth of 2.29 m for Alaskan peatlands (Gorham et al., 1991, 2012). Our estimates (Figure
1119	12d) showed a relatively high correlation with the 64 observed peat samples, especially with
1120	<u>higher depths (Figure 13) ($R^2 = 0.45$). The large intercept of the regression line (101 cm)</u>
1121	suggested that the model might have not performed well in estimating the grids with low peat
1122	depths (<50 cm). The peat characteristics (e.g., bulk density) from location to location may differ
1123	largely, even if within the same small region. Thus, it is difficult to capture the observed
1124	variations of peat depths as we used the averaged bulk density of whole Alaska.
1125	3.4 Effects of Climate on Ecosystem Carbon Accumulation
1126	The simulated climate by ECBilt-CLIO model showed that among the six time periods, the
1127	coolest temperature appeared at 15-11 ka, followed by the mid- and late- Holocene (5 ka-1900
1128	AD). Those two periods were also generally dry (Figure 3f). The former represented colder and
1129	drier climate before the onset of the Holocene and the HTM (Barber and Finney, 2000; Edwards

1130	et al., 2001). The latter represented post-HTM neoglacial cooling, which has caused permafrost
1131	aggradation across northern high latitudes (Oksanen et al., 2001; Zoltai, 1995).
1132	The simulated NPP, vegetation C density and storage were highest during the HTM.
1133	Annual C accumulation rates also reached the highest (Figures 5-11). The variation of NPP has a
1134	similar pattern of the climate (see Figure 3 for climate variables), where higher NPP, along with
1135	higher vegetation C coincided with warmer temperatures and enhanced precipitation during the
1136	HTM, compared to other time periods. ECBilt-CLIO simulated a warmest summer and a
1137	prolonged growing season, leading to a stronger seasonality of temperature during the HTM
1138	(Kaufman et al., 2004, 2016), in line with the orbitally-induced maximum summer insolation
1139	(Berger and Loutre, 1991; Renssen et al., 2009). The coincidence between the highest vegetation
1140	C uptake and SOC accumulation rates and the warmest summer and the wetter-than-before
1141	conditions indicated a strong link between those climate variables and C dynamics in Alaska.
1142	Enhanced climate seasonality characterized by warmer summer, enhanced summer precipitation
1143	and possibly earlier snow melt during the HTM accelerated the photosynthesis and subsequently
1144	increased NPP (Tucker et al., 2001; Kimball et al., 2004; Linderholm, 2006). As shown in our
1145	sensitivity test, annual NPP was increased by 40 and 20 g C m ^{-2} yr ^{-1} under the warmer and
1146	wetter scenarios, respectively (Figures 14a, b). Meanwhile, warmer condition could positively
1147	affect the SOC decomposition (Nobrega et al., 2007). However, it could be offset to a certain
1148	extent via the hydrological effect, as higher precipitation could raise the water-table position,
1149	allowing less space for aerobic heterotrophic respiration. Our sensitivity test results indicated
1150	that warmer and wetter conditions could lead to an increase of decomposition up to 35 and 15
1151	g C m ⁻² yr ⁻¹ , respectively (Figures 14c, d). We did not find a decrease in total heterotrophic
1152	respiration throughout Alaska from the higher precipitation. It was presumably due to a much

1153	<u>larger area of upland soils $(1.3 \times 10^6 \text{ km}^2)$ than peatland soils $(0.26 \times 10^6 \text{ km}^2)$, as higher</u>
1154	precipitation would cause higher aerobic respiration in the unsaturated zone of upland soils, and
1155	consequently stimulated the SOC decomposition. The relatively low NPP and vegetation C
1156	density, along with the lower total soil C stocks were consistent with the unfavorable cool and
1157	dry climate conditions at 15-11 ka and during the mid- and late- Holocene. Statistical analysis
1158	indicated that temperature had the most significant effect on peat SOC accumulation rate,
1159	followed by the seasonality of NIRR (Wang et al., 2016). The seasonality of temperature, the
1160	interaction of temperature and precipitation, and precipitation alone also showed significance.
1161	The strong link between climate factors and C dynamics may explain the lower SOC
1162	accumulation during the neoglacier cooling period (Marcott et al., 2013; Vitt et al., 2000; Peteet
1163	et al., 1998; Yu et al. 2010). The rapid peat SOC accumulation during the 20 th century under
1164	warming and wetter climate may suggest a continuous C sink in this century, as concluded in
1165	Spahni et al. (2013). However, the rising temperature in the future may have positive effects on
1166	heterotrophic respiration and simultaneously increase evapotranspiration and lower water table.
1167	This could increase aerobic decomposition and thus switch the Alaskan peatland from a C sink
1168	into a C source. Moreover, the increasing anthropogenic activities including land use will
1169	probably increase drought and subsequently enhance the risk of fire, releasing carbon to the
1170	atmosphere. The fate of Alaskan SOC stock and the biogeochemical cycling of the terrestrial
1171	ecosystems under future scenarios need further investigation.
1172	

1173 <u>3.5 Effects of Vegetation Distribution on Ecosystem Carbon Accumulation</u>

1174	Climate variables significantly affect C dynamics within each time slice. However,
1175	different vegetation distributions during various periods led to clear step changes, suggesting
1176	vegetation composition was likely to be another primary factor (Figures 6, 7, 8, and 11). As key
1177	parameters controlling C dynamics in the model (e.g., maximum rate of photosynthesis, litter fall
1178	C, maximum rate of monthly NPP) are ecosystem type specific, vegetation distribution changes
1179	may drastically affect regional plant productivity and C storage. Our sensitivity test indicated
1180	that by replacing all vegetation types with forests, there was a total increase of 36.9 Pg in upland
1181	plus peatland soils. There was also an increase of 48.8 Pg C under warmer and wetter conditions,
1182	suggesting that both climate and vegetation distribution may have played important roles in
1183	carbon accumulation.
1184	The vegetation changes reconstructed from fossil pollen data during different time
1185	periods followed the general climate history during the last 15,000 years. For instance, the
1186	migration of dark boreal forests over snow-covered tundra during the HTM was probably
1187	induced by the warmer and wetter climate resulted from the insolation changes (He et al., 2014).
1188	The cooler and drier climate after the mid-Holocene limited the growth of boreal broadleaf
1189	conifers (Prentice et al., 1992), and therefore resulted in the replacement of broadleaf forest with
1190	needleleaf forest and tundra ecosystems. Since the parameters of our model for individual
1191	vegetation type were static, parameterizing the model using modern site-level observations might
1192	have introduced uncertainty to parameters, which may result in regional simulation uncertainties.
1193	Assuming each parameter as constant (e.g. the lowest water-table boundary, see Wang et al.
1194	(2016) for details) over time may also weaken the model's response to different climate
1195	scenarios. Furthermore, applying static vegetation maps at millennial scales and using modern
1196	elevation and pH data may simplify the complicated changes of landscape and terrestrial

1197	ecosystems, as vegetation can shift within hundreds of years (Ager and Brubake, 1985; see He et
1198	al. (2014) discussion section). Relatively coarse spatial resolution (0.5° ×0.5°) in P-TEM
1199	simulations may also introduce uncertainties. In addition, because we used the modern
1200	inundation map to delineate the peatland and upland within each grid cell, we might have
1201	overestimated the total peatland area since not all inundated areas are peatlands. Linking field-
1202	estimated basal ages of peat cores to the vegetation types during each period involves large
1203	uncertainties due to the limitation of the peat classification and insufficient peat samples. Thus,
1204	the estimated spatially explicit basal age data shall also introduce a large uncertainty to our
1205	regional quantification of carbon accumulation.
1206	
1200	
1207	5. Conclusions
1208	We used a biogeochemistry model for both peatland and non-peatland ecosystems to
	We used a biogeochemistry model for both peatland and non-peatland ecosystems to quantify the C stock and its changes over time in terrestrial ecosystems of Alaska during the last
1208	
1208 1209	quantify the C stock and its changes over time in terrestrial ecosystems of Alaska during the last
1208 1209 1210	quantify the C stock and its changes over time in terrestrial ecosystems of Alaska during the last 15,000 years. The simulated peat SOC accumulation rates were compared with peat-core data
1208 1209 1210 1211	quantify the C stock and its changes over time in terrestrial ecosystems of Alaska during the last 15,000 years. The simulated peat SOC accumulation rates were compared with peat-core data from four peatlands on the Kenai Peninsula in southern Alaska. The model well estimated the
1208 1209 1210 1211 1212	quantify the C stock and its changes over time in terrestrial ecosystems of Alaska during the last 15,000 years. The simulated peat SOC accumulation rates were compared with peat-core data from four peatlands on the Kenai Peninsula in southern Alaska. The model well estimated the peat SOC accumulation rates trajectory throughout the Holocene, indicating the model's
1208 1209 1210 1211 1212 1213	quantify the C stock and its changes over time in terrestrial ecosystems of Alaska during the last 15,000 years. The simulated peat SOC accumulation rates were compared with peat-core data from four peatlands on the Kenai Peninsula in southern Alaska. The model well estimated the peat SOC accumulation rates trajectory throughout the Holocene, indicating the model's suitability for simulating peat C dynamics. Our regional simulation showed that 36-63 Pg C had
1208 1209 1210 1211 1212 1213 1214	quantify the C stock and its changes over time in terrestrial ecosystems of Alaska during the last 15,000 years. The simulated peat SOC accumulation rates were compared with peat-core data from four peatlands on the Kenai Peninsula in southern Alaska. The model well estimated the peat SOC accumulation rates trajectory throughout the Holocene, indicating the model's suitability for simulating peat C dynamics. Our regional simulation showed that 36-63 Pg C had been accumulated in Alaskan land ecosystems since 15,000 years ago, including 27-48 Pg C in
1208 1209 1210 1211 1212 1213 1214 1215	quantify the C stock and its changes over time in terrestrial ecosystems of Alaska during the last 15,000 years. The simulated peat SOC accumulation rates were compared with peat-core data from four peatlands on the Kenai Peninsula in southern Alaska. The model well estimated the peat SOC accumulation rates trajectory throughout the Holocene, indicating the model's suitability for simulating peat C dynamics. Our regional simulation showed that 36-63 Pg C had been accumulated in Alaskan land ecosystems since 15,000 years ago, including 27-48 Pg C in peatlands and 9-15 Pg C in non-peatlands (within 1 m depth). We also estimated that 2.5-3.7 Pg

1219	of 1.4 Pg C yr^{-1} over the rest of the Holocene. The 20 th century represented another high SOC
1220	accumulation period after the much lowered accumulation rate in the late Holocene. We
1221	estimated an average depth of 1.9 m of peat in Alaskan peatlands, similar to the observed mean
1222	depth. We found that the changes of vegetation distribution due to the climatic change were the
1223	key factors to the spatial variations of SOC accumulation in different time periods. The warming
1224	in the HTM characterized by the increased summer temperature and increased seasonality of
1225	solar radiation, along with the higher precipitation might have played an important role in
1226	causing the high C accumulation rates. Under warming climate conditions, Alaskan peatlands
1227	may continue acting as C sink in the future.
1228	6. Acknowledgment. We acknowledge the funding support from a NSF project IIS-1027955

and a DOE project DE-SC0008092. We also acknowledge the SPRUCE project to allow us use

1230 its data. Data presented in this paper are publicly accessible: ECBilt-CLIO Paleosimulation

- 1231 (http://apdrc.soest.hawaii.edu/datadoc/sim2bl.php), CRU2.0 (http://www.cru.uea.ac.uk/data).
- 1232 Model parameter data and model evaluation process are in Wang et al. (2016). Other simulation
- 1233 data including model codes are available upon request from the corresponding author
- 1234 (qzhuang@purdue.edu).

1235 7. References

- 1236 Anderson, P. M., & Brubaker, L. B. (1993). Holocene vegetation and climate histories of
 1237 Alaska. *Global climates since the last glacial maximum*, 385-400.
- 1238 Apps, M. J., Kurz, W. A., Luxmoore, R. J., Nilsson, L. O., Sedjo, R. A., Schmidt, R., ... &
- 1239 Vinson, T. S. (1993). Boreal forests and tundra. *Water, Air, and Soil Pollution*, 70(1-4), 39-53.
- Armentano, T. V., & Menges, E. S. (1986). Patterns of change in the carbon balance of organic
 soil wetlands of the temperate zone. *The Journal of Ecology*, 755-774.
- 1242 Assessment, A. C. I. (2005). Forests, land management and agriculture. *Arctic Climate Impact* 1243 Assessment, 781-862.

1244	Balshi, M. S., McGuire, A. D., Zhuang, Q., Melillo, J., Kicklighter, D. W., Kasischke, E., &
1245	Burnside, T. J. (2007). The role of historical fire disturbance in the carbon dynamics of the pan-
1246	boreal region: A process-based analysis. <i>Journal of Geophysical Research:</i>
1247	<i>Biogeosciences, 112</i> (G2).
1248	Barber, V. A., & Finney, B. P. (2000). Late Quaternary paleoclimatic reconstructions for interior
1249	Alaska based on paleolake level data and hydrologic models. <i>Journal of Paleolimnology</i> , 24(1),
1250	29-41.
1251	Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S., Gajewski, K., &
1252	Prentice, I. C. (2011). Pollen based continental climate reconstructions at 6 and 21 ka: a global
1253	synthesis. <i>Climate Dynamics</i> , <i>37</i> (3 4), 775-802.
1254 1255	Belyea, L. R. (2009). Nonlinear dynamics of peatlands and potential feedbacks on the climate system. <i>Carbon cycling in northern peatlands</i> , 5-18.
1256	Berger, A., & Loutre, M. F. (1991). Insolation values for the climate of the last 10 million
1257	years. <i>Quaternary Science Reviews, 10</i> (4), 297–317.
1258 1259 1260 1261	Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., & Kaplan, J. O. (2003). Climate change and Arctic ecosystems: 1. Vegetation changes north of 55 N between the last glacial maximum, mid-Holocene, and present. <i>Journal of Geophysical Research: Atmospheres, 108</i> (D19).
1262	Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The carbon
1263	balance of North American wetlands. <i>Wetlands</i> , 26(4), 889-916.
1264 1265	Carter, A. J., & Scholes, R. J. (2000). SoilData v2. 0: generating a global database of soil properties. <i>Environmentek CSIR, Pretoria, South Africa.</i>
1266	Change, I. C. (2013). The Physical Science Basis: Working Group I Contribution to the Fifth
1267	Assessment Report of the Intergovernmental Panel on Climate Change. <i>New York: Cambridge</i>
1268	<i>University Press, 1</i> , 535–1.
1269	Change, I. C. (2014). Mitigation of Climate Change. Contribution of Working Group III to the
1270	Fifth Assessment Report of the Intergovernmental Panel on Climate Change. <i>Cambridge</i>
1271	<i>University Press, Cambridge, UK and New York, NY</i> .
1272	Chivers, M. R., Turetsky, M. R., Waddington, J. M., Harden, J. W., & McGuire, A. D. (2009).
1273	Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in
1274	an Alaskan rich fen. <i>Ecosystems</i> , 12(8), 1329–1342.
1275	Churchill, A. (2011). The response of plant community structure and productivity to changes in
1276	hydrology in Alaskan boreal peatlands. <i>Master Thesis</i> , University of Alaska, Fairbanks, AK,
1277	USA. 119 pp.
1278 1279 1280	Conrad, R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. <i>FEMS Microbiology Ecology</i> , 28(3), 193-202.
1281 1282	Crockford, S. J., & Frederick, S. G. (2007). Sea ice expansion in the Bering Sea during the Neoglacial: Evidence from archaeozoology. <i>The Holocene</i> ,17(6), 699-706.
1283 1284	Davidson, E. A., Trumbore, S. E., & Amundson, R. (2000). Biogeochemistry: soil warming and organic carbon content. <i>Nature</i> , 408(6814), 789-790.

1285 1286	Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. <i>Nature</i> , 440(7081), 165-173.
1287 1288 1289	Edwards, M. E., Anderson, P. M., Brubaker, L. B., Ager, T. A., Andreev, A. A., Bigelow, N. H., & Jolly, D. (2000). Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr bp. <i>Journal</i> of Biogeography, 27(3), 521-554.
1290 1291 1292 1293	Edwards, M. E., Mock, C. J., Finney, B. P., Barber, V. A., & Bartlein, P. J. (2001). Potential analogues for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: atmospheric circulation controls of regional temperature and moisture responses. <i>Quaternary Science Reviews</i> , 20(1), 189-202.
1294 1295	Edwards, M. E., Brubaker, L. B., Lozhkin, A. V., & Anderson, P. M. (2005). Structurally novel biomes: a response to past warming in Beringia. <i>Ecology</i> ,86(7), 1696-1703.
1296 1297 1298	Euskirchen, E. S., McGuire, A. D., & Chapin, F. S. (2007). Energy feedbacks of northern high- latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. <i>Global Change Biology</i> , <i>13</i> (11), 2425-2438.
1299 1300 1301	Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., & Richard, P. J. H. (2010). A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. <i>Earth System Dynamics</i> , 1(1), 1-21.
1302 1303 1304	Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B., Tuittila, E. S., & Roulet, N. (2011). Peatlands in the Earth's 21st century climate system. <i>Environmental Reviews</i> , 19(NA), 371-396.
1305 1306 1307	Gilmanov, T. G., & Oechel, W. C. (1995). New estimates of organic matter reserves and net primary productivity of the North American tundra ecosystems. <i>Journal of Biogeography</i> , 723-741.
1308 1309 1310	Gorham, E. V. I. L. L. E. (1990). Biotic impoverishment in northern peatlands. <i>The earth in</i> transition: patterns and processes of biotic impoverishment. Cambridge University Press, Cambridge, UK, 65-98.
1311 1312	Gorham, E. (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. <i>Ecological applications, 1</i> (2), 182–195.
1313 1314	Gorham, E., Lehman, C., Dyke, A., Clymo, D., & Janssens, J. (2012). Long-term carbon sequestration in North American peatlands. <i>Quaternary Science Reviews</i> , 58, 77-82.
1315 1316 1317	He, Y., Jones, M. C., Zhuang, Q., Bochicchio, C., Felzer, B. S., Mason, E., & Yu, Z. (2014). Evaluating CO 2 and CH 4 dynamics of Alaskan ecosystems during the Holocene Thermal Maximum. <i>Quaternary Science Reviews</i> , 86, 63-77.
1318 1319 1320	Hinzman, L. D., Viereck, L. A., Adams, P. C., Romanovsky, V. E., & Yoshikawa, K. (2006). Climate and permafrost dynamics of the Alaskan boreal forest. <i>Alaska's Changing Boreal</i> <i>Forest</i> , 39-61.
1321 1322 1323	Hobbie, S. E. (2000). Interactions between litter lignin and nitrogenitter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. <i>Ecosystems</i> , 3(5), 484-494.

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E., Ping, C. L., ... & O'Donnell, J. 1324 1325 A. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573-6593. 1326 Huybers, P. (2006). Early Pleistocene glacial cycles and the integrated summer insolation 1327 forcing. Science, 313(5786), 508-511. 1328 Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its 1329 relation to climate and vegetation. Ecological applications, 10(2), 423-436. 1330 1331 Jones, M. C., & Yu, Z. (2010). Rapid deglacial and early Holocene expansion of peatlands in 1332 Alaska. Proceedings of the National Academy of Sciences, 107(16), 7347-7352. 1333 Jones, P. D., & Moberg, A. (2003). Hemispheric and large scale surface air temperature 1334 variations: An extensive revision and an update to 2001. Journal of Climate, 16(2), 206-223. Kane, E. S., Turetsky, M. R., Harden, J. W., McGuire, A. D., & Waddington, J. M. (2010). 1335 Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in 1336 a boreal-rich fen. Journal of Geophysical Research: Biogeosciences, 115(G4). 1337 Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. J., ... 1338 1339 & Dyke, A. S. (2004). Holocene thermal maximum in the western Arctic (0 180 W). *Quaternary* Science Reviews, 23(5), 529-560. 1340 Kaufman, D.S., Axford, Y.L., Henerson, A., McKay, N.P., Oswald, W.W., Saenger, C., 1341 1342 Anderson, R.S., Bailey, H.L., Clegg, B., Gajewski, K., Hu, F.S., Jones, M.C., Massa, C., 1343 Routson, C.C., Werner, A., Wooller, M.J., Yu, Z., 2016. Holocene climate changes in eastern 1344 Beringia (NW North America) e a systemic review of multi-proxy evidence. Quaternary Science Reviews, this volume. http://dx.doi.org/10.1016/ j.quascirev.2015.10.021. 1345 Keller, J. K., & Bridgham, S. D. (2007). Pathways of anaerobic carbon cycling across an 1346 1347 ombrotrophic minerotrophic peatland gradient. Keller, J. K., & Takagi, K. K. (2013). Solid-phase organic matter reduction regulates anaerobic 1348 1349 decomposition in bog soil. Ecosphere, 4(5), 1-12. 1350 Kimball, J. S., McDonald, K. C., Running, S. W., & Frolking, S. E. (2004). Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote Sensing 1351 1352 of Environment, 90(2), 243-258. 1353 Kivinen, E., and P. Pakarinen. (1981). Geographical distribution of peat resources and major peatland complex types in the world. Annales Academiae Scientarum Fennicae, Series A, 1354 Number 132. 1355 1356 Kleinen, T., Brovkin, V., von Bloh, W., Archer, D., & Munhoven, G. (2010). Holocene carbon eycle dynamics. Geophysical Research Letters, 37(2). 1357 Kuhry, P., & Vitt, D. H. (1996). Fossil carbon/nitrogen ratios as a measure of peat 1358 1359 decomposition. Ecology, 77(1), 271-275. Linderholm, H. W. (2006). Growing season changes in the last century. Agricultural and Forest 1360 1361 Meteorology, 137(1), 1-14. Loisel, J., Gallego Sala, A. V., & Yu, Z. (2012). Global scale pattern of peatland Sphagnum 1362 growth driven by photosynthetically active radiation and growing season 1363 length. Biogeosciences, 9(7), 2737-2746. 1364

Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., ... & Belvea, L. R. 1365 (2014). A database and synthesis of northern peatland soil properties and Holocene carbon and 1366 nitrogen accumulation. the Holocene, 0959683614538073. 1367 Maltby, E., & Immirzi, P. (1993). Carbon dynamics in peatlands and other wetland soils regional 1368 and global perspectives. Chemosphere, 27(6), 999-1023. 1369 Manabe, S., & Wetherald, R. T. (1980). On the distribution of climate change resulting from an 1370 increase in CO2 content of the atmosphere. Journal of the Atmospheric Sciences, 37(1), 99-118. 1371 Manabe, S., & Wetherald, R. T. (1986). Reduction in summer soil wetness induced by an 1372 1373 increase in atmospheric carbon dioxide. Science, 232(4750), 626-628. 1374 Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C. (2013). A reconstruction of regional 1375 and global temperature for the past 11,300 years.science, 339(6124), 1198 1201. Matthews, E., & Fung, I. (1987). Methane emission from natural wetlands: Global distribution. 1376 area, and environmental characteristics of sources. Global biogeochemical cycles, 1(1), 61-86. 1377 1378 McGuire, A. D., Melillo, J. M., Kicklighter, D. W., & Joyce, L. A. (1995). Equilibrium responses of soil carbon to climate change: empirical and process based estimates. Journal of 1379 Biogeography, 785-796. 1380 McGuire, A. D., & Hobbie, J. E. (1997). Global climate change and the equilibrium responses of 1381 carbon storage in arctic and subarctic regions. In Modeling the Arctic system: A workshop report 1382 on the state of modeling in the Arctic System Science program (pp. 53 54). 1383 McGuire, A. D., Melillo, J. M., Randerson, J. T., Parton, W. J., Heimann, M., Meier, R. A., ... & 1384 1385 Sauf, W. (2000). Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: Comparison with measurements of atmospheric carbon 1386 dioxide in high latitudes. Biogeochemistry, 48(1), 91-114. 1387 1388 McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Haves, D. J., ... & 1389 Roulet, N. (2009). Sensitivity of the carbon cycle in the Arctic to climate change. Ecological 1390 Monographs, 79(4), 523-555. Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Peterjohn, W. T., & Newkirk, K. (1995, 1391 July). Global change and its effects on soil organic carbon stocks. In Dahlem Conference 1392 1393 Proceedings, John Wiley and Sons, New York, John Wiley & Sons, Ltd., Chichster (pp. 175-189). Mock, C. J., & Bartlein, P. J. (1995). Spatial variability of late Quaternary paleoclimates in the 1394 1395 western United States. Quaternary Research, 44(3), 425-433. Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M., & Roulet, N. T. (2002). Plant biomass 1396 and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology, 90(1), 25-36. 1397 Nobrega, S., & Grogan, P. (2007). Deeper snow enhances winter respiration from both plant-1398 associated and bulk soil carbon pools in birch hummock tundra. *Ecosystems*, 10(3), 419-431. 1399 Oechel, W. C. (1989). Nutrient and water flux in a small arctic watershed: an 1400 1401 overview. Holarctic Ecology, 229-237. Oechel, W. C., Hastings, S. J., Vourlrtis, G., Jenkins, M., Riechers, G., & Grulke, N. (1993). 1402 1403 Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a 1404 source. Nature, 361(6412), 520-523.

Oksanen, P. O., Kuhry, P., & Alekseeva, R. N. (2001). Holocene development of the Rogovava 1405 1406 river peat plateau, European Russian Arctic. The Holocene, 11(1), 25-40. 1407 Peteet, D., Andreev, A., Bardeen, W., & Mistretta, F. (1998). Long-term Arctic peatland 1408 dynamics, vegetation and climate history of the Pur-Taz region, western Siberia. Boreas, 27(2), 1409 115 126. Prentice, C., Guiot, J., Huntley, B., Jolly, D., & Cheddadi, R. (1996). Reconstructing biomes 1410 1411 from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics, 12(3), 185-194. 1412 1413 Prentice, I. C. (2008). Terrestrial nitrogen cycle simulation with a dynamic global vegetation 1414 model. Global Change Biology, 14(8), 1745-1764. 1415 Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. J., 1416 ... & Vorosmarty, C. J. (1991). Potential net primary productivity in South America: application of a global model. Ecological Applications, 1(4), 399-429. 1417 Renssen, H., Seppä, H., Heiri, O., Roche, D. M., Goosse, H., & Fichefet, T. (2009). The spatial 1418 1419 and temporal complexity of the Holocene thermal maximum. Nature Geoscience, 2(6), 411-414. 1420 Roulet, N. T., Lafleur, P. M., Richard, P. J., Moore, T. R., Humphreys, E. R., & Bubier, J. I. L. 1421 L. (2007). Contemporary carbon balance and late Holocene carbon accumulation in a northern 1422 peatland. Global Change Biology, 13(2), 397-411. 1423 Schuur, E. A., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., ... 1424 & Mazhitova, G. (2008). Vulnerability of permafrost carbon to climate change: implications for 1425 the global carbon cycle. BioScience, 58(8), 701-714. Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., ... & Thonicke, K. 1426 1427 (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161-185. 1428 1429 Spahni, R., Joos, F., Stocker, B. D., Steinacher, M., & Yu, Z. C. (2013). Transient simulations of 1430 the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 1431 21st century. Climate of the Past, 9(3), 1287-1308. 1432 Stafford, J. M., Wendler, G., & Curtis, J. (2000). Temperature and precipitation of Alaska: 50 1433 year trend analysis. Theoretical and Applied Climatology, 67(1-2), 33-44. 1434 Stieglitz, M., Déry, S. J., Romanovsky, V. E., & Osterkamp, T. E. (2003). The role of snow 1435 cover in the warming of arctic permafrost. Geophysical Research Letters, 30(13). 1436 Stocker, B. D., Strassmann, K., & Joos, F. (2011). Sensitivity of Holocene atmospheric CO 2 and 1437 the modern carbon budget to early human land use: analyses with a process based model. Biogeosciences, 8(1), 69-88. 1438 1439 Stocker, B. D., Spahni, R., & Joos, F. (2014). DYPTOP: a cost efficient TOPMODEL 1440 implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and 1441 peatlands. Geoscientific Model Development, 7(6), 3089-3110. 1442 Tang, J., & Zhuang, Q. (2008). Equifinality in parameterization of process-based 1443 biogeochemistry models: A significant uncertainty source to the estimation of regional carbon 1444 dynamics. Journal of Geophysical Research: Biogeosciences, 113(G4).

Tang, J., & Zhuang, O. (2009). A global sensitivity analysis and Bayesian inference framework 1445 1446 for improving the parameter estimation and prediction of a process-based Terrestrial Ecosystem 1447 Model. Journal of Geophysical Research: Atmospheres, 114(D15). Tang, J., Zhuang, Q., Shannon, R. D., & White, J. R. (2010). Quantifying wetland methane 1448 1449 emissions with process based models of different complexities. *Biogeosciences*, 7(11), 3817-3837. 1450 Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). 1451 1452 Soil organic carbon pools in the northern circumpolar permafrost region. Global biogeochemical 1453 eveles, 23(2). Timmermann, A., Timm, O., Stott, L., & Menviel, L. (2009). The roles of CO2 and orbital 1454 1455 forcing in driving southern hemispheric temperature variations during the last 21 000 Yr*. Journal of Climate, 22(7), 1626-1640. 1456 Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., & Taylor, M. G. (2001). 1457 Higher northern latitude normalized difference vegetation index and growing season trends from 1458 1459 1982 to 1999. International journal of biometeorology, 45(4), 184-190. Turetsky, M. R., Treat, C. C., Waldrop, M. P., Waddington, J. M., Harden, J. W., & McGuire, A. 1460 1461 D. (2008). Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research: 1462 1463 Biogeosciences,113(G3). 1464 Turunen, J., Tomppo, E., Tolonen, K., & Reinikainen, A. (2002). Estimating carbon 1465 accumulation rates of undrained mires in Finland application to boreal and subarctic regions. The Holocene, 12(1), 69-80. 1466 Vitt, D. H., Halsey, L. A., Bauer, I. E., & Campbell, C. (2000). Spatial and temporal trends in 1467 carbon storage of peatlands of continental western Canada through the Holocene. Canadian 1468 Journal of Earth Sciences, 37(5), 683-693. 1469 Wang, S., Zhuang, Q., Yu, Z., Bridgham, S., & Keller, J. (2016). Quantifying peat carbon 1470 accumulation in Alaska using a process based biogeochemistry model. Journal of Geophysical 1471 Research: Biogeosciences (Under revision). 1472 Whitlock, C., & Bartlein, P. J. (1993). Spatial variations of Holocene climatic change in the 1473 1474 Yellowstone region. Quaternary Research, 39(2), 231-238. 1475 Williams, J. W., Webb, T., Richard, P. H., & Newby, P. (2000). Late Quaternary biomes of Canada and the eastern United States. Journal of Biogeography, 27(3), 585-607. 1476 Yu, Z., Beilman, D. W., & Jones, M. C. (2009). Sensitivity of northern peatland carbon 1477 1478 dynamics to Holocene climate change. Carbon cycling in northern peatlands, 55-69. Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., & Hunt, S. J. (2010). Global peatland 1479 1480 dynamics since the Last Glacial Maximum. Geophysical Research Letters, 37(13). Yu, Z. C. (2012). Northern peatland carbon stocks and dynamics: a 1481 review.Biogeosciences, 9(10), 4071-4085. 1482 1483 Zhuang, Q., Romanovsky, V. E., & McGuire, A. D. (2001). Incorporation of a permafrost model 1484 into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in

1485	simulating soil thermal dynamics.<i>Journal of Geophysical Research: Atmospheres, 106</i>(D24),
1486	33649-33670.
1487	Zhuang, Q., McGuire, A. D., O'neill, K. P., Harden, J. W., Romanovsky, V. E., & Yarie, J.
1488	(2002). Modeling soil thermal and carbon dynamics of a fire chronosequence in interior
1489	Alaska. <i>Journal of Geophysical Research: Atmospheres</i> , 107(D1).
1490	Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J., Kicklighter, D. W.,
1491	& Hobbie, J. E. (2003). Carbon cycling in extratropical terrestrial ecosystems of the Northern
1492	Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal
1493	dynamics. <i>Tellus B</i> , 55(3), 751–776.
1494	Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A.,
1495	& Hu, S. (2004). Methane fluxes between terrestrial ecosystems and the atmosphere at northern
1496	high latitudes during the past century: A retrospective analysis with a process-based
1497	biogeochemistry model. <i>Global Biogeochemical Cycles, 18</i> (3).
1498 1499 1500 1501	Zhuang, Q., Zhu, X., He, Y., Prigent, C., Melillo, J. M., McGuire, A. D., & Kicklighter, D. W. (2015). Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004. <i>Environmental Research Letters</i> , 10(9), 095009.
1502	Zimov, S. A., Schuur, E. A., & Chapin III, F. S. (2006). Permafrost and the global carbon
1503	budget. <i>Science(Washington), 312</i> (5780), 1612–1613.
1504 1505	Zoltai, S. C. (1995). Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years BP. <i>Géographic physique et Quaternaire, 49</i> (1), 45-54.
1506	Ager, T. A., & Brubaker, L.: Quaternary palynology and vegetational history of Alaska. Pollen
1507	Records of Late Quaternary North American Sediments, 353-384, 1985.
1508 1509	Apps, M. J., Kurz, W. A., Luxmoore, R. J., Nilsson, L. O., Sedjo, R. A., Schmidt, R., & Vinson, T. S.: Boreal forests and tundra. Water, Air, and Soil Pollution, 70(1-4), 39-53, 1993.
1510	Armentano, T. V., & Menges, E. S.: Patterns of change in the carbon balance of organic soil-
1511	wetlands of the temperate zone. The Journal of Ecology, 755-774, 1986.
1512	Assessment, A. C. I.: Forests, land management and agriculture. Arctic Climate Impact
1513	Assessment, 781-862, 2005.
1514	Balshi, M. S., McGuire, A. D., Zhuang, Q., Melillo, J., Kicklighter, D. W., Kasischke, E., &
1515	Burnside, T. J.: The role of historical fire disturbance in the carbon dynamics of the pan-boreal
1516	region: A process-based analysis. Journal of Geophysical Research: Biogeosciences, 112(G2),
1517	2007.
1518 1519 1520	Barber, V. A., & Finney, B. P.: Late Quaternary paleoclimatic reconstructions for interior Alaska based on paleolake-level data and hydrologic models. Journal of Paleolimnology, 24(1), 29-41, 2000.
1521 1522	Belyea, L. R.: Nonlinear dynamics of peatlands and potential feedbacks on the climate system. Carbon cycling in northern peatlands, 5-18, 2009.
1523 1524	Berger, A., & Loutre, M. F.: Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4), 297-317, 1991.

1525 1526 1527 1528	Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., & Kaplan, J. O.: Climate change and Arctic ecosystems: 1. Vegetation changes north of 55 N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research: Atmospheres, 108(D19), 2003.
1529 1530	Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C.: The carbon balance of North American wetlands. Wetlands, 26(4), 889-916, 2006.
1531 1532	Carter, A. J., & Scholes, R. J.: SoilData v2. 0: generating a global database of soil properties. Environmentek CSIR, Pretoria, South Africa, 2000.
1533	Change, I. C.: Mitigation of Climate Change. Contribution of Working Group III to the Fifth
1534	Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University
1535	Press, Cambridge, UK and New York, NY, 2014.
1536	Change, I. C.: The Physical Science Basis: Working Group I Contribution to the Fifth
1537	Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge
1538	University Press, 1, 535-1, 2013.
1539	Chivers, M. R., Turetsky, M. R., Waddington, J. M., Harden, J. W., & McGuire, A. D.: Effects
1540	of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an
1541	Alaskan rich fen.Ecosystems, 12(8), 1329-1342, 2009.
1542 1543 1544	Churchill, A.: The response of plant community structure and productivity to changes in hydrology in Alaskan boreal peatlands. Master Thesis, University of Alaska, Fairbanks, AK, USA. 119 pp, 2011.
1545	Conrad, R.: Contribution of hydrogen to methane production and control of hydrogen
1546	concentrations in methanogenic soils and sediments.FEMS Microbiology Ecology, 28(3), 193-
1547	202, 1999.
1548 1549	Davidson, E. A., & Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165-173, 2006.
1550 1551	Davidson, E. A., Trumbore, S. E., & Amundson, R.: Biogeochemistry: soil warming and organic carbon content. Nature, 408(6814), 789-790, 2000.
1552	Edwards, M. E., Mock, C. J., Finney, B. P., Barber, V. A., & Bartlein, P. J.: Potential analogues
1553	for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: atmospheric-
1554	circulation controls of regional temperature and moisture responses. Quaternary Science
1555	Reviews, 20(1), 189-202, 2001.
1556	Euskirchen, E. S., McGuire, A. D., & Chapin, F. S.: Energy feedbacks of northern high-latitude
1557	ecosystems to the climate system due to reduced snow cover during 20th century
1558	warming. Global Change Biology,13(11), 2425-2438, 2007.
1559	Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., & Richard, P. J. H.:
1560	<u>A new model of Holocene peatland net primary production, decomposition, water balance, and</u>
1561	<u>peat accumulation. Earth System Dynamics, 1(1), 1-21, 2010.</u>
1562 1563 1564	Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B., Tuittila, E. S., & Roulet, N.: Peatlands in the Earth's 21st century climate system. Environmental Reviews, 19(NA), 371-396, 2011.

1565	<u>Gilmanov, T. G., & Oechel, W. C.: New estimates of organic matter reserves and net primary</u>
1566	productivity of the North American tundra ecosystems. Journal of Biogeography, 723-741, 1995.
1567 1568 1569	Gorham, E. V. I. L. L. E.: Biotic impoverishment in northern peatlands. The earth in transition: patterns and processes of biotic impoverishment. Cambridge University Press, Cambridge, UK, 65-98, 1990.
1570	Gorham, E., Lehman, C., Dyke, A., Clymo, D., & Janssens, J.: Long-term carbon sequestration
1571	in North American peatlands. Quaternary Science Reviews, 58, 77-82, 2012.
1572 1573	Gorham, E.: Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological applications, 1(2), 182-195, 1991.
1574 1575 1576	He, Y., Jones, M. C., Zhuang, Q., Bochicchio, C., Felzer, B. S., Mason, E., & Yu, Z.: Evaluating CO 2 and CH 4 dynamics of Alaskan ecosystems during the Holocene Thermal Maximum. Quaternary Science Reviews, 86, 63-77, 2014.
1577	Hinzman, L. D., Viereck, L. A., Adams, P. C., Romanovsky, V. E., & Yoshikawa, K.: Climate
1578	and permafrost dynamics of the Alaskan boreal forest. Alaska's Changing Boreal Forest, 39-61,
1579	2006.
1580	Hobbie, S. E.: Interactions between litter lignin and nitrogenitter lignin and soil nitrogen
1581	availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 3(5),
1582	484-494, 2000.
1583	Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E., Ping, C. L., & O'Donnell, J.
1584	A.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and
1585	identified data gaps.Biogeosciences, 11(23), 6573-6593, 2014.
1586 1587	Jobbágy, E. G., & Jackson, R. B.: The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological applications, 10(2), 423-436, 2000.
1588 1589	Jones, M. C., & Yu, Z.: Rapid deglacial and early Holocene expansion of peatlands in Alaska. Proceedings of the National Academy of Sciences, 107(16), 7347-7352, 2010.
1590 1591	Jones, P. D., & Moberg, A.: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. Journal of Climate, 16(2), 206-223, 2003.
1592	Kane, E. S., Turetsky, M. R., Harden, J. W., McGuire, A. D., & Waddington, J. M.: Seasonal ice
1593	and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich
1594	fen. Journal of Geophysical Research: Biogeosciences, 115(G4), 2010.
1595	Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. J.,
1596	& Dyke, A. S.: Holocene thermal maximum in the western Arctic (0–180 W). Quaternary
1597	Science Reviews, 23(5), 529-560, 2004.
1598	Kaufman, D.S., Axford, Y.L., Henerson, A., McKay, N.P., Oswald, W.W., Saenger, C.,
1599	Anderson, R.S., Bailey, H.L., Clegg, B., Gajewski, K., Hu, F.S., Jones, M.C., Massa, C.,
1600	Routson, C.C., Werner, A., Wooller, M.J., Yu, Z.: Holocene climate changes in eastern Beringia
1601	(NW North America) e a systemic review of multi-proxy evidence. Quaternary Science Reviews,
1602	this volume. http://dx.doi.org/10.1016/ j.quascirev.2015.10.021, 2016.
1603	Keller, J. K., & Bridgham, S. D.: Pathways of anaerobic carbon cycling across an ombrotrophic-
1604	minerotrophic peatland gradient, 2007.

1605 1606	Keller, J. K., & Takagi, K. K.: Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere, 4(5), 1-12, 2013.
1607 1608 1609	Kimball, J. S., McDonald, K. C., Running, S. W., & Frolking, S. E.: Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote Sensing of Environment, 90(2), 243-258, 2004.
1610 1611 1612	Kivinen, E., and P. Pakarinen.: Geographical distribution of peat resources and major peatland complex types in the world. Annales Academiae Scientarum Fennicae, Series A, Number 132, 1981.
1613 1614	Kleinen, T., Brovkin, V., & Schuldt, R. J.: A dynamic model of wetland extent and peat accumulation: results for the Holocene.Biogeosciences, 9(1), 235-248, 2012.
1615 1616	Kuhry, P., & Vitt, D. H.: Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology, 77(1), 271-275, 1996.
1617 1618	Linderholm, H. W.: Growing season changes in the last century. Agricultural and Forest Meteorology, 137(1), 1-14, 2006.
1619 1620 1621	Loisel, J., Gallego-Sala, A. V., & Yu, Z.: Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences, 9(7), 2737-2746, 2012.
1622 1623 1624	Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., & Belyea, L. R.: A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. the Holocene, 0959683614538073, 2014.
1625 1626	Maltby, E., & Immirzi, P.: Carbon dynamics in peatlands and other wetland soils regional and global perspectives. Chemosphere, 27(6), 999-1023, 1993.
1627 1628	Manabe, S., & Wetherald, R. T.: On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. Journal of the Atmospheric Sciences, 37(1), 99-118, 1980.
1629 1630	Manabe, S., & Wetherald, R. T.: Reduction in summer soil wetness induced by an increase in atmospheric carbon dioxide. Science, 232(4750), 626-628, 1986.
1631 1632	Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C.: A reconstruction of regional and global temperature for the past 11,300 years.science, 339(6124), 1198-1201, 2013.
1633 1634	Matthews, E., & Fung, I.: Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources.Global biogeochemical cycles, 1(1), 61-86, 1987.
1635 1636 1637	McGuire, A. D., & Hobbie, J. E.: Global climate change and the equilibrium responses of carbon storage in arctic and subarctic regions. InModeling the Arctic system: A workshop report on the state of modeling in the Arctic System Science program, pp. 53-54, 1997.
1638 1639 1640	McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D. J., & Roulet, N.: Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79(4), 523-555, 2009.
1641 1642 1643	McGuire, A. D., Melillo, J. M., Kicklighter, D. W., & Joyce, L. A.: Equilibrium responses of soil carbon to climate change: empirical and process-based estimates. Journal of Biogeography, 785-796, 1995.

1644	Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Peterjohn, W. T., & Newkirk, K.: Global
1645	change and its effects on soil organic carbon stocks. In Dahlem Conference Proceedings, John
	Wiley and Sons, New York, John Wiley & Sons, Ltd., Chichster, pp. 175-189, 1995.

- 1647 Mitchell, T. D., Carter, T. R., Jones, P. D., Hulme, M., & New, M.: A comprehensive set of
- high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–
 2000) and 16 scenarios (2001–2100).Tyndall centre for climate change research working
- 1650 paper, 55(0), 25, 2004.

1651 1652	Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M., & Roulet, N. T.: Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology, 90(1), 25-36, 2002.
1653 1654	Nobrega, S., & Grogan, P.: Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems, 10(3), 419-431, 2007.
1655 1656 1657	Oechel, W. C., Hastings, S. J., Vourlrtis, G., Jenkins, M., Riechers, G., & Grulke, N.: Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature, 361(6412), 520-523, 1993.
1658 1659	Oechel, W. C.: Nutrient and water flux in a small arctic watershed: an overview. Holarctic Ecology, 229-237, 1989.
1660 1661	Oksanen, P. O., Kuhry, P., & Alekseeva, R. N.: Holocene development of the Rogovaya river peat plateau, European Russian Arctic. The Holocene, 11(1), 25-40, 2001.
1662 1663 1664	Peteet, D., Andreev, A., Bardeen, W., & Mistretta, F.: Long-term Arctic peatland dynamics, vegetation and climate history of the Pur-Taz region, western Siberia. Boreas, 27(2), 115-126, 1998.
1665 1666 1667	Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., & Solomon, A. M.: Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. Journal of biogeography, 117-134, 1992.
1668 1669 1670	Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. J., & Vorosmarty, C. J.: Potential net primary productivity in South America: application of a global model. Ecological Applications, 1(4), 399-429, 1991.
1671 1672 1673	Renssen, H., Seppä, H., Heiri, O., Roche, D. M., Goosse, H., & Fichefet, T.: The spatial and temporal complexity of the Holocene thermal maximum. Nature Geoscience, 2(6), 411-414, 2009.
1674 1675 1676	Roulet, N. T., Lafleur, P. M., Richard, P. J., Moore, T. R., Humphreys, E. R., & Bubier, J. I. L. L.: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology, 13(2), 397-411, 2007.
1677 1678	Saarinen, T.: Biomass and production of two vascular plants in a boreal mesotrophic fen. Canadian Journal of Botany, 74(6), 934-938, 1996.
1679 1680 1681	Schuur, E. A., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., & Mazhitova, G.: Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle.BioScience, 58(8), 701-714, 2008.
1682 1683 1684	Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., & Thonicke, K.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model.Global Change Biology, 9(2), 161-185, 2003.
1685 1686 1687	Spahni, R., Joos, F., Stocker, B. D., Steinacher, M., & Yu, Z. C.: Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century. Climate of the Past, 9(3), 1287-1308, 2013.

1688	Stocker, B. D., Spahni, R., & Joos, F.: DYPTOP: a cost-efficient TOPMODEL implementation
1689	to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geoscientific
1690	Model Development, 7(6), 3089-3110, 2014.
1691 1692 1693	Stocker, B. D., Strassmann, K., & Joos, F.: Sensitivity of Holocene atmospheric CO 2 and the modern carbon budget to early human land use: analyses with a process-based model. Biogeosciences, 8(1), 69-88, 2011.
1694	Tang, J., & Zhuang, Q.: A global sensitivity analysis and Bayesian inference framework for
1695	improving the parameter estimation and prediction of a process-based Terrestrial Ecosystem
1696	Model. Journal of Geophysical Research: Atmospheres, 114(D15), 2009.
1697	Tang, J., & Zhuang, Q.: Equifinality in parameterization of process-based biogeochemistry
1698	models: A significant uncertainty source to the estimation of regional carbon dynamics. Journal
1699	of Geophysical Research: Biogeosciences, 113(G4), 2008.
1700 1701	Tang, J., Zhuang, Q., Shannon, R. D., & White, J. R.: Quantifying wetland methane emissions with process-based models of different complexities. Biogeosciences, 7(11), 3817-3837, 2010.
1702 1703 1704	Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost region. Global biogeochemical cycles, 23(2), 2009.
1705	Timm, O., & Timmermann, A.: Simulation of the Last 21 000 Years Using Accelerated
1706	Transient Boundary Conditions*. Journal of Climate, 20(17), 4377-4401, 2007.
1707	Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., & Taylor, M. G.: Higher
1708	northern latitude normalized difference vegetation index and growing season trends from 1982 to
1709	1999. International journal of biometeorology, 45(4), 184-190, 2001.
1710 1711 1712 1713	Turetsky, M. R., Treat, C. C., Waldrop, M. P., Waddington, J. M., Harden, J. W., & McGuire, A. D.: Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research: Biogeosciences,113(G3), 2008.
1714 1715 1716	Turunen, J., Tomppo, E., Tolonen, K., & Reinikainen, A.: Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. The Holocene, 12(1), 69-80, 2002.
1717	Vitt, D. H., Halsey, L. A., Bauer, I. E., & Campbell, C.: Spatial and temporal trends in carbon
1718	storage of peatlands of continental western Canada through the Holocene. Canadian Journal of
1719	Earth Sciences, 37(5), 683-693, 2000.
1720	Wang, S., Zhuang, Q., Yu, Z., Bridgham, S., & Keller, J. K.: Quantifying peat carbon
1721	accumulation in Alaska using a process-based biogeochemistry model, Journal of Geophysical
1722	Research: Biogeosciences., 121, doi: 10.1002/2016JG003452, 2016.
1723 1724 1725	XU-RI and PRENTICE, I. C.: Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Global Change Biology, 14: 1745–1764. doi:10.1111/j.1365-2486.2008.01625.x, 2008.
1726 1727	Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review. Biogeosciences, 9(10), 4071-4085, 2012.

1728 1729	Yu, Z., Beilman, D. W., & Jones, M. C.: Sensitivity of northern peatland carbon dynamics to Holocene climate change. Carbon cycling in northern peatlands, 55-69, 2009.
1730 1731	Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., & Hunt, S. J.: Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, 37(13), 2010.
1732 1733 1734 1735	Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J., Kicklighter, D. W., & Hobbie, J. E.: Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal dynamics. Tellus B, 55(3), 751-776, 2003.
1736 1737 1738	Zhuang, Q., McGuire, A. D., O'neill, K. P., Harden, J. W., Romanovsky, V. E., & Yarie, J.: Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. Journal of Geophysical Research: Atmospheres, 107(D1), 2002.
1739 1740 1741 1742	Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., <u>& Hu, S.: Methane fluxes between terrestrial ecosystems and the atmosphere at northern high</u> <u>latitudes during the past century: A retrospective analysis with a process-based biogeochemistry</u> <u>model. Global Biogeochemical Cycles, 18(3), 2004.</u>
1743 1744 1745	Zhuang, Q., Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Prinn, R. G., Steudler, P. A., & Hu, S.: Net emissions of CH4 and CO2 in Alaska: Implications for the region's greenhouse gas budget. Ecological Applications, 17(1), 203-212, 2007.
1746 1747 1748 1749	Zhuang, Q., Romanovsky, V. E., & McGuire, A. D.: Incorporation of a permafrost model into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics. Journal of Geophysical Research: Atmospheres, 106(D24), 33649-33670, 2001.
1750 1751 1752 1753	Zhuang, Q., Zhu, X., He, Y., Prigent, C., Melillo, J. M., McGuire, A. D., & Kicklighter, D. W.: Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004. Environmental Research Letters, 10(9), 095009, 2015.
1754 1755	Zimov, S. A., Schuur, E. A., & Chapin III, F. S.: Permafrost and the global carbon budget. Science(Washington), 312(5780), 1612-1613, 2006.
1756 1757	Zoltai, S. C.: Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years BP. Géographie physique et Quaternaire, 49(1), 45-54, 1995.
1758	
1759	
1760	

1762 Table 1. Assignment of biomized fossil pollen data to the vegetation types in TEM (He et al.,

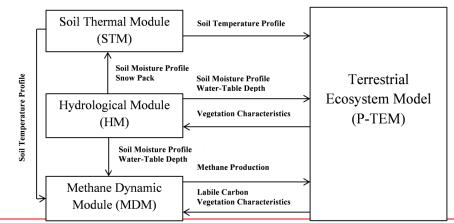
1763 2014).

TEM upland vegetation	TEM peatland vegetation	BIOMISE code
Alpine tundra		CUSH DRYT PROS
Moist tundra	Sphagnum spp. open fen	DWAR SHRU
Boreal evergreen needleleaf and		TAIG COCO CLMX
mixed forest	Sphagnum-black spruce bog	COMX
Boreal deciduous broadleaf forest		CLDE

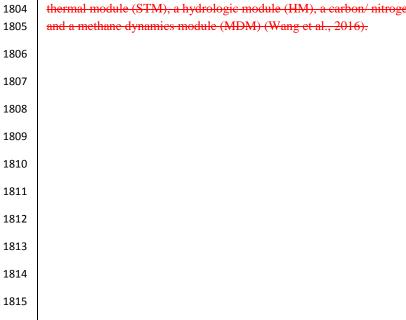
1766 Table 2. Relations between peatland basal age and vegetation distribution

Peatland basal age	Vegetation types	Location
15-11 ka	alpine tundra	south, northwestern, and
		southeastern coast
11–10 ka	moist-tundra	south, north, and southeastern
	boreal evergreen needleleaf forest	coast
	boreal deciduous broadleaf forest	east central part
10-9 ka	moist tundra	south and north coast
	boreal evergreen needleleaf forest	central part
	boreal deciduous broadleaf forest	
9-5 ka	moist tundra	central part
	boreal evergreen needleleaf forest	
5 ka-1900 AD	moist tundra	west coast
	boreal evergreen needleleaf forest	

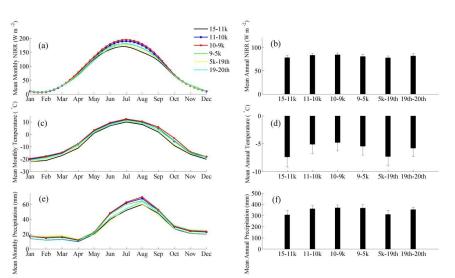
Table 3. Description of sites and variables used for parameterizing the core carbon and nitrogen module (CNDM).



Site*	Vegetation	Observed variables for CNDM parameterization	References
APEXCON	Moderate rich open fen with sedges	Mean annual aboveground	Chivers et al. (2009)
	(<i>Carex</i> sp.), spiked rushes (<i>Eleocharis</i> sp.), <i>Sphagnum</i> spp., and brown	NPP in 2009; Mean annual belowground	Turetsky et al. (2008) Kane et al. (2010)
	mosses (e.g., <i>Drepanocladus aduncus</i>)	NPP in 2009;	Churchill et al. (2011)
		Aboveground biomass in	
APEXPER	Peat plateau bog with black spruce	2009	
	(\mathbf{D}^{*})		
	(Picea mariana), Sphagnum spp., and		
	(Freed martana), Sphagnum spp., and feather mosses		
approximate		rea is classified as continental be	preal climate with a mean ar
approximate	feather mosses a Peatland Experiment (APEX) site is adjace ly 35 km southwest of Fairbanks, AK. The a	rea is classified as continental be	preal climate with a mean ar
approximate	feather mosses a Peatland Experiment (APEX) site is adjace ly 35 km southwest of Fairbanks, AK. The a	rea is classified as continental be	preal climate with a mean ar
approximate temperature	feather mosses a Peatland Experiment (APEX) site is adjace ly 35 km southwest of Fairbanks, AK. The a	r rea is classified as continental b n, of which 30% is snow (Hinzn	preal climate with a mean ar


Annual Carbon Fluxes or Pools ^a	Sphagnum Open Fen		Sphagnum-Black Spruce Bog		References
	Observation	Simulation	Observation	Simulation	Turoteky of al (2008)
NPP	445 <u>±260</u>	410	433±107	390	Churchill (2011)
Aboveground Vegetation Carbon	149-287		423		Moore et al. (2002)
Belowground Vegetation Carbon	564		658-1128		Zhuang et al. (2002)
Total Vegetation Carbon Density	713-851	800	732-1551	1300	Tarnocai et al. (2009)
Litter Fall Carbon Flux	300	333	300	290	Kuhry and Vitt (1996)
Methane Emission Flux	19.5	19,2	9.7	12.8	


^a Units for annual net primary production (NPP) and litter fall carbon are g C m⁻² yr⁻¹. Units for ion carbon density are 1790 g C m⁻². Units for Methane emissions are g C - CH₄ m⁻² yr⁻⁴. The simulated total annual methane fluxes were compared with the observations at APEXCON in 2005 and SPRUCE in 2012. A ratio of 0.47 was used to convert vegetation biomass to carbon (Raich 1991).



1802
1803
Figure 1. P TEM (Peatland Terrestrial Ecosystem Model) modeling framework, including a soil
1804
thermal module (STM), a hydrologic module (HM), a carbon/ nitrogen dynamic model (CNDM),
1805
and a methane dynamics module (MDM) (Wang et al., 2016).

1827 [#]/₂
 Figure 3. Simulated Paleo climate and other input data from 15 ka to 2000 AD, including (a)
 1829 mean monthly and (b) mean annual net incoming solar radiation (NIRR, W m⁻²), (c) mean
 1830 monthly and (d) mean annual air temperature (°C), (e) mean monthly and (f) mean annual
 1831 precipitation (mm) (Timm and Timmermann, 2007; He et al., 2014).

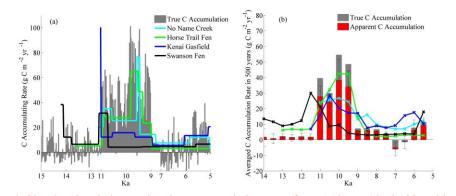
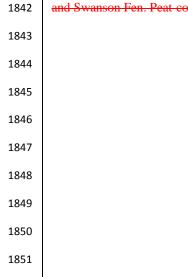
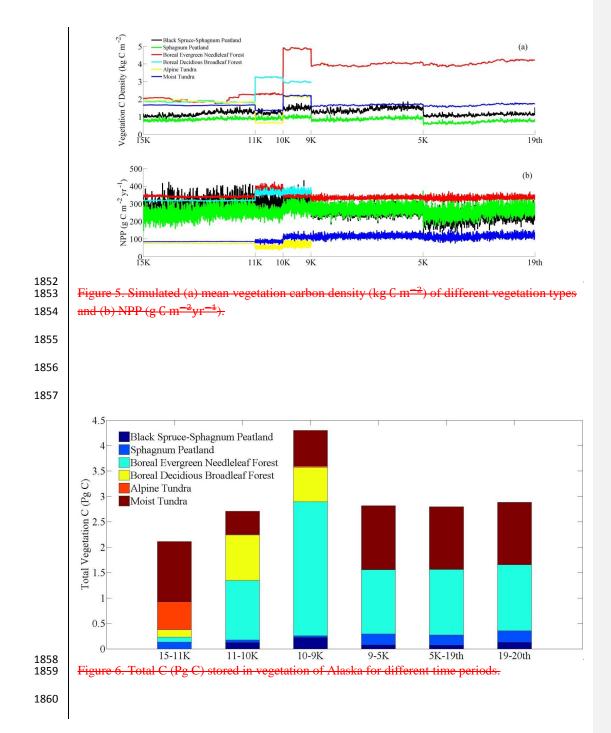
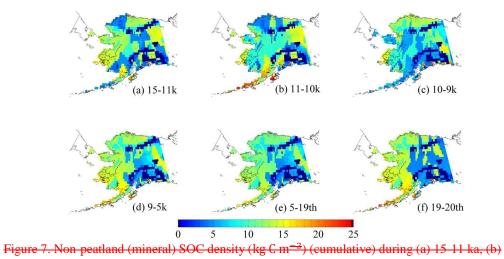
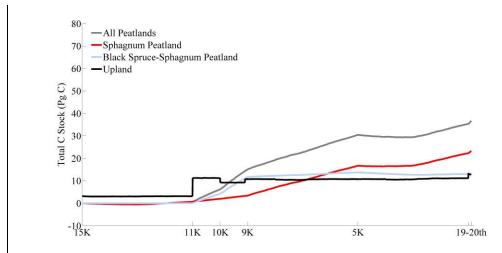





Figure 4. Simulated and observed carbon accumulation rates from 15 ka to 5 ka in 20-yr bins (a) and 500 yr bins with standard deviation (b) for No Name Creek, Horse Trail Fen, Kenai Gasfield, and Swanson Fen. Peat core data were from Jones and Yu (2010).


1840

1863 11 10 ka, (c) 10 9 ka, (d) 9 5 ka, (e) 5 ka 1900 AD, and (f) 1900 2000 AD.

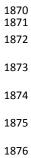
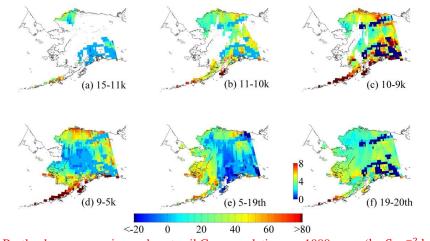
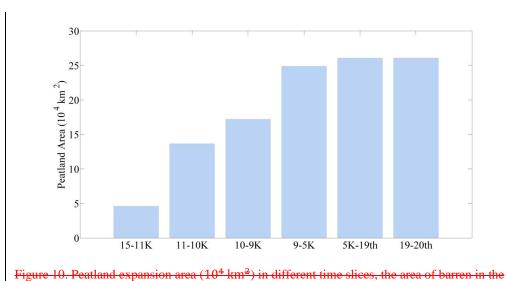
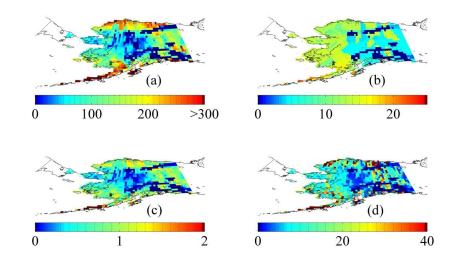
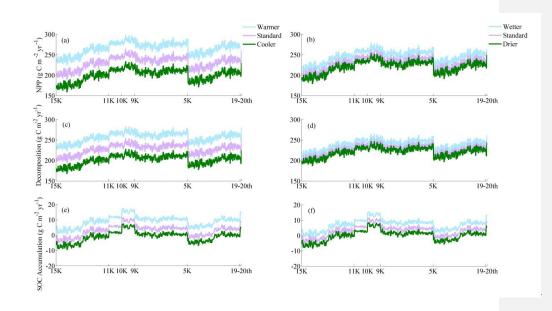




Figure 8. Total C stock accumulated from 15 ka to 2000 AD for all peatlands, *Sphagnum* open
 peatland, *Sphagnum* black spruce peatland, and upland soils.

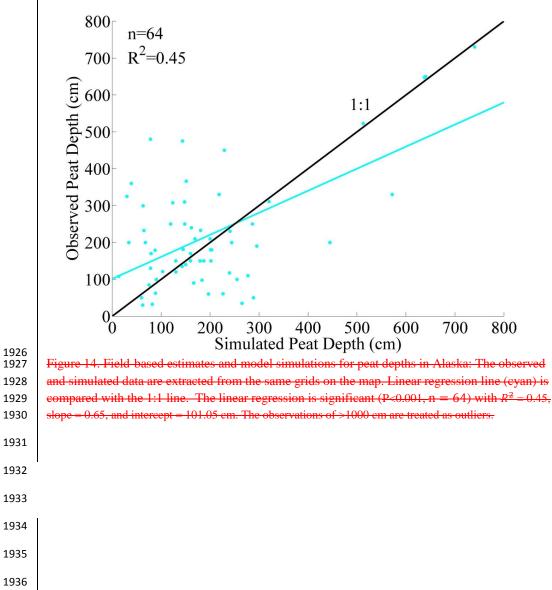



1880<-20</th>0204060>801881Figure 9. Peatland area expansion and peat soil C accumulation per 1000 years (kg C m⁻² kyr⁻¹)1882during (a) 15 11 ka, (b) 11 10 ka, (c) 10 9 ka, (d) 9 5 ka, (e) 5 ka 1900 AD, and (f) 1900 20001883AD. The amount of C represents the C accumulation as the difference between the peat C1884amount in the final year and the first year in each time slice.

1885			
1886			
1887			
1888			
1889			
1890			
1891			
1892			
1893			
1894			
1895			
1896			
1897			



1900 map is set to 0-km^2 .


1915
1916Figure 12. The spatial distribution of (a) total peat SOC density (kg C m⁻²), (b) total mineral1917SOC density (kg C m⁻²), (c) total peat depth (m), and (d) weighted average of total (peatlands)1918plus non peatlands) SOC density (kg C m⁻²) in Alaska from 15 ka to 2000 AD.

1923 Figure 13. Temperature and precipitation effects on (a)(b) annual NPP, (c)(d) annual SOC

1924 decomposition rate (aerobic plus anaerobic), and (e)(f) annual SOC accumulation rate of Alaska.

1925 A 10 year moving average was applied.

1940 Table 1. Description of sites and variables used for parameterizing the core carbon and nitrogen 1941 module (CNDM).

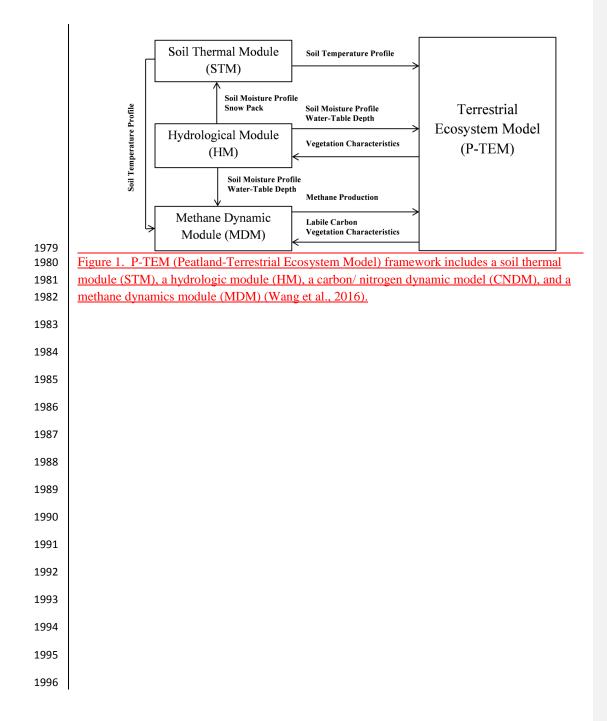
	Site ^a	Vegetation	Observed variables for	References	
			CNDM parameterization		
	ADDIVICON				
	<u>APEXCON</u>	Moderate rich open fen with sedges	Mean annual aboveground	Chivers et al. (2009)	
		(Carex sp.), spiked rushes (Eleocharis	<u>NPP in 2009;</u>	Turetsky et al. (2008)	
		sp.), Sphagnum spp., and brown	Mean annual belowground	Kane et al. (2010)	
		mosses (e.g., Drepanocladus aduncus)	<u>NPP in 2009;</u>	Churchill et al. (2011)	
			Aboveground biomass in		
	APEXPER	Peat plateau bog with black spruce	2009		
		(Picea mariana), Sphagnum spp., and			
		feather mosses			
1942	-				
1943	^a The Alaskan	Peatland Experiment (APEX) site is adjace	ont to the Bonanza Creek Experim	ental Forest (BCFF) site	
1944					
	approximately 35 km southwest of Fairbanks, AK. The area is classified as continental boreal climate with a mean annual				
1945	temperature of -2.9°C and annual precipitation of 269 mm, of which 30% is snow (Hinzman et al., 2006).				
1946					
1340					

1948 <u>Table 2. Carbon pools and fluxes used for calibration of CMDM</u>

Annual Carbon Fluxes or Pools ^a	<u>Sphagnum Op</u>	<u>ben Fen</u>	<u>Sphagnum-Bl</u> Bog	ack Spruce	References
	Observation	Simulation	Observation	Simulation	
					- Turetsky et al. (2008),
NPP	<u>445±260</u>	<u>410</u>	<u>433</u> ±107	<u>390</u>	Churchill (2011)
Aboveground Vegetation Carbon	<u>149-287</u>		<u>423</u>		Saarinen et al. (1996)
Belowground Vegetation Carbon	<u>347-669</u>		<u>987</u>		Moore et al. (2002)
Total Vegetation Carbon Density	<u>496-856</u>	<u>800</u>	<u>1410</u>	<u>1300</u>	Zhuang et al. (2002)
Litter Fall Carbon Flux	<u>300</u>	<u>333</u>	<u>300</u>	<u>290</u>	Tarnocai et al. (2009)
Methane Emission Flux	19.5	19.2	9.7	12.8	Kuhry and Vitt (1996)

1950 1951 1952 1953	^a Units for annual net primary production (NPP) and litter fall carbon are g C m ⁻² yr ⁻¹ . Units for vegetation carbon density are g C m ⁻² . Units for Methane emissions are g C – CH ₄ m ⁻² yr ⁻¹ . The simulated total annual methane fluxes were compared with the observations at APEXCON in 2005 and SPRUCE in 2012. A ratio of 0.47 was used to convert vegetation biomass to carbon (Raich 1991).
1954	

Table 3. Assignment of biomized fossil pollen data to the vegetation types in TEM (He et al., <u>2014).</u>



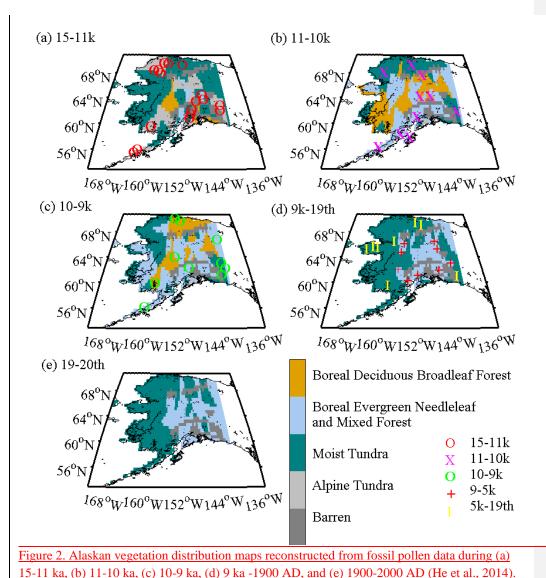
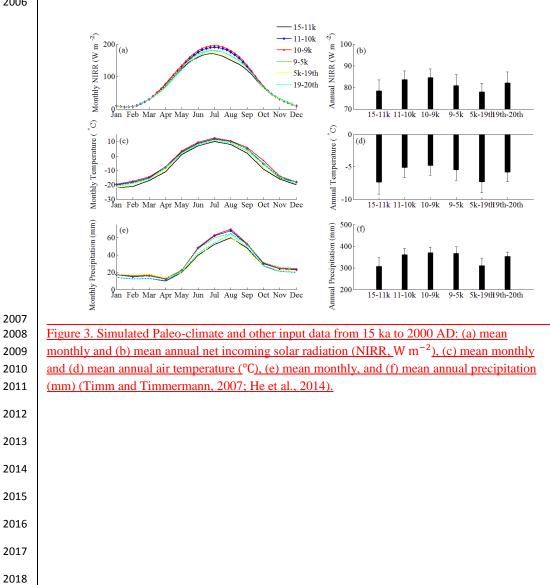
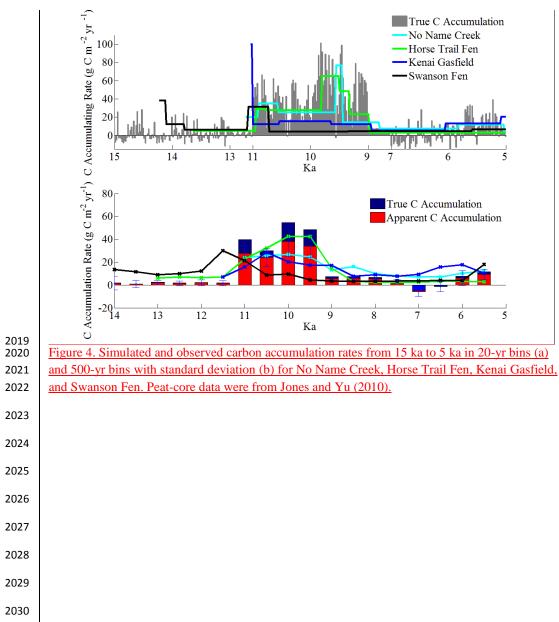
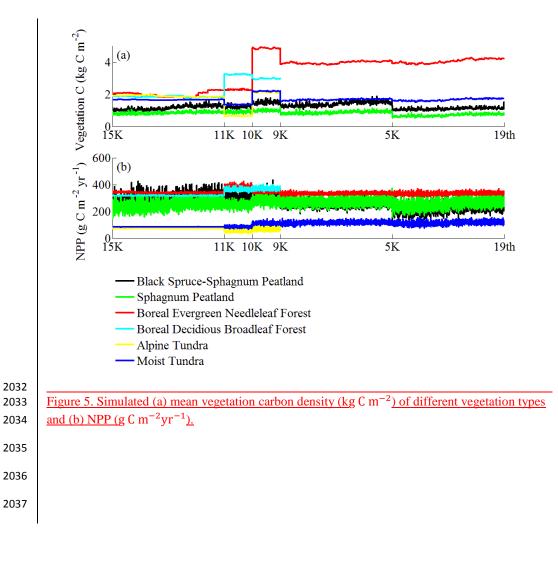

TEM upland vegetation	TEM peatland vegetation	BIOMISE code
Alpine tundra		<u>CUSH DRYT PROS</u>
Moist tundra	<u>Sphagnum spp. open fen</u>	<u>DWAR SHRU</u>
Boreal evergreen needleleaf and		TAIG COCO CLMX
mixed forest	Sphagnum-black spruce bog	COMX
Boreal deciduous broadleaf forest		CLDE

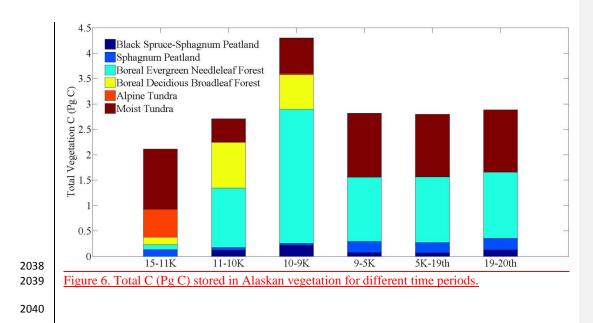
Table 4. Relations between peatland basal age and vegetation distribution

Peatland basal age	Vegetation types	Location in Alaska
<u>15-11 ka</u>	alpine tundra	south, northwestern, and
		southeastern coast
<u>11-10 ka</u>	<u>moist tundra</u>	south, north, and southeastern
	boreal evergreen needleleaf forest	<u>coast</u>
	boreal deciduous broadleaf forest	east central part
<u>10-9 ka</u>	<u>moist tundra</u>	south and north coast
	boreal evergreen needleleaf forest	<u>central part</u>
	boreal deciduous broadleaf forest	
<u>9-5 ka</u>	moist tundra	<u>central part</u>
	boreal evergreen needleleaf forest	
<u>5 ka-1900 AD</u>	moist tundra	west coast
	boreal evergreen needleleaf forest	




Symbols represent the basal age of peat samples (n = 102) in Gorham et al. (2012). Each


mountain range and large water body areas that can not be interpolated.


symbol indicates 1-3 peat samples in the map. Peat samples with basal age 9-5k and 5k-19th are

shown in map (d) as there is no change of vegetation distribution during 9k-19th. Barren refers to

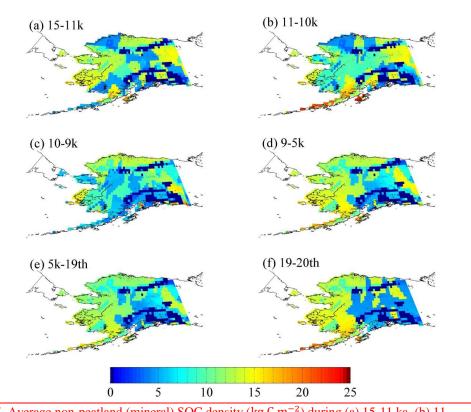
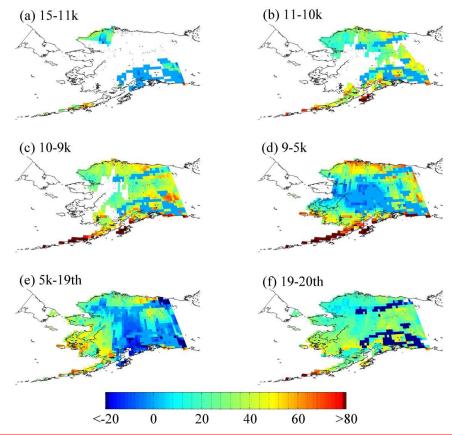
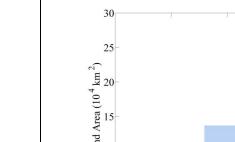
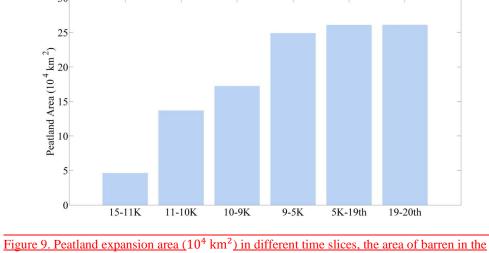
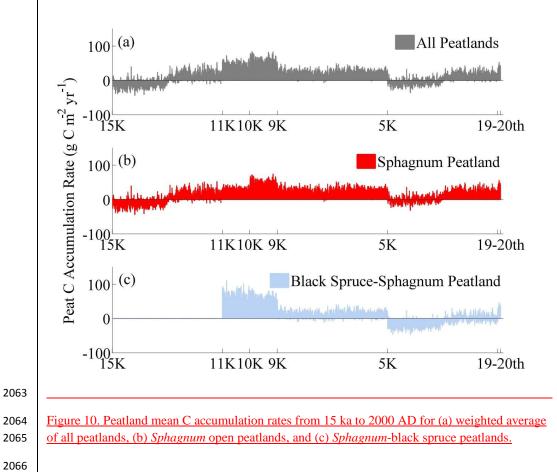
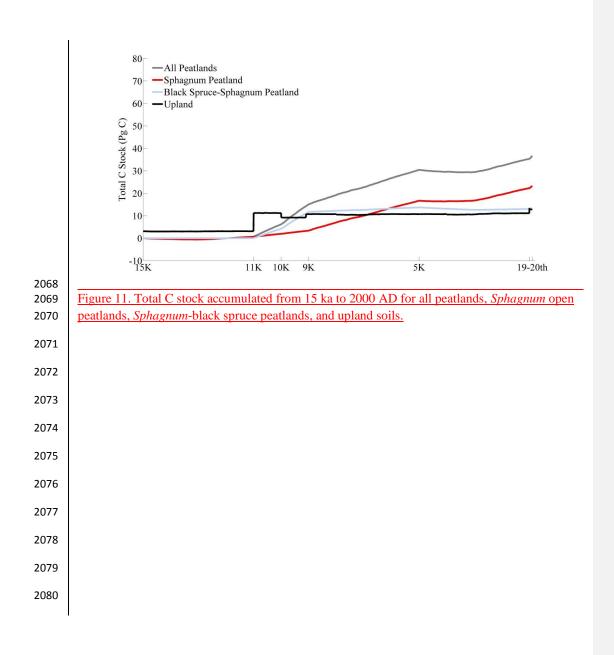





Figure 7. Average non-peatland (mineral) SOC density (kg C m⁻²) during (a) 15-11 ka, (b) 11-10 ka, (c) 10-9 ka, (d) 9-5 ka, (e) 5 ka -1900 AD, and (f) 1900-2000 AD. The period of 9k-19th in Figure 2d is separated into 9-5k and 5k-19th.


2046	<-20 0 20 40 60 >80
2047	Figure 8. Peatland area expansion and peat soil C accumulation per 1000 years (kg C m ⁻² kyr ⁻¹)
2048	during (a) 15-11 ka, (b) 11-10 ka, (c) 10-9 ka, (d) 9-5 ka, (e) 5 ka -1900 AD, and (f) 1900-2000
2049	AD. The amount of C represents the C accumulation as the difference between the peat C
2050	amount in the final year and the first year in each time slice. The period of 9k-19 th in Figure 2d is
2051	separated into 9-5k and 5k-19 th .
2052	
2053	
2054	
2055	
2056	
2057	



<u>map is set to 0 km^2 .</u>

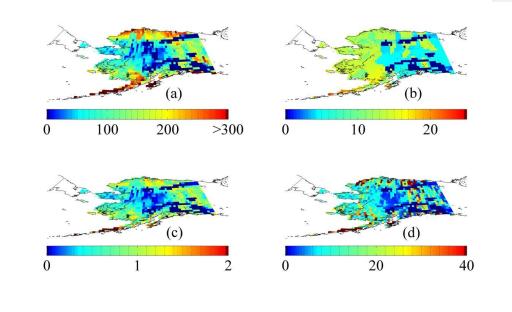
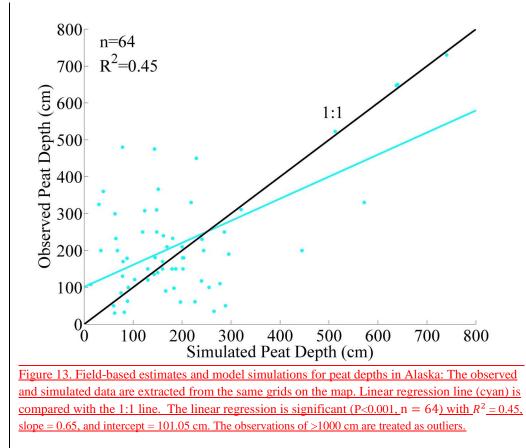
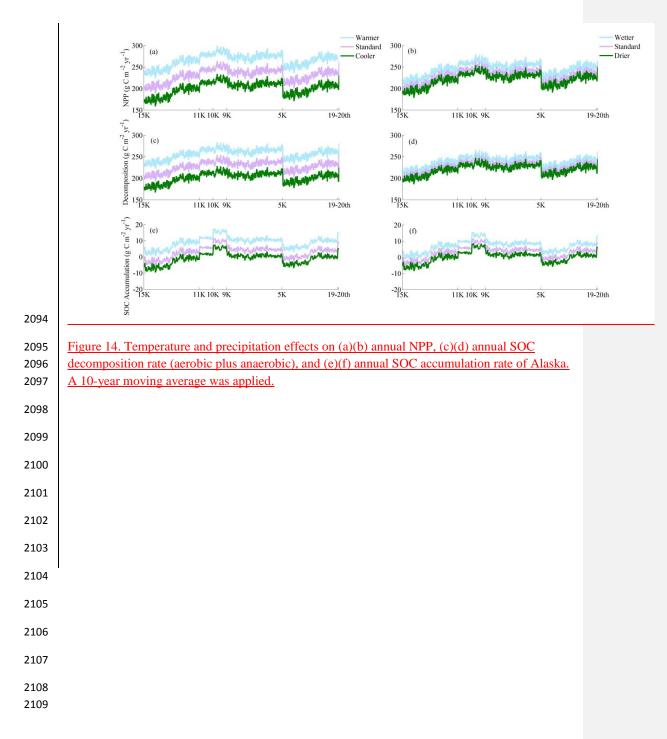




Figure 12. Spatial distribution of (a) total peat SOC density (kg C m⁻²), (b) total mineral SOC density (kg C m⁻²), (c) total peat depth (m), and (d) area-weighted total (peatlands plus non-peatlands) SOC density (kg C m⁻²) in Alaska from 15 ka to 2000 AD.

