1 Response to Referee #1 (Dr. Kleinen)

We would like to thank Dr. Kleinen for his thoughtful and constructive review. Our responses to
all of the referee's comments (italicized) are presented below.

4 In their manuscript, the authors present a model study of soil carbon accumulation in Alaska

5 over the last 15000 years with a special focus on peat carbon accumulation. Compared to the

6 authors' original submission I find the manuscript improved. However, a few issues remain. This

7 review of the revised version was, by the way, hindered by the fact that the "track changes"

8 version of the manuscript changes was different from the submitted revision, therefore not

9 showing the actual changes to the manuscript. I would also suggest to the authors to use the

10 "compare documents" function the next time, since that shows differences between versions

11 more clearly. In my first review, one of my points was "Page 4, lines 94-95: the Spahni et al.

12 Model has actually been evaluated with respect to the variables listed – see Wania et al.

13 Publications on the LPJ-Why model on which Spahni is based." The authors have changed the

14 passage I indicated to "In contrast, Spahni et al. (2013) used a dynamic global vegetation and

15 land surface process model (LPX), based on LPJ (Sitch et al., 2003), imbedded with a peatland

16 module, which considered the nitrogen feedback on plant productivity (Xu-Ri and Prentice, 2008)

and plant biogeography, to simulate the SOC accumulation rates of northern peatlands.

18 *However, the model did not consider methane dynamics, which play an important role in*

19 affecting peat carbon dynamics, presumably due to its inadequate representation of ecosystem

20 processes (Stocker et al., 2011, 2014; Kleinen et al., 2012). Furthermore, climatic effects on

21 SOC were not fully explained." Obviously the authors did not actually read the literature. The

LPX model does indeed consider methane dynamics (Spahni et al., Biogeosciences, 2011 and
 Zürcher et al., Biogeosciences, 2013). In addition this statement is wrong in another way, since

Zürcher et al., Biogeosciences, 2013). In addition this statement is wrong in another way, since
 methane dynamics actually are not important at all in the peat carbon uptake, which is what the

25 authors focus on in their manuscript. This passage needs revisiting. (Page 4, line 91 to page 5,

26 *line* 97).

We deleted those statements and only left the statement of "Climatic effects on SOC were notfully explained, presumably due to its inadequate representation of ecosystem processes".

29 Furthermore, I asked the authors to provide a table with site locations used in their assessment

30 at site level – instead they added a reference, which is inadequate. The aim of my request was to

31 *enable readers to quickly understand where these sites are, without requiring the original*

32 publications. In addition, the discussion of site results is lacking some of the detail contained in

33 *the original manuscript.*

34 In this revision, we added a table (Table 5) of the description of the four sites we used for site-

35 level comparison. To make the manuscript more concise and focused, we decided not to discuss

36 much on the site-level comparison in the Result and Discussion Section, since those results have

- already been presented and discussed in our previous study (Wang et al, 2016). Therefore, we only showed the modeled results along with a brief discussion for those four sites in this study.
- I also asked the authors to describe how the change in peatland extent was determined. However,
- I was unfortunately not able to understand that from the description in the paper (page 9, lines
- 188-205). I understand the link between basal age and peatland extent the authors used to
- determine changes in peatland area, but that is very difficult to understand from the text since
- the connection is not made clearly. Please reformulate to make it clearer.

We have added few more sentences and reformulated to make such method clearer to readers.

Page 13, line 277 refers to table 4, but this is table 2 in the revised version. I have not been able

to check whether all other references to changed Figures and Tables are correct – I suggest the

- authors check this again before final publication.
- Thanks for pointing this out. Correct, here we should have referred to Table 2 instead of Table 4. In this revision, we checked all the references to figures and tables.

65 **Response to Referee #2 (Dr. Tupek)**

- 66 We would like to thank Dr. Tupek for his thoughtful and constructive review, as well as his
- 67 detailed comments. Our responses to all of the referee's comments are provided as below.
- 68 General comments:
- 69 Authors accounted for the required changes satisfactorily and the manuscript has improved. It is
- not clear if the long-term variation in NPP is larger than the inter-annual NPP variation (Fig. 5).
- 71 Please explain the reasons for the large NPP inter-annual variation. Is it annual variation in
- climate? One of the main findings is that vegetation distributions drives soil C. To me it seems
- that climate is driving vegetation distribution which determines soil C change. However, long-
- 74 term vegetation distribution here is taken from maps produced for main periods of climatic
- change thus introducing large step wise changes. This is also interesting result. Consider
- 76 *reformulating*.

Yes, the inter-annual NPP variation depends on the annual variation of climate. As key factors controlling plant productivity are monthly temperature, solar radiation, and precipitation, their

79 inter-annual fluctuations affect NPP. However, despite the large inter-annual NPP variation, we

can still see a clear trend of long-term increasing (or decreasing) NPP from 15 ka to 19^{th} . The

81 1000-year average NPP of those several vegetation types mostly reached the highest during the

82 HTM period. To make it clear for readers, we added a third panel in Fig. 5 to represent this long-

- term feature. The result of carbon dynamics indeed shows large step-wise changes due to
- vegetation distribution shift. We directly applied the vegetation maps, which were generated in
- 85 previous study, and were discussed regarding the generating process of those maps along with
- the uncertainty analyses (He et al., 2014).
- 87 Specific comments:
- 88 lines 32-34, reformulate, especially the origin of previous estimates is not obvious
- We added "using peat core data" to give a brief idea how the previous estimates have been done and the references and origin of the previous estimates were then discussed in Section 3.3.
- 91 lines 41-44 in abstract and lines 463-467 in conclusions are identical, reformulate or delete
- 92 In this revision, we revised the sentences in the Conclusion Section to avoid duplication.
- 93 lines 374-378 explain reasons for long-term variation and inter annual variation of NPP (Fig. 5).
- 94 We added the explanation of the reason causing inter-annual NPP variation here and made 95 clearer that it was the trend of long-term NPP coincided with the warmer climate, higher 96 vegetation C and soil C stocks during the HTM.
- 97 Fig. 4 use same x axis; add a,b,c,d to the panels; Kenai Gasfield mismatch?
- 98 We added those letters to each panel. We also used the same scale for x axis in each panel. We 99 confirmed that there was no mismatch for Kenai Gasfield. The highest 500-years average rate

- occurred during 11-10.5 ka, as shown in the bar. We added "14.5-5 ka" in the caption to make
 the bar clearer to read.
- Fig. 5 what is the reason for the large NPP inter-annual variation? add smoothed dashed linefor higlighting the longterm changes?
- We added the reason in the text and added a separate panel (Figure 5c) to show the long-termchanges of NPP.
- 106 Fig.6 use same color codes as Fig. 5
- 107 We applied the same color code to Fig. 6.
- 108 Fig.7 use same color codes as Fig. 8?
- 109 We used the same color code in Fig. 7.
- 110 Fig. 9 "the area of ... 0 km2" confusing/delete, divide SP and SBP peatlands?
- 111 We deleted this confusing sentence.
- Fig. 10 Peat C stock change. Specify that these are barplots to avoid confusion that peat C stock
 change is restricted to zero?

- 114 We specified that the plots are bars.
- 115 116

127	Quantifying Soil Carbon Accumulation in Alaskan Terrestrial Ecosystems during the Last
128	15,000 Years

- 131 Sirui Wang¹, Qianlai Zhuang^{1,2*}, Zicheng Yu³
- ¹Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette,
 Indiana, 47907
- 134 ²Department of Agronomy, Purdue University, West Lafayette, IN 47907
- ³Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015

- 136 Correspondence to: <u>qzhuang@purdue.edu</u>

- .

154	Abstract: Northern high latitudes contain large amounts of soil organic carbon (SOC), in which
155	Alaskan terrestrial ecosystems account for a substantial proportion. In this study, the SOC
156	accumulation in Alaskan terrestrial ecosystems over the last 15,000 years was simulated using a
157	process-based biogeochemistry model for both peatland and non-peatland ecosystems.
158	Comparable with the previous estimates of 25-70 Pg C in peatland and 13-22 Pg C in non-
159	peatland soils within 1-m depth in Alaska using peat core data, our model estimated a total SOC
160	of 36-63 Pg C at present, including 27-48 Pg C in peatland soils and 9-15 Pg C in non-peatland
161	soils. Current vegetation stored 2.5-3.7 Pg C in Alaska with 0.3-0.6 Pg C in peatlands and 2.2-
162	3.1 Pg C in non-peatlands. The simulated average rate of peat C accumulation was 2.3 Tg C yr ⁻¹
163	with a peak value of 5.1 Tg C yr ⁻¹ during the Holocene Thermal Maximum (HTM) in the early
164	Holocene, four folds higher than the average rate of 1.4 Tg C yr^{-1} over the rest of the Holocene.
165	The SOC accumulation slowed down, or even ceased, during the neoglacial climate cooling after
166	the mid-Holocene, but increased again in the 20th century. The model-estimated peat depths
167	ranged from 1.1 to 2.7 m, similar to the field-based estimate of 2.29 m for the region. We found
168	that the changes in vegetation and their distributions were the main factors to determine the
169	spatial variations of SOC accumulation during different time periods. Warmer summer
170	temperature and stronger radiation seasonality, along with higher precipitation in the HTM and
171	the 20 th century might have resulted in the extensive peatland expansion and carbon
172	accumulation.
173	Keywords: Carbon, Peatlands, Alaska, Modelling, Climate

- 174
- 175

177 **1. Introduction**

Global surface air temperature has been increasing since the middle of the 19th century 178 (Jones and Mogberg, 2003; Manabe and Wetherald, 1980, 1986). Since 1970, the warming trend 179 has accelerated at a rate of 0.35 °C per decade in northern high latitudes (Euskirchen et al., 2007; 180 McGuire et al., 2009). It is predicted that the warming will continue in the next 100 years (Arctic 181 Climate Impact Assessment 2005; Intergovernmental Panel on Climate Change (IPCC), 2013, 182 183 2014). The land surface in northern high latitudes (>45° N) occupies 22% of the global surface and stores over 40% of the global soil organic carbon (SOC) (McGuire et al., 1995; Melillo et al., 184 1995; McGuire and Hobbie, 1997). Specifically, the northern high latitudes were estimated to 185 store 200-600 Pg C (1 Pg C = 10^{15} g C) in peatland soils depending on the depth considered 186 (Gorham, 1990, 1991; Yu, 2012), 750 Pg C in non-peatland soils (within 3 m) (Schuur et al., 187 2008; Tarnocai et al., 2009; Hugelius et al., 2014), and additional 400 Pg C in frozen loess 188 deposits of Siberia (Zimov et al., 2006a). Peatland area is around 40 million hectares in Alaska 189 compared with total 350 million hectares in northern high latitudes (Kivinen and Pakarinen, 190 1981). Alaskan peatlands account for the most peatland area in the USA and cover at least 8% of 191 the total land area (Bridgham et al., 2006). To date, the regional soil C and its responses to the 192 193 climate change are still with large uncertainties (McGuire et al., 2009; Loisel et al., 2014). The warming climate could increase C input to soils as litters through stimulating plant 194 net primary productivity (NPP) (Loisel et al., 2012). However, it can also decrease the SOC by 195 increasing soil respiration (Yu et al., 2009). Warming can also draw down the water table in 196 197 peatlands by increasing evapotranspiration, resulting in higher decomposition as the aerobic

198	respiration has a higher rate than anaerobic respiration in general (Hobbie et al., 2000). SOC
199	accumulates where the rate of soil C input is higher than decomposition. The variation of climate
200	may switch the role of soils between a C sink and a C source (Davidson and Janssens, 2006;
201	Davidson et al., 2000; Jobbagy and Jackson, 2000). Unfortunately, due to the data gaps of field-
202	measurement and uncertainties in estimating regional C stock (Yu, 2012), with limited
203	understanding of both peatlands and non-peatlands and their responses to climate change, there is
204	no consensus on the sink and source activities of these ecosystems (Frolking et al., 2011; Belyea,
205	2009; McGuire et al., 2009).

Both observation and model simulation studies have been applied to understand the long-206 term peat C accumulation in northern high latitudes. Most field estimations are based on series of 207 208 peat-core samples (Turunen et al., 2002; Roulet et al., 2007; Yu et al., 2009; Tarnocai et al., 2009). However, those core analyses may not be adequate for estimating the regional C 209 210 accumulation due to their limited spatial coverage. To date, a number of model simulations have also been carried out. For instance, Frolking et al. (2010) developed a peatland model 211 considering the effects of plant community, hydrological dynamics and peat properties on SOC 212 accumulation. The simulated results were compared with peat-core data. They further analyzed 213 the contributions of different plant functional types (PFTs) to the peat C accumulation. However, 214 this 1-D model has not been evaluated with respect to soil moisture, water-table depth, methane 215 fluxes, and carbon and nitrogen fluxes and has not been used in large spatial-scale simulations by 216 considering other environmental factors (e.g., temperature, vapor pressure, and radiation). In 217 218 contrast, Spahni et al. (2013) used a dynamic global vegetation and land surface process model (LPX), based on LPJ (Sitch et al., 2003), imbedded with a peatland module, which considered 219 the nitrogen feedback on plant productivity (Xu-Ri and Prentice, 2008) and plant biogeography, 220

221	to simulate the SOC accumulation rates of northern peatlands. However, the model did not
222	consider methane dynamics, which play an important role in affecting peat carbon dynamics,
223	presumably due to its inadequate representation of ecosystem processes (Stocker et al., 2011,
224	2014; Kleinen et al., 2012). Furthermore, However, cCelimatic effects on SOC were not fully
225	explained, presumably due to its inadequate representation of ecosystem processes (Stocker et al.,
226	2011, 2014; Kleinen et al., 2012). The Terrestrial Ecosystem Model (TEM) has been applied to
227	study C and nitrogen dynamics in the Arctic (Zhuang et al., 2001, 2002, 2003, 2015; He et al.,
228	2014). However, the model has not been calibrated and evaluated with peat-core C data, and has
229	not been applied to investigate the regional peatland C dynamics. Building upon these efforts,
230	recently we fully evaluated the peatland version of TEM (P-TEM) including modules of
231	hydrology (HM), soil thermal (STM), C and nitrogen dynamics (CNDM) for both upland and
232	peatland ecosystems (Wang et al., 2016).
233	Here we used the peatland-core data for various peatland ecosystems to parameterize and
233 234	Here we used the peatland-core data for various peatland ecosystems to parameterize and test P-TEM (Figure 1). The model was then used to quantify soil C accumulation of both
233 234 235	Here we used the peatland-core data for various peatland ecosystems to parameterize and test P-TEM (Figure 1). The model was then used to quantify soil C accumulation of both peatland and non-peatland ecosystems across the Alaskan landscape since the last deglaciation.
233 234 235 236	Here we used the peatland-core data for various peatland ecosystems to parameterize and test P-TEM (Figure 1). The model was then used to quantify soil C accumulation of both peatland and non-peatland ecosystems across the Alaskan landscape since the last deglaciation. This study is among the first to examine the peatlands and non-peatlands C dynamics and their
233 234 235 236 237	Here we used the peatland-core data for various peatland ecosystems to parameterize and test P-TEM (Figure 1). The model was then used to quantify soil C accumulation of both peatland and non-peatland ecosystems across the Alaskan landscape since the last deglaciation. This study is among the first to examine the peatlands and non-peatlands C dynamics and their distributions and peat depths using core data at regional scales.
233 234 235 236 237	Here we used the peatland-core data for various peatland ecosystems to parameterize and test P-TEM (Figure 1). The model was then used to quantify soil C accumulation of both peatland and non-peatland ecosystems across the Alaskan landscape since the last deglaciation. This study is among the first to examine the peatlands and non-peatlands C dynamics and their distributions and peat depths using core data at regional scales.
233 234 235 236 237 238	Here we used the peatland-core data for various peatland ecosystems to parameterize and test P-TEM (Figure 1). The model was then used to quantify soil C accumulation of both peatland and non-peatland ecosystems across the Alaskan landscape since the last deglaciation. This study is among the first to examine the peatlands and non-peatlands C dynamics and their distributions and peat depths using core data at regional scales.
233 234 235 236 237 238 239	Here we used the peatland-core data for various peatland ecosystems to parameterize and test P-TEM (Figure 1). The model was then used to quantify soil C accumulation of both peatland and non-peatland ecosystems across the Alaskan landscape since the last deglaciation. This study is among the first to examine the peatlands and non-peatlands C dynamics and their distributions and peat depths using core data at regional scales.
233 234 235 236 237 238 239 240	Here we used the peatland-core data for various peatland ecosystems to parameterize and test P-TEM (Figure 1). The model was then used to quantify soil C accumulation of both peatland and non-peatland ecosystems across the Alaskan landscape since the last deglaciation. This study is among the first to examine the peatlands and non-peatlands C dynamics and their distributions and peat depths using core data at regional scales. 2. Methods 2.1. Overview
233 234 235 236 237 238 239 240 241	Here we used the peatland-core data for various peatland ecosystems to parameterize and test P-TEM (Figure 1). The model was then used to quantify soil C accumulation of both peatland and non-peatland ecosystems across the Alaskan landscape since the last deglaciation. This study is among the first to examine the peatlands and non-peatlands C dynamics and their distributions and peat depths using core data at regional scales. 2. Methods 2.1. Overview To conduct regional simulations of carbon accumulation for both uplands and peatlands,

organized the regional vegetation and peatland distribution data, spatial basal age data for all
peatland grid cells based on site-level soil core data, and climate data for each period during the
Holocene. Finally, we conducted the regional simulations and sensitivity analysis.

246 2.2 Model Description

In P-TEM (Wang et al., 2016), peatland soil organic C (SOC) accumulation is determined
by the difference between NPP and aerobic and anaerobic decomposition. Peatlands accumulate
C where NPP is greater than decomposition, resulting in positive net ecosystem production
(NEP):

251
$$NEP = NPP - R_H - R_{CH_4} - R_{CWM} - R_{CM} - R_{COM}$$
 (1)

P-TEM was developed based on the Terrestrial Ecosystem Model (TEM) at a monthly 252 step (Zhuang et al., 2003; 2015). It explicitly considers the process of aerobic decomposition (R_H) 253 related to the variability of water-table depth; net methane emission after methane oxidation 254 (R_{CH_4}) ; CO₂ emission due to methane oxidation (R_{CWM}) (Zhuang et al., 2015); CO₂ release 255 accompanied with the methanogenesis (R_{CM}) (Tang et al., 2010; Conrad, 1999); and CO₂ release 256 257 from other anaerobic processes (R_{COM} , e.g., fermentation, terminal electron acceptor (TEA) 258 reduction) (Keller and Bridgham, 2007; Keller and Takagi, 2013). For upland soils, we only 259 considered the heterotrohic respiration under aerobic condition (Raich, 1991). For detailed model 260 description see Wang et al. (2016).

We modeled peatland soils as a two-layer system for hydrological module (HM) while keeping the three-layer system for upland soils (Zhuang et al., 2002). The soil layers above the lowest water table position are divided into: (1) moss (or litter) organic layer (0-10 cm); and (2)

264	humic organic layer (10-30 cm) (Wang et al., 2016). Based on the total amount of water content
265	within those two unsaturated layers, the actual water table depth (WTD) is estimated. The water
266	content at each 1 cm above the water table can be then determined after solving the water
267	balance equations (Zhuang et al., 2004).
268	In the STM module, the soil vertical profile is divided into four layers: (1) snowpack in
269	winter, (2) moss (or litter) organic layer, (3) upper and (4) lower humic organic soil (Wang et al.,
270	2016). Each of these soil layers is characterized with a distinct soil thermal conductivity and heat
271	capacity. We used the observed water content to drive the STM (Zhuang et al., 2001).
272	
272	The methane dynamics module (MDM) (Zhuang et al., 2004) considers the processes of
272	The methane dynamics module (MDM) (Zhuang et al., 2004) considers the processes of methanogenesis, methanotrophy, and the transportation pathways including: (1) diffusion
272 273 274	The methane dynamics module (MDM) (Zhuang et al., 2004) considers the processes of methanogenesis, methanotrophy, and the transportation pathways including: (1) diffusion through the soil profile; (2) plant-aided transportation; and (3) ebullition. The soil temperatures
272 273 274 275	The methane dynamics module (MDM) (Zhuang et al., 2004) considers the processes of methanogenesis, methanotrophy, and the transportation pathways including: (1) diffusion through the soil profile; (2) plant-aided transportation; and (3) ebullition. The soil temperatures calculated from STM, after interpolation into 1-cm sub-layers, are input to the MDM. The water-
272 273 274 275 276	The methane dynamics module (MDM) (Zhuang et al., 2004) considers the processes of methanogenesis, methanotrophy, and the transportation pathways including: (1) diffusion through the soil profile; (2) plant-aided transportation; and (3) ebullition. The soil temperatures calculated from STM, after interpolation into 1-cm sub-layers, are input to the MDM. The water- table depth and soil water content in the unsaturated zone for methane production and emission
272 273 274 275 276 277	The methane dynamics module (MDM) (Zhuang et al., 2004) considers the processes of methanogenesis, methanotrophy, and the transportation pathways including: (1) diffusion through the soil profile; (2) plant-aided transportation; and (3) ebullition. The soil temperatures calculated from STM, after interpolation into 1-cm sub-layers, are input to the MDM. The water- table depth and soil water content in the unsaturated zone for methane production and emission are obtained from HM, and NPP is calculated from the CNDM. Soil-water pH is prescribed from
272 273 274 275 276 277 278	The methane dynamics module (MDM) (Zhuang et al., 2004) considers the processes of methanogenesis, methanotrophy, and the transportation pathways including: (1) diffusion through the soil profile; (2) plant-aided transportation; and (3) ebullition. The soil temperatures calculated from STM, after interpolation into 1-cm sub-layers, are input to the MDM. The water- table depth and soil water content in the unsaturated zone for methane production and emission are obtained from HM, and NPP is calculated from the CNDM. Soil-water pH is prescribed from observed data and the root distribution determines the redox potential (Zhuang et al., 2004).

279

2.3 Model Parameterization 280

281 We have parameterized the key parameters of the individual modules including HM, 282 STM, and MDM in Wang et al. (2016). The parameters in CNDM for upland soils and 283 vegetation have been optimized in the previous studies (Zhuang et al 2002, 2003; Tang and Zhuang 2008). Here we parameterized P-TEM for peatland ecosystems using data from a 284 285 moderate rich Sphagnum spp. open fen (APEXCON) and a Sphagnum-black spruce (Picea

mariana) bog (APEXPER) (Table 1). Both are located in the Alaskan Peatland Experiment 286 (APEX) study area, where Picea mariana is the only tree species above breast height in 287 APEXPER. Three water table position manipulations were established in APEX including a 288 289 control, a lowered, and a raised water table plots (Chivers et al., 2009; Turetsky et al., 2008; 290 Kane et al., 2010; Churchill et al., 2011). There were also several internal collapse scars that formed with thaw of surface permafrost, including a non-, an old, and a new collapse plots. 291 292 APEXCON represents the control manipulation and APEXPER represents the non-collapse plot. The annual NPP and aboveground biomass at both sites have been measured in 2009. There were 293 294 no belowground observations at APEX, however at a Canadian peatland, Mer Bleue, which 295 includes Sphagnum spp. dominated bog (dominated by shrubs and Sphagnum) and pool fen (dominated by sedges and herbs and Sphagnum). The belowground biomass was also observed at 296 297 Suurisuo mire complex, southern Finland, a sedge fen site dominated by Carex rostrate. We used the ratio (70%) of belowground biomass to total biomass from these two study sites to 298 calculate the missing belowground biomass values at APEXCON and APEXPER (Table 2). We 299 300 conducted 100,000 Monte Carlo ensemble simulations to calibrate the model for each site using a Bayesian approach and parameter values with the modes in their posterior distributions were 301 302 selected (Tang and Zhuang, 2008, 2009).

303

304 2.4 Regional Model Input Data

The Alaskan C stock was simulated through the Holocene driven with vegetation data reconstructed for four time periods including a time period encompassing a millennial-scale warming event during the last deglaciation known as the Bølling-Allerød at 15-11 ka (1 ka =

308	1000 cal yr Before Present), HTM during the early Holocene at 11-10 and 10-9 ka, and the mid-
309	(9-5 ka) and late- Holocene (5 ka-1900 AD) (He et al., 2014). We used the modern vegetation
310	distribution for the simulation during the period 1900-2000 AD (Figure 2). We assumed that the
311	vegetation distribution remained static within each corresponding time period. Upland
312	ecosystems were classified into boreal deciduous broadleaf forest, boreal evergreen needleleaf
313	and mixed forest, alpine tundra, wet tundra; and barren lands (Table 3). By using the same
314	vegetation distribution map, we reclassified the upland ecosystems into two peatland types
315	including Sphagnum spp. poor fens (SP) dominated by tundra and Sphagnum sppblack spruce
316	(Picea mariana) bog/ peatland (SBP) dominated by forest ecosystems (Table 3).
317	Upland and peatland ecosystem distribution for each grid cell was determined using the
318	wetland inundation data extracted from the NASA/ GISS global natural wetland dataset
319	(Matthews and Fung, 1987). The resolution was resampled to $0.5^{\circ} \times 0.5^{\circ}$ from $1^{\circ} \times 1^{\circ}$. Given the
320	same topography of Alaska during the Holocene, we assumed that the wetland distribution kept
321	the same throughout the Holocene. The inundation fraction was assumed to be the same within
322	each grid through time and the land grids not covered by peatland were treated as uplands. We
323	calculated the total area of modern Alaskan peatlands to be 302,410 km ² , which was within the
324	range from 132,000 km ² (Bridgham et al., 2006) to 596,000 km ² (Kivinen and Pakarinen, 1981).
325	The soil water pH data were extracted from Carter and Scholes (2000), and the elevation data
326	were derived from Zhuang et al. (2007).

Our regional simulations considered the effects of basal ages on carbon accumulation. To obtain the spatially explicit basal age data for all peatlands grid cells, we first categorized the observed basal ages of peat samples from Gorham et al. (2012) into different time periods <u>including corresponding to the periods in this study (e.g., 15-11 ka, 11-10 ka, 10-9 ka, and 9 ka-</u>

Formatted: Superscript

331 19th).-(Figure 2). For During each time period, we then categorized the areas dominated with different vegetation types were assigned with varying spatial distribution of peatland basal ages 332 into the areas was correlated with the dominated by different vegetation types. To do that, we 333 examined the association of peat basal ages and vegetation types from peat core data. We 334 assumed that the peatland started initiation in ing on the certain vegetation areas where the 335 largest number of peat basal age points fall within. For instance, we found that peatland 336 337 initiations during 15-11 ka occurred in the regionspixels that were dominated by alpine tundra at 338 south, northwestern, and southeastern coast. We thus assign linkedused the vegetation types 339 withto estimate the different peatland basal ages for the grid cells according to their with 340 corresponding vegetation types for for all grid cells at regional scales during each time slice 341 (Table 4).

342 Climate data were bias-corrected from ECBilt-CLIO model output (Timm and 343 Timmermann, 2007) to minimize the difference from CRU data (He et al., 2014). Climate fields include monthly precipitation, monthly air temperature, monthly net incoming solar radiation, 344 and monthly vapor pressure at resolution of 2.5°×2.5°. We used the same time-dependent 345 forcing atmospheric carbon dioxide concentration data for model input as were used in ECBilt-346 CLIO transient simulations from the Taylor Dome (Timm and Timmermann, 2007). The 347 historical climate data used for the simulation through the 20th century were monthly CRU2.0 348 data (Mitchell et al., 2004). 349

350

351 2.5 Simulations and Sensitivity Test

352	Simulations for pixels located on the Kenai Peninsula from 15 to 5 ka were first
353	conducted with the parameterized model. The peat-core data from four peatlands on the Kenai
354	Peninsula, Alaska (Jones and Yu, 2010; Yu et al., 2010) (Table 5, also see Table 3 in Wang et al.
355	(2016) Table 3) were used to compare with the simulations. The observed data include the peat
356	depth, bulk density of both organic and inorganic matters at 1-cm interval, and age
357	determinations. The simulated C accumulation rates represent the actual ("true") rates at
358	different times in the past. However, the calculated accumulation rates from peat cores are
359	considered as "apparent" accumulation rates, as peat would continue to decompose since the
360	time of formation until present when the measurement was made (Yu, 2012). To facilitate
361	comparison between simulated and observed accumulation rates, we converted the simulated
362	"true" accumulation rates to "apparent" rates, following the approach by Spahni et al. (2013).
363	That is, we summed the annual net C accumulation over each 500-year interval and deducted the
364	total amount of C decomposition from that time period, then dividing by 500 years.
365	Second, we conducted a transient regional simulation driven with monthly climatic data
366	(Figure 3) from 15 ka to 2000 AD. The simulation was conducted assuming all grid cells were
367	taken up by upland ecosystems to get the upland soil C spatial distributions during different time
368	periods. We then conducted the second simulation assuming all grid cells were dominated by
369	peatland ecosystems following Table 3 to obtain the distributions of peat SOC accumulation.
370	Finally, we used the inundation fraction map to extract both uplands and peatlands and estimated
371	the corresponding SOC stocks within each grid, which were then summed up to represent the
372	Alaskan SOC stock. We also used the observed mean C content of 46.8% in peat mass and bulk
373	density of 166 ± 76 kg m ⁻³ in Alaska (Loisel et al., 2014) to estimate peat depth distribution from
374	the simulated peat SOC density (kg C m^{-2}).

375	Third, we conducted a series of extra simulations to further examine how uncertain
376	climates and vegetation distribution affect our results. We used the original forcing data as the
377	standard scenario and the warmer (monthly temperature $+5^{\circ}$ C) and cooler (-5° C) as other two
378	scenarios while keeping the rest forcing data unchanged. Similarly, we used the original forcing
379	data as the standard scenario and the wetter (monthly precipitation $+10$ mm) and drier (-10 mm)
380	to test the effect from precipitation. To further study if vegetation distribution has stronger
381	effects on SOC accumulation than climate in Alaska, we simply replaced SBP with SP and
382	replaced the upland forests with tundra at the beginning of 15 ka. We then conducted the
383	simulation under "warmer" and "wetter" conditions simultaneously as described before while
384	keeping the vegetation distribution unchanged.

385 3. Results and Discussion

386 3.1 Simulated Peatland Carbon Accumulation Rates at Site Level

387	Our paleo simulations showed a large peak of peat C accumulation rates at 11-9 ka
388	during the HTM (Figure 4). The simulated "true" and "apparent" rates captured this primary
389	feature in peat-core data at almost all sites (Jones and Yu, 2010; See Wang e al. (2016) Table 3
390	for sites details). We simulated an average of peat SOC "apparent" accumulation rate of 11.4
391	g C m ^{-2} yr ^{-1} from 15 to 5 ka, which was slightly higher than the observations at four sites
392	(10.45 g C m ⁻² yr ⁻¹). The simulated rate during the HTM was 26.5 g C m ⁻² yr ⁻¹ , up to five
393	times higher than the rest of the Holocene (5.04 g C m^{-2} yr ⁻¹). This corresponded to the
394	observed average rate of 20 C $m^{-2}~yr^{-1}$ from 11.5 to 8.6 ka, which is, four times higher than 5
395	$C m^{-2} yr^{-1}$ over the rest of the Holocene.

397 3.2 Vegetation Carbon

Model simulations showed an overall low vegetation C before the HTM (15-11 ka) 398 (Figure 5a), paralleled to the relatively low annual and long-term NPP (Figures 5b and c). The 399 lowest amount of C (~0.8 kg C m⁻²) was stored in Sphagnum-dominated peatland. Sphagnum-400 black spruce peatland also had low vegetation C density (~1 kg C m⁻²). Upland vegetation 401 402 showed a generally higher C storage, among which boreal evergreen needleleaf forest ranked the 403 first (~2 kg C m⁻²). Highest NPP accompanied by highest vegetation carbon appeared during the HTM (11-9 ka) (Figures 5a and b). Lower annual C uptake along with lower C was found during 404 mid- and late- Holocene (9 ka-19th), where peatland ecosystems exhibited the most obvious 405 drops (Figures 5a and b). 406

In general, vegetation held about 2 Pg C before the HTM (Figure 6). Upland tundra 407 ecosystems accounted for the most amount of C. During the HTM, Boreal evergreen needleleaf 408 forest reached its highest and had an overwhelming proportion over total C. Similarly, a peak of 409 total vegetation C appeared at the same time, averaging around 4.3 Pg C. Large decrease 410 occurred at the mid-Holocene and a slight decline continued till the late-Holocene. We estimated 411 a total 2.9 Pg C stored in modern Alaskan vegetation, with 0.4 Pg in peatlands and 2.5 Pg in non-412 peatlands. The uncertainties during the model calibration (Table 24) resulted in 0.3-0.6 Pg C and 413 414 2.2-3.1 Pg C in peatlands (see Wang et al. (2016) for model parameters) and non-peatland 415 vegetation (see Tang and Zhuang (2008) for uncertainty analyses for upland vegetation), 416 respectively. Our estimation of 2.5-3.7 Pg C stored in the Alaskan vegetation was lower than the previous estimate of 5 Pg (Balshi et al., 2007; McGuire et al., 2009), presumably due to the prior 417 ranges of model parameters used from Tang and Zhuang (2008). Our overestimation of peatland 418 419 area may also lead to a reduction of Alaskan non-peatland area.

421 3.3 Soil Carbon

422	Carbon storage in Alaskan non-peatland soils varied spatially (Figure 7). Moist tundra
423	had the highest SOC density (12-25 kg C m^{-2}), followed by deciduous broadleaf forest (8-13
424	kg C m $^{-2})$ and evergreen needleleaf forest (3-8 kg C m $^{-2})$ through all time slices between 15 ka
425	and 2000 AD. Dramatic changes of vegetation types have occurred in Alaska during different
426	periods (Figure 2). Before the HTM (15-11 ka), the terrestrial ecosystem was dominated by
427	tundra. Northwestern coast and eastern interior was covered by moist tundra. Southwestern
428	Alaska and the interior south of the Brooks Range were dominated by alpine tundra (Figure 2a).
429	The basal ages of peat samples from Gorham et al. (2012) suggested that peatlands were likely to
430	form from the (alpine) tundra ecosystems, although patches of boreal deciduous broadleaf forest
431	and boreal evergreen needleleaf and mixed forest appeared at the north of the Alaska Range.
432	Initially, only Sphagnum open peatland (SP) existed, with less C ($<10 \text{ kg C m}^{-2}$) sequestrated in
433	the southeastern Brooks Range in comparison with southwestern and northwestern coastal parts
434	$(>15 \text{ kg C m}^{-2})$ (Figure 8a). Approximately $4.5 \times 10^5 \text{ km}^2$ area was covered by peatlands at the
435	beginning of the HTM (~11 ka) (Figure 9). During the HTM (11-9 ka), boreal deciduous
436	broadleaf and boreal evergreen needleleaf and mixed forests expanded (Figures 8b and c).
437	Coastal tundra (moist wet tundra) covered north of the Brooks Range between 11 and 10 ka,
438	where SP continued its expansion (Figure 8b). Sphagnum-black spruce forested peatland began
439	forming in southwestern coast and eastern interior regions, with a rapid increase of total peatland
440	area to about 13×10^5 km ² (Figure 9). At 10-9 ka, boreal deciduous forest expanded to north of
441	the Brooks Range, making forest the dominant biome in Alaska (Figure 2c). Prevailing forest
442	ecosystems indicated a large expansion of peatland, with SBP covering the interior Alaska

443 (Figure 8c). During the mid-Holocene (9-5 ka), the terrestrial landscape generally resembled 444 present-day ecosystems (Bigelow et al., 2003). Boreal evergreen needleleaf and mixed forest prevailed in southern and interior Alaska with tundra returned to north of the Brooks Range and 445 446 western Alaska (Figures 2d and e). Although SP kept forming towards west, some areas dominated by SBP in interior Alaska ceased accumulating C (Figure 8d). At 5k-19th, almost all 447 the peatlands have formed, with some interior regions exhibiting a C loss (Figure 8e). C 448 accumulation increased again in the last century, averaging about 20 kg C m⁻² kyr⁻¹ (Figure 8f). 449 We found that the distribution of SOC densities of both upland and peatland varied greatly 450 depending on the vegetation distribution within each time slice, indicating that vegetation 451 452 composition might be a major factor controlling regional C dynamics. An average peat SOC "apparent" accumulation rate of 13 g C m⁻²yr⁻¹ (2.3 Tg C yr⁻¹ 453 for the entire Alaska) was estimated from 15 ka to 2000 AD (Figure 10), lower than 18.6 454 g C $m^{-2}yr^{-1}$ as estimated from peat cores for northern peatlands (Yu et al., 2010), and slightly 455 higher than the observed rate of 13.2 g C m⁻²yr⁻¹ from four peatlands in Alaska (Jones and Yu, 456 2010). A simulated peak occurred during the HTM with the rate 29.1 g C m⁻²yr⁻¹ (5.1 Tg C 457 yr^{-1}), which was slightly higher than the observed 25 g C m⁻²yr⁻¹ for northern peatlands and 458 ~20 g C m⁻²yr⁻¹ for Alaska (Yu et al., 2010). It was almost four times higher than the rate 6.9 459 g C m⁻²yr⁻¹ (1.4 Tg C yr⁻¹) over the rest of the Holocene, which corresponded to the peat core-460 based observations of $\sim 5 \text{ g C m}^{-2}\text{yr}^{-1}$. The mid- and late Holocene showed much slower C 461 462 accumulation at a rate approximately five folds lower than during the HTM. This corresponded to the observation of a six-fold decrease in the rate of new peatland formation after 8.6 ka (Jones 463 and Yu 2010). The C accumulation rates increased abruptly to 39.2 g C m⁻²yr⁻¹during the last 464

465 century, within the field-measured average apparent rate range of 20-50 g C m⁻²yr⁻¹ over the 466 last 2000 years (Yu et al., 2010).

467	The SOC stock of northern peatlands has been estimated in many studies, ranging from
468	210 to 621 Pg (Oechel 1989; Gorham 1991; Armentano and Menges, 1986; Turunen et al., 2002;
469	Yu et al., 2010; see Yu 2012 for a review). Assuming Alaskan peatlands were representative of
470	northern peatlands and using the area of Alaskan peatlands ($0.45 \times 10^6 \text{ km}^2$; Kivinen and
471	Pakarinen, 1981) divided by the total area of northern peatlnads (~ 4×10^6 km ² ; Maltby and
472	Immirzi 1993), we estimated a SOC stock of 23.6-69.9 Pg C for Alaskan peatlands. Our model
473	estimated 27-48 Pg C (23.9 Pg C in SP and 13.5 Pg C in SBP) had been accumulated from 15 ka
474	to 2000 AD (Figure 11), due to uncertain parameters (Table 24, see Wang et al. (2016) for model
475	parameters). The uncertainty can also be resulted from peat basal age distributions and the
476	estimation of total peatland area using modern inundation data as discussed above. By
477	incorporating the observed basal age distribution to determine the expansion of peatland through
478	time, we estimated that approximately 68% of Alaskan peatlands had formed by the end of the
479	HTM, similar to the estimation from observed basal peat ages that 75% peatlands have formed
480	by 8.6 ka (Jones and Yu 2010).
481	The northern circumpolar soils were estimated to cover approximately 18.78×10 ⁶ km ²

The northern circumpolar soils were estimated to cover approximately 18.78×10° km² (Tarnocai et al., 2009). The non-peatland soil C stock was estimated to be in the range of 150-191 Pg C for boreal forests (Apps et al., 1993; Jobbagy and Jackson, 2000), and 60-144 Pg C for tundra in the 0-100 cm depth (Apps et al., 1993; Gilmanov and Oechel, 1995; Oechel et al., 1993). 1.24×10⁶ km² non-peatland area was estimated from the total land area of Alaska (1.69×10⁶ km²). Therefore, Alaska non-peatland soil contained 17-27 Pg C by using the ratio of

487	Alaskan over northern non-peatland. In comparison, we modeled 9-15 Pg C (within 1-meter
488	depth), depending on the prior ranges of model parameters from Tang and Zhuang (2008).
489	The simulated modern SOC distribution (Figure 12c) was largely consistent with the
490	study of Hugelius et al. (2014) (see Figure 3 in the paper). The model captured the SOC density
491	on northern and southwestern coasts of Alaska with most grids >40 kg C m ^{-2} on average. Those
492	regions also showed high SOC density (>75 kg C m^{-2}), which was also exhibited in our result.
493	East part and west coast had the lowest SOC densities, corresponding to the simulation result that
494	most grids had SOC values between 20 and 40 kg C m $^{-2}$. We estimated an average peat depth of
495	1.9 ± 0.8 m considering the uncertainties within dry bulk densities. It was similar to the observed
496	mean depth of 2.29 m for Alaskan peatlands (Gorham et al., 1991, 2012). Our estimates (Figure
497	12d) showed a relatively high correlation with the 64 observed peat samples, especially with
498	higher depths (Figure 13) ($R^2 = 0.45$). The large intercept of the regression line (101 cm)
499	suggested that the model might have not performed well in estimating the grids with low peat
500	depths (<50 cm). The peat characteristics (e.g., bulk density) from location to location may differ
501	largely, even if within the same small region. Thus, it is difficult to capture the observed
502	variations of peat depths as we used the averaged bulk density of whole Alaska.

503 3.4 Effects of Climate on Ecosystem Carbon Accumulation

The simulated climate by ECBilt-CLIO model showed that among the six time periods, the coolest temperature appeared at 15-11 ka, followed by the mid- and late- Holocene (5 ka-1900 AD). Those two periods were also generally dry (Figure 3f). The former represented colder and drier climate before the onset of the Holocene and the HTM (Barber and Finney, 2000; Edwards

508	et al., 2001). The latter represented post-HTM neoglacial cooling, which has caused permairost	
509	aggradation across northern high latitudes (Oksanen et al., 2001; Zoltai, 1995).	
510	Despite of the relatively large inter-annual NPP variation (Figure 5b) which was resulted	
511	from the annual fluctuations of the climate forcing (Figure 5b), the The simulated long-term NPP,	
512	vegetation C density and storage were highest during the HTM (Figure 5a and c). Annual C	
513	accumulation rates also reached the highest (Figures 5-11). The long-term variation of NPP has a	
514	similar pattern of the climate (see Figure 3 for climate variables), where higher NPP, along with	
515	higher vegetation C coincided with warmer temperatures and enhanced precipitation during the	
516	HTM, compared to other time periods. ECBilt-CLIO simulated a warmest summer and a	
517	prolonged growing season, leading to a stronger seasonality of temperature during the HTM	
518	(Kaufman et al., 2004, 2016), in line with the orbitally-induced maximum summer insolation	
519	(Berger and Loutre, 1991; Renssen et al., 2009). The coincidence between the highest vegetation	
520	C uptake and SOC accumulation rates and the warmest summer and the wetter-than-before	
521	conditions indicated a strong link between those climate variables and C dynamics in Alaska.	
522	Enhanced climate seasonality characterized by warmer summer, enhanced summer precipitation	
523	and possibly earlier snow melt during the HTM accelerated the photosynthesis and subsequently	
524	increased NPP (Tucker et al., 2001; Kimball et al., 2004; Linderholm, 2006). As shown in our	
525	sensitivity test, annual NPP was increased by 40 and 20 g C m^{-2} yr ⁻¹ under the warmer and	
526	wetter scenarios, respectively (Figures 14a, b). Meanwhile, warmer condition could positively	
527	affect the SOC decomposition (Nobrega et al., 2007). However, it could be offset to a certain	
528	extent via the hydrological effect, as higher precipitation could raise the water-table position,	
529	allowing less space for aerobic heterotrophic respiration. Our sensitivity test results indicated	
530	that warmer and wetter conditions could lead to an increase of decomposition up to 35 and 15	

531	g C m ^{-2} yr ^{-1} , respectively (Figures 14c, d). We did not find a decrease in total heterotrophic
532	respiration throughout Alaska from the higher precipitation. It was presumably due to a much
533	larger area of upland soils $(1.3 \times 10^6 \text{ km}^2)$ than peatland soils $(0.26 \times 10^6 \text{ km}^2)$, as higher
534	precipitation would cause higher aerobic respiration in the unsaturated zone of upland soils, and
535	consequently stimulated the SOC decomposition. The relatively low NPP and vegetation C
536	density, along with the lower total soil C stocks were consistent with the unfavorable cool and
537	dry climate conditions at 15-11 ka and during the mid- and late- Holocene. Statistical analysis
538	indicated that temperature had the most significant effect on peat SOC accumulation rate,
539	followed by the seasonality of NIRR (Wang et al., 2016). The seasonality of temperature, the
540	interaction of temperature and precipitation, and precipitation alone also showed significance.
541	The strong link between climate factors and C dynamics may explain the lower SOC
542	accumulation during the neoglacier cooling period (Marcott et al., 2013; Vitt et al., 2000; Peteet
543	et al., 1998; Yu et al. 2010). The rapid peat SOC accumulation during the 20 th century under
544	warming and wetter climate may suggest a continuous C sink in this century, as concluded in
545	Spahni et al. (2013). However, the rising temperature in the future may have positive effects on
546	heterotrophic respiration and simultaneously increase evapotranspiration and lower water table.
547	This could increase aerobic decomposition and thus switch the Alaskan peatland from a C sink
548	into a C source. Moreover, the increasing anthropogenic activities including land use will
549	probably increase drought and subsequently enhance the risk of fire, releasing carbon to the
550	atmosphere. The fate of Alaskan SOC stock and the biogeochemical cycling of the terrestrial
551	ecosystems under future scenarios need further investigation.

552

3.5 Effects of Vegetation Distribution on Ecosystem Carbon Accumulation 553

554	Climate variables significantly affect C dynamics within each time slice. However,
555	different vegetation distributions during various periods led to clear step changes, suggesting
556	vegetation composition was likely to be another primary factor (Figures 6, 7, 8, and 11). As key
557	parameters controlling C dynamics in the model (e.g., maximum rate of photosynthesis, litter fall
558	C, maximum rate of monthly NPP) are ecosystem type specific, vegetation distribution changes
559	may drastically affect regional plant productivity and C storage. Our sensitivity test indicated
560	that by replacing all vegetation types with forests, there was a total increase of 36.9 Pg in upland
561	plus peatland soils. There was also an increase of 48.8 Pg C under warmer and wetter conditions,
562	suggesting that both climate and vegetation distribution may have played important roles in
563	carbon accumulation.

564 The vegetation changes reconstructed from fossil pollen data during different time periods followed the general climate history during the last 15,000 years. For instance, the 565 migration of dark boreal forests over snow-covered tundra during the HTM was probably 566 induced by the warmer and wetter climate resulted from the insolation changes (He et al., 2014). 567 The cooler and drier climate after the mid-Holocene limited the growth of boreal broadleaf 568 conifers (Prentice et al., 1992), and therefore resulted in the replacement of broadleaf forest with 569 needleleaf forest and tundra ecosystems. Since the parameters of our model for individual 570 vegetation type were static, parameterizing the model using modern site-level observations might 571 have introduced uncertainty to parameters, which may result in regional simulation uncertainties. 572 Assuming each parameter as constant (e.g. the lowest water-table boundary, see Wang et al. 573 (2016) for details) over time may also weaken the model's response to different climate 574 scenarios. Furthermore, applying static vegetation maps at millennial scales and using modern 575 elevation and pH data may simplify the complicated changes of landscape and terrestrial 576

577	ecosystems, as vegetation can shift within hundreds of years (Ager and Brubake, 1985; see He et
578	al. (2014) discussion section). Relatively coarse spatial resolution ($0.5^{\circ} \times 0.5^{\circ}$) in P-TEM
579	simulations may also introduce uncertainties. In addition, because we used the modern
580	inundation map to delineate the peatland and upland within each grid cell, we might have
581	overestimated the total peatland area since not all inundated areas are peatlands. Linking field-
582	estimated basal ages of peat cores to the vegetation types during each period involves large
583	uncertainties due to the limitation of the peat classification and insufficient peat samples. Thus,
584	the estimated spatially explicit basal age data shall also introduce a large uncertainty to our
585	regional quantification of carbon accumulation.

587 4. Conclusions

588	We used a biogeochemistry model for both peatland and non-peatland ecosystems to
589	quantify the C stock and its changes over time in Alaskan terrestrial ecosystems during the last
590	15,000 years. The simulated peat SOC accumulation rates were compared with peat-core data
591	from four peatlands on the Kenai Peninsula in southern Alaska. The model well estimated the
592	peat SOC accumulation rates trajectory throughout the Holocene. Our regional simulation
593	showed that 36-63 Pg C had been accumulated in Alaskan land ecosystems since 15,000 years,
594	including 27-48 Pg C in peatlands and 9-15 Pg C in non-peatlands (within 1 m depth). We also
595	estimated that 2.5-3.7 Pg C was stored in contemporary Alaskan vegetation, with 0.3-0.6 Pg C in
596	peatlands and 2.2-3.1 Pg C in non-peatlands. The estimated average rate of peat C accumulation
597	was 2.3 Tg C yr ⁻¹ with a peak (5.1 Pg C yr ⁻¹) in the Holocene Thermal Maximum (HTM), four
598	folds higher than the rate of 1.4 Pg C yr ⁻¹ over the rest of the Holocene. The 20^{th} century

599	represented another high SOC accumulation period after a much low accumulation period of the
600	late Holocene. We estimated an average depth of 1.9 m of peat in current Alaskan peatlands,
601	similar to the observed mean depth. We found that <u>T</u> the changes of vegetation distribution were
602	found to be the major control on the key factor to the spatial variations of SOC accumulation in
603	different time periods. The warming in the HTM characterized by the increased summer
604	temperature and increased seasonality of solar radiation, as well as along with the higher
605	precipitation might have played an important role in the high C accumulation.

5. Acknowledgment. We acknowledge the funding support from a NSF project IIS-1027955

and a DOE project DE-SC0008092. We also acknowledge the SPRUCE project to allow us use

its data. Data presented in this paper are publicly accessible: ECBilt-CLIO Paleosimulation

609 (<u>http://apdrc.soest.hawaii.edu/datadoc/sim2bl.php</u>), CRU2.0 (<u>http://www.cru.uea.ac.uk/data</u>).

610 Model parameter data and model evaluation process are in Wang et al. (2016). Other simulation

611 data including model codes are available upon request from the corresponding author

612 (<u>qzhuang@purdue.edu</u>).

613

614 6. References

- Ager, T. A., & Brubaker, L.: Quaternary palynology and vegetational history of Alaska. Pollen
 Records of Late Quaternary North American Sediments, 353-384, 1985.
- 617 Apps, M. J., Kurz, W. A., Luxmoore, R. J., Nilsson, L. O., Sedjo, R. A., Schmidt, R., ... &
- Vinson, T. S.: Boreal forests and tundra. Water, Air, and Soil Pollution, 70(1-4), 39-53, 1993.
- Armentano, T. V., & Menges, E. S.: Patterns of change in the carbon balance of organic soilwetlands of the temperate zone. The Journal of Ecology, 755-774, 1986.
- Assessment, A. C. I.: Forests, land management and agriculture. Arctic Climate ImpactAssessment, 781-862, 2005.
- 623 Balshi, M. S., McGuire, A. D., Zhuang, Q., Melillo, J., Kicklighter, D. W., Kasischke, E., ... &
- Burnside, T. J.: The role of historical fire disturbance in the carbon dynamics of the pan-boreal
 region: A process-based analysis. Journal of Geophysical Research: Biogeosciences, 112(G2),
- 626 2007.
- Barber, V. A., & Finney, B. P.: Late Quaternary paleoclimatic reconstructions for interior Alaska
 based on paleolake-level data and hydrologic models. Journal of Paleolimnology, 24(1), 29-41,
 2000.

- Belyea, L. R.: Nonlinear dynamics of peatlands and potential feedbacks on the climatesystem. Carbon cycling in northern peatlands, 5-18, 2009.
- Berger, A., & Loutre, M. F.: Insolation values for the climate of the last 10 million
 years. Quaternary Science Reviews, 10(4), 297-317, 1991.
- 634 Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P.
- Bigelow, N. H., Bidoaker, E. B., Edwards, M. E., Harrison, S. L., Hendee, I. C., Anderson, T.
 M., ... & Kaplan, J. O.: Climate change and Arctic ecosystems: 1. Vegetation changes north of
- 55 N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical
 Research: Atmospheres, 108(D19), 2003.
- Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C.: The carbon balance
 of North American wetlands. Wetlands, 26(4), 889-916, 2006.
- Carter, A. J., & Scholes, R. J.: SoilData v2. 0: generating a global database of soil
 properties. Environmentek CSIR, Pretoria, South Africa, 2000.
- properties. Environmentek CSIK, Fretoria, South Arriea, 2000.
- 642 Change, I. C.: Mitigation of Climate Change. Contribution of Working Group III to the Fifth
- Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University
 Press, Cambridge, UK and New York, NY, 2014.
- 645 Change, I. C.: The Physical Science Basis: Working Group I Contribution to the Fifth
- Assessment Report of the Intergovernmental Panel on Climate Change. New York: CambridgeUniversity Press, 1, 535-1, 2013.
- Chivers, M. R., Turetsky, M. R., Waddington, J. M., Harden, J. W., & McGuire, A. D.: Effects
 of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an
 Alaskan rich fen. Ecosystems, 12(8), 1329-1342, 2009.
- 651 Churchill, A.: The response of plant community structure and productivity to changes in
- hydrology in Alaskan boreal peatlands. Master Thesis, University of Alaska, Fairbanks, AK,
 USA. 119 pp, 2011.
- 654 Conrad, R.: Contribution of hydrogen to methane production and control of hydrogen
- concentrations in methanogenic soils and sediments.FEMS Microbiology Ecology, 28(3), 193-202, 1999.
- Davidson, E. A., & Janssens, I. A.: Temperature sensitivity of soil carbon decomposition andfeedbacks to climate change. Nature, 440(7081), 165-173, 2006.
- Davidson, E. A., Trumbore, S. E., & Amundson, R.: Biogeochemistry: soil warming and organic
 carbon content. Nature, 408(6814), 789-790, 2000.
- 661 Edwards, M. E., Mock, C. J., Finney, B. P., Barber, V. A., & Bartlein, P. J.: Potential analogues
- for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: atmospheric-circulation controls of regional temperature and moisture responses. Quaternary Science
- 664 Reviews, 20(1), 189-202, 2001.
- Euskirchen, E. S., McGuire, A. D., & Chapin, F. S.: Energy feedbacks of northern high-latitude
 ecosystems to the climate system due to reduced snow cover during 20th century
- 667 warming. Global Change Biology,13(11), 2425-2438, 2007.
- 668 Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., & Richard, P. J. H.:
- A new model of Holocene peatland net primary production, decomposition, water balance, and
- peat accumulation. Earth System Dynamics, 1(1), 1-21, 2010.

- 671 Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B., Tuittila, E. S., & Roulet, N.:
- Peatlands in the Earth's 21st century climate system. Environmental Reviews, 19(NA), 371-396,2011.
- 674 Gilmanov, T. G., & Oechel, W. C.: New estimates of organic matter reserves and net primary
- productivity of the North American tundra ecosystems. Journal of Biogeography, 723-741, 1995.
- 676 Gorham, E. V. I. L. L. E.: Biotic impoverishment in northern peatlands. The earth in transition:
- patterns and processes of biotic impoverishment. Cambridge University Press, Cambridge, UK,65-98, 1990.
- Gorham, E., Lehman, C., Dyke, A., Clymo, D., & Janssens, J.: Long-term carbon sequestration
 in North American peatlands. Quaternary Science Reviews, 58, 77-82, 2012.
- Gorham, E.: Northern peatlands: role in the carbon cycle and probable responses to climatic
 warming. Ecological applications, 1(2), 182-195, 1991.
- He, Y., Jones, M. C., Zhuang, Q., Bochicchio, C., Felzer, B. S., Mason, E., & Yu, Z.: Evaluating
- 684 CO 2 and CH 4 dynamics of Alaskan ecosystems during the Holocene Thermal
- 685 Maximum. Quaternary Science Reviews, 86, 63-77, 2014.
- Hinzman, L. D., Viereck, L. A., Adams, P. C., Romanovsky, V. E., & Yoshikawa, K.: Climate
 and permafrost dynamics of the Alaskan boreal forest. Alaska's Changing Boreal Forest, 39-61,
 2006.
- 689 Hobbie, S. E.: Interactions between litter lignin and nitrogenitter lignin and soil nitrogen
- availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 3(5),484-494, 2000.
- Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E., Ping, C. L., ... & O'Donnell, J.
 A.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and
- identified data gaps.Biogeosciences, 11(23), 6573-6593, 2014.
- Jobbágy, E. G., & Jackson, R. B.: The vertical distribution of soil organic carbon and its relation
 to climate and vegetation. Ecological applications, 10(2), 423-436, 2000.
- Jones, M. C., & Yu, Z.: Rapid deglacial and early Holocene expansion of peatlands in
 Alaska. Proceedings of the National Academy of Sciences,107(16), 7347-7352, 2010.
- Jones, P. D., & Moberg, A.: Hemispheric and large-scale surface air temperature variations: An
 extensive revision and an update to 2001. Journal of Climate, 16(2), 206-223, 2003.
- Kane, E. S., Turetsky, M. R., Harden, J. W., McGuire, A. D., & Waddington, J. M.: Seasonal ice
 and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich
 fen. Journal of Geophysical Research: Biogeosciences, 115(G4), 2010.
- 704 Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. J., ...
- 705 & Dyke, A. S.: Holocene thermal maximum in the western Arctic (0–180 W). Quaternary
- 706 Science Reviews, 23(5), 529-560, 2004.
- 707 Kaufman, D.S., Axford, Y.L., Henerson, A., McKay, N.P., Oswald, W.W., Saenger, C.,
- 708 Anderson, R.S., Bailey, H.L., Clegg, B., Gajewski, K., Hu, F.S., Jones, M.C., Massa, C.,
- 709 Routson, C.C., Werner, A., Wooller, M.J., Yu, Z.: Holocene climate changes in eastern Beringia
- (NW North America) e a systemic review of multi-proxy evidence. Quaternary Science Reviews,
 this volume. http://dx.doi.org/10.1016/ j.quascirev.2015.10.021, 2016.
 - 28

- Keller, J. K., & Bridgham, S. D.: Pathways of anaerobic carbon cycling across an ombrotrophic–
 minerotrophic peatland gradient, 2007.
- 714 Keller, J. K., & Takagi, K. K.: Solid-phase organic matter reduction regulates anaerobic
- decomposition in bog soil. Ecosphere, 4(5), 1-12, 2013.
- 716 Kimball, J. S., McDonald, K. C., Running, S. W., & Frolking, S. E.: Satellite radar remote
- sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote Sensing
 of Environment, 90(2), 243-258, 2004.
- 719 Kivinen, E., and P. Pakarinen.: Geographical distribution of peat resources and major peatland
- complex types in the world. Annales Academiae Scientarum Fennicae, Series A, Number 132,1981.
- 722 Kleinen, T., Brovkin, V., & Schuldt, R. J.: A dynamic model of wetland extent and peat
- accumulation: results for the Holocene.Biogeosciences, 9(1), 235-248, 2012.
- 724 Kuhry, P., & Vitt, D. H.: Fossil carbon/nitrogen ratios as a measure of peat
- 725 decomposition. Ecology, 77(1), 271-275, 1996.
- Linderholm, H. W.: Growing season changes in the last century. Agricultural and ForestMeteorology, 137(1), 1-14, 2006.
- Loisel, J., Gallego-Sala, A. V., & Yu, Z.: Global-scale pattern of peatland Sphagnum growth
 driven by photosynthetically active radiation and growing season length. Biogeosciences, 9(7),
 2737-2746, 2012.
- Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., ... & Belyea, L. R.: A
 database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen
 accumulation. the Holocene, 0959683614538073, 2014.
- Maltby, E., & Immirzi, P.: Carbon dynamics in peatlands and other wetland soils regional and
 global perspectives. Chemosphere, 27(6), 999-1023, 1993.
- Manabe, S., & Wetherald, R. T.: On the distribution of climate change resulting from an increase
 in CO2 content of the atmosphere. Journal of the Atmospheric Sciences, 37(1), 99-118, 1980.
- Manabe, S., & Wetherald, R. T.: Reduction in summer soil wetness induced by an increase in atmospheric carbon dioxide. Science, 232(4750), 626-628, 1986.
- Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C.: A reconstruction of regional and global
 temperature for the past 11,300 years.science, 339(6124), 1198-1201, 2013.
- Matthews, E., & Fung, I.: Methane emission from natural wetlands: Global distribution, area,
 and environmental characteristics of sources.Global biogeochemical cycles, 1(1), 61-86, 1987.
- 744 McGuire, A. D., & Hobbie, J. E.: Global climate change and the equilibrium responses of carbon
- storage in arctic and subarctic regions. InModeling the Arctic system: A workshop report on the
- state of modeling in the Arctic System Science program, pp. 53-54, 1997.
- 747 McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D. J., ... &
- 748 Roulet, N.: Sensitivity of the carbon cycle in the Arctic to climate change. Ecological
- 749 Monographs, 79(4), 523-555, 2009.

- McGuire, A. D., Melillo, J. M., Kicklighter, D. W., & Joyce, L. A.: Equilibrium responses of soil
 carbon to climate change: empirical and process-based estimates. Journal of Biogeography, 785-
- 752 796, 1995.
- 753 Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Peterjohn, W. T., & Newkirk, K.: Global
- change and its effects on soil organic carbon stocks. In Dahlem Conference Proceedings, John
- 755 Wiley and Sons, New York, John Wiley & Sons, Ltd., Chichster, pp. 175-189, 1995.
- 756 Mitchell, T. D., Carter, T. R., Jones, P. D., Hulme, M., & New, M.: A comprehensive set of
- high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–
- 758 2000) and 16 scenarios (2001–2100). Tyndall centre for climate change research working
- 759 paper, 55(0), 25, 2004.

- 760 Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M., & Roulet, N. T.: Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology, 90(1), 25-36, 2002. 761
- Nobrega, S., & Grogan, P.: Deeper snow enhances winter respiration from both plant-associated 762 and bulk soil carbon pools in birch hummock tundra. Ecosystems, 10(3), 419-431, 2007. 763
- Oechel, W. C., Hastings, S. J., Vourlrtis, G., Jenkins, M., Riechers, G., & Grulke, N.: Recent 764
- 765 change of Arctic tundra ecosystems from a net carbon dioxide sink to a
- source. Nature, 361(6412), 520-523, 1993. 766
- Oechel, W. C.: Nutrient and water flux in a small arctic watershed: an overview. Holarctic 767 Ecology, 229-237, 1989. 768
- Oksanen, P. O., Kuhry, P., & Alekseeva, R. N.: Holocene development of the Rogovaya river 769 peat plateau, European Russian Arctic. The Holocene, 11(1), 25-40, 2001. 770
- Peteet, D., Andreev, A., Bardeen, W., & Mistretta, F.: Long-term Arctic peatland dynamics, 771
- vegetation and climate history of the Pur-Taz region, western Siberia. Boreas, 27(2), 115-126, 772 773 1998.
- 774 Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., & Solomon, A. M.:
- Special paper: a global biome model based on plant physiology and dominance, soil properties 775 776 and climate. Journal of biogeography, 117-134, 1992.
- Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. 777
- J., ... & Vorosmarty, C. J.: Potential net primary productivity in South America: application of a 778 global model. Ecological Applications, 1(4), 399-429, 1991. 779
- Renssen, H., Seppä, H., Heiri, O., Roche, D. M., Goosse, H., & Fichefet, T.: The spatial and 780 temporal complexity of the Holocene thermal maximum. Nature Geoscience, 2(6), 411-414,
- 781 782 2009.
- Roulet, N. T., Lafleur, P. M., Richard, P. J., Moore, T. R., Humphreys, E. R., & Bubier, J. I. L. 783 L.: Contemporary carbon balance and late Holocene carbon accumulation in a northern 784
- peatland. Global Change Biology, 13(2), 397-411, 2007. 785
- Saarinen, T.: Biomass and production of two vascular plants in a boreal mesotrophic 786
- fen. Canadian Journal of Botany, 74(6), 934-938, 1996. 787
- 788 Schuur, E. A., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., ...
- & Mazhitova, G.: Vulnerability of permafrost carbon to climate change: implications for the 789
- global carbon cycle.BioScience, 58(8), 701-714, 2008. 790
- Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., ... & Thonicke, K.: 791
- Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ 792 dynamic global vegetation model.Global Change Biology, 9(2), 161-185, 2003.
- 793
- 794 Spahni, R., Joos, F., Stocker, B. D., Steinacher, M., & Yu, Z. C.: Transient simulations of the 795 carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st
- 796 century. Climate of the Past, 9(3), 1287-1308, 2013.

- Stocker, B. D., Spahni, R., & Joos, F.: DYPTOP: a cost-efficient TOPMODEL implementation
 to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geoscientific
 Model Development, 7(6), 3089-3110, 2014.
- 800 Stocker, B. D., Strassmann, K., & Joos, F.: Sensitivity of Holocene atmospheric CO 2 and the
- 801 modern carbon budget to early human land use: analyses with a process-based
- 802 model. Biogeosciences, 8(1), 69-88, 2011.
- Tang, J., & Zhuang, Q.: A global sensitivity analysis and Bayesian inference framework for
 improving the parameter estimation and prediction of a process-based Terrestrial Ecosystem
 Model. Journal of Geophysical Research: Atmospheres, 114(D15), 2009.
- 806 Tang, J., & Zhuang, Q.: Equifinality in parameterization of process-based biogeochemistry
- models: A significant uncertainty source to the estimation of regional carbon dynamics. Journal
 of Geophysical Research: Biogeosciences, 113(G4), 2008.
- Tang, J., Zhuang, Q., Shannon, R. D., & White, J. R.: Quantifying wetland methane emissions
 with process-based models of different complexities. Biogeosciences, 7(11), 3817-3837, 2010.
- 811 Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S.: Soil
 812 organic carbon pools in the northern circumpolar permafrost region. Global biogeochemical
 813 cycles, 23(2), 2009.
- 814 Timm, O., & Timmermann, A.: Simulation of the Last 21 000 Years Using Accelerated
- 815 Transient Boundary Conditions*. Journal of Climate, 20(17), 4377-4401, 2007.
- 816 Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., & Taylor, M. G.: Higher
- northern latitude normalized difference vegetation index and growing season trends from 1982 to
 1999. International journal of biometeorology, 45(4), 184-190, 2001.
- 819 Turetsky, M. R., Treat, C. C., Waldrop, M. P., Waddington, J. M., Harden, J. W., & McGuire, A.
- 820 D.: Short-term response of methane fluxes and methanogen activity to water table and soil
- 821 warming manipulations in an Alaskan peatland. Journal of Geophysical Research:
- 822 Biogeosciences, 113(G3), 2008.
- Turunen, J., Tomppo, E., Tolonen, K., & Reinikainen, A.: Estimating carbon accumulation rates
 of undrained mires in Finland–application to boreal and subarctic regions. The Holocene, 12(1),
 69-80, 2002.
- 826 Vitt, D. H., Halsey, L. A., Bauer, I. E., & Campbell, C.: Spatial and temporal trends in carbon
- storage of peatlands of continental western Canada through the Holocene. Canadian Journal of
 Earth Sciences, 37(5), 683-693, 2000.
- 829 Wang, S., Zhuang, Q., Yu, Z., Bridgham, S., & Keller, J. K.: Quantifying peat carbon
- accumulation in Alaska using a process-based biogeochemistry model, Journal of Geophysical
 Research: Biogeosciences., 121, doi: 10.1002/2016JG003452, 2016.
- 832 XU-RI and PRENTICE, I. C.: Terrestrial nitrogen cycle simulation with a dynamic global
- vegetation model. Global Change Biology, 14: 1745–1764. doi:10.1111/j.1365-
- 834 2486.2008.01625.x, 2008.
- Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review. Biogeosciences, 9(10),
 4071-4085, 2012.

- Yu, Z., Beilman, D. W., & Jones, M. C.: Sensitivity of northern peatland carbon dynamics to
 Holocene climate change. Carbon cycling in northern peatlands, 55-69, 2009.
- Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., & Hunt, S. J.: Global peatland dynamics
 since the Last Glacial Maximum. Geophysical Research Letters, 37(13), 2010.
- 841 Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J., Kicklighter, D. W., ...
- 842 & Hobbie, J. E.: Carbon cycling in extratropical terrestrial ecosystems of the Northern
- 843 Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal
- 844 dynamics. Tellus B, 55(3), 751-776, 2003.
- 845 Zhuang, Q., McGuire, A. D., O'neill, K. P., Harden, J. W., Romanovsky, V. E., & Yarie, J.:
- Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. Journalof Geophysical Research: Atmospheres, 107(D1), 2002.
- 848 Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., ...
- 849 & Hu, S.: Methane fluxes between terrestrial ecosystems and the atmosphere at northern high
- latitudes during the past century: A retrospective analysis with a process-based biogeochemistry
 model. Global Biogeochemical Cycles, 18(3), 2004.
- 852 Zhuang, Q., Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Prinn, R. G., Steudler, P. A., ...
- & Hu, S.: Net emissions of CH4 and CO2 in Alaska: Implications for the region's greenhouse
 gas budget. Ecological Applications, 17(1), 203-212, 2007.
- 855 Zhuang, Q., Romanovsky, V. E., & McGuire, A. D.: Incorporation of a permafrost model into a
- large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil
 thermal dynamics.Journal of Geophysical Research: Atmospheres, 106(D24), 33649-33670,
- 858 2001.

Zhuang, Q., Zhu, X., He, Y., Prigent, C., Melillo, J. M., McGuire, A. D., ... & Kicklighter, D. W.:
Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane

- in northern high latitudes from 1993 to 2004. Environmental Research Letters, 10(9), 095009,
 2015.
- 863 Zimov, S. A., Schuur, E. A., & Chapin III, F. S.: Permafrost and the global carbon
- budget. Science(Washington), 312(5780), 1612-1613, 2006.
- Zoltai, S. C.: Permafrost distribution in peatlands of west-central Canada during the Holocene
 warm period 6000 years BP. Géographie physique et Quaternaire, 49(1), 45-54, 1995.
- 867
- 868
- 869
- . . .
- 870
- 871
- 872
- 873
- 874

Table 1. Description of sites and variables used for parameterizing the core carbon and nitrogenmodule (CNDM).

Site ^a	Vegetation	Observed variables for References CNDM parameterization		
APEXCON	Moderate rich open fen with sedges (Carex sp.), spiked rushes (Eleocharis sp.), Sphagnum spp., and brown mosses (e.g., Drepanocladus aduncus)	Mean annual aboveground NPP in 2009; Mean annual belowground NPP in 2009; Aboveground biomass in	Chivers et al. (2009) Turetsky et al. (2008) Kane et al. (2010) Churchill et al. (2011)	
APEXPER	Peat plateau bog with black spruce (<i>Picea mariana</i>), <i>Sphagnum</i> spp., and feather mosses	2009		

approximately 35 km southwest of Fairbanks, AK. The area is classified as continental boreal climate with a mean annual temperature of -2.9°C and annual precipitation of 269 mm, of which 30% is snow (Hinzman et al., 2006).

881

882

884

883 Table 2. Carbon pools and fluxes used for calibration of CMDM

Annual Carbon Fluxes or Pools ^a	Sphagnum Open Fen		Sphagnum-Black Spruce Bog		References	
	Observation	Simulation	Observation	Simulation		
					 Turetsky et al. (2008), 	
NPP	445 ± 260	410	433 ± 107	390	Churchill (2011)	
Aboveground Vegetation Carbon	149-287		423		Saarinen et al. (1996)	
Belowground Vegetation Carbon	347-669		987		Moore et al. (2002)	
Total Vegetation Carbon Density	496-856	800	1410	1300	Zhuang et al. (2002)	
Litter Fall Carbon Flux	300	333	300	290	Tarnocai et al. (2009)	
Methane Emission Flux	19.5	19.2	9.7	12.8	Kuhry and Vitt (1996)	

885a Units for annual net primary production (NPP) and litter fall carbon are g C m⁻² yr⁻¹. Units for vegetation carbon density are886g C m⁻². Units for Methane emissions are g C $- CH_4$ m⁻² yr⁻¹. The simulated total annual methane fluxes were compared with887the observations at APEXCON in 2005 and SPRUCE in 2012. A ratio of 0.47 was used to convert vegetation biomass to carbon888(Raich 1991).

889			
890			
891			
892			
893			
894			
895			
896			
897			
1			

Table 3. Assignment of biomized fossil pollen data to the vegetation types in TEM (He et al.,

899 2014).

TEM upland vegetation	TEM peatland vegetation	BIOMISE code
Alpine tundra		CUSH DRYT PROS
Moist tundra	Sphagnum spp. open fen	DWAR SHRU
Boreal evergreen needleleaf and		TAIG COCO CLMX
mixed forest	Sphagnum-black spruce bog	COMX
Boreal deciduous broadleaf forest		CLDE

902 Table 4. Relations between peatland basal age and vegetation distribution

Peatland basal age	Vegetation types	Location in Alaska
15-11 ka	alpine tundra	south, northwestern, and
		southeastern coast
11-10 ka	moist tundra	south, north, and southeastern
	boreal evergreen needleleaf forest	coast
	boreal deciduous broadleaf forest	east central part
10-9 ka	moist tundra	south and north coast
	boreal evergreen needleleaf forest	central part
	boreal deciduous broadleaf forest	
9-5 ka	moist tundra	central part
	boreal evergreen needleleaf forest	
5 ka-1900 AD	moist tundra	west coast
	boreal evergreen needleleaf forest	

914 <u>Table 5. Sites used for comparison of carbon accumulation rates between simulation and observation</u> 915 [*Jones and Yu*, 2010]

Site name	Location	Peatland type	<u>Latitude</u>	Longitude	Dating method	No. of dates	Basal age (cal yr BP)	<u>Time-weighted</u> <u>Holocene</u> accumulation rates (g <u>C m⁻² yr⁻¹)</u>
Kenai Gasfield	Alaska, USA	fen	<u>60°27'N</u>	<u>151°14'W</u>	AMS	<u>12</u>	<u>11,408</u>	<u>13.1</u>
<u>No Name</u> <u>Creek</u>	<u>Alaska, USA</u>	fen	<u>60°38'N</u>	<u>151°04'W</u>	AMS	<u>11</u>	<u>11,526</u>	<u>12.3</u>
Horsetrail fen	<u>Alaska, USA</u>	rich fen	<u>60°25'N</u>	<u>150°54'W</u>	AMS	<u>10</u>	13,614	<u>10. 7</u>
Swanson fen	<u>Alaska, USA</u>	poor fen	<u>60°47'N</u>	<u>150°49'W</u>	AMS	<u>9</u>	<u>14,225</u>	<u>5.7</u>

Figure 1. P-TEM (Peatland-Terrestrial Ecosystem Model) framework includes a soil thermal

927 module (STM), a hydrologic module (HM), a carbon/ nitrogen dynamic model (CNDM), and a

- 928 methane dynamics module (MDM) (Wang et al., 2016).

Figure 2. Alaskan vegetation distribution maps reconstructed from fossil pollen data during (a)
15-11 ka, (b) 11-10 ka, (c) 10-9 ka, (d) 9 ka -1900 AD, and (e) 1900-2000 AD (He et al., 2014).
Symbols represent the basal age of peat samples (n = 102) in Gorham et al. (2012). Each
symbol indicates 1-3 peat samples in the map. Peat samples with basal age 9-5k and 5k-19th are
shown in map (d) as there is no change of vegetation distribution during 9k-19th. Barren refers to
mountain range and large water body areas that can not be interpolated.

Figure 3. Simulated Paleo-climate and other input data from 15 ka to 2000 AD: (a) mean
 monthly and (b) mean annual net incoming solar radiation (NIRR, W m⁻²), (c) mean monthly

and (d) mean annual air temperature (°C), (e) mean monthly, and (f) mean annual precipitation
(mm) (Timm and Timmermann, 2007; He et al., 2014).

-

Formatted: Font: (Default) Times New Roman, (Asian) Times New Roman, 0 pt, Font color: Black, Character scale: 0%, Border: : (No border), Pattern: Clear (Black)

Figure 4. Simulated and observed carbon accumulation rates from 15 ka to 5 ka in 20-yr bins (a)
and 500-yr bins with standard deviation (b) for No Name Creek, Horse Trail Fen, Kenai Gasfield,
and Swanson Fen. Peat-core data were from Jones and Yu (2010).

Formatted: Font: (Default) Times New Roman, 小四

Figure 5. Simulated (a) mean vegetation carbon density (kg C m⁻²) of different vegetation types₄

and (b) annual NPP (g C m⁻²yr⁻¹)-, and (c) long-term NPP (g C m⁻²yr⁻¹).

Formatted: Font: (Default) Times New Roman, 小四

Figure 6. Total C (Pg C) stored in Alaskan vegetation for different time periods.

Formatted: Font: (Default) Times New Roman, 小四

Figure 7. Average non-peatland (mineral) SOC density (kg C m⁻²) during (a) 15-11 ka, (b) 11-

993 10 ka, (c) 10-9 ka, (d) 9-5 ka, (e) 5 ka -1900 AD, and (f) 1900-2000 AD. The period of 9k-19th in

Figure 2d is separated into 9-5k and 5k-19th.

995

AD. The amount of C represents the C accumulation as the difference between the peat C

amount in the final year and the first year in each time slice. The period of 9k-19th in Figure 2d is separated into 9-5k and 5k-19th.

1009 1010 1011 1012 Figure 9. Peatland expansion area (10^4 km^2) in different time slices. The area of barren in the map is set to 0 km².

Figure 10. <u>Bars of p</u>Peatland mean C accumulation rates from 15 ka to 2000 AD for (a) weighted
average of all peatlands, (b) *Sphagnum* open peatlands, and (c) *Sphagnum*-black spruce peatlands.

Figure 11. Total C stock accumulated from 15 ka to 2000 AD for all peatlands, *Sphagnum* open peatlands, *Sphagnum*-black spruce peatlands, and upland soils.

1031 1032 Figure 12. Spatial distribution of (a) total peat SOC density (kg C m^{-2}), (b) total mineral SOC

density (kg C m⁻²), (c) total peat depth (m), and (d) area-weighted total (peatlands plus non-1033

peatlands) SOC density (kg C m^{-2}) in Alaska from 15 ka to 2000 AD. 1034

Figure 13. Field-based estimates and model simulations for peat depths in Alaska: The observed and simulated data are extracted from the same grids on the map. Linear regression line (cyan) is compared with the 1:1 line. The linear regression is significant (P<0.001, n = 64) with $R^2 = 0.45$, slope = 0.65, and intercept = 101.05 cm. The observations of >1000 cm are treated as outliers.

1041

1042

1045 Figure 14. Temperature and precipitation effects on (a)(b) annual NPP, (c)(d) annual SOC

1046 decomposition rate (aerobic plus anaerobic), and (e)(f) annual SOC accumulation rate of Alaska.

1047 A 10-year moving average was applied.